

D-MATH Exam Quantitative Risk Management 401-3629-00L

Please do not turn the page yet!

Question 1 (10 Pts)

a) Let X be a random variable with cdf

$$F(x) = \begin{cases} 1 - e^{-\lambda\sqrt{x}} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

for a parameter $\lambda > 0$. Calculate $\operatorname{VaR}_{\alpha}(X)$ and $\operatorname{AVaR}_{\alpha}(X)$ for $\alpha \in (0, 1)$. (4 Pts)

b) Let X be a random variable with a continuous cdf. Show that

$$\mathrm{ES}_{\alpha}(X) = \frac{\mathbb{E}[X] + \alpha \mathrm{ES}_{(1-\alpha)}(-X)}{1-\alpha}$$
(2 Pts)

for all $\alpha \in (0, 1)$.

c) Denote by \mathcal{L} the set of all random variables X on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying $\mathbb{E}\left[e^{\lambda X}\right] < \infty$ for every $\lambda \in \mathbb{R}_+$. Define the risk measure $\rho \colon \mathcal{L} \to \mathbb{R}$ by

$$\rho(X) = \log \mathbb{E}\left[e^X\right]$$

Which properties of a coherent risk measure does ρ have? Explain your answers.

(4 Pts)

Question 2 (10 Pts)

- a) Consider a *d*-dimensional random vector $X = (X_1, \ldots, X_d) \sim S_d(\psi)$ for some $d \ge 1$. Show that the components X_1, \ldots, X_d of X are symmetrically distributed. (2 Pts)
- b) Consider a *d*-dimensional random vector $X = (X_1, \ldots, X_d) \sim M_d(\mu, \Sigma, \hat{F}_W)$ for some $d \geq 1$ and a positive definite $d \times d$ -matrix Σ . Let $a \in \mathbb{R}^d$ and suppose that $\mathbb{E}|X_i| < \infty$, for all $i = 1, \ldots, d$. Can you derive a formula for $\mathrm{ES}_{\alpha}(a^T X)$ in terms of $\mathrm{ES}_{\alpha}(X_1)$?

(5 Pts)

c) Consider a d-dimensional random vector $X = (X_1, \ldots, X_d) \sim E_d(\mu, \Sigma, \psi)$ for some $d \geq 1$ and a positive semidefinite $d \times d$ -matrix Σ . Show that for every bounded measurable function $f \colon \mathbb{R} \to \mathbb{R}$ there exists a function $F \colon \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ such that

$$\mathbb{E}\left[f(\boldsymbol{m} + \boldsymbol{\lambda}^T\boldsymbol{X})\right] = F(\boldsymbol{m} + \boldsymbol{\lambda}^T\boldsymbol{\mu}, \boldsymbol{\lambda}^T\boldsymbol{\Sigma}\boldsymbol{\lambda})$$

for all $m \in \mathbb{R}$ and $\lambda \in \mathbb{R}^d$.

$$(3 \text{ Pts})$$

Question 3 (9 Pts)

Let X be a random variable with cdf

$$F(x) = 1 - \frac{1}{(x+2)^5}, \quad x \ge -1.$$

- a) Does X have a density? If yes, can you derive it? (1 Pts)
- b) Find all $k \in \mathbb{N} = \{1, 2, ...\}$ such that $\mathbb{E}[|X|^k] < \infty$. (1 Pts)
- c) Does F belong to $MDA(H_{\xi})$ for a standard generalized extreme value distribution H_{ξ} ? If yes, what is ξ and what are the normalizing sequences? (3 Pts)
- d) Calculate the excess distribution function $F_u(x) = \mathbb{P}[X u \le x \mid X > u], x \ge 0.$ (2 Pts)
- e) Does there exist a parameter $\xi \in \mathbb{R}$ and a function β such that

$$\lim_{u \to \infty} \sup_{x>0} |F_u(x) - G_{\xi,\beta(u)}(x)| = 0,$$

where $G_{\xi,\beta}$ denotes the cdf of a generalized Pareto distribution? If yes, for which ξ and β does this hold? (2 Pts)

Question 4 (11 Pts)

a) Compute the lower tail dependence coefficient λ_l of the two-dimensional copula

$$C(u,v) = \frac{1}{\theta} \log \left(1 + \frac{(e^{\theta u} - 1)(e^{\theta v} - 1)}{e^{\theta} - 1} \right), \quad u, v \in (0,1),$$
 for $\theta \in \mathbb{R} \setminus \{0\}.$ (2 Pts)

b) Is C(u, v) given in a) still a copula for $\theta \to -\infty$ and $\theta \to \infty$? Justify your answers.

(4 Pts)

c) Let (X, Y) be a two dimensional random vector with cdf

$$F(x,y) = \frac{1}{1 + e^{-x} + e^{-y}}$$

defined on \mathbb{R}^2 . Compute the marginal distributions and the copula of (X, Y). (5 Pts)

Question 5 (10 Pts)

a)	How can one test multivariate normality?	(2 Pts)
b)	Describe how one can estimate risk measures with a $GARCH(1,1)$ model.	(2 Pts)
c)	Name advantages and disadvantages of Archimedean copulas.	(3 Pts)
d)	Name different operational risk categories.	(3 Pts)