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Question 1 (10 Pts)
Let L be a random loss of the form L = Y Z, where Y is a Bernoulli random variable with
mean p ∈ (0, 1) and Z an independent random variable with cdf

FZ(x) =

{
1− x−β if x ≥ 1

0 if x < 1

for a parameter β > 2.

a) Compute the mean and the variance of L. (2 Pts)

b) Derive the cdf of L. (1 Pt)

c) Does L have a density? If yes, can you derive it? (1 Pt)

d) Compute VaRα(L) for α ∈ (0, 1). (2 Pts)

e) Compute ESα(L) for α ∈ (0, 1). (2 Pts)

f) For which α ∈ (0, 1) is AVaRα(L) equal to ESα(L)? (2 Pts)

Question 2 (10 Pts)

a) Consider a d-dimensional random vector X = (X1, . . . , Xd) ∼ Nd(µ,Σ) such that
X1 ≡ 1. Denote by L the set of random losses {vTX : v ∈ Rd} and let α ∈ [1/2, 1).
Which properties of a coherent risk measure does the mapping VaRα : L → R have?
Explain your answers. (5 Pts)

b) Assume d financial returns are described by the components of a d-dimensional random
vector X = (X1, . . . , Xd) with an elliptical distribution such that E[X2

i ] < ∞ for all
i = 1, . . . , d. Let v, w ∈ Rd be two portfolio vectors such that vTµ = wTµ, where
µ ∈ Rd is the mean vector of X. Show that, for all α ∈ [1/2, 1), one has

ESα
(
−vTX

)
≤ ESα

(
−wTX

)
if and only if Var

(
vTX

)
≤ Var

(
wTX

)
.

(5 Pts)

Question 3 (10 Pts)
Let X be a non-negative random variable with cdf

F (x) = 1− 1√
1 + 2x

, x ≥ 0.

a) Does X have a density? If yes, can you derive it? (1 Pt)

b) Find all k ∈ {1, 2, . . . } such that E[|X|k] <∞? (1 Pt)

c) Does F belong to the maximum domain of attraction of a standard generalized ex-
treme value distribution Hξ? If yes, determine the shape parameter ξ and a pair of
normalizing sequences. (3 Pts)
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d) Calculate the excess distribution function Fu(x) = P[X − u ≤ x | X > u], x ≥ 0, over
a threshold u > 0. (2 Pts)

e) Does there exist a parameter ξ ∈ R and a function β such that

lim
u→∞

sup
x>0
|Fu(x)−Gξ,β(u)(x)| = 0,

for a generalized Pareto distribution Gξ,β(u)? If yes, for which ξ and β(u) does this
hold? (3 Pts)

Question 4 (10 Pts)
Let (X,Y ) be a two-dimensional random vector with cdf

FX,Y (x, y) =
(
√

1 + 2x− 1) (1− e−4y2)√
1 + 2x− 1

2e
−4y2 , x, y ≥ 0.

a) What are the marginal distributions of X and Y ? (3 Pts)

b) Compute a copula C of (X,Y ). Is it unique? (3 Pts)

c) Calculate the coefficient of upper tail dependence λu between X and Y . (2 Pts)

d) Calculate the coefficient of lower tail dependence λl between X and Y . (2 Pts)

Question 5 (10 Pts)

a) Why is subadditivity a desirable property of a risk measure? (2 Pts)

b) Why does one usually assume stationarity in time series modelling? (2 Pts)

c) How can a multivariate t-distribution be represented as a normal mixture distribution?
(3 Pts)

d) Name advantages and disadvantages of elliptical distributions in financial modelling.
(3 Pts)
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