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Informations. Read this carefully.

• Please justify all your statements carefully. Explain the steps of your reasoning. Oth-
erwise no points will be given.

• You are expected to write full sentences when giving your answer.

• DO NOT WRITE with red or green pens. DO NOT WRITE with a pencil.

• Your answers should be readable.

• Write your name on all the sheets you intend to hand in before the end of the exam.

GOOD LUCK
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1. (10 points) Counting Problems

(a) (3 points) A small voting district has K female voters and L male voters. A random
sample of N voters, where N ≤ K + L, is drawn uniformly at random from the
population. Let n ≤ min{K,N}. What is the probability that exactly n of the
N voters will be female? Do you recognize a known distribution? Write down its
name.

(b) (7 points) At a wedding, a group of n > 3 people (including the married couple,
Alice and Bob) wants to take a picture. They all stand in a line, the order of the
people in the line taken uniformly at random among the permutations of n ele-
ments. What is the probability that exactly k guests stand between Alice and Bob,
for k ∈ {0, 1, ..., n− 2}?

Solution

(a) There are
(
L+K
N

)
ways to pick the N voters among the L+K district voters. There

are
(
K
n

)(
L

N−n

)
ways to choose the n female and N − n male voters. Let X be the

random variable that models the number of female voters when choosing N voters
at random. The probability to pick n female voters when choosing N voters at
random is then

P (X = n) =

(
K
n

)(
L

N−n

)(
L+K
N

) .

This is a hypergeometric distribution.

(b) First, order the guests and assign them a number between 3 and n (1 is given to
Alice and 2 to Bob). We are looking for the number of permutations π such that
|π(1)− π(2)| = k + 1. Let Pk be defined as the set of such permutations.

Such a permutation is constructed as follows (without loss of generality, assume
that π(1) < π(2), any such permutation in Pk corresponds to another permutation
π′ in Pk with π′(1) = π(2) and π′(2) = π(1)):

• Choose a value for π(1) in {1, 2, ..., n− k − 1}.
• Choose k of the guests (integer in {3, ..., n}). There are k! ways to assign them

values between π(1) + 1 and π(1) + k = π(2)− 1.

• Then there are (n−2−k)! ways to assign the remaining guests to the remaining
places in the line.

Then there are 2(n − k − 1)
(
n−2
k

)
k!(n − 2 − k)! permutations in Pk. Since the

guest permutation is chosen at random and the total number of permutations of n
elements is n!, the probability that exactly k guests are between Alice and Bob is
given by

2(n− k − 1)
(
n−2
k

)
k!(n− 2− k)!

n!
=

2(n− k − 1)

n(n− 1)
.
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2. (10 points) Conditional Probabilities

A group of people is considered in order to assess the reliability of a disease test proce-
dure. In this group of people we know that the probability that an individual taken at
random has the disease is 1

3
. The presence of the disease is then tested by the detection

of some markers in the blood. After examination of the results, it is found that the
probability of a true positive (markers are detected by the procedure in a sick patient)
is 4

5
. The probability of a false positive (markers are found in the blood sample of a

healthy patient) is 1
5
.

(a) (5 points) Compute the probability of the patient being sick given that the markers
were found in the blood sample, i.e. the test result is positive.

(b) (5 points) Compute the probability of the patient being sick given that no markers
were found in the blood sample, i.e. the test result is negative.

Solution

Let us first define the following events:

• D :={The patient has the disease.}
• P :={The result of the test is positive.}

By the problem formulation, we know that P (D) = 1
3
, P (P |D) = 4

5
and P (P |Dc) = 1

5
.

(a) We want to compute the probabilty P(D|P ). For this, we use Bayes theorem (or
the definition of the conditional probability and the law of total probabilities). We
get

P (D|P ) =
P (P |D)P (D)

P (P |D)P (D) + P (P |Dc)P (Dc)

=
4
5
· 1

3
4
5
· 1

3
+ 1

5
· 2

3

=
4

15
· 15

6

=
2

3
.

(b) We want to compute the probabilty P[D|P c]. By the same arguments as above, we
obtain,

P (D|P c) =
P (P c|D)P (D)

P (P c|D)P (D) + P (P c|Dc)P (Dc)

=
1
5
· 1

3
1
5
· 1

3
+ 4

5
· 2

3

=
1

15
· 15

9

=
1

9.
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3. (10 points) Doubling Strategy

A fair coin is used in a simple game, i.e. the probability that it falls on head when tossed
is 1

2
. The mechanism of the game is the following: the player bets k dollars and the coin

is tossed. If head shows, he gets his k dollars back and wins k additional dollars. If tail
shows, he loses his k dollars.

The player now follows the following strategy: he first bets 1 dollar. Then, he applies
the following algorithm:

• if he wins, he stops playing,

• if he loses, he plays again and doubles his bet (2 dollars for the second game, 4
dollars for the third, etc...).

As long as he loses, he keeps on playing, betting 2k dollars in the (k + 1)-th game. We
assume that the throws of the coin are independent. Let X be the amount of dollars the
player bets in the last game.

