
Problems

The expressions for the probability mass function of the Poisson(λ) distribution, and the density
function of the Normal distribution with mean µ and variance σ2, may be useful:

λn

n!
e−λ and

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
.

1. (10 points) For each of the following questions, exactly one answer is correct. Each correct
answer gives 1 point, and each incorrect answer results in a 1/2 point reduction. The minimal
possible total score for the full problem is 0. Some of the results may be useful in later
problems!

a) Let X1, X2, . . . be an i.i.d. sequence of random variables with 0 < E(X2
1 ) <∞. Which

of the following statements is a consequence of the strong law of large numbers?

1. lim supn→∞Xn = +∞ almost surely.

2. limn→∞(X2
1 + · · ·+X2

n)/n = 0 almost surely.

3. supn≥1 |Xn| <∞ almost surely.

b) Let ϕ1 and ϕ2 be the characteristic functions of two random variables X1 and X2. What
does the identity theorem for characteristic functions tell us?

1. If ϕ1(u) = ϕ2(u) for all u ∈ R then X1 and X2 have the same distribution.

2. If ϕ1(u) = ϕ2(u) for all u ∈ R then X1 and X2 are equal almost surely.

3. If ϕ1(u) = ϕ2(u) for all u ∈ R then X1 and X2 are independent.

c) What does it mean for a statistical test to have significance level 0.05?

1. The Null hypothesis will be accepted with probability at least 0.05.

2. If the Null hypothesis is true, then the probability to reject is at most 0.05.

3. If the Null hypothesis is false, then the probability to reject is at least 0.95.

d) The characteristic function ϕ of a Poisson(λ) random variable is given by

1. ϕ(u) = exp(u(eiλ − 1)).

2. ϕ(u) = exp(λ(eiu − 1)).

3. ϕ(u) = exp(λ(iu− 1)).
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e) Suppose a statistical test resulted in a p-value of 0.07. Which of the following statements
is correct?

1. The probability that the Null hypothesis is false is 0.07.

2. The Null hypothesis could not be rejected at significance level 0.06.

3. The Null hypothesis could not be rejected at significance level 0.08.

f) Suppose X1, . . . , Xn are i.i.d. N(µ, σ2). What is the distribution of 1
n

∑n
i=1

Xi−µ
σ

?

1. N(0, 1).

2. N(0, 1/n).

3. Student t with n degrees of freedom.

g) Suppose X1, . . . , Xn are i.i.d. Bernoulli(p) for some 0 < p < 1. What is the distribution
of X1 + · · ·+Xn?

1. Binomial(n, p).

2. Poisson(np).

3. Geometric(n, p).

h) Which of the following formulas is not correct in general?

1. P(A ∪B) = P(A) + P(B)− P(A ∩B).

2. P(A ∪B) = P(A) + P(Ac ∩B).

3. P(A ∪B) = P(A) + P(A ∩Bc).

i) Which of the following statements is correct for any random variables X, Y with unit
variance, Var(X) = Var(Y ) = 1?

1. If Cov(X, Y ) = 0 then X and Y are independent.

2. If X = a+ bY for some constants a ∈ R and b > 0, then Cov(X, Y ) = 1.

3. If X = Y 2, then Cov(X, Y ) = 1.

j) What is the value of
∑n−1

k=0 2k?

1. 2n − 1.

2. n2 − 1.

3. 2n − n.
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2. (10 points) A team of particle physicists has performed a series of experiments using the
Large Hadron Collider (LHC) to study Higgs boson production. The total number of pro-
duced Higgs bosons is N ∼ Poisson(λ). Unfortunately, due to background effects, other
particles are also produced during the experiments. The total number of such particles is
M ∼ Poisson(γ), with M and N independent. The parameters λ and γ are nonnegative and
unknown.

The detector unit can only measure the total number of produced particles, X = M +N .

a) Show that X ∼ Poisson(λ+ γ).

Solution:

Method one By the properties of characteristic functions,

ϕX(u) = ϕM+N(u) = ϕM(u)ϕN(u) = exp(γ(eiu−1)) exp(λ(eiu−1)) = exp((λ+γ)(eiu−1)).

The identity theorem for characteristic functions yields the result.

Method two We just have to compute

P(X = k) =
k∑

n=0

P(N = n)P(M = n− k)

=
k∑

n=0

e−λ
λn

n!
e−γ

γn−k

(n− k)!

= e−λ+γ
1

k!

k∑
n=0

(
k

n

)
λnγn−k

= e−λ+γ
1

k!
(λ+ γ)k.

