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Possible Solutions

Probability Theory and Statistics
(BSc D-ITET)

1. a) Using the same notation as in the exercise, we know that

P (∇c | G) = 0.2, P (M ∩∇) = 0.5, and P (G) = 0.3.

i) Since M = Gc, we know that P (M) = 1− P (G) = 0.7. Using the definition of
conditional probabilities

P (∇ | M) =
P (M ∩ ∇)

P (M)
=

0.5

0.7
(≈ 0.714).

ii) From the definition of conditional probabilities

P (∇∩G) = P (∇ | G)P (G).

Observe that P (∇ | G) = 1− P (∇c | G) = 0.8, hence

P (∇∩G) = 0.24.

Remark: The same computation, doing all the steps reads:

P (∇ | G) =
P (∇ ∩G)

P (G)
=

P (G) − P (∇c ∩G)

P (G)
=

P (G)(1 − P (∇c | G))

P (G)
= 1− P (∇c | G).

However it is not necessary to prove this formula.

b) We can solve it using Bayes theorem or the definition of conditional probabili-
ties. In any case we need to compute P (∇). Using the definition of conditional
expectation, since

P (∇) = P (M ∩ ∇) + P (G ∩ ∇) = 0.5 + 0.24 = 0.74.

we get

P (M | ∇) =
P (∇∩M)

P (∇)
=

0.5

0.74
(≈ 0.676).

Alternative solution: We know that P (∇ | M) = 0.5
0.7 and P (∇ | G) = 0.8.

Therefore, from Bayes theorem, we get

P (M | ∇) =
P (∇ | M)P (M)

P (M)P (∇ | M) + P (G)P (∇ | G)
=

0.5
0.7 · 0.7

0.7 · 0.5
0.7 + 0.3 · 0.8

=
0.5

0.74
.
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c) We denote by Xs the random variable counting the number of people in line for
the sorbets at 3 PM, and by Xc the one counting the number of people in line for
the creamy ice–creams at 3 PM. We set X = Xs +Xc.

i) We calculate then (with λ = λc + λs)

P (Xs = k | X = 20) =
P (Xs = k,X = 20)

P (X = 20)
=

P (Xs = k,Xc = 20− k)

P (X = 20)

indep.
=

P (Xs = k)P (Xc = 20− k)

P (X = 20)
=

e−λsλk
s

k!

e−λcλ
(20−k)
c

(20 − k)!

20!

e−λλ20

=

(
20

k

)(
λs

λ

)k (
λc

λ

)20−k

=

(
20

k

)
(0.25)k(0.75)20−k

We recognize that this is the distribution of a Binomial distribution with pa-
rameters n = 20 and p = 0.25.

ii) We know from the lecture that the expectation of a Binomial random variable
with parameters n and p is given by np. In this case

E[Xs | X = 20] = 20 · 0.25 = 5.

2. a) The marginal density of Y is then given, for y > 0, by

fY (y) =

∫ +∞

−∞

fX,Y (x, y)dx =

∫ +∞

y

1

2
xe−xdx

i.b.p
=

1

2
(y + 1)e−y.

Hence we get fY (y) =
1
2(y + 1)e−y 1(y > 0).

b) Let us calculate

E[Y ] =

∫ +∞

−∞

yfY (y)dy =

∫ +∞

0

1

2
y(y + 1)e−ydy

hint
=

3

2
.

c) Using that

E[XY ] =

∫
∞

0

∫
∞

y

1

2
x2ye−xdxdy =

∫
∞

0

(∫ x

0
ydy

)
1

2
x2e−xdx = 6,

part b), and the fact that E[X] = 3 (which can be obtained by the hint in part
b)), we conclude that

Cov(X,Y ) = E[XY ]− E[X]E[Y ] =
3

2
.

d) The random variables X,Y are indeed dependent. Two acceptable reasons for this
are:

i) The covariance of X and Y is non-zero.

ii) The joint density function is not the product of the marginal densities.

See next page!



