BIOL HST PHARM

Prüfung zur Vorlesung Mathematik I/II

Bitte ausfüllen!

Name:	
Vorname:	
Legi-Nr.:	

Nicht ausfüllen!

Aufgabe	Punkte		Kontrolle	
	MC	Total	MC	Total
1				
2				
3				
4				
5				
Total				

Wichtige Hinweise zur Prüfung

Prüfungsdauer: 3 Stunden.

Erlaubte Hilfsmittel: 20 A4-Seiten (nicht Blätter!) mit persönlichen, von Hand geschriebenen Notizen. Keine (Taschen)Rechner. 1 Wörterbuch für fremdsprachige Studierende.

Bitte beachten Sie folgende Punkte:

- Tragen Sie **jetzt** Ihren Namen in das Deckblatt ein und geben Sie es **am Ende** der Prüfung als vorderstes Blatt Ihrer Arbeit ab.
- Legen Sie Ihre Legi offen auf den Tisch.
- Beginnen Sie jede Aufgabe auf einem neuen Blatt.
- Begründen Sie Ihre Lösungen, soweit nicht anders angegeben. Dabei können Sie bekannte Formeln aus der Vorlesung und den Übungen ohne Herleitung verwenden.
- Schreiben Sie nicht mit Bleistift und nicht mit roter oder grüner Farbe.
- Die Reihenfolge der Bearbeitung der Aufgaben ist Ihnen freigestellt. Ordnen Sie jedoch am Ende der Prüfung die Aufgaben für die Abgabe.
- Wir erwarten nicht, dass Sie alle Aufgaben lösen. Versuchen Sie einfach Ihr Bestes! Verweilen Sie nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet.
- Bei einer Multiple-Choice-Aufgabe (MC-Aufgabe) sind jeweils 4 Aussagen/Antworten angegeben, davon sind jeweils genau 2 korrekt.

Eine MC-Aufgabe ist genau dann korrekt gelöst, wenn Sie die 2 korrekten Antworten mit "richtig" **und** die 2 inkorrekten mit "falsch" kennzeichnen. Sie müssen also bei jeder MC-Aufgabe genau 4 Kreuze setzen und jedes muss jeweils an der richtigen Stelle sein.

Zum Beispiel ist folgende MC-Aufgabe nur mit diesen 4 Kreuzen korrekt gelöst.

richtig	falsch	
\otimes	0	Hier steht eine korrekte Aussage/Antwort.
\otimes	0	Hier steht eine korrekte Aussage/Antwort.
\circ	\otimes	Hier steht eine inkorrekte Aussage/Antwort.
$\overline{}$	\otimes	Hier steht eine inkorrekte Aussage/Antwort.

Bei den MC-Aufgaben werden nur die Antworten auf den **Aufgabenblättern** bewertet. Die Antworten in den MC-Aufgaben müssen nicht begründet werden.

Viel Erfolg!

Aufgaben

1. (8 Punkte)

Die Antworten in dieser Aufgabe müssen Sie **nicht** begründen. Schreiben Sie die Antworten **vollständig gekürzt und vereinfacht** direkt auf das Aufgabenblatt. Antworten auf anderen Blättern werden nicht bewertet.

Es ist e = 2,71828... die Eulersche Zahl.

a) Berechnen Sie

$$\lim_{x \to 0} \left(\frac{x + \sin(x) - \sin(x)\cos(x)}{\sin(x)} \right) = \underline{\qquad}.$$

b) Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2 + x - \frac{1}{4}$. Bestimmen Sie die beiden Fixpunkte $x_{\infty,1}$ und $x_{\infty,2}$:

$$x_{\infty,1} = \underline{\qquad}, \qquad x_{\infty,2} = \underline{\qquad}.$$

c) Sei f wie in b). Sei (x_n) eine Folge mit $x_{n+1} = f(x_n)$. Für welchen Fixpunkt x_{∞} gilt das folgende: Für jeden Startwert x_0 in der Nähe von x_{∞} konvergiert die Folge (x_n) gegen x_{∞} .

$$x_{\infty} = \underline{\qquad}$$

d) Gegeben sei eine Funktion f mit $f(x) = \frac{1}{\sqrt{\ln(x) + 1}}$ für $x > \frac{1}{e}$.

