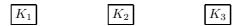
Aufgaben

1. (12 Punkte)

Im Folgenden seien a, b, c, d, e reelle Zahlen mit 0 < a, b, c, d < 1 und

$$y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix}, \quad y'(t) = \begin{pmatrix} y'_1(t) \\ y'_2(t) \\ y'_3(t) \end{pmatrix} \quad \text{und } A = \begin{pmatrix} -a & c & d \\ a & -(b+c) & 0 \\ 0 & b & -(d+e) \end{pmatrix}.$$

Das lineare DGL-System $y'(t) = A \cdot y(t)$, $t \ge 0$ beschreibe die Entwicklung in den Kompartimenten K_1, K_2, K_3 , wobei $y_i(t)$ die Entwicklung in K_i sei, für i = 1, 2, 3.



- a) Zeichnen Sie die Pfeile in das Kompartimentsystem und beschriften sie diese mit a, b, c, d, e. Achten Sie dabei auf die Pfeilrichtung!
- b) Zeigen Sie, falls e=0, dass es für jede Wahl von a,b,c,d einen nichttrivialen stationären Zustand des Systems $y'(t)=A\cdot y(t),\ t\geq 0$ gibt, das heisst, eine von Null verschiedene Lösungsfunktion $t\mapsto y^\infty(t)$, welche nicht von t abhängt.

Wir betrachten nun das DGL-System

$$x'(t) = B \cdot x(t) + f(t), \quad \text{wobei } B = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{6} \\ 0 & -\frac{1}{3} \end{pmatrix}, \text{ mit Anfangswert } x(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

für verschiedene Wahlen von f.

- c) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix B. Berechnen Sie daraus e^{Bt} , und somit die Lösung x(t) falls $f(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- d) Sei nun $f(t) = {-t \choose t}$. Benutzen Sie die Substitution $z(t) = P^{-1} \cdot x(t)$ für eine geeignete Matrix P, um die Differentialgleichungen zu entkoppeln und separat zu lösen. Bestimmen Sie dann die Lösung x(t) durch Rücksubstitution.

2. (12 Punkte)

Die Funktion f sei gegeben durch

$$f(x) = \sinh x = \frac{e^x - e^{-x}}{2}$$
, für $x \in (-\pi, \pi)$.

Weiterhin sei

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx \qquad \text{für } x \in \mathbb{R}$$

die Fourier-Reihe zur Funktion, die aus f durch 2π -periodische Fortsetzung entsteht.

- a) Zeigen Sie, dass f ungerade ist. Was können Sie hieraus über die Koeffizienten a_n , $n \ge 0$, und b_n , $n \ge 1$ von F folgern?
- b) Bestimmen Sie F(x).
- c) Sei $g(x), x \in (-\pi, \pi)$, eine beliebige stetige, ungerade Funktion, und

$$G(x) = \sum_{n \in \mathbb{Z}} c_n e^{inx} \qquad x \in (-\pi, \pi),$$

die zugehörige Fourier-Reihe in komplexer Form. Für welche $n \in \mathbb{Z}$ muss $c_n = 0$ gelten? Begründen Sie Ihre Antwort. Hinweis: Verwenden Sie a) und b).

Gegeben sei folgende inhomogenene Differentialgleichung 2. Ordnung

$$y''(x) + 3y(x) = \sin^3 x. (1)$$

d) Bestimmen Sie die allgemeine Lösung $y(x): [-\pi, \pi] \to \mathbb{R}$ von (1). Verwenden Sie hierzu den Ansatz

$$y_p(x) = \sum_{n=1}^{\infty} \widetilde{b}_n \sin nx,$$

mit zu bestimmenden Koeffizienten $\widetilde{b}_n \in \mathbb{R}$, um eine partikuläre Lösung von (1) zu finden. Hinweis: es gilt $\sin^3 x = \frac{3}{4} \sin x - \frac{1}{4} \sin 3x$.

3. (12 Punkte)

Notation: im Folgenden bezeichne

$$\mathcal{L}\{f\}(s) = \int_0^\infty e^{-st} f(t)dt \tag{2}$$

die Laplace-Transformierte einer gegebenenen Funktion f, sofern das Integral existiert und endlich ist.

- a) In dieser Teilaufgabe sei $f(t) = te^{\alpha t}$ mit $\alpha > 0$.
 - i) Berechnen Sie $\mathcal{L}\{f\}(s)$ direkt aus der Definition (2).
 - ii) Bestimmen Sie mithilfe von i) und dem Ableitungssatz die Originalfunktion zu

$$\frac{s}{(s-\alpha)^2}$$
.

b) Sei

$$g(t) = 5\cos(t-4)\sigma(t-4) + e^{-3t}(2t)^3,$$

wobei $\sigma(u) = 1$ für $u \ge 0$ und $\sigma(u) = 0$ für u < 0. Wie lautet $\mathcal{L}\{g\}(s)$?

c) Bestimmen Sie unter Verwendung des Faltungssatzes die Originalfunktion h(t) zu

$$\frac{s}{(s^2+1)(s-a)}, \quad \text{mit } a \in \mathbb{R}.$$

d) Für gegebene $A \in \mathbb{R}$ und $\beta > 0$ seien die Funktionen $\phi_1(t)$, $\phi_2(t)$ Lösungen des Differentialgleichungssystems

$$\phi_1'' + \beta(\phi_1 - \phi_2) = 0$$

$$\phi_2'' - \beta(\phi_1 - \phi_2) = 0$$
(3)

zur Anfangsbedingung $\phi_1(0) = A$, $\phi_2(0) = 0$ und $\phi_1'(0) = \phi_2'(0) = 0$, wobei $\phi_i'(t) = d\phi_i(t)/dt$ die Ableitung nach t bezeichnet.

- i) Seien $F_i(s) = \mathcal{L}\{\phi_i\}(s)$ für i = 1, 2. Bestimmen Sie F_1 und F_2 in Abhängigkeit von s, A und β .
- ii) Bestimmen Sie durch Rücktransformation aus i) die Funktion $\phi_1(t)$. Hinweis: machen Sie eine Partialbruchzerlegung.