3. a) {T = n} means exactly that Di 6= 1 for i = 1, . . . , n − 1, and Dn = 1. In set
theoretic language,

{T = n} =

(
n−1⋂

i=1

{Di 6= 1}

)
∩ {Dn = 1}.

Additionally, since {Di 6= 1} = {Di = 1}c, we obtain

P (Di 6= 1) = 1− P (Di = 1) = 1− P (D = 1) = 1− p.

Using the fact that the Di are independent, we get

P (T = n) = P

[(
n−1⋂

i=1

{Di 6= 1}

)
∩ {Dn = 1}

]
=

(
n−1∏

i=1

P (Di 6= 1)

)
× P (Dn = 1)

= (1− p)(n−1)p.

T has then a geometric distribution with parameter p.

b) Using part a), we get

E[T ] =

∞∑

n=1

nP (T = n)
a)
=

∞∑

n=1

n(1− p)(n−1)p = p

∞∑

n=1

n(1− p)(n−1).

We have also the identity seen in class for z ∈ [0, 1),

∞∑

n=1

nz(n−1) =
d

dz

(
1

1− z

)
=

1

(1− z)2
.

Using the substitution z = 1− p ∈ (0, 1), we get

E[T ] = p

∞∑

n=1

n(1− p)(n−1) = p ·
1

p2
=

1

p
.

Alternative solution: Using part a), we get

E[T ] =

∞∑

n=1

nP (T = n)
a)
=

∞∑

n=1

n(1− p)(n−1)p = lim
N→∞

p

N∑

n=1

n(1− p)(n−1).

Setting IN =
∑N

n=1 n(1− p)(n−1), we calculate

(1− p)IN =
N∑

n=1

n(1− p)n ⇒ pIN =

(
N∑

n=1

(1− p)(n−1)

)
−N(1− p)N .

Furthermore, using
∑N

n=1(1 − p)(n−1) = 1−(1−p)N

1−(1−p) = 1−(1−p)N

p
for p ∈ (0, 1), we

obtain

IN =
1− (1− p)N

p2
−
N(1− p)N

p
⇒ E[T ] = lim

N→∞

pIN = lim
N→∞

(
1− (1− p)N

p
−N(1− p)N

)
.

Since (1 − p) ∈ (0, 1), we have limN→∞(1 − p)N = limN→∞N(1 − p)N = 0.
Therefore, we get E[T ] = 1

p
.
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c) Using the standard approximation E[T ] ≈ 1
k

∑k
i=1 Ti, we can get an estimator for

p using the identity proven in part b), i.e. p = 1
E[T ] ,

p̂ =

(
1

k

k∑

i=1

Ti

)−1

.

d) Since Ti has also a geometric distribution with parameter p, we take pTi
(ti) = (1−

p)(ti−1)p for i = 1, . . . , k (discrete distribution). Therefore, using the independence
of Ti with i = 1, . . . , k, the likelihood function L(p, t1, . . . tk) is given by

L(p, t1, . . . tk) =
k∏

i=1

pTi
(ti) =

k∏

i=1

(1− p)(ti−1)p.

Hence, the log-likelihood is given by

ℓ(p, t1, . . . tk) = logL(p, t1, . . . tk) =
k∑

i=1

[(ti − 1) log(1− p) + log p] = k log p+
k∑

i=1

(ti−1) log(1−p).

To maximize the log likelihood function, we set the derivative with respect to p

equal to 0, i.e.

∂

∂p
ℓ(p, t1, . . . tk) = 0 ⇔

k

p
+

k∑

i=1

(ti − 1)
−1

1 − p
= 0 ⇔ k(1− p) = p

k∑

i=1

(ti − 1)

Since
∑k

i=1(ti−1) = −k+
∑k

i=1 ti, we solve for p (and replacing each realization ti
with its associated random variable Ti) to get the maximum-likelihood estimator

p̂ =

(
1

k

k∑

i=1

Ti

)−1

.

Remark: The maximum-likelihood estimator is the same as the “natural” esti-
mator of part c).


