## Possible Solutions

## Probability Theory and Statistics (BSc D-ITET)

1. a) Using the same notation as in the exercise, we know that

$$
P\left(\nabla^{c} \mid G\right)=0.2, \quad P(M \cap \nabla)=0.5, \quad \text { and } \quad P(G)=0.3
$$

i) Since $M=G^{c}$, we know that $P(M)=1-P(G)=0.7$. Using the definition of conditional probabilities

$$
P(\nabla \mid M)=\frac{P(M \cap \nabla)}{P(M)}=\frac{0.5}{0.7}(\approx 0.714)
$$

ii) From the definition of conditional probabilities

$$
P(\nabla \cap G)=P(\nabla \mid G) P(G)
$$

Observe that $P(\nabla \mid G)=1-P\left(\nabla^{c} \mid G\right)=0.8$, hence

$$
P(\nabla \cap G)=0.24
$$

REmARK: The same computation, doing all the steps reads:

$$
P(\nabla \mid G)=\frac{P(\nabla \cap G)}{P(G)}=\frac{P(G)-P\left(\nabla^{c} \cap G\right)}{P(G)}=\frac{P(G)\left(1-P\left(\nabla^{c} \mid G\right)\right)}{P(G)}=1-P\left(\nabla^{c} \mid G\right) .
$$

However it is not necessary to prove this formula.
b) We can solve it using Bayes theorem or the definition of conditional probabilities. In any case we need to compute $P(\nabla)$. Using the definition of conditional expectation, since

$$
P(\nabla)=P(M \cap \nabla)+P(G \cap \nabla)=0.5+0.24=0.74
$$

we get

$$
P(M \mid \nabla)=\frac{P(\nabla \cap M)}{P(\nabla)}=\frac{0.5}{0.74}(\approx 0.676)
$$

Alternative solution: We know that $P(\nabla \mid M)=\frac{0.5}{0.7}$ and $P(\nabla \mid G)=0.8$. Therefore, from Bayes theorem, we get

$$
P(M \mid \nabla)=\frac{P(\nabla \mid M) P(M)}{P(M) P(\nabla \mid M)+P(G) P(\nabla \mid G)}=\frac{\frac{0.5}{0.7} \cdot 0.7}{0.7 \cdot \frac{0.5}{0.7}+0.3 \cdot 0.8}=\frac{0.5}{0.74}
$$

c) We denote by $X_{s}$ the random variable counting the number of people in line for the sorbets at 3 PM , and by $X_{c}$ the one counting the number of people in line for the creamy ice-creams at 3 PM . We set $X=X_{s}+X_{c}$.
i) We calculate then (with $\lambda=\lambda_{c}+\lambda_{s}$ )

$$
\begin{aligned}
P\left(X_{s}=k \mid X=20\right) & =\frac{P\left(X_{s}=k, X=20\right)}{P(X=20)}=\frac{P\left(X_{s}=k, X_{c}=20-k\right)}{P(X=20)} \\
& \stackrel{\text { indep. }}{=} \frac{P\left(X_{s}=k\right) P\left(X_{c}=20-k\right)}{P(X=20)}=\frac{e^{-\lambda_{s}} \lambda_{s}^{k}}{k!} \frac{e^{-\lambda_{c}} \lambda_{c}^{(20-k)}}{(20-k)!} \frac{20!}{e^{-\lambda} \lambda^{20}} \\
& =\binom{20}{k}\left(\frac{\lambda_{s}}{\lambda}\right)^{k}\left(\frac{\lambda_{c}}{\lambda}\right)^{20-k}=\binom{20}{k}(0.25)^{k}(0.75)^{20-k}
\end{aligned}
$$

We recognize that this is the distribution of a Binomial distribution with parameters $n=20$ and $p=0.25$.
ii) We know from the lecture that the expectation of a Binomial random variable with parameters $n$ and $p$ is given by $n p$. In this case

$$
E\left[X_{s} \mid X=20\right]=20 \cdot 0.25=5
$$

2. a) The marginal density of $Y$ is then given, for $y>0$, by

$$
f_{Y}(y)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x=\int_{y}^{+\infty} \frac{1}{2} x e^{-x} d x \stackrel{i . b . p}{=} \frac{1}{2}(y+1) e^{-y}
$$

Hence we get $f_{Y}(y)=\frac{1}{2}(y+1) e^{-y} 1(y>0)$.
b) Let us calculate

$$
E[Y]=\int_{-\infty}^{+\infty} y f_{Y}(y) d y=\int_{0}^{+\infty} \frac{1}{2} y(y+1) e^{-y} d y \stackrel{\text { hint }}{=} \frac{3}{2}
$$

c) Using that

$$
E[X Y]=\int_{0}^{\infty} \int_{y}^{\infty} \frac{1}{2} x^{2} y e^{-x} d x d y=\int_{0}^{\infty}\left(\int_{0}^{x} y d y\right) \frac{1}{2} x^{2} e^{-x} d x=6
$$

part b), and the fact that $E[X]=3$ (which can be obtained by the hint in part b)), we conclude that

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=\frac{3}{2}
$$

d) The random variables $X, Y$ are indeed dependent. Two acceptable reasons for this are:
i) The covariance of $X$ and $Y$ is non-zero.
ii) The joint density function is not the product of the marginal densities.
3. a) $\{T=n\}$ means exactly that $D_{i} \neq 1$ for $i=1, \ldots, n-1$, and $D_{n}=1$. In set theoretic language,

$$
\{T=n\}=\left(\bigcap_{i=1}^{n-1}\left\{D_{i} \neq 1\right\}\right) \cap\left\{D_{n}=1\right\} .
$$

Additionally, since $\left\{D_{i} \neq 1\right\}=\left\{D_{i}=1\right\}^{c}$, we obtain

$$
P\left(D_{i} \neq 1\right)=1-P\left(D_{i}=1\right)=1-P(D=1)=1-p .
$$

Using the fact that the $D_{i}$ are independent, we get

$$
\begin{aligned}
P(T=n) & =P\left[\left(\bigcap_{i=1}^{n-1}\left\{D_{i} \neq 1\right\}\right) \cap\left\{D_{n}=1\right\}\right]=\left(\prod_{i=1}^{n-1} P\left(D_{i} \neq 1\right)\right) \times P\left(D_{n}=1\right) \\
& =(1-p)^{(n-1)} p .
\end{aligned}
$$

$T$ has then a geometric distribution with parameter $p$.
b) Using part a), we get

$$
E[T]=\sum_{n=1}^{\infty} n P(T=n) \stackrel{\text { a) }}{=} \sum_{n=1}^{\infty} n(1-p)^{(n-1)} p=p \sum_{n=1}^{\infty} n(1-p)^{(n-1)} .
$$

We have also the identity seen in class for $z \in[0,1)$,

$$
\sum_{n=1}^{\infty} n z^{(n-1)}=\frac{d}{d z}\left(\frac{1}{1-z}\right)=\frac{1}{(1-z)^{2}}
$$

Using the substitution $z=1-p \in(0,1)$, we get

$$
E[T]=p \sum_{n=1}^{\infty} n(1-p)^{(n-1)}=p \cdot \frac{1}{p^{2}}=\frac{1}{p} .
$$

Alternative solution: Using part a), we get

$$
E[T]=\sum_{n=1}^{\infty} n P(T=n) \stackrel{\text { a) }}{=} \sum_{n=1}^{\infty} n(1-p)^{(n-1)} p=\lim _{N \rightarrow \infty} p \sum_{n=1}^{N} n(1-p)^{(n-1)} .
$$

Setting $I_{N}=\sum_{n=1}^{N} n(1-p)^{(n-1)}$, we calculate

$$
(1-p) I_{N}=\sum_{n=1}^{N} n(1-p)^{n} \Rightarrow p I_{N}=\left(\sum_{n=1}^{N}(1-p)^{(n-1)}\right)-N(1-p)^{N} .
$$

Furthermore, using $\sum_{n=1}^{N}(1-p)^{(n-1)}=\frac{1-(1-p)^{N}}{1-(1-p)}=\frac{1-(1-p)^{N}}{p}$ for $p \in(0,1)$, we obtain
$I_{N}=\frac{1-(1-p)^{N}}{p^{2}}-\frac{N(1-p)^{N}}{p} \Rightarrow E[T]=\lim _{N \rightarrow \infty} p I_{N}=\lim _{N \rightarrow \infty}\left(\frac{1-(1-p)^{N}}{p}-N(1-p)^{N}\right)$.
Since $(1-p) \in(0,1)$, we have $\lim _{N \rightarrow \infty}(1-p)^{N}=\lim _{N \rightarrow \infty} N(1-p)^{N}=0$.
Therefore, we get $E[T]=\frac{1}{p}$.
c) Using the standard approximation $E[T] \approx \frac{1}{k} \sum_{i=1}^{k} T_{i}$, we can get an estimator for $p$ using the identity proven in part b), i.e. $p=\frac{1}{E[T]}$,

$$
\widehat{p}=\left(\frac{1}{k} \sum_{i=1}^{k} T_{i}\right)^{-1}
$$

d) Since $T_{i}$ has also a geometric distribution with parameter $p$, we take $p_{T_{i}}\left(t_{i}\right)=(1-$ $p)^{\left(t_{i}-1\right)} p$ for $i=1, \ldots, k$ (discrete distribution). Therefore, using the independence of $T_{i}$ with $i=1, \ldots, k$, the likelihood function $L\left(p, t_{1}, \ldots t_{k}\right)$ is given by

$$
L\left(p, t_{1}, \ldots t_{k}\right)=\prod_{i=1}^{k} p_{T_{i}}\left(t_{i}\right)=\prod_{i=1}^{k}(1-p)^{\left(t_{i}-1\right)} p
$$

Hence, the log-likelihood is given by

$$
\ell\left(p, t_{1}, \ldots t_{k}\right)=\log L\left(p, t_{1}, \ldots t_{k}\right)=\sum_{i=1}^{k}\left[\left(t_{i}-1\right) \log (1-p)+\log p\right]=k \log p+\sum_{i=1}^{k}\left(t_{i}-1\right) \log (1-p)
$$

To maximize the log likelihood function, we set the derivative with respect to $p$ equal to 0 , i.e.

$$
\frac{\partial}{\partial p} \ell\left(p, t_{1}, \ldots t_{k}\right)=0 \Leftrightarrow \frac{k}{p}+\sum_{i=1}^{k}\left(t_{i}-1\right) \frac{-1}{1-p}=0 \Leftrightarrow k(1-p)=p \sum_{i=1}^{k}\left(t_{i}-1\right)
$$

Since $\sum_{i=1}^{k}\left(t_{i}-1\right)=-k+\sum_{i=1}^{k} t_{i}$, we solve for $p$ (and replacing each realization $t_{i}$ with its associated random variable $T_{i}$ ) to get the maximum-likelihood estimator

$$
\widehat{p}=\left(\frac{1}{k} \sum_{i=1}^{k} T_{i}\right)^{-1}
$$

Remark: The maximum-likelihood estimator is the same as the "natural" estimator of part $\mathbf{c}$ ).

