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1. a)
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Possible Solutions

Probability Theory and Statistics
(BSc D-ITET)

The following probabilities are given in the exercise

P(<The train departs on time>) = P(DoT) = 0.7
P(<The train arrives on time>) = P(AoT) = 0.75
P(<The train departs on time AND arrives on time>) = P(DoT N AoT) = 0.6.

Therefore, we obtain

P(<The train departs with delay>) = P(DwD)=1—- P(DoT)=10.3
P(<The train arrives with delay>) = P(AwD) =1— P(AoT) = 0.25.

We need to compute P(AoT | DwD). From the definition of conditional probabi-

lities, one has
AoT N DwD)

P(DwD)

Since we already found that P(DwD) = 0.3, we now focus on the numerator.
Since a train can either depart on time or with delay it holds

P(AoT | DwD) = il

P(AoT) = P(AoT N DwD) + P(AoT N DoT).
Therefore, one has
P(AoT N DwD) = P(AoT) — P(AoT N DoT) = 0.75 — 0.6 = 0.15.

Hence, we calculate

0.15

Let T be the event <The member has trained>, and let F' be the event <The

member finishes the tour>. It is given in the exercise P(T¢) = 0.2. Moreover, we
know from the exercise that

P(F|T)=0.85 P(F|T =0.6.

Please Turn!



i) We need to compute P(F'). Applying the formula of total probabilities, we get
P(F)=P(F|T)P(T)+P(F | T°)P(T°) = 0.85-0.840.6-0.2 = 0.6840.12 = 0.8.
ii) We need to compute P(T | F). Applying Bayes’ formula, we obtain

P(F|T)P(T) 0.85-0.8
P(F) 08

P(T | F) = = 0.85.

¢) The unconditioned law of N is given by
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d) Observe that the distribution obtained in c) differs from the one in the hint only
by the value of the parameter p. We solve here the question for a general p € (0,1).

EIN] = > kp(l—p)* =p> k(1-p)

k>0 k>0

= p(1—p) Y k(1 —p)* Y =p(1 - p) ( (1-p)*

E>1
= p(1-p) <—ﬁ> Zp(l—P)p2 -,

Hence for p = é as in c¢), we get F[X] = 2; otherwise, using the hint, F[X] = 3.

REMARK: N has a geometric distribution shifted by —1, therefore it is consistent
to have % — 1 as expected value for V.

a) Y is a discrete random variable which only takes two values, 0 and 1. We can
compute the probability of each of these by integrating the joint density function.
We obtain the following:

and

Therefore, Y ~ Ber(p = 3/5).

See next page!
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We have E[X + Y] = E[X] + E[Y] = [} 12(2® —2*) dz + 2 = &,
Since Cov(X,Y) = E[XY] — E[X]E[Y], we only need to calculate E[XY] since
we have the other two from the previous exercise. Using the joint density function,
we find that

Lo 1
2
E[XY] = g /0 zyfxy(z,y) de :/0 12(2% — 23)2? do = 5
y=0

Therefore, Cov(X,Y) = % — % = %, Hence, X, Y are not independent.

Note that sin(27Y") = 0, therefore it is independent of any other random variable.
In particular, it is independent of X?2.

We recognize immediately that X ~ Bin(N = 100,q = (1 — p) = 0.99). We then
calculate Var(X) = N¢(1 — ¢q) = 0.99, and we get

100
>q0(1 _ q)loo — (0.01)100.

P(X < Var(X)) = P(X =0) = ( X

Since X has a Binomial distribution, we have E[X] = N(1 — p) = 100(1 — p).
Using the natural approximation

"X,
Zle ~ E[X] = 100(1 — p),

. . . X
we obtain the natural estimator p =1 — 1001n

The likelihood function is defined by L(p;x1,...,z,) = the probability to observe

the sequence x1, ..., z,. Since the X;, with 1 < i < n, are independent, we get
n n
100 100
L. ... @ _ Ti(] _ 100—z; _ 1 — p)%i 100—x;
(P21, @) i|_|1 ( N )q (1-q) i|_|1 . (L=p)"p

which yields a log-likelihood function given by

n

100

log L(p; x1,...,2p) = Z < N ) + z;log(1 — p) + (100 — z;) log(p)

i=1 ¢

Taking its derivative with respect to p and setting it equal to 0, gives then the
maximum likelihood estimator p:

n

8logL(p;x1,...,xn):Z< T +100—xi>:0

ap 1-p P

i=1

< (100n — s,)(1 — p) = spp <= 100n — s, = 100np

Sn
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P 100
n
¢
where s, = > | z;. Consequently, we have p =1 — %
n

REMARK: This yields the same estimator as in part b).

Please Turn!



d)

We clearly have n = 1+64+4-204-15 = 100, and s,, = 100n—1-0—64-1—20-2—15-3 =
10'000 — 149 = 9’851. Therefore, we get

*

100n — s, 149
p =

= = 0.0149.
100n 10000

Let us calculate

~100n — 371 EIX;] Elxi]=100(1-p) 100n —100n(1 — p)

E[p] _

P 100 100n b,

Var(p) = Var(3211 4 Xi) indep. > i Var(X;) a) 100n(1 — p)p _ (1-—pp
(100n)2 (100n)2 (100n)2 100n

Hence, we get

' —E[p] _ VI00n(p' —p) _ 100(0.0049) 049

Var(p) V(1 =p)p Vv0.994/0.01 0.1

Clearly, under the assumption p = 0.01, the likelihood of observing p* is very
small, since it is roughly 4.9 standard deviations away from its expected value.
Therefore, it doesn’t support the vendor’s claim and indicates that the true value
of p is larger than 0.01.