The result is just the probability mass function of a Poisson(λ+ γ).

The parameter of interest is λ, which controls the number of Higgs bosons produced. To
proceed, further information about the background parameter γ is needed. Therefore, the
physicists perform a separate experiment from which a random variable Y ∼ N(γ, σ2) is
observed independently of X, where σ2 > 0 is known.

b) The joint distribution of (X, Y ) given the parameters θ = (λ, γ) is of the form

Pθ(X = n, Y ≤ z) =

∫ z

−∞
f(n, y; θ)dy.

Determine f(n, y; θ).

Solution:

By independence and the form of the Poisson and Normal distribution functions, we
have

P(X = n, Y ≤ z) = P(X = n)P(Y ≤ z) =
(λ+ γ)n

n!
e−(λ+γ)

∫ z

−∞

1√
2πσ2

e−(y−γ)
2/(2σ2)dy.
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Thus

f(n, y; θ) =
(λ+ γ)n

n!
e−(λ+γ)

1√
2πσ2

e−(y−γ)
2/(2σ2)

Consider the likelihood function L(θ) = f(X, Y ; θ).

c) Find the maximum likelihood estimate (λ̂, γ̂) of (λ, γ), knowing X and Y , in the case
where 0 < Y < X.

Solution: Change variables to (µ, γ) = (λ+ γ, γ). The log-likelihood then becomes

g(µ, γ) := `(µ− γ, γ) = constant +X log(µ)− µ− 1

2σ2
(Y − γ)2.

The unconstrained maximizer is (µ̂unconstr, γ̂unconstr) = (X, Y ). Hence (λ̂unconstr, γ̂unconstr) =
(X − Y, Y ). Since X − Y > 0 and X > 0 by assumption, the unconstrained maximizer

coincides with the constrained maximizer. That is, (λ̂, γ̂) = (X − Y, Y ).
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3. (15 points) Consider a series of coin tosses modeled by a sequence X1, X2, . . . of i.i.d.
random variables with P(Xn = 1) = P(Xn = −1) = 1

2
. Here Xn = 1 signifies heads and

Xn = −1 tails. Before each toss, you have the opportunity to bet an amount Vn. If the coin
comes up heads (Xn = 1), you receive Vn. Otherwise you lose Vn. Therefore the total gain
up to and including the nth toss is

Gn =
n∑
k=1

VkXk.

Note that Gn may be negative, which signifies a loss.

Suppose you use the following strategy: Set V1 = 1. For k ≥ 1, if Xk = 1 you stop, meaning
that you set Vn = 0 for n ≥ k + 1. If Xk = −1 and you have not yet stopped, double your
bet, that is, set Vk+1 = 2Vk.

Furthermore, let T denote the time you stop, T = min{k ≥ 1 : Xk = 1}, with T = ∞ if
Xk = −1 for all k.

a) Compute Gn for 1 ≤ n < T .

Solution: Note that (X1, . . . , XT−1, XT ) = (−1, . . . ,−1, 1) for T > 1, and that Vk =
2k−1 for all k < T . Thus, for n < T ,

Gn =
n∑
k=1

2k−1 × (−1) = −
n−1∑
k=0

2k = 1− 2n.

b) Compute GT for T <∞.

Solution: Since XT = 1 and VT = 2T we have from the previous problem, if T > 1,

GT = GT−1 + VTXT = 1− 2T + 2T = 1.

If T = 1, then clearly GT = 1× 1 = 1. So in all cases, GT = 1.

c) Compute P(T <∞).

Solution: Since {T =∞} = {Xn = −1 for all n ≥ 1} =
⋂
n≥1{Xn = −1}, we have

P(T =∞) = lim
n→∞

P

(
n⋂
k=1

{Xk = −1}

)
= lim

n→∞

n∏
k=1

P (Xk = −1) = lim
n→∞

2−n = 0,

using the continuity property of probability measures as well as the independence of
{Xn : n ≥ 1}. Thus P(T <∞) = 1.

At this point you may feel that this is too good to be true—and indeed there is a catch:

d) Compute the expected maximal intermediate shortfall. That is, compute E
(

min
1≤n≤T

Gn

)
.

Solution: From parts (a) and (b) we have Gn = 1− 2n for n < T , and GT = 1. Thus

min
1≤n≤T

Gn =

{
1− 2T−1 if T > 1

1 if T = 1.
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Also, for n ≥ 1,

P(T = n) = P(X1 = · · · = Xn−1 = −1 and Xn = 1) =
n∏
k=1

1

2
= 2−n.