(a) (3 points) Write down the probability distribution of X, i.e. give P
(
X = 2k

)
for

k ∈ {0, 1, 2, ...}.
(b) (3 points) Show that the expectation of X does not exist.

(c) (3 points) Compute the overall amount of money earned at the end of the game.

(d) (1 point) Is the strategy applied in this exercise a good strategy? Why / Why not?

Solution

(a) Let k ∈ {0, 1, 2, ...}. Then X = 2k if and only if the player loses the first k games
and wins the (k + 1)-th game. Using the independence of the throws of the coin,
we get

P
(
X = 2k

)
=

(
1

2

)k
· 1

2
=

1

2k+1
.

(b) We have

E [X] =
∞∑
k=0

P
(
X = 2k

)
2k =

∞∑
k=0

1

2k+1
2k = lim

n→∞

n∑
k=0

1

2
=∞.

Hence the expectation of X does not exist.

(c) If the player wins at the n-th round, he has lost in the (n− 1) previous games

n−1∑
k=0

2k =
1− 2n

1− 2
= 2n − 1.

Therefore after the last game he has won 1 dollar.

(d) The strategy applied in this exercise is a good strategy only if we can borrow an
unlimited amount of money and if we are also allowed to bet an unlimited amount
of money, since then we always have an overall win of 1 dollar.
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4. (10 points) Pareto and the 80-20-“Rule”

Let γ > 1 and m > 0. Let X be a random variable with density function f given by

f(x) =

{
γmγ

xγ+1 , if x ≥ m,
0 else.

The random variable X is said to have a Pareto distribution with parameters γ and m.

(a) (4 points) Let x ≥ a ≥ m. Compute P (X > a), P (X > x|X > a) and the density
function of X given {X > a}.
Hint: Recall that the density function of X given {X > a} is obtained by differen-
tiating the distribution function of X given {X > a}, i.e.

fX|{X>a}(x) =
dP (X ≤ x|X > a)

dx
.

(b) (1 point) Let a ≥ m. Compute E [X|X > a].

Assume now and for the rest of the exercise, that γ = ln(5)
ln(4)

and m = 1.

(c) (2 points) Compute the 0.8-quantile q0.8 of this Pareto distribution.

Hint: Recall that in general the α-quantile qα is defined as a real number that
satisifes P (X ≤ qα) ≥ α and P (X ≥ qα) ≥ 1− α.

(d) (3 points) Compute E [X] and E
[
X1{X>q0.8}

]
. Compare the two values by comput-

ing the ratio
E[X1{X>q0.8}]

E[X]
and give an interpretation.

Solution

(a) We compute

P (X > a) =

∫ ∞
a

γmγ

xγ+1
dx

=

[
−m

γ

xγ

]∞
a

=
(m
a

)γ
and

P (X > x|X > a) =
P (X > x)

P (X > a)

=
(a
x

)γ
.
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Then P (X ≤ x|X > a) = 1−P [X > x|X > a] = 1−
(
a
x

)γ
and the density function

of X given {X > a} at x > a is obtained by differentiation:

f{X|X>a}(x) =
γaγ

xγ+1
.

(b) We have

E [X|X > a] =

∫ ∞
a

γaγ

xγ+1
xdx

=

[
− γaγ

(γ − 1)xγ−1

]∞
a

=
γ

γ − 1
a.

(c) By definition and since the distribution is absolutely continuous, q0.8 satisfies

P (X ≥ q0.8) = 1− 0.8 = 0.2.

On the other hand, using (a), we have

P (X ≥ q0.8) =

(
m

q0.8

)γ
=

(
1

q0.8

) ln(5)
ln(4)

.

Thus we can calculate

q0.8 = 5
ln(4)
ln(5) = exp

[
ln(4)

ln(5)
ln (5)

]
= 4.

(d) We have

E [X] =

∫ ∞
1

γ

xγ+1
xdx

=
γ

γ − 1

=
ln(5)

ln(5)− ln(4)

and

E
[
X1{X>q0.8}

]
=

∫ ∞
q0.8

γ

xγ+1
xdx

=
γ

γ − 1
q1−γ

0.8

=
ln(5)

ln(5)− ln(4)
4

ln(4)−ln(5)
ln(4)

=
ln(5)

ln(5)− ln(4)

4

5
.

So we have
E[X1{X>q0.8}]

E[X]
= 4

5
. We conclude that the highest 20% percent of the

distribution make up for 80% of the distribution’s mean.
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5. (10 points) Continuous Joint Distribution

Let (X, Y ) be a random vector with joint probability density function

f(x, y) =

{
cxe−xy if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2,

0 else,

for some constant c > 0.

(a) (3 points) Compute the value of c.

(b) (3 points) Compute the marginal density of X.

(c) (4 points) Compute the expectation of the product XY .

Solution

(a-b) The marginal density function of X is

fX(x) =

∫
R
f(x, y) dy =

{
c(1− e−2x) for 0 ≤ x ≤ 1,

0 else .

