Quantitative Risk Management

Important:

- Put your student card on the table
- Begin each problem on a new sheet of paper, and write your name on each sheet
- Only pen, paper and ten sides of summary are allowed

Please fill in the following table.

Last name	
First name	
Student number (if available)	

Please do not fill in the following table.

Question	Points	Control	Maximum
$\# 1$			12
$\# 2$			10
$\# 3$			10
$\# 4$			10
$\# 5$			8
Total			50

Question 1 (12 Pts)

a) Let X be a random variable with a standard Laplace distribution; that is, the cdf of X is

$$
F(x)= \begin{cases}\frac{1}{2} \exp (x) & \text { if } \quad x \leq 0 \tag{3Pts}\\ 1-\frac{1}{2} \exp (-x) & \text { if } \quad x \geq 0\end{cases}
$$

Calculate $\operatorname{VaR}_{\alpha}(X)$ and $\operatorname{AVaR}_{\alpha}(X)$ for $\alpha \in[1 / 2,1)$.
b) Let X be a random variable such that $\mathbb{E}[|X|]<\infty$. Show that

$$
\begin{equation*}
\operatorname{AVaR}_{\alpha}(X)=\operatorname{VaR}_{\alpha}(X)+\frac{1}{1-\alpha} \mathbb{E}\left[\left(X-\operatorname{VaR}_{\alpha}(X)\right)_{+}\right] \tag{3Pts}
\end{equation*}
$$

for all $\alpha \in(0,1)$.
c) Name one advantage of VaR over AVaR and one advantage of AVaR over VaR. (2 Pts)
d) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and consider the risk measure $\rho: L^{1}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}$ given by

$$
\rho(X)=\max \left\{\operatorname{AVaR}_{0.75}(X), \operatorname{VaR}_{0.95}(X)\right\}
$$

Which properties of a coherent risk measure does ρ have? Please, justify your answers.

Question $2(10 \mathrm{Pts})$
a) Let $X_{i} \sim S_{d}\left(\psi_{i}\right), i=1, \ldots, n$, be independent random vectors and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$. Show that $Z=\sum_{i=1}^{n} \alpha_{i} X_{i}$ is spherically distributed.
b) Assume that the daily losses of an investment during the next t days are given by

$$
\left(X_{1}, \ldots, X_{t}\right) \sim M_{t}\left(0, \Sigma, \widehat{F}_{W}\right)
$$

for a non-negative random variable W and a $t \times t$-matrix $\Sigma=\sigma^{2} P$, where $\sigma>0$ is a constant and P a correlation matrix with $P_{i j}=\rho$ for all $i \neq j$. Show that there exists a function $f: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{VaR}_{\alpha}\left(X_{1}+\cdots+X_{t}\right)=f(t) \operatorname{VaR}_{\alpha}\left(X_{1}\right) \tag{4Pts}
\end{equation*}
$$

for all $\alpha \in(0,1)$. Can you compute f explicitly?
c) Let $X \sim E_{d}(\mu, \Sigma, \psi)$ and $Y \sim E_{d}(\nu, \Sigma, \varphi)$ be two independent random vectors. Is $Z=X+Y$ again elliptically distributed? If yes, derive $m \in \mathbb{R}^{d}, M \in \mathbb{R}^{d \times d}$ and $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that $Z \sim E_{d}(m, M, \xi)$. If no, give a counterexample.

Question 3 (10 Pts)
a) Let X be an $\operatorname{Exp}(\lambda)$-distributed random variable for a parameter $\lambda>0$. Calculate the distribution function and the moments of $Y=\exp (X)$.
b) Does Y have a density? If yes, can you compute it?
c) Now, consider a two-dimensional random vector $\left(X_{1}, X_{2}\right)$ such that $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$ for parameters $\lambda_{i}>0, i=1,2$. Under which conditions does the linear correlation between $Y_{1}=\exp \left(X_{1}\right)$ and $Y_{2}=\exp \left(X_{2}\right)$ exist?
d) Assume $\lambda_{1}=3$ and $\lambda_{2}=4$. What is the range of possible correlations between Y_{1} and Y_{2} ?

Question 4 (10 Pts)
a) Let (X, Y) be a two-dimensional random vector with joint distribution function

$$
\begin{equation*}
F(x, y)=\frac{1}{\frac{x^{\alpha}}{x^{\alpha}-1}+e^{-y}} \quad x>1, y \in \mathbb{R}, \alpha>0 . \tag{5Pts}
\end{equation*}
$$

Compute the marginal distributions and the copula of (X, Y).
b) Let $F: \mathbb{R} \rightarrow[0,1]$ be a cdf satisfying

$$
\lim _{x \rightarrow \infty}(1-F(x)) e^{\lambda x}=b
$$

for constants $\lambda, b>0$. Does F belong to the maximum domain of attraction of a standard extreme value distribution H_{ξ} ? If yes, determine the shape parameter ξ and a pair of normalizing sequences.

Question 5 (8 Pts)

a) Name different stylized facts of typical daily equity log-return series.
b) Discuss and compare different methods of generating loss distributions of financial assets.