Thus

E
(

min
1≤n≤T

Gn

)
= 1× 1

2
+
∞∑
n=2

(1− 2n−1)× 2−n =
1

2
+
∞∑
n=2

(2−n − 2−1) = −∞.

To make matters worse, in reality you would face a limit on credit. Specifically, assume you
are only allowed to use strategies {Vn : n ≥ 1} such that the gain satisfies Gn ≥ −b almost
surely for all n, where b ∈ (1,∞) is some fixed constant. Modify the above strategy so that
you stop as soon as there is a risk of violating the bound. That is, specify Vk as before, except
that if you have not stopped at k, and Gk − 2Vk < −b, then set Vn = 0 for all n ≥ k + 1.

Let T ′ denote the time you stop under this modified strategy.

e) Compute your expected gain E(GT ′) under these new rules. In particular, how does
this depend on the bound b?

Solution: For 1 ≤ n < T we have Gn − 2Vn = 1− 2n − 2× 2n−1 = 1− 2n+1. Thus

Gn − 2Vn < −b ⇐⇒ n > log(1 + b)− 1.

Let n0 denote the smallest n for which this happens. Then T ′ = T on the event
{T ≤ n0}, and T ′ = n0 on the event {T > n0}. Thus,

E(GT ′) = E(GT1{T≤n0} +Gn01{T>n0})

= 1× P(T ≤ n0) + (1− 2n0)× P(T > n0)

= 1× (1− P(T > n0)) + (1− 2n0)× P(T > n0)

= 1− 2n0P(T > n0)

= 0,

using that P(T > n0) = P(X1 = · · · = Xn0 = −1) = 2−n0 . This result is completely
independent of the actual value of the bound b!
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4. (15 points) Celebrities Saylor Twift and Bustin Jieber are active on Twitter. Saylor has
a total of n followers. There is some overlap between Twift and Jieber followers: a fraction
γ ∈ (0, 1) of Saylor’s followers also follow Bustin (that is, [γn] people follow both Saylor and
Bustin, where [x] denotes the integer part of a real number x).

Let A denote the event that Bustin tweets “Saylor Twift got a #beautifulvoice”. If
a follower of Saylor reads this tweet, then this follower will re-tweet Saylor’s tweets with
probability pS = 0.3. Otherwise, the probability is only qS = 0.1. Followers make tweeting
decisions independently of each other, and do not re-tweet each other’s tweets.

One day, Saylor tweets “today glimpsed a new world who knew that #statsrulez?”.
Let N denote the total number of re-tweets of Saylor’s tweet.

a) Assuming that A did not happen, find E(N) and Var(N).

Solution: If A did not happen, then N = X1 + · · · + Xn for i.i.d. random variables
Xi ∼ Bernoulli(qS). Thus E(N) = nqS, Var(N) = nqS(1− qS).

b) Assuming that A did happen, find E(N) and Var(N).

Solution: If A did happen, then N = X1+· · ·+X[γn]+Y1+· · ·+Yn−[γn] for independent
random variables Xi ∼ Bernoulli(pS) and Yi ∼ Bernoulli(qS). Thus

E(N) = [γn]pS + (n− [γn])qS

Var(N) = [γn]pS(1− pS) + (n− [γn])qS(1− qS).

Suppose you work for Twitter and a colleague tells you the value of N . You are currently
offline and cannot check specific tweets. You are interested in if A happened or not.

c) Under each of the distributions in a) and b), show that

N − E(N)√
Var(N)

converges weakly to the standard Normal distribution as n → ∞, with pS, qS, and γ
held fixed.

Hint: It may be helpful to write N as a sum of Bernoulli random variables. Furthermore,
you are allowed to use the following result:

Lemma: Let U1, U2, . . . and V1, V2, . . . be two sequences of random variables that both
converge weakly to the standard Normal distribution. Suppose Un and Vn are indepen-
dent for each n. Let %n ∈ (0, 1) and assume limn %n = % ∈ (0, 1). Then %nUn+

√
1− %2nVn

converges weakly to the standard Normal distribution.

Solution: (i): If A did not happen, then N = Sn := X1 + · · · + Xn for i.i.d. random
variables Xi ∼ Bernoulli(qS). Thus, as n→∞,

N − E(N)√
Var(N)

=
Sn − nqS√

n
√
qS(1− qS)

→ N(0, 1)
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weakly by the Central Limit Theorem.

