

Aufgaben und Lösungsvorschlag Gruppe A

Alle Zufallsvariablen sind auf einem fixierten impliziten Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) definiert.

Für den Erwartungswert einer Zufallsvariable X schreiben wir $\mathrm{E}(X)$ und für die Varianz $\mathrm{Var}(X)$.

Aufgabe 1

Sei $(X_i)_{i\geq 1}$ eine Folge von unabhängig identisch verteilten (uiv) Zufallsvariablen, die Werte in $\{0, 1, -1\}$ mit der Wahrscheinlichkeit

$$P(X_1 = 0) = P(X_1 = 1) = P(X_1 = -1) = 1/3.$$

annehmen. Für die gesamte Aufgabe fixieren wir ein ganze Zahl $n \ge 1$. Wir untersuchen das Verhalten von S_n , definiert als

$$S_n = X_1 + \dots + X_n$$
.

1.A1 [1 Punkt] Berechne $E(X_1)$.

Lösung:

We compute
$$E(X_1) = 0 \cdot (1/3) + 1 \cdot (1/3) - 1 \cdot (1/3) = 0$$
.

1.A2 [1 Punkt] Berechne $E(S_n)$.

Lösung:

Since X_i has the same distribution as X_1 for all $i \ge 1$, we have $E(X_i) = E(X_1) = 0$ for all $i \ge 1$. So, linearity of expectation gives $E(S_n) = E(X_1) + \cdots + E(X_n) = 0$.

1.A3 [1 Punkt] Berechne $Var(X_1)$.

Lösung:

We compute
$$Var(X_1) = E((X_1 - E(X_1))^2) = E(X_1^2) = 0 \cdot (1/3) + 1 \cdot (1/3) + 1 \cdot (1/3) = 2/3$$
.

1.A4 [1 Punkt] Berechne $Var(S_n)$.

Lösung:

Since X_i has the same distribution as X_1 for all $i \ge 1$, we have $\text{Var}(X_i) = \text{Var}(X_1) = 2/3$ for all $i \ge 1$. Since X_1, \ldots, X_n are independent, we get $\text{Var}(S_n) = \text{Var}(X_1) + \cdots + \text{Var}(X_n) = 2n/3$.

1.A5 [2 Punkte] Beweise, dass $P(|S_n| \ge \sqrt{n}) \le 2/3$.

Chebyshev's inequality applied to the random variable S_n gives

$$P(|S_n - E(S_n)| \ge \sqrt{n}) \le Var(S_n)/n.$$

Using that $E(S_n) = 0$ and $Var(S_n) = 2n/3$ gives the desired inequality.

1.A6 [2 Punkte] Folgere, dass gilt

$$P(-\sqrt{n} \le S_n \le \sqrt{n}) \ge \frac{1}{3}.$$

Lösung:

First, notice that

$$P(-\sqrt{n} \le S_n \le \sqrt{n}) \ge P(-\sqrt{n} < S_n < \sqrt{n})$$

since $\{-\sqrt{n} < S_n < \sqrt{n}\} \subset \{-\sqrt{n} \le S_n \le \sqrt{n}\}$. Second, using that $\{-\sqrt{n} < S_n < \sqrt{n}\} = \{|S_n| \ge \sqrt{n}\}^c$ and the bound from the previous part, we get

$$P(-\sqrt{n} < S_n < \sqrt{n}) = 1 - P(-\sqrt{n} \le S_n \le \sqrt{n}) \ge \frac{1}{3}$$

1.A7 [2 Punkte] Beweise, dass $k \in \mathbb{Z}$ existiert, so dass

$$P(S_n = k) \ge \frac{1}{9\sqrt{n}}.$$

Lösung:

First, by the previous part we have

$$\frac{1}{3} \le P(|S_n| \le \sqrt{n}).$$

Second, define $I = \mathbb{Z} \cap [-\sqrt{n}, \sqrt{n}]$ and note that because S_n is integer-valued we have

$$P(|S_n| \le \sqrt{n}) = P(\bigcup_{k \in I} \{S_n = k\}).$$

Third, by the union bound and that $|I| \leq 3\sqrt{n}$ we have

$$P(\bigcup_{k \in I} \{S_n = k\}) \le \sum_{k \in I} \mathbb{P}(S_n = k) \le 3\sqrt{n} \max_{k \in I} \mathbb{P}(S_n = k).$$

Combining the three above inequalities yields

$$\max_{k \in I} \mathbb{P}(S_n = k) \ge \frac{1}{9\sqrt{n}},$$

completing the proof.