Sei f^{-1} die Umkehrfunktion. Bestimmen Sie den Wert der Komposition

$$(\underbrace{f^{-1} \circ f^{-1} \circ \ldots \circ f^{-1}}_{\text{2014 Stück}})(1) = \underline{\hspace{2cm}}.$$

e) Berechnen Sie das bestimmte Integral

$$\int_1^4 e^{\sqrt{x}} dx = \underline{\qquad}.$$

f) MC-Aufgabe

Seien M_0, T positive reelle Zahlen. Seien I=[0,T] und $f:I\to\mathbb{R}$ eine Funktion mit $f(x)=\frac{M_0}{(x+1)^2}$ und Mittelwert $\mu=\frac{1}{T}\int_0^T f(x)\;dx$.

Für welche T und M_0 ist $\mu < 1$?

Kreuzen Sie die entsprechende Antwort direkt ${\bf auf\ dem\ Aufgabenblatt}$ an.

richtig	falsch	
\circ	0	$M_0 = 1, T = 1.$
0	0	$M_0 > 5, T = 2.$
0	0	$M_0 = \frac{3}{2}, \ T = 1.$
0	0	$M_0 = \frac{3}{2}, \ T = \frac{1}{3}.$

2. (14 Punkte)

Die Antworten in dieser Aufgabe müssen Sie **nicht** begründen. Schreiben Sie die Antworten **vollständig gekürzt und vereinfacht** direkt auf das Aufgabenblatt. Antworten auf anderen Blättern werden nicht bewertet.

Es sind $i^2 = -1$ und $\pi = 3, 14...$

a) MC-Aufgabe

Sei
$$A = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 mit $A^2 = \begin{pmatrix} \cos(\alpha) & -\sin(\beta) & 0 \\ \sin(\gamma) & \cos(\delta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Dabei gilt $0 < \alpha, \beta, \delta, \gamma < 2\pi$.

Welche der folgenden Aussagen sind für jedes φ mit $0 < \varphi < \pi$ richtig? Kreuzen Sie die entsprechende Antwort direkt **auf dem Aufgabenblatt** an.

richtig	falsch	
\circ	0	$\alpha = \beta = \gamma = \delta$
\circ	0	$\alpha = \delta = 2\varphi$
0	0	$\beta = \gamma = \varphi^2$
0	0	$\beta = -\gamma$

Hinweis: Verwenden Sie zum Beispiel die Additionstheoreme:

$$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b) \quad \cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b).$$

- **b)** Sei $A = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Bestimmen Sie zwei Winkel φ_1 und φ_2 mit $\varphi_1 \neq \varphi_2$ und $0 < \varphi_1, \varphi_2 < 2\pi$, für die $A^4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ gilt: $\varphi_1 = \underline{\qquad}, \quad \varphi_2 = \underline{\qquad}$
- c) Sei $B = \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}$. Bestimmen Sie die Eigenwerte der Matrix B sowohl in kartesischer Darstellung als auch in Polardarstellung:

Kartesisch

$$\lambda_1 = \underline{\hspace{1cm}}, \quad \lambda_2 = \underline{\hspace{1cm}}.$$

Polar

$$\lambda_1 = \underline{\hspace{1cm}}, \quad \lambda_2 = \underline{\hspace{1cm}}.$$

d) Sei wieder $B = \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}$. Der Vektor $v = \begin{pmatrix} i \\ b \end{pmatrix}$ ist ein Eigenvektor von B.

Bestimmen Sie die Koordinate b:

$$b = \underline{\hspace{1cm}}$$
.

Sei $w = \begin{pmatrix} -i \\ y \end{pmatrix}$ ein weiterer Eigenvektor von B. Bestimmen Sie die Koordinate y so, dass v und w linear unabhängig sind.

$$y = \underline{\hspace{1cm}}$$
.

e) MC-Aufgabe

Sei B wie in Teil c) und Teil d) mit den Eigenwerten λ_1 und λ_2 .

Sei \widetilde{B} eine weitere 2×2 Matrix mit Eigenwerten $\mu_1 = \frac{\lambda_1}{4}$ und $\mu_2 = \frac{\lambda_2}{4}$.

Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind und kreuzen Sie die entsprechende Antwort direkt **auf dem Aufgabenblatt** an.

richtig	falsch	
0	0	$\widetilde{B} = \frac{1}{4}B = \begin{pmatrix} \frac{\sqrt{3}}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{\sqrt{3}}{4} \end{pmatrix}.$
0	0	\widetilde{B} ist invertier bar.
0	0	Sei $v_n = \left(\widetilde{B}\right)^n v_0$. Für jeden Startvektor v_0 konvergiert die Folge der Vektoren v_n gegen den Nullvektor.
0	0	$\frac{\det(B)}{4} = \det(\widetilde{B}).$

f) Seien
$$C = \begin{pmatrix} 3 & 2 & 7 \\ -1 & 3 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$
 und $b = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$.

