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1. a) The following probabilities are given in the exercise

P (<The train departs on time>) = P (DoT ) = 0.7

P (<The train arrives on time>) = P (AoT ) = 0.75

P (<The train departs on time AND arrives on time>) = P (DoT ∩AoT ) = 0.6.

Therefore, we obtain

P (<The train departs with delay>) = P (DwD) = 1− P (DoT ) = 0.3

P (<The train arrives with delay>) = P (AwD) = 1− P (AoT ) = 0.25.

We need to compute P (AoT | DwD). From the definition of conditional probabi-
lities, one has

P (AoT | DwD) =
P (AoT ∩DwD)

P (DwD)
.

Since we already found that P (DwD) = 0.3, we now focus on the numerator.
Since a train can either depart on time or with delay it holds

P (AoT ) = P (AoT ∩DwD) + P (AoT ∩DoT ).

Therefore, one has

P (AoT ∩DwD) = P (AoT )− P (AoT ∩DoT ) = 0.75 − 0.6 = 0.15.

Hence, we calculate

P (AoT | DwD) =
0.15

0.3
= 0.5.

b) Let T be the event <The member has trained>, and let F be the event <The
member finishes the tour>. It is given in the exercise P (T c) = 0.2. Moreover, we
know from the exercise that

P (F | T ) = 0.85, P (F | T c) = 0.6.

Please Turn!



i) We need to compute P (F ). Applying the formula of total probabilities, we get

P (F ) = P (F | T )P (T )+P (F | T c)P (T c) = 0.85·0.8+0.6·0.2 = 0.68+0.12 = 0.8.

ii) We need to compute P (T | F ). Applying Bayes’ formula, we obtain

P (T | F ) =
P (F | T )P (T )

P (F )
=

0.85 · 0.8
0.8

= 0.85.

c) The unconditioned law of N is given by
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d) Observe that the distribution obtained in c) differs from the one in the hint only
by the value of the parameter p. We solve here the question for a general p ∈ (0, 1).

E[N ] =
∑

k≥0

kp(1− p)k = p
∑

k≥0

k(1 − p)k

= p(1− p)
∑

k≥1

k(1− p)(k−1) = p(1− p)


−
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′
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(
− 1
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1

p2
=
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p
.

Hence for p = 1
3 as in c), we get E[X] = 2; otherwise, using the hint, E[X] = 3.

Remark: N has a geometric distribution shifted by −1, therefore it is consistent
to have 1

p − 1 as expected value for N .

2. a) Y is a discrete random variable which only takes two values, 0 and 1. We can
compute the probability of each of these by integrating the joint density function.
We obtain the following:

P [Y = 0] =

∫ 1

0
12(x2 − x3)(1 − x) dx =

2

5
,

and

P [Y = 1] = 1− P [Y = 0] =
3

5
.

Therefore, Y ∼ Ber(p = 3/5).

See next page!



b) We have E[X + Y ] = E[X] + E[Y ] =
∫ 1
0 12(x3 − x4) dx+ 3

5 = 6
5 .

c) Since Cov(X,Y ) = E[XY ] − E[X]E[Y ], we only need to calculate E[XY ] since
we have the other two from the previous exercise. Using the joint density function,
we find that

E[XY ] =

1∑

y=0

∫ 1

0
xyfX,Y (x, y) dx =

∫ 1

0
12(x2 − x3)x2 dx =

2

5
.

Therefore, Cov(X,Y ) = 2
5 − 9

25 = 1
25 , Hence, X,Y are not independent.

d) Note that sin(2πY ) ≡ 0, therefore it is independent of any other random variable.
In particular, it is independent of X2.

3. a) We recognize immediately that X ∼ Bin(N = 100, q = (1 − p) = 0.99). We then
calculate Var(X) = Nq(1− q) = 0.99, and we get

P (X ≤ Var(X)) = P (X = 0) =

(
100

0

)
q0(1− q)100 = (0.01)100 .

b) Since X has a Binomial distribution, we have E[X] = N(1 − p) = 100(1 − p).
Using the natural approximation

∑n
i=1Xi

n
≃ E[X] = 100(1 − p),

we obtain the natural estimator p̃ = 1−
∑

n

i=1
Xi

100n .

c) The likelihood function is defined by L(p;x1, . . . , xn) = the probability to observe
the sequence x1, . . . , xn. Since the Xi, with 1 ≤ i ≤ n, are independent, we get

L(p;x1, . . . , xn) =

n∏

i=1

(
100

xi

)
qxi(1− q)100−xi =

n∏

i=1

(
100

xi

)
(1− p)xip100−xi

which yields a log-likelihood function given by

logL(p;x1, . . . , xn) =
n∑

i=1

(
100

xi

)
+ xi log(1− p) + (100 − xi) log(p)

Taking its derivative with respect to p and setting it equal to 0, gives then the
maximum likelihood estimator p̂:

∂ logL(p;x1, . . . , xn)

∂p
=

n∑

i=1

(
− xi
1− p

+
100− xi

p

)
= 0

⇐⇒ (100n − sn)(1 − p) = snp ⇐⇒ 100n − sn = 100np

⇐⇒ p = 1− sn
100n

,

where sn =
∑n

i=1 xi. Consequently, we have p̂ = 1−
∑n

i=1 Xi

100n
.

Remark: This yields the same estimator as in part b).
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d) We clearly have n = 1+64+20+15 = 100, and sn = 100n−1·0−64·1−20·2−15·3 =
10′000 − 149 = 9′851. Therefore, we get

p∗ =
100n − sn

100n
=

149

10000
= 0.0149.

e) Let us calculate

E[p̂] =
100n −

∑n
i=1E[Xi]

100n

E[Xi]=100(1−p)
=

100n − 100n(1 − p)

100n
= p,

Var(p̂) =
Var(

∑n
i=1Xi)

(100n)2
indep.
=

∑n
i=1Var(Xi)

(100n)2
a)
=

100n(1 − p)p

(100n)2
=

(1− p)p

100n
.

Hence, we get

p∗ − E[p̂]√
Var(p̂)

=

√
100n(p∗ − p)√

(1− p)p
=

100(0.0049)√
0.99

√
0.01

∼ 0.49

0.1
= 4.9.

Clearly, under the assumption p = 0.01, the likelihood of observing p∗ is very
small, since it is roughly 4.9 standard deviations away from its expected value.
Therefore, it doesn’t support the vendor’s claim and indicates that the true value
of p is larger than 0.01.