Sei $(U_i)_{i\geq 1}$ eine uiv. Folge von $\mathcal{U}([0,1])$ Zufallsvariablen. Für $n\geq 1$, definieren wir

$$Z_n = \min(n \cdot U_1, \dots, n \cdot U_n).$$

2.A1 [1 Punkt] Sei $\phi : \mathbb{R} \to \mathbb{R}$ messbar und beschränkt. Begründe, dass gilt

$$E(\phi(Z_2)) = \int_0^1 \int_0^1 \phi(2 \cdot \min(u, v)) \, du \, dv.$$

Lösung:

By independence, (U_1, U_2) has a density in \mathbb{R}^2 given by

$$f_{U_1,U_2}(u,v) = f_{U_1}(u) \cdot f_{U_2}(v) = 1_{(u,v) \in [0,1]^2}.$$

So we obtain

$$E[\phi(Z_2)] = E[\phi(2\min(U_1, U_2))] = \int_0^1 \int_0^1 \phi(2\min(u, v)) du dv.$$

2.A2 [2 Punkte] Folgere, dass gilt

$$E(\phi(Z_2)) = \int_0^2 \phi(z)(1 - z/2)dz.$$

Lösung:

$$E[\phi(Z_2)] = \int_0^1 \int_0^1 \phi(2\min(u, v)) du dv$$

$$= \int_{u=0}^1 \int_{v=u}^1 \phi(2\min(u, v)) dv du + \int_{v=0}^1 \int_{u=v}^1 \phi(2\min(u, v)) du dv$$

$$= 2 \int_{u=0}^1 \int_{v=u}^1 \phi(2\min(u, v)) dv du$$

$$= 2 \int_{u=0}^1 \int_{v=u}^1 \phi(2u) dv du$$

$$= 2 \int_0^1 (1 - u) \phi(2u) du$$

$$= \int_0^2 \phi(z) (1 - z/2) dz.$$

2.A3 [2 Punkte] Was ist die Dichte von \mathbb{Z}_2 ?

$$(1-z/2)1_{0 \le z \le 2}$$
.

2.A4 [3 Punkte] Seien $n \ge 1$ und $t \ge 0$. Zeige, seige dass

$$P(Z_n > t) = \begin{cases} 1 & \text{wenn } t < 0, \\ \left(1 - \frac{t}{n}\right)^n & \text{wenn } t \in [0, n], \\ 0 & \text{wenn } t > n. \end{cases}$$

Lösung:

Fix $n \ge 1$. First, since $Z_n \ge 0$ almost surely,

$$\forall t < 0 \ \mathrm{P}(Z_n > t) = 1.$$

Second, since $Z_n = n \min(U_1, \dots, U_n) \le n$ almost surely, we have

$$\forall t > n \ P(Z_n > t) = 0.$$

Third, let $t \in [0,1]$. Then

$$P(Z_n > t) = P(n \min(U_1, \dots, U_n) > t)$$

$$= P(\bigcap_{i=1}^n \{U_i > t/n\})$$

$$\stackrel{*}{=} \prod_{i=1}^n P(U_i > t/n)$$

$$= (1 - t/n)^n,$$

where we used the independence of U_1, \ldots, U_n in (*).

2.A5 [2 Punkte] Sei $n \ge 1$. Berechne $E(Z_n)$.

Lösung:

If X is random variable that is non-negative almost surely, we have

$$E(X) = \int_0^\infty P(X > t) dt.$$

Applying this formula to Z_n , which is indeed non-negative almost surely, and using the previous part we get

$$E(Z_n) = \int_0^\infty P(Z_n > t) dt = \int_0^n (1 - t/n)^n dt$$
$$= \left[\frac{-n}{n+1} \left(1 - \frac{t}{n} \right)^{n+1} \right]_0^n$$
$$= \frac{n}{n+1}.$$

2.A6 [2 Punkte] Sei $Z \sim \text{Exp}(1)$. Zeige, dass $(Z_i)_{i \geq 1}$ in Verteilung gegen Z konvergiert. Lösung:

