

D-INFK

Prüfung Wahrscheinlichkeit und Statistik

401-0614-00L

Nach name

XX

Vorname

Legi-Nr.

XX-000-000

Prüfungs-Nr.

000

Bitte noch nicht umblättern!

Beachten Sie die Hinweise auf dem Antwortheft.

(A) 12/49

scheinlichkeit, dass beide rot sind?

Aufgabe 1

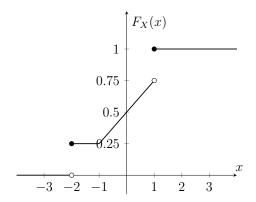
Betrachten Sie drei Urnen mit grünen und roten Kugeln. Urne A enthält 4 rote und 3 grüne Kugeln, Urne B enthält 2 rote und 1 grüne Kugeln, und Urne C enthält 1 rote und 2 grüne Kugeln.

1.MC1 [1 Punkt] Zwei Kugeln werden aus Urne A ohne Zurücklegen gezogen. Was ist die Wahr-

(B) 2/7(C) 16/49(D) 16/9
1.MC2 [2 Punkte] Die zwei Kugeln werden in Urne A zurückgelegt, und dann werden drei weitere Kugeln aus Urne A ohne Zurücklegen gezogen. Was ist die Wahrscheinlichkeit, dass nicht alle gezogenen Kugeln die gleiche Farbe haben?
 (A) 4/35 (B) 5/7 (C) 6/7 (D) 31/35
${f 1.MC3}$ [2 Punkte] Die drei Kugeln werden in Urne A zurückgelegt. Simone wählt zufällig (mit gleicher Wahrscheinlichkeit) eine der Urnen A,B,C aus und zieht daraus eine Kugel. Was ist die Wahrscheinlichkeit, dass die Kugel rot ist?
 (A) 11/21 (B) 4/7 (C) 13/21 (D) 2/3
${f 1.MC4}$ [2 Punkte] Die Kugel, die Simone zog, war rot. Was ist die bedingte Wahrscheinlichkeit dass Urne C ausgewählt wurde?
(A) 7/33 (B) 7/39 (C) 3/11 (D) 3/13

Aufgabe 2

- **2.MC1** [2 Punkte] Seien A, B zwei Ereignisse mit $\mathbb{P}[A] = 0.7$ und $\mathbb{P}[B] = 0.6$. Welche der folgenden Aussagen trifft zu?
 - (A) $\mathbb{P}[A \cup B] = 1$
 - (B) $\mathbb{P}[A \cap B] = 0.42$
 - (C) $\mathbb{P}[A \cup B] + \mathbb{P}[A \cap B] = 1.3$
 - (D) $\mathbb{P}[A \setminus B] = 0.1$
- **2.MC2** [2 Punkte] Wir betrachten die folgende Verteilungsfunktion F_X einer Zufallsvariablen X. Welches der folgenden Ereignisse hat eine Wahrscheinlichkeit von 1/2?



- (A) $\{-2 < X \le 1\}$
- (B) $\{X < 1\}$
- (C) $\{-2 \le X < 0\}$
- (D) $\{|X| = 2\}$
- **2.MC3** [1 Punkt] Was ist $\lim_{n\to\infty} e^{-4n} \sum_{k=2n}^{\infty} (4^k n^k / k!)$?
 - (A) 0
 - (B) 0.16
 - (C) 0.84
 - (D) 1
- **2.MC4** [2 Punkte] Seien $X \sim \text{Exp}(\lambda)$ und $Y \sim \text{Exp}(\gamma)$ unabhängige Zufallsvariablen. Welchen Wert nimmt die gemeinsame Dichte von (A, B) = (2X + Y, X + 2Y) bei (3, 2) an?
 - (A) $f_{(A,B)}(3,2) = 3\lambda \gamma \exp(-8\lambda 7\gamma)$
 - (B) $f_{(A,B)}(3,2) = \frac{\lambda \gamma}{3} \exp(-8\lambda 7\gamma)$
 - (C) $f_{(A,B)}(3,2) = 3\lambda\gamma \exp(-4\lambda/3 \gamma/3)$
 - (D) $f_{(A,B)}(3,2) = \frac{\lambda \gamma}{3} \exp(-4\lambda/3 \gamma/3)$

