Problems

1. (10 points) For each of the following questions, exactly one answer is correct. Each correct answer gives 1 point, and each incorrect answer results in a $1 / 2$ point reduction. The minimal possible total score for the full problem is 0 .
a) Let $\left(S_{n}\right)_{n=0, \ldots, N}$ be a random walk. Which of the following is NOT a stopping time?
2. $\inf \left\{n: S_{n} \geq 5\right\} \wedge N$
3. $\inf \left\{n: S_{n+1} \geq 5\right\} \wedge N$
4. $\inf \left\{n: S_{n-1} \geq 5\right\} \wedge N$
b) Let $\left(S_{n}\right)_{n=0, \ldots, N}$ be a random walk. Which of the following statements is TRUE?
5. $\mathbb{E}\left(S_{n}^{2}\right)$ is increasing in n.
6. For any stopping time $T, \mathbb{E}\left(S_{T}^{2}\right)=\mathbb{E}\left(S_{0}^{2}\right)$.
7. $\operatorname{Var}\left(S_{n}^{2}\right)=n^{2}$.
c) Let μ and $\mu_{n}, n \in \mathbb{N}$, be distributions on \mathbb{R}. Let F, F_{n} be their respective distribution functions. Which of the following statements is equivalent to $\mu_{n} \rightarrow \mu$ weakly?
8. $F_{n}(x) \rightarrow F(x)$ for every $x \in \mathbb{R}$ at which F is continuous.
9. $\int_{\mathbb{R}} f(x) d \mu_{n}(x) \rightarrow \int_{\mathbb{R}} f(x) d \mu(x)$ for every function $f: \mathbb{R} \rightarrow \mathbb{R}$.
10. $F_{n}(x) \rightarrow F(x)$ for every $x \in \mathbb{R}$ at which F is strictly positive.
d) Which of the following statements is FALSE?
11. Sum of independent Bernoulli random variables is still a Bernoulli random variable.
12. Sum of independent Poisson random variables is still a Poisson random variable.
13. Sum of independent Normal random variables is still a Normal random variable.
e) Let X_{1} and X_{2} be independent random variables with characteristic function ϕ_{1} and ϕ_{2}, respectively. What is the characteristic function ϕ of $X_{1}-X_{2}$?
14. $\phi(u)=\phi_{1}(u)-\phi_{2}(u)$
15. $\phi(u)=\phi_{1}(u) / \phi_{2}(u)$
16. $\phi(u)=\phi_{1}(u) \phi_{2}(-u)$
f) If X_{n} converges in probability to X, then which of the following statements follows?
17. X_{n} converges almost surely to X.
18. $\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}\right)=\mathbb{E}(X)$.
19. X_{n} converges weakly to X.
g) The characteristic function ϕ of a $\operatorname{Binomial}(n, p)$ random variable is given by:
20. $\phi(u)=\left(e^{u i} n+(1-n)\right)^{p}$
21. $\phi(u)=\left(e^{u i} p+(1-p)\right)^{n}$
22. $\phi(u)=\left(e^{n i} p+(1-p)\right)^{u}$
h) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be an i.i.d. sequence of $N\left(0, \sigma^{2}\right)$ random variables. Define $\bar{\sigma}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{n}^{2}$ and $\widetilde{\sigma}_{n}=\frac{1}{n-1} \sum_{i=1}^{n} X_{n}^{2}$. Which property is TRUE about these estimators?
23. $\widetilde{\sigma}_{n}$ is unbiased.
24. $\bar{\sigma}_{n}$ is consistent.
25. $\operatorname{Var}\left(\bar{\sigma}_{n}\right) \geq \operatorname{Var}\left(\widetilde{\sigma}_{n}\right)$.
i) Suppose a statistical test resulted in a p-value of 0.025 . Which of the following statements is TRUE?
26. The null hypothesis could not be rejected at significance level 0.01 .
27. The probability that the null hypothesis is true is 0.025 .
28. The null hypothesis could not be rejected at significance level 0.05
j) Let A and B be two events with positive probability. Which of the following equations is Bayes' rule?
29. $\mathbb{P}(B \mid A)=\mathbb{P}(A \mid B) \mathbb{P}(B) / \mathbb{P}(A)$
30. $\mathbb{P}(B \mid A)=\mathbb{P}(A \mid B) \mathbb{P}(A) / \mathbb{P}(B)$
31. $\mathbb{P}(B \mid A)=\mathbb{P}(A \cap B) \mathbb{P}(B) / \mathbb{P}(A)$
32. (15 points) Let X_{1}, X_{2}, \ldots be an i.i.d. sequence of $\operatorname{Poisson}(\lambda)$ distributed random variables for some fixed $\lambda>0$.
a) How does $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ behave as $n \rightarrow \infty$?
b) How does $\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\lambda\right)$ behave as $n \rightarrow \infty$?