Lösen Sie das lineare Gleichungssystem Cx=b mit dem Gauss-Verfahren.

Schreiben Sie Ihre Rechnung und Lösung hier auf das Aufgabenblatt.

3. (12 Punkte)

a) MC-Aufgabe

Für eine Konstante $a \in \mathbb{R}$ betrachten wir die DGL

$$y'(x)(1 - y(x)) + y(x) = a(1 - y(x)).$$
(1)

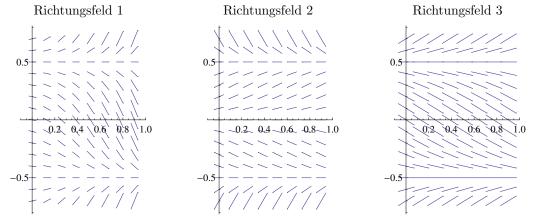
Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind, und kreuzen Sie die entsprechende Antwort direkt **auf dem Aufgabenblatt** an.

richtig	falsch	
0	0	Für jedes $a \in \mathbb{R}$, hat die DGL (1) unendlich viele Lösungen.
0	0	Für jedes $a \in \mathbb{R}$, hat die DGL (1) mindestens eine stationäre Lösung.
0	0	Für $a=2$ ist die Lösungsfunktion f der DGL (1) mit einem Anfangswert $y(0)=2$ streng monoton wachsend.
0	0	Für $a=\frac{1}{2}$ ist die Lösungsfunktion f der DGL (1) mit einem Anfangswert $y(0)=\frac{1}{2}$ streng monoton wachsend.

b) Sei $y'(x) = y^2(x) - \frac{1}{4}$.

Bestimmen Sie die stationären Lösungen $y_{\infty,1}$ und $y_{\infty,2}$. Tragen Sie Ihre Antwort hier ein:

Welches Richtungsfeld passt zu der obigen Differentialgleichung?



Tragen Sie Ihre Antwort hier ein:

Richtungsfeld _____.

c) Bestimmen Sie die Lösung des Anfangswertproblems

$$y'(x) = -\sin(x)y + e^{\cos x + x}, \qquad y\left(\frac{\pi}{2}\right) = 1,$$

mittels Variation der Konstanten.

d) Wir betrachten die folgende Differentialgleichung

$$y''(x) - 5y'(x) + 4y(x) = e^{2x}.$$

Schreiben Sie die dazugehörige homogene Differentialgleichung auf und bestimmen Sie deren allgemeine Lösung.

- **4.** (10 Punkte)
 - a) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine Funktion definiert durch

$$f(x,y) = e^{x+2y} - \cos(5(x-y)) - x^3.$$

Bestimmen Sie die partiellen Ableitungen $f_x(x,y)$ und $f_y(x,y)$.

b) Sei f wie in Teil **a)**. Sei $K: \mathbb{R}^2 \to \mathbb{R}^2$ ein Vektorfeld mit

$$K(x,y) = \begin{pmatrix} f(x,y) \\ 2e^{x+2y} + \cos(5(x-y)) \end{pmatrix}.$$

Sei γ der Rand des Rechtecks in der Ebene mit Eckpunkten $(0,0), (2\pi,0), (2\pi,1)$ und (0,1). Bestimmen Sie das Kurvenintegral $\oint K \cdot d\gamma$.

c) Sei $F(x,y) = x^2 - y^2 - 3xy + 1$.

Eine Kurve in der (x, y)-Ebene sei gegeben durch die Bedingung F(x, y) = 0.

- i) Finden Sie alle Schnittpunkte der Kurve mit der Geraden y=-x-1.
- ii) Finden Sie die Tangente an die Kurve im Punkt (0, -1).
- d) MC-Aufgabe

Sei F der Graph der Funktion

$$\mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto (x-2)^2 + (y+3)^2 - 2.$$

Sei E_1 die Tangentialebene an F im Punkt (1, -2, 0) und E_2 die Tangentialebene an F im Punkt (0, 0, 11).

Welche der folgenden Aussagen sind korrekt?

Kreuzen Sie die entsprechende Antwort direkt auf dem Aufgabenblatt an.

richtig	falsch	
\circ	0	Der Punkt $(0,0,6)$ liegt auf E_1 .
0	0	Der Punkt $(1, -1, 2)$ liegt auf E_1 und E_2 .
0	0	Der Punkt $(1, -1, 2)$ liegt auf E_2 .
0	0	Der Punkt $\left(-\frac{3}{2}, -2, 5\right)$ liegt auf E_1 und E_2 .

5. (16 Punkte)

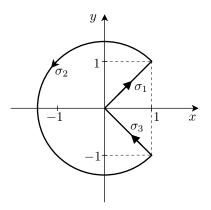
a) MC-Aufgabe

Sei $F: \mathbb{R}^2 \to \mathbb{R}^2$ ein Vektorfeld mit $(x, y) \mapsto F(x, y)$.

Entscheiden Sie, welche der folgenden Vektorfelder F konservativ (= richtig) sind und kreuzen Sie die entsprechende Antwort direkt auf dem Aufgabenblatt an.

richtig	falsch	
0	0	$F(x,y) = \begin{pmatrix} 2x\sin(y) \\ x^2\cos(y) \end{pmatrix}.$
0	0	$F(x,y) = \begin{pmatrix} e^{\cos(x)\sin(y)} \\ e^{\cos(x)\sin(y)} \end{pmatrix}.$
0	0	$F(x,y) = \begin{pmatrix} \frac{2xy}{x^2+1} \\ \ln(x^2+1) \end{pmatrix}.$
0	0	$F(x,y) = \begin{pmatrix} 9x^2y^2 - 4xy^3 \\ 6x^2y^2 - 6x^3y \end{pmatrix}.$

Für die Aufgaben \mathbf{b}) bis \mathbf{f}) betrachten wir die Fläche S in der folgenden Skizze.



Dabei gilt

- Die orientierte Fläche S liegt in der (x, y)-Ebene im Raum \mathbb{R}^3 .
- Deren Rand $\gamma = \partial S$ ist gegeben durch drei Kurven $\sigma_1, \sigma_2, \sigma_3 : I \to \mathbb{R}^3$.
- Dabei liegen σ_1 und σ_3 jeweils auf einer Geraden, und σ_2 ist ein Ausschnitt eines Kreisbogens mit Radius $\sqrt{2}$.
- Die Pfeile kennzeichnen die Durchlaufrichtung.
- **b)** Sei $f: \mathbb{R}^3 \to \mathbb{R}, (x,y,z) \mapsto f(x,y,z) = 1$ die konstante Funktion 1.

Berechnen Sie das Oberflächen
integral $\iint_S f(x,y,z) \ dS$. Begründen Sie Ihre Antwort.

Hinweis: Sie brauchen die Fläche nicht zu parametrisieren.

c) Geben Sie für σ_1, σ_2 und σ_3 jeweils eine Funktion $I \to \mathbb{R}^3$ an, welche die Kurve parametrisiert. Berücksichtigen Sie dabei die Durchlaufrichtung. Schreiben Sie Ihre Antwort direkt auf das Aufgabenblatt.

$$\sigma_1: t \mapsto \sigma_1(t) = \left(\begin{array}{c} \underline{} \\ \underline{} \\ 0 \end{array}\right) \in \mathbb{R}^3, \qquad \underline{} \leq t \leq \underline{}.$$

$$\sigma_2: t \mapsto \sigma_2(t) = \left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}\right) \in \mathbb{R}^3, \qquad \underline{\qquad} \leq t \leq \underline{\qquad}.$$

$$\sigma_3: t \mapsto \sigma_3(t) = \left(\begin{array}{c} \underline{} \\ \underline{} \\ 0 \end{array}\right) \in \mathbb{R}^3, \qquad \underline{} \leq t \leq \underline{}.$$

d) Gegeben sei das Vektorfeld $K: \mathbb{R}^3 \to \mathbb{R}^3$ mit

$$K(x, y, z) = \begin{pmatrix} x^2 + y^2 \\ 1 \\ 0 \end{pmatrix}.$$

Das Kurvenintegral $\int_{\sigma_2} K \cdot d\gamma$ ist gleich -2.

Berechnen Sie die Kurvenintegrale $\int_{\sigma_1} K \cdot d\gamma$ und $\int_{\sigma_3} K \cdot d\gamma$.

e) Sei $n=\begin{pmatrix}0\\0\\n_3\end{pmatrix}$ ein Normaleneinheitsvektor von S. Bestimmen Sie die Koordinate n_3 so, dass die Randkurve γ relativ n positiv durchlaufen wird.

Tragen Sie Ihr Ergebnis hier ein:

$$n_3 =$$

f) Berechnen Sie mit diesem n aus Teil e) den Fluss: $\iint_S \operatorname{rot}(K) \cdot n \, dS$.