The cumulative distribution function of Z is given by

$$\mathbb{P}(Z \le t) = (1 - e^{-t}) 1_{t \in [0, \infty)},$$

which is continuous for all t. So we need to show that for all $t \in \mathbb{R}$, $\mathbb{P}(Z_n \leq t)$ converges to $\mathbb{P}(Z \leq t)$. First, for $t \leq 0$, $\mathbb{P}(Z_n \leq t) = 0$ for all n and $\mathbb{P}(Z \leq t) = 0$, so the convergence follows trivially in this case. Second, fix $t \in [0, \infty)$ and note for $n \geq t$ we have

$$\mathbb{P}(Z_n \le t) = 1 - (1 - t/n)^n,$$

which converges to $1 - e^{-t}$, as required.

2.A7 [2 Punkte] Zeige, dass

$$\lim_{n \to \infty} \frac{Z_n}{n} = 0 \quad \text{a.s.}$$

Lösung:

We use the criterion in the formula sheet for almost sure convergence with $X_n = Z_n$ and X = 0. Fix $\epsilon > 0$. Then

$$\sum_{n\geq 1} \mathbb{P}(|Z_n|/n \geq \epsilon) = \sum_{n\geq 1} \mathbb{P}(Z_n \geq n\epsilon)$$

$$\leq \sum_{n\geq 1} (1-\epsilon)^n < \infty.$$

So Z_n/n converges almost surely to 0.

Sei $\Theta = [0, \infty)$, und sei $(P_{\theta})_{\theta \in \Theta}$ eine Familie von Wahrscheinlichkeitsmaßen die durch Θ parametrisiert sind. Sei $n \geq 1$ und seien X_1, \ldots, X_n nicht-negative Zufallsvariablen, so dass unter P_{θ} gilt

- X_1, \ldots, X_n uiv. und
- X_i hat die Dichte gegeben durch

$$\forall x \in \mathbb{R} \quad f_{\theta}(x) = \exp(\theta - x) 1_{\theta \le x}.$$

3.A1 [2 Punkte] Überprüfe, dass f_{θ} für jedes $\theta \in \Theta$ eine Dichter definiert.

Lösung:

Let $\theta \in [0, \infty)$. Note that $f_{\theta}(x) \geq 0$ for all $x \in \mathbb{R}$ and

$$\int_{\mathbb{R}} f_{\theta}(x) dx = \int_{\theta}^{\infty} \exp(\theta - x) dx = [-\exp(\theta - x)]_{\theta}^{\infty} = 1.$$

This shows that f_{θ} defines a density.

3.A2 [3 Punkte] Beweise, dass der Maximum-Likelihood Schätzer durch $T = \min(X_1, \dots, X_n)$ gegeben ist.

Lösung:

Fix $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Then because X_1, \ldots, X_n are independent we have

$$L_{\theta}(x) = \prod_{i=1}^{n} \exp(\theta - x_i) 1_{x_i \ge \theta} = \exp(\theta n) \exp\left(-\sum_{i=1}^{n} x_i\right) 1_{\min(x_1, \dots, x_n) \ge \theta}.$$

Let $\theta^* = \min(x_1, \dots, x_n)$. Then for all $\theta < \theta^*$ we have

$$L_{\theta*}(x) = \exp\left(-\sum_{i=1}^{n} x_i\right) \exp(\theta^* n) > \exp\left(-\sum_{i=1}^{n} x_i\right) \exp(\theta n) = L_{\theta}(x) > 0.$$

For all $\theta > \theta^*$, $L_{\theta}(x) = 0$. Also, for all $\theta > \theta^*$ we have $L_{\theta}(x) = 0$. This shows that $\theta = \theta^*$ maximises $L_{\theta}(x)$, completing the proof.