Suppose now you observe a noisy version of the X_{i} 's. Specifically, let $Y_{i}=X_{i}+Z_{i}$, where $Z_{i} \sim N\left(0, \sigma^{2}\right)$ for some $\sigma \geq 0$. Assume all random variables are mutually independent.
c) How does $\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Y_{i}-\lambda\right)$ behave as $n \rightarrow \infty$?
d) Suppose you observe a sample Y_{1}, \ldots, Y_{n}, and would like to test for the presence of noise. Specifically, you consider the hypotheses

$$
\begin{cases}\text { Null: } & \sigma^{2}=0 \\ \text { Alternative: } & \sigma^{2}>0\end{cases}
$$

Design a test at significance level $\alpha=0$, with power 1 at any $\sigma^{2}>0$.
3. (15 points) Consider the probability density function

$$
f_{X}(x)= \begin{cases}\left(\alpha+\alpha^{2}\right) x^{\alpha-1}(1-x) & x \in(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

where $\alpha>0$ is a parameter. The corresponding distribution is called the $\operatorname{Beta}(\alpha, 2)$ distribution.
a) Show that f_{X} is indeed a probability density function.
b) Show that $\mathbb{E}(-\log X)=\frac{1+2 \alpha}{\alpha+\alpha^{2}}$, where $X \sim f_{X}$.
c) Let $\widehat{\alpha}_{n}$ denote the maximum likelihood estimator of α based on an i.i.d. sample X_{1}, \ldots, X_{n} from f_{X}. Show that $\widehat{\alpha}_{n}$ exists, is unique, and is the solution of the equation

$$
\frac{1+2 \widehat{\alpha}_{n}}{\widehat{\alpha}_{n}+\widehat{\alpha}_{n}^{2}}=-\frac{1}{n} \sum_{i=1}^{n} \log X_{i}
$$

d) Show that the maximum likelihood estimator is consistent.
4. (15 points) Let X_{1}, X_{2}, \ldots be i.i.d. Exponential (λ) for some fixed $\lambda>0$, and consider the $\operatorname{maxima} M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$ for each n.
a) Show that $\mathbb{P}\left(M_{n} \leq x\right)=\left(1-e^{-\lambda x}\right)^{n}$ for $x \geq 0$.
b) Show that the distribution of $\lambda M_{n}-\log n$ converges weakly to the Gumbel distribution, whose distribution function is $F(x)=e^{-e^{-x}}, x \in \mathbb{R}$.
c) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a positive increasing sequence with $\lim _{n \rightarrow \infty} \frac{\log n}{a_{n}}=c$ for some $c \in[0, \infty]$. Show that $\lim _{n \rightarrow \infty} a_{n}^{-1} M_{n}=\lambda^{-1} c$ in probability.
d) Show that $\lim _{n \rightarrow \infty} M_{n}=\infty$ almost surely.
5. (15 points) Define $S_{0}=0$ and $S_{n}=\sum_{i=1}^{n} X_{i}$ for $n \geq 1$, where X_{1}, X_{2}, \ldots are i.i.d. random variables with $\mathbb{P}\left(X_{i}=+1\right)=\mathbb{P}\left(X_{i}=-1\right)=\frac{1}{2}$. Let $(\Omega, \mathcal{A}, \mathbb{P})$ denote the probability space on which these objects are defined.
a) Fix any $N \in \mathbb{N}$ and consider $\left(S_{n}\right)_{n=0, \ldots, N}$, which is a random walk of length N. For each $n=0, \ldots, N$, let \mathcal{A}_{n} denote the set of all events of the form $\left\{\omega:\left(S_{0}(\omega), \ldots, S_{n}(\omega)\right) \in D\right\}$ with $D \subseteq \mathbb{R}^{n}$ measurable. State the definition of a stopping time.

Recall the following two facts, which you may use later on:
(i) For any stopping time T, one has $\mathbb{E}\left(S_{T}\right)=0$. Here it is crucial that $T \leq N$ almost surely for some deterministic number N.
(ii) For any $a \in \mathbb{Z}$, letting $T_{a}=\inf \left\{n>0: S_{n}=a\right\}$ one has $\lim _{N \rightarrow \infty} \mathbb{P}\left(T_{a}>N\right)=0$.

Fix integers $a>0>b$ and let $T_{a, b}=\inf \left\{n>0: S_{n}=a\right.$ or $\left.S_{n}=b\right\}$ denote the first time S_{n} hits either a or b. If this never happens, set $T_{a, b}=\infty$.
b) Show that $\mathbb{P}\left(T_{a, b}<\infty\right)=1$.
c) Show that $\mathbb{E}\left(S_{T_{a, b}}\right)=0$.

Hint: Consider the stopping time $T=\min \left(T_{a, b}, N\right)$, apply the above facts about stopping times, and take limits.
d) What is the probability that S_{n} reaches a before it reaches b ?