Prof. Dr. J. Teichmann ???. Februar 2024

- **2.MC5** [1 Punkt] Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen mit $X_n \sim \mathcal{U}[0, 1+1/n]$ und sei $X \sim \mathcal{U}[0, 1]$. Welche der folgenden Aussagen trifft zu?
 - (A) $X_n \to X$ in Verteilung, aber $X_n \to X$ in Wahrscheinlichkeit gilt im Allgemeinen nicht.
 - (B) $X_n \to X$ in Wahrscheinlichkeit, aber $X_n \to X$ in Verteilung gilt im Allgemeinen nicht.
 - (C) $X_n \to X$ in Verteilung und in Wahrscheinlichkeit.
 - (D) X_n muss weder in Verteilung noch in Wahrscheinlichkeit gegen X konvergieren.
- **2.MC6** [2 Punkte] Betrachten Sie die Modellfamilie $(P_{\theta})_{\theta \in (0,\infty)}$, wobei X_1, \ldots, X_n i.i.d. Zufallsvariablen unter P_{θ} sind mit $X_1 \sim \text{Poi}(\theta)$. Welcher der folgenden ist der beste Schätzer für θ ?
 - (A) $(X_1 + X_2)/2$
 - (B) $1/(X_1 + \cdots + X_n)$
 - (C) $\sqrt{(X_1^2 + \dots + X_n^2)/n}$
 - (D) $(X_1 + \cdots + X_{n-2})/n$

Aufgabe 3

Seien X und Y Zufallsvariablen mit gemeinsamer Dichte

$$f_{X,Y}(x,y) = x + y$$
 für $x, y \in [0,1]$.

- **3.MC1** [2 Punkte] Was ist die Randdichte von X?
 - (A) $f_X(x) = x^2 + 1$ für $x \in [0, 1]$
 - (B) $f_X(x) = x + 1/2 \text{ für } x \in [0, 1]$
 - (C) $f_X(x) = 2x \text{ für } x \in [0, 1]$
 - (D) $f_X(x) = 3x^2 \text{ für } x \in [0, 1]$
- 3.MC2 [2 Punkte] Was ist der Erwartungswert von X?
 - (A) $\mathbb{E}[X] = 5/12$
 - (B) $\mathbb{E}[X] = 1/2$
 - (C) $\mathbb{E}[X] = 7/12$
 - (D) $\mathbb{E}[X] = 3/4$
- 3.MC3 [2 Punkte] Was ist die Kovarianz von X und Y?
 - (A) Cov(X, Y) = -1/12
 - (B) Cov(X, Y) = -1/144
 - (C) Cov(X, Y) = 23/144
 - (D) Cov(X, Y) = 1/12
- ${\bf 3.MC4}$ [2 Punkte] Welcher der folgenden Werte ist am grössten?
 - (A) $f_{X|Y}(1 \mid 1)$
 - (B) $f_{X|Y}(1 \mid 1/2)$
 - (C) $f_{X|Y}(1/2 \mid 1)$
 - (D) $f_{X|Y}(1/2 \mid 0)$

Prof. Dr. J. Teichmann ???. Februar 2024

Aufgabe 4

Die Go-Weltmeisterin wurde zu einem Best-of-6-Match herausgefordert. Wenn die Herausforderin gewinnt, wird sie die neue Weltmeisterin. Die aktuelle Weltmeisterin gewinnt jedes Go-Spiel mit einer Wahrscheinlichkeit von 2/3 und die Herausforderin mit einer Wahrscheinlichkeit von 1/3. Sie können davon ausgehen, dass die Ergebnisse der Spiele unabhängig sind. Eine der Spielerinnen gewinnt das Best-of-6-Match, wenn sie mindestens 4 Spielen gewinnt.

4.A1 [2 Punkte] Was ist die Wahrscheinlichkeit, dass die Herausforderin das Best-of-6-Match gewinnt?