(ii): If A did happen, then N = S
(1)
n + S

(2)
n , where

S(1)
n = X1 + · · ·+X[γn]

S(2)
n = Y1 + · · ·+ Yn−[γn]

for independent random variables Xi ∼ Bernoulli(pS) and Yi ∼ Bernoulli(qS).

Method one The Central Limit Theorem yields

Un :=
S
(1)
n − [γn]pS√

[γn]
√
pS(1− pS)

→ N(0, 1)

Vn :=
S
(2)
n − (n− [γn])qS√

(n− [γn])
√
qS(1− qS)

→ N(0, 1)

weakly as n→∞. Moreover, we have

N − E(N)√
Var(N)

= %nUn +
√

1− %2nVn,

where

%n =

(
Var(S

(1)
n )

Var(N)

)1/2

=

(
[γn]pS(1− pS)

[γn]pS(1− pS) + (n− [γn])qS(1− qS)

)1/2

→
(

γpS(1− pS)

γpS(1− pS) + (1− γ)qS(1− qS)

)1/2

∈ (0, 1).

Since Un and Vn are independent for each n, the lemma then gives the desired conclusion.

Method two If we do not one to use the hint we can prove this with Lindeberg’s
Theorem (4.4 page 63 of the Skript), define

Zn,i :=


Xi−E(Xi)√

Var(N)
i ≤ [γn],

Y[γn]+i−E(Y[γn]+i)√
Var(N)

[γn] < i ≤ n.

now we just have to check the three conditions

a) For fixed n the independence comes from the original model.

b) It’s clear that E (Zn,i) = 0, E(X2
n,i) <∞ and that

∑n
i=1 Var(Xn,i) = 1.

c) We just have to see that for all ε > 0 and n big enough, 1Zn,i≥ε = 0, thanks to the
fact that Var(N)→∞ and 0 ≤ X, Y ≤ 1.

d) Consider the hypotheses{
Null: The event A happened;

Alternative: The event A did not happen.
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In this problem, you should approximate the corresponding distributions of N by Nor-
mals with the same mean and variance. Show that one can find a most powerful test
at a given level α of the form

reject the Null ⇐⇒ |N + 0.05n| > c

for some constant c. (You do not have to determine c; it depends on α and the distri-
bution of N under the Null hypothesis.)

Solution: Let µ0 and σ2
0 be the mean and variance of N under the Null hypothesis,

and let µ1 and σ2
1 be the mean and variance of N under the alternative. The f0 and f1

denote the corresponding Normal density functions. Under the Normal approximation,
the likelihood ratio is

f1(x)

f0(x)
=

(2πσ2
0)−1/2 exp(−(x− µ0)

2/(2σ2
0))

(2πσ2
1)−1/2 exp(−(x− µ1)2/(2σ2

1))
=
σ1
σ0

exp

(
−(x− µ0)

2

2σ2
0

+
(x− µ1)

2

2σ2
1

)
.

Thus, for some constants ci,

f1(x)

f0(x)
> c1 ⇐⇒ −

(x− µ0)
2

σ2
0

+
(x− µ1)

2

σ2
1

> c2

⇐⇒ x2
(

1

σ2
1

− 1

σ2
0

)
− 2x

(
µ1

σ2
1

− µ0

σ2
0

)
> c3.

Since a) and b) and the given values pS = 0.3 and qS = 0.1 yield

σ2
0 − σ2

1 = [γn](pS(1− pS)− qS(1− qS)) = 0.12× [γn] > 0,

we may divide by 1
σ2
1
− 1

σ2
0
> 0 to get the equivalent statement

⇐⇒ x2 − 2x

(
µ1σ

2
0 − µ0σ

2
1

σ2
0 − σ2

1

)
> c4,

and upon completing the square,

⇐⇒
(
x− µ1σ

2
0 − µ0σ

2
1

σ2
0 − σ2

1

)2

> c5

⇐⇒
∣∣∣∣x− µ1σ

2
0 − µ0σ

2
1

σ2
0 − σ2

1

∣∣∣∣ > c6 =: c.

Using again a) and b), we get

µ1σ
2
0 − µ0σ

2
1 = n [γn] pSqS(qS − pS) = −0.006× n [γn],

and thus
µ1σ

2
0 − µ0σ

2
1

σ2
0 − σ2

1

=
−0.006× n [γn]

0.12× [γn]
= −0.05n.