3.A3 [1 Punkt] Sei $a \ge 0$. Berechne

$$P_{\theta}(X_1 > \theta + a).$$

$$\mathbb{P}_{\theta}(X_1 \ge \theta + a) = \int_{\theta + a}^{\infty} f_{\theta}(t)dt$$
$$= \int_{\theta + a}^{\infty} \exp(\theta - t)dt$$
$$= \exp(-a).$$

3.A4 [2 Punkte] Zeige, dass $\forall a \in [0, \infty)$ gilt

$$P_{\theta}(T > \theta + a) = \exp(-an).$$

Lösung:

Let $a \in [0, \infty)$. Then

$$\mathbb{P}_{\theta}(T \ge \theta + a) = \mathbb{P}(\min(X_1, \dots, X_n) > \theta + a)$$

$$= \mathbb{P}\left(\bigcap_{i=1}^n \{X_i > \theta + a\}\right)$$

$$\stackrel{*}{=} \prod_{i=1}^n \mathbb{P}(X_i > \theta + a)$$

$$= \exp(-an),$$

where we used the independence of X_1, \ldots, X_n in (*).

3.A5 [2 Punkte] Ist T erwartungstreu?

Lösung:

Note that $T \ge \theta$ almost surely and $\mathbb{P}(T > \theta + 1) = \exp(-n) > 0$. So $\mathrm{E}[T] > \theta$, which shows that T is not unbiased.

3.A6 [2 Punkte] Zeige, dass

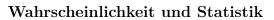
$$P_{\theta}(\theta \le T \le \theta + a) = 1 - \exp(-an).$$

Lösung:

$$\mathbb{P}(\theta \le T \le \theta + a) = 1 - \mathbb{P}(\theta > T) - \mathbb{P}(T > \theta + a) = 1 - \exp(-an).$$

3.A7 [1 Punkt] Konstruiere ein 95% Konfidenzintervall für θ von der Form [T - c/n, T), wobei c > 0 eine explizite Konstante ist, die bestimmt werden muss.

For
$$c > 0$$
, $\mathbb{P}_{\theta}(\theta \in [T - c/n, T]) = \mathbb{P}_{\theta}(\theta \leq T \leq \theta + c/n) = 1 - e^{-c}$. Let $c = -\ln(0.05)$. Then $\mathbb{P}_{\theta}(\theta \in [T - c/n, T]) = 1 - 0.05 = 0.95$, as required.



Vincent Tassion 22. August 2024

Markiere in den folgenden Fragen alle Aussagen die wahr sind (mehrere Aussagen können wahr sein).

Sei X eine Zufallsvariable mit Verteilungsfunktion F_X definiert als

$$F_X(a) = \begin{cases} 0 & \text{wenn } a < -1, \\ 1/3 & \text{wenn } -1 \le a < 2, \\ 1/2 & \text{wenn } 2 \le a < 3, \\ 3/4 & \text{wenn } 3 \le a < 6, \\ 1 & \text{wenn } a \ge 6. \end{cases}$$
(1)

Erinnerung: $F_X(a) = P(X \le a)$.

4.MC1 [2 Punkte] Markiere die wahre(n) Aussage(n).

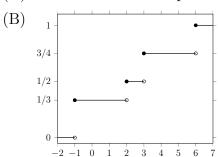
- (A) **TRUE:** X^2 ist diskret
- (B) **TRUE:** X ist diskret
- (C) X ist stetig
- (D) X^2 ist stetig
- (E) X ist weder stetig noch diskret

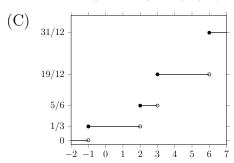
4.MC2 [2 Punkte] Markiere die wahre(n) Aussage(n).

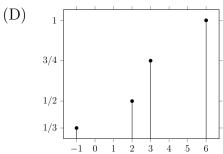
- (A) P(X = 2) = 1/2
- (B) P(X = 2) = 1/3
- (C) P(X = 2) = P(X = -1)
- (D) **TRUE:** P(X = 2) = P(-1 < X < 3)
- (E) **TRUE:** P(X = 2) = 1/6

4.MC3 [1 Punkt] Welche der folgenden Diagramme ist die Gewichtsfunktion von X?

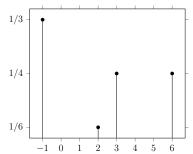
(A) Keine der anderen Optionen.







(E) **TRUE**:



4.MC4 [2 Punkte] Was ist E[X]?

- (A) 43/12
- (B) 5/2
- (C) **TRUE:** 9/4
- (D) 35/12
- (E) 1

Sei Y eine Zufallsvariable mit Verteilungsfunktion

$$F_Y(a) = \begin{cases} 0 & \text{wenn } a < 1, \\ 1 - 1/a^3 & \text{wenn } a \ge 1. \end{cases}$$
 (2)

4.MC5 [2 Punkte] Was ist E(Y)?