Falls das Best-of-6-Match unentschieden endet, spielen die Herausforderin und die Weltmeisterin ein weiteres Best-of-2-Match in einem schnelleren Zeitformat. In diesem Format gewinnt die Weltmeisterin jedes Spiel mit einer Wahrscheinlichkeit von 3/5 und die Herausforderin mit einer Wahrscheinlichkeit von 2/5. Wenn auch dieses Best-of-2-Match unentschieden endet, spielen sie ein weiteres Best-of-2-Match im gleichen Format usw., bis einer der Spieler ein Best-of-2-Match gewinnt.

- **4.A2** [2 Punkte] Nehmen Sie an, dass ein Best-of-2-Match gespielt wurde. Was ist die bedingte Wahrscheinlichkeit, dass die Herausforderin es gewann, wenn wir wissen, dass es nicht unentschieden endete?
- **4.A3** [2 Punkte] Was ist für $n \ge 1$ die unbedingte Wahrscheinlichkeit, dass genau n Best-of-2-Matches gespielt werden, bis eine Gewinnerin feststeht?
- **4.A4** [2 Punkte] Was ist die Wahrscheinlichkeit, dass die Herausforderin den Meistertitel gewinnt?

Prof. Dr. J. Teichmann ???. Februar 2024

Aufgabe 5

Amanda plant, ihre Ersparnisse anzulegen. Sie hat zwei Aktien A und B identifiziert, an denen sie interessiert ist. Beide Aktien haben heute den Wert CHF 1. Basierend auf ihrer Analyse können die Preise der Aktien A und B in einem Jahr durch CHF (1 + X, 1 + Y) modelliert werden, wobei (X,Y) eine 2-dimensionale Normalverteilung hat mit $X \sim \mathcal{N}(0.1,0.2^2)$, $Y \sim \mathcal{N}(0.12,0.4^2)$ und Cov[X,Y] = 0.064 = 8/125.

- **5.A1** [2 Punkte] Was ist die Wahrscheinlichkeit, dass die Aktie A in einem Jahr wertvoller ist als heute?
- **5.A2** [2 Punkte] Berechnen Sie Cov[X, Y aX] für $a \in \mathbb{R}$ und bestimmen Sie den Wert von $\hat{a} \in \mathbb{R}$, sodass X und $\hat{Y} := Y \hat{a}X$ unabhängig sind.
- **5.A3** [2 Punkte] Amanda möchte CHF 120 in die Aktien A und B investieren und erwägt zwei Strategien. Strategie (1) besteht darin, CHF 50 in Aktien A und CHF 50 in Aktien B zu investieren und CHF 20 auf der Bank zu belassen (wo sie keine Zinsen erhält). Bestimmen Sie die Verteilung von Amandas Vermögen nach einem Jahr, wenn sie Strategie (1) anwendet.
- **5.A4** [2 Punkte] Strategie (2) besteht darin, CHF 100 in Aktien A und CHF 10 in Aktien B zu investieren und CHF 10 auf der Bank zu belassen. Welche der beiden Strategien würden Sie Amanda empfehlen und warum?

Prof. Dr. J. Teichmann ???. Februar 2024

Aufgabe 6

Seien X_1, \ldots, X_n Zufallsvariablen. Betrachten Sie die Modellfamilie $(\mathbb{P}_{\theta})_{\theta \in (0,\infty)}$, so dass X_1, \ldots, X_n i.i.d. unter \mathbb{P}_{θ} sind mit $X_1 \sim \text{Poi}(\theta)$.

6.A1 [2 Punkte] Zeigen Sie, dass $T_M = (X_1 + \ldots + X_n)/n$ ein erwartungstreuer Schätzer für θ ist. Berechnen Sie $MSE_{\theta}(T_M)$.

Betrachten Sie die Nullhypothese $H_0: \theta = 1$ und die Alternativhypothese $H_1: \theta = 4$.

- **6.A2** [3 Punkte] Zeigen Sie, dass der Verwerfungsbereich K_{α} für T_M , der den mächtigsten Test zum Niveau α definiert, gegeben ist durch $K_{\alpha} = (c_{\alpha}, \infty)$ für eine Konstante $c_{\alpha} > 0$.
- **6.A3** [4 Punkte] Bestimmen Sie den approximativen Wert von $c = c_{0.95}$ für den Test $(T_M, K_{0.95})$ zum Niveau $\alpha = 95\%$. Was ist die Macht dieses Tests?