The given test is thus most powerful by the Neyman-Pearson lemma, with a suitably
chosen c depending on α.
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5. (15 points) A common measure of the quality of an estimator is the mean squared error
(MSE). In this problem, you will see that the MSE may behave in unexpected ways. This
was first noticed by Stein in 1956 and developed further by James and Stein in 1961.

Fix n ≥ 2. Let X = (X1, · · · , Xn) be a random vector, where X1, . . . , Xn are independent
with Xi ∼ N(θi, 1) for some unknown parameters θ = (θ1, . . . , θn).

a) Consider the estimator θ̂i = Xi for i = 1, . . . , n, and set θ̂ = (θ̂1, . . . , θ̂n). Compute the
mean squared error

E(‖θ − θ̂‖2)

Solution:

E(‖θ − θ̂‖2) = E
( n∑
i=1

(Xi − θi)2
)

=
n∑
i=1

E
(
(Xi − θi)2

)
=

n∑
i=1

Var(Xi) = n.

Consider now the alternative estimator θ̂JS = (θ̂JS1 , . . . , θ̂
JS
n ), where

θ̂JSi = Xi −
n− 2

‖X‖2
Xi, i = 1, . . . , n.

b) Let h : Rn → R be continuously differentiable and such that h(x) = 0 whenever ‖x‖ is
sufficiently large (that is, for h(x) = 0 whenever ‖x‖ > C for some constant C). Show
that

E
(

(Xi − θi)h(X)
)

= E
(
∂h

∂xi
(X)

)
for all i = 1, . . . , n. (1)

Hint: Use that φ′(t) = −tφ(t), where φ denotes the N(0, 1) density function.

Solution: It is enough to consider i = 1. Then,

E
(

(X1 − θ1)h(X)
)

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ(x2 − θ2) · · ·φ(xn − θn)

×
∫ ∞
−∞

h(x1, . . . , xn)(x1 − θ1)φ(x1 − θ1)dx1dx2 · · · dxn.

By the hint and integration by parts (using the assumption that h vanishes for large x
to take care of the boundary terms), we obtain∫ ∞

−∞
h(x1, . . . , xn)(x1 − θ1)φ(x1 − θ1)dx1 = −

∫ ∞
−∞

h(x1, . . . , xn)φ′(x1 − θ1)dx1

=

∫ ∞
−∞

∂h

∂x1
(x1, . . . , xn)φ(x1 − θ1)dx1.

Substituting back into the previous expression yields

E
(

(X1 − θ1)h(X)
)

= E
(
∂h

∂xi
(X)

)
.
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Equation (1) actually holds for more general functions h. In particular, for any i ∈ {1, . . . , n},
one can take h(x) = xi/|x|2 (setting h(0) = 0 and ∂h

∂xi
(0) = 0), as long as n ≥ 3. You may

use this fact without proof.

c) For n ≥ 3, show that θ̂JS has smaller mean squared error than θ̂. That is, show that

E(‖θ − θ̂JS‖2) < E(‖θ − θ̂‖2).

Solution: Compute:

‖θ − θJS‖2 =
n∑
i=1

(θi −Xi +
n− 2

‖X‖2
Xi)

2

=
n∑
i=1

(θi −Xi)
2 + 2(n− 2)

n∑
i=1

(θi −Xi)
Xi

‖X‖2
+

n∑
i=1

(n− 2)2

‖X‖4
X2
i

= ‖θ − θ̂‖2 + 2(n− 2)
n∑
i=1

(θi −Xi)
Xi

‖X‖2
+

(n− 2)2

‖X‖2
.

Note that ∂
∂xi

(xi/‖x‖2) =
‖x‖2−2x2i
‖x‖4 . Thus by (b) and the subsequent comment,

E
(

(θi −Xi)
Xi

‖X‖2
)

= −E
(‖X‖2 − 2X2

i

‖X‖4
)
.

Taking expectations of the above expression for ‖θ − θJS‖2, we thus obtain

E(‖θ − θ̂JS‖2) = E(‖θ − θ̂‖2)− 2(n− 2)E
(n‖X‖2 − 2‖X‖2

‖X‖4
)

+ E
((n− 2)2

‖X‖2
)

= E(‖θ − θ̂‖2)− (n− 2)2E
( 1

‖X‖2
)
.

If n ≥ 3, this is strictly less than zero, as required.

This result is counterintuitive, because the Xi are independent. It is tempting to conclude
that “the quality of an estimate can be improved by simultaneously estimating independent
variables”. Food for thought...
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