- (A) 1/2
- (B) 2
- (C) **TRUE:** 3/2
- (D) 7/2
- (E) -1

4.MC6 [2 Punkte] Welche der folgenden Ausdrücke sind gleich Var(Y)?

- (A) $E(Y^2)$
- (B) 0
- (C) **TRUE:** $E((Y E(Y))^2)$
- (D) **TRUE:** $E(Y^2) E(Y)^2$
- (E) -1

Sei X eine Zufallsvariable mit Verteilungsfunktion F_X definiert als (5) und sei Y eine Zufallsvariable mit Verteilungsfunktion F_Y definiert als (6). Wir nehmen an, dass X und Y unabhängig sind.

4.MC7 [2 Punkte] Welche(r) der folgenden Ausdrücke ist/sind gleich $P(X + Y \le 1)$?

- (A) 7/24
- (B) $\sum_{\substack{x,y \in \mathbb{Z}, \\ x+y \le 1}} P(X = x, Y = y)$
- (C) 0
- (D) **TRUE:** $P(X = -1) \cdot P(Y \le 2)$
- (E) $\int_{\substack{x,y \in \mathbb{R}, \\ x+y \le 1}} P(X = x, Y = y) dx dy$

Markiere in den folgenden Fragen alle Aussagen die wahr sind (mehrere Aussagen können wahr sein).

- **5.MC1** [2 Punkte] Seien X, Y unabhängige Zufallsvariablen mit Werten in $\{-1, 1\}$, mit P(X = 1) = 1/2 und P(Y = 1) = 1/3. Welche der folgenden Zufallsvariablen hat/haben die gleiche Verteilung wie X?
 - (A) **TRUE:** $X \cdot Y$
 - (B) **TRUE:** $-X \cdot Y$
 - (C) Y
 - (D) **TRUE:** -X
 - (E) X + Y
- **5.MC2** [2 Punkte] Sei $(X_i)_{i\geq 1}$ eine Folge von uiv. Zufallsvariablen mit $E(|X_1|) < \infty$ und $E(X_1) = 1$. Für jede ganze Zahl $n \geq 1$, definieren wir

$$Y_n = \begin{cases} X_n & \text{wenn } n \text{ gerade ist,} \\ 2X_n & \text{wenn } n \text{ ungerade ist.} \end{cases}$$

und

$$S_n = Y_1 + \dots + Y_n.$$

Welche der folgenden Aussagen ist/sind wahr?

- (A) **TRUE:** $\lim_{n\to\infty} \frac{S_n}{n} = 3/2$ fast-sicher
- (B) $\lim_{n\to\infty} \frac{S_n}{n} = 1$ fast-sicher
- (C) **TRUE:** $\lim_{n\to\infty} \frac{S_n}{n} = \lim_{n\to\infty} \frac{\mathrm{E}[S_n]}{n}$ fast-sicher
- (D) $\frac{S_n}{n}$ konvergiert nicht fast-sicher
- (E) $\lim_{n\to\infty} \frac{S_n}{2n} = 2$ fast-sicher

5.MC3 [2 Punkte]

Sei $\Theta=(0,1]$ und sei $(P_{\theta})_{\theta\in\Theta}$ eine Familie von Wahrscheinlichkeitsmaßen indiziert durch Θ . Betrachte die folgenden Hypothesen:

$$H_0: \theta = 0.1,$$

 $H_1: \theta = 0.01.$

Seien X_1, \ldots, X_{10} uiv. Geo (θ) Zufallsvariablen unter P_{θ} . Wir betrachten den Test

$$\phi(X) = \begin{cases} 0 & \text{wenn } \min(X_1, \dots, X_{10}) < 5, \\ 1 & \text{wenn } \min(X_1, \dots, X_{10}) \ge 5. \end{cases}$$

Welche der folgenden Aussagen ist/sind wahr?

- (A) Der Test hat das Niveau $(0.99)^{40}$ und Macht $(0.9)^{40}$.
- (B) **TRUE:** Der Test hat das Niveau $(0.9)^{40}$ und Macht $(0.99)^{40}$.
- (C) Der Test hat das Niveau $(0.9)^{50}$ und Macht $(0.99)^{50}$.
- (D) Der Test hat das Niveau $1 (0.9)^{40}$ und Macht $(0.99)^{40}$.
- (E) **TRUE:** Wenn wir (7, 10, 18, 11, 31, 89, 104, 11, 7, 202) beobachten, dann verwerfen wir H_0 .