The constant c making fX a probability density function should satisfy∫
R
fX(x) dx = 1.

We calculate ∫ 1

0

c(1− e−2x)dx = c

(
[x]10 −

[
−1

2
e−2x

]1

0

)

= c

(
1 +

1

2
e−2 − 1

2

)
=
c

2

(
1 + e−2

)
.

Thus
∫
R fX(x) dx = 1 if and only if c = 2

1+e−2 . We conclude that the marginal density
of X is given by

fX(x) =

{
2(1−e−2x)

1+e−2 for 0 ≤ x ≤ 1,

0 else .
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(c) We calculate

E[XY ] =

∫
R

∫
R
xyfX,Y (x, y) dydx

=
2

1 + e−2

∫ 1

0

∫ 2

0

x2ye−xy dydx

=
2

1 + e−2

∫ 1

0

x2

([
−y
x

e−xy
]2

0
+

∫ 2

0

1

x
e−xydy

)
dx

=
2

1 + e−2

∫ 1

0

(
−2xe−2x + 1− e−2x

)
dx

=
2

1 + e−2

([
xe−2x

]1
0
−
∫ 1

0

e−2xdx+ 1−
∫ 1

0

e−2xdx

)
=

2

1 + e−2

([
xe−2x

]1
0

+
[
e−2x

]1
0

+ 1
)

=
2

1 + e−2

(
e−2 + e−2

)
=

4

1 + e2
.
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6. (10 points) Markov, Chebyshev and Chernoff Inequalities

(a) (3 points) Let X be a random variable such that for t < t0 the following holds:

ψ(t) := E
[
etX
]
<∞.

This function is called the moment generating function of X. Let x ∈ R. Then we
define

κ(t) := ln[ψ(t)]

and
S(x) := sup

0<t<t0

{tx− κ(t)}.

Prove the Chernoff inequality

P (X ≥ x) ≤ e−S(x).

Hint: Apply the generalized Chebyshev inequality with the function g(y) := ety.

Assume now and for the rest of the exercise, that X is distributed as a standard normal
random variable N (0, 1).

(b) (2 points) Compute the moment generating function of X. Give the details of your
computations.

(c) (2 points) Let x > 0. Apply the Chernoff inequality from (a) to X ∼ N (0, 1).

(d) (2 points) Let x > 0. Apply the Markov inequality to |X − E [X]|2 to get another
upper bound for P (X ≥ x).

(e) (1 point) What can you say about the efficiency of the two inequalities you got in
(c) and in (d)?

Solution

(a) Let 0 < t < t0. Since the function g given in the hint is positive and increasing, we
have by the generalized Chebyshev inequality that

P (X ≥ x) ≤
E
[
etX
]

etx
= e−[tx−κ(t)].

Since this holds for all 0 < t < t0, we can conclude that

P (X ≥ x) ≤ inf
0<t<t0

e−[tx−κ(t)] = e− sup0<t<t0
{tx−κ(t)} = e−S(x).

(b) We calculate

E
[
etX
]

=
1√
2π

∫
R

e−x
2/2etxdx

=
1√
2π

∫
R

e−
1
2(x2−2tx+t2)e

t2

2 dx

= e
t2

2
1√
2π

∫
R

e−
1
2
y2dy

= e
t2

2 ,



Probability and Statistics Session Exam - Page 11 of 16 22.08.2017

where in the third equality the change of variables y = x− t was used.

(c) We have κ(t) = t2

2
for t ∈ R+. We compute the function S for X:

S(x) = sup
t∈R+\{0}

{tx− κ(t)} = sup
t∈R+\{0}

{
tx− t2

2

}
=
x2

2
,

since x > 0. The Chernoff bound applied to X gives

P (X ≥ x) ≤ e−
x2

2 .

(d) Note that E[X] = 0. We can write

P (X ≥ x) ≤ P
(
X2 ≥ x2

)
= P

(
|X − E [X]|2 ≥ x2

)
.

Using the Markov inequality and that Var(X) = 1, we find

P (X ≥ x) ≤ Var(X)

x2
=

1

x2
.

(e) The Chernoff bound is much tighter than the Markov bound. However, it requires
that the distribution of the random variable has exponential moments, which is a
much higher requirement than only second moment.
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7. (10 points) Limit Theorem

(a) (3 points) Let X be a random variable with mean µ and finite variance σ2. Show
that for any distribution of X, the probability that X differs from its mean by more
than 3 standard deviations is at most 1

9
.

(b) (7 points) Let (Xi)i∈N be independent, identically distributed random variables
with the same distribution as X. For all n ∈ N, define X̄n := 1

n

∑n
i=1Xi to be

the sample mean of the first n elements of the sequence (Xi)i∈N. Compute with a
limit theorem the approximate minimum value of n such that

P
(∣∣X̄n − µ

∣∣ ≤ σ

3

)
≥ 0.9.

Solution

(a) Applying the generalized Chebyshev inequality with the function g(y) := y2 for
y > 0, we get

P (|X − µ| ≥ 3σ) ≤ σ2

(3σ)2 