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1. a) Using the same notation as in the exercise, we know that
P(V°|G)=0.2, P(MNV)=0.5, and P(G) =0.3.

i) Since M = G°, we know that P(M) =1— P(G) = 0.7. Using the definition of
conditional probabilities

P(V | M) = % _ % (~ 0.714).

ii) From the definition of conditional probabilities
P(VNG)=P(V|GP@G).
Observe that P(V | G) =1 — P(V¢| G) = 0.8, hence
P(VNG)=0.24.

REMARK: The same computation, doing all the steps reads:

Py |6 =250 - HOZHENG)  POCZAT IO - b6,

However it is not necessary to prove this formula.

b) We can solve it using Bayes theorem or the definition of conditional probabili-
ties. In any case we need to compute P(V). Using the definition of conditional
expectation, since

P(V)=PMNV)+P(GNV)=05+0.24 =0.74.

we get

P(VOM) 05
P(V) 074

ALTERNATIVE SOLUTION: We know that P(V | M) = 82 and P(V | G) = 0.8.

Therefore, from Bayes theorem, we get

P(M | V) =

(=~ 0.676).

+0.3-0.8 0.74

B P(V | M)P(M) B 85.0.7 0.5
PM|V) = P(M)P(V | M)+ P(G)P(V|G) 0.7 %7
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c) We denote by X the random variable counting the number of people in line for
the sorbets at 3 PM, and by X, the one counting the number of people in line for
the creamy ice—creams at 3 PM. We set X = X + X..

i) We calculate then (with A = A\. + Ay)

P(X, =k X =20) P(X,=k X, =20 —k
PX,=k| X =20 = L ) _ I )

P(X = 20) P(X = 20)
indep. P(Xy = k)P(X, =20—k) e )k e 2 )00 901
B P(X = 20) k(20— k)! e A\

= <2£> <%>k <%>QH = <2£> (0.25)"(0.75)20~*

We recognize that this is the distribution of a Binomial distribution with pa-
rameters n = 20 and p = 0.25.

ii) We know from the lecture that the expectation of a Binomial random variable
with parameters n and p is given by np. In this case

E[X,| X =20] =20-0.25 = 5.

a) The marginal density of Y is then given, for y > 0, by

+eo ol ibp 1 B
fr(y) :/ fX,Y(w,y)de/ gre tdr =" Sy + 1)V
y

—o0
Hence we get fy(y) = %(y + e Y1(y > 0).

b) Let us calculate

Foo +oo 1 —y hint 3
ElY] = yfy(y)dy = ; §y(y+1)e dy =" 3.

c) Using that

E[XY] = / / §x2yefxd:vdy = / </ ydy) 55626733(156 =6,
0o Jy 0 0

part b), and the fact that E[X] = 3 (which can be obtained by the hint in part
b)), we conclude that

Cov(X,Y) = E[XY] — E[X]E[Y] = =.

d) The random variables X, Y are indeed dependent. Two acceptable reasons for this
are:

i) The covariance of X and Y is non-zero.
ii) The joint density function is not the product of the marginal densities.

See next page!



3. a) {T = n} means exactly that D; # 1 for ¢ = 1,...,n — 1, and D,, = 1. In set
theoretic language,

n—1
{(T=n}= (ﬂ{Di - 1}) N {Dy =1},
=1

Additionally, since {D; # 1} = {D; = 1}, we obtain
P(D;i#1)=1-P(D;=1)=1-P(D=1)=1-p

Using the fact that the D; are independent, we get

(ﬂ{Di 4 1}) " {D, = 1}] - (H (D # 1)) < P(D, = 1)

= (1—p)p.

T has then a geometric distribution with parameter p.

P(T=n)=

b) Using part a), we get

= inP(T i i (n— 1)p:pin(l—p)("ﬂ)
n=1 n=1 n=1

We have also the identity seen in class for z € [0, 1),

2”2"1 i)

Using the substitution z =1 —p € (0,1), we get
1 1
PZ pr=p 5=,

ALTERNATIVE SOLUTION: Using part a), we get

T]:inP(T:n)a:)in(l—p)(" Up = lim pz (1—p)b,
n=1

N—oo
n=1

Setting Iy = ZnN:1 n(1 —p)™ 1 we calculate

N N
(1=p)In =) _n(l—p)" = ply = <Z(1 —p)("_1)> - N1 -p)V
n=1

n=1

Furthermore, using 320 (1 — p)»= D = 117_(%17_1’;;\[ = lf(lpfp)N for p € (0,1), we
obtain
1-(1-p)¥ NA-p)~

Iy = — = E[T] = lim pIy = lim
p2 p N—o0 N—ro0

1—(1-p"~
P

—N(l—p)N>.

Since (1 — p) € (0,1), we have limy_,o0(1 — p)V = limy_0o N(1 — p)¥ = 0.

Therefore, we get E[T] = %.
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c¢) Using the standard approximation E[T] ~

p using the identity proven in part b), i

% Zle T;, we can get an estimator for

_ 1
€ D= F

= (i)

—1

d) Since 7T; has also a geometric distribution with parameter p, we take pr, (¢;) = (1—
p)( Dpfori=1,....k (discrete distribution). Therefore, using the independence
of T; with i = 1,..., k, the likelihood function L(p,t1,...tx) is given by

k
L(patla cee tk:) = HpTZ(tz)
=1

Hence, the log-likelihood is given by

Mw

l(p,ty,...t) =log L(p,t1,...

i=1

To maximize the log likelihood function,

equal to 0, i.e.

dp

) oo
—g(p,tl,...tk) :0<=>2—9+Z(ti—1)

k
=[] -p%p.
i=1
k
[(ti — 1)1log(1 — p) + log p| = k:logp—i—Z(ti—l)log(l—p).
i=1

we set the derivative with respect to p

k

%:O@k(l—p)sz(ti—l)

i=1

Since Zle (ti—1)=—k+ 2?21 t;, we solve for p (and replacing each realization ¢;
with its associated random variable T;) to get the maximum-likelihood estimator

1 k
(151
i=1

-1

REMARK: The maximum-likelihood estimator is the same as the “natural” esti-

mator of part c).