5.MC4 [2 Punkte] Seien $(X_i)_{i\geq 1}$ uiv. Zufallsvariablen mit $E(X_1)=0$, $E(X_1^2)=1$, und $E(X_1^4)=2$. Sei $Z\sim \mathcal{N}(0,1)$. Welche der folgenden Aussagen ist/sind wahr?

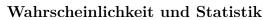
(A) TRUE:
$$\frac{X_1 + \dots + X_n}{\sqrt{n}} \xrightarrow[n \to \infty]{(d)} Z$$

(B)
$$\xrightarrow[\sqrt{n}]{X_1^2 + \dots + X_n^2} \xrightarrow[n \to \infty]{(d)} Z$$

(C)
$$\xrightarrow[n]{X_1 + \dots + X_n} \xrightarrow[n \to \infty]{(d)} Z$$

(D)
$$\xrightarrow[n]{X_1^2 + \dots + X_n^2} \xrightarrow[n \to \infty]{(d)} Z$$

(E) TRUE:
$$\frac{X_1^2+\cdots+X_n^2-n}{\sqrt{n}} \xrightarrow[n\to\infty]{(d)} Z$$



Vincent Tassion 22. August 2024

Formelsammlung

Wir erinnern an die folgenden Definitionen und Aussagen. Diese müssen nicht zwingend benutzt werden.

Diskrete Zufallsvariablen

- 1. Sei $p \in (0,1]$. Eine Zufallsvariable (Z.V.) X heisst geometrisch mit Parameter p ($X \sim \text{Geo}(p)$), falls $\forall k \in \mathbb{N} \setminus \{0\}$ $P(X = k) = (1 p)^{k-1}p$.
- 2. Sei $p \in (0,1], X \sim \text{Geo}(p).$ $\forall k > 1 \quad P(X > k) = (1-p)^{k-1}.$

Stetige Zufallsvariablen

1. Seien a < b. Eine stetige Z.V. heisst gleichverteilt auf [a,b] $(X \sim \mathcal{U}([a,b]))$, falls sie eine Dichte hat, gegeben durch

$$\forall y \in \mathbb{R} \quad f_{a,b}(y) = \begin{cases} \frac{1}{b-a} & y \in [a,b] \\ 0 & y \notin [a,b] \end{cases}.$$

2. Sei $\lambda > 0$. Eine Z.V. X heisst Exponential mit Parameter λ ($X \sim \text{Exp}(\lambda)$), falls sie eine Dichte hat, gegeben durch

$$f_{\lambda}(y) = \begin{cases} \lambda e^{-\lambda y} & y \ge 0\\ 0 & y < 0 \end{cases}.$$

Erwartungswert

1. Sei X eine Z.V., $X \ge 0$ f.s. oder $X \in L^1(P)$.

$$E(X) = \int XdP.$$

 $2. \quad \text{Sei } X \ge 0 \text{ Z.V.}$

$$E(X) = \int_0^\infty P(X > t) dt.$$

3. Sei X eine diskrete Z.V. mit $X \in W$ f.s., $X \ge 0$ f.s. oder $X \in L^1(P)$.

$$E(X) = \sum_{y \in W} y \cdot P(X = y).$$

4. Sei X eine Z.V. mit Dichte $f, X \ge 0$ f.s. oder $X \in L^1(P)$.

$$E(X) = \int_{\mathbb{R}} y f(y) \, dy.$$

Tchebyscheff Ungleichung

Sei X eine Zufallsvariable mit $E(X^2) < \infty$, m = E(X).

$$\forall a \ge 0 \quad P(|X - m| > a) \le \frac{\operatorname{Var}(X)}{a^2}.$$

Kriterium für f.s. Konvergenz

Sei $(X_n)_{n\geq 1}$, X Zufallsvariablen. Falls

$$\forall \varepsilon > 0 \quad \sum_{n \ge 1} P(|X - X_n| \ge \varepsilon) < \infty,$$

dann gilt

$$\lim_{n \to \infty} X_n = X \quad f.s.$$