Quantitative Risk Management

Important:

- Put your student card on the table
- Begin each exercise on a new sheet of paper, and write your name on each sheet
- Only pen, paper and ten A4 sides of summary are allowed

Please fill in the following table.

Last name	
First name	
Student number (if available)	

Please do \underline{not} fill in the following table.

Question	Points	Control	Maximum
#1			11
#2			10
#3			8
#4			11
#5			10
Total			50

Question 1 (11 Pts)

a) Let X be a random variable with cdf

$$F(x) = \frac{1}{1 + e^{-\frac{x-\mu}{\sigma}}}, \quad x \in \mathbb{R},$$

for parameters $\mu \in \mathbb{R}$ and $\sigma > 0$. Calculate $\operatorname{VaR}_{\alpha}(X)$ and $\operatorname{ES}_{\alpha}(X)$ for $\alpha \in (0, 1)$. (3 Pts)

b) Denote by $L^2(\Omega, \mathcal{F}, \mathbb{P})$ the space of all square integrable random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Which axioms of coherence does the mapping $\rho: L^2(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$, given by

$$\rho(X) := \operatorname{sd}(X) = \sqrt{\mathbb{E}\left[(X - \mathbb{E}X)^2\right]}$$

satisfy? Please, prove your statements.

- c) Construct a two-dimensional random vector (X_1, X_2) such that
 - (i) $X_i \sim \text{Exp}(\lambda_i)$ for $\lambda_i > 0$, i = 1, 2, and

(ii)
$$\operatorname{VaR}_{\alpha}(X_1 + X_2) = \operatorname{VaR}_{\alpha}(X_1) + \operatorname{VaR}_{\alpha}(X_2)$$
 for all $\alpha \in (0, 1)$. (4 Pts)

Question 2 (10 Pts)

- a) Let X be a d-dimensional random vector with a $t_d(\nu, 0, \Sigma)$ -distribution for $d \ge 2, \nu > 0$ and a positive definite $d \times d$ -matrix Σ . Are the components of X exchangeable? (3 Pts)
- b) Let $X \sim S_d(\psi)$ for some $d \ge 2$. Show that all univariate marginal distributions of X are equal. (3 Pts)
- c) Denote by \mathbb{S}^2_+ the set of all positive semidefinite symmetric 2×2 -matrices, and let X be a two-dimensional random vector with a $N_2(\mu, \Sigma)$ -distribution for a fixed mean vector $\mu \in \mathbb{R}^2$ and a covariance matrix Σ in the set

$$S = \left\{ \Sigma \in \mathbb{S}^2_+ : \Sigma_{ii} = \sigma_i^2 \text{ for } i = 1, 2, \text{ and } \underline{\rho} \le \frac{\Sigma_{12}}{\sigma_1 \sigma_2} \le \overline{\rho} \right\},\$$

where $\sigma_i > 0$, i = 1, 2, and $-1 \le \rho \le \overline{\rho} \le 1$ are given constants. The set S models correlation uncertainty between the components of X. Consider a vector $w \in \mathbb{R}^2_+$ and a probability level $\alpha \in (1/2, 1)$. Compute the worst-case value-at-risk

$$\sup_{\Sigma \in S} \operatorname{VaR}_{\alpha} \left(-\sum_{i=1}^{2} w_i X_i \right)$$

(4 Pts)

of the portfolio loss $-\sum_{i=1}^{2} w_i X_i$.

Question 3 (8 Pts)

- a) Compute the lower tail dependence coefficient λ_l of the two-dimensional copulas $W(u, v) = (u + v 1)^+$ and $M(u, v) = \min\{u, v\}$. (3 Pts)
- b) Let (X_1, X_2) be a two-dimensional random vector with joint distribution given by the cdf

$$F(x_1, x_2) = \exp\left(-(-x_1 - x_2)^{1/\beta}\right)$$
 for $x_1, x_2 \le 0$ and $\beta \ge 1$.

Calculate the marginal distributions and the copula of (X_1, X_2) . (5 Pts)

(4 Pts)

Question 4 (11 points)

Let X be a random variable with cdf

$$F(x) = 1 - x^{-\alpha}, \quad x \ge 1,$$

for a parameter $\alpha > 0$.

- a) Does X have a density? If yes, derive it. (1 Pts)
- b) Find all $k = 1, 2, \dots$ such that $\mathbb{E}\left[|X|^k\right] < \infty$. (2 Pts)
- c) Does F belong to $MDA(H_{\xi})$ for a generalized extreme value distribution H_{ξ} ? If yes, what is ξ and what are the normalizing sequences? (3 Pts)
- d) Calculate the excess distribution function $F_u(x) = \mathbb{P}[X u \le x \mid X > u], x \ge 0.$ (2 Pts)
- e) Does there exist a parameter $\xi \in \mathbb{R}$ and a positive measurable function β such that

$$\lim_{u \to \infty} \sup_{x>0} \left| F_u(x) - G_{\xi,\beta(u)}(x) \right| = 0,$$

where $G_{\xi,\beta}$ is a generalized Pareto distribution? If yes, what are ξ and β ? (3 Pts)

Question 5 (10 points)

- a) Assuming that you can only simulate $U \sim \text{Unif}(0, 1)$ and $Z \sim N_d(0, I_d)$, where I_d denotes the *d*-dimensional identity matrix, describe an algorithm for simulating $X \sim M_d(\mu, \Sigma, \hat{F}_W)$. (4 Pts)
- b) Name three methods for estimating a copula C from data. (3 Pts)
- c) Explain what principal component analysis is. (3 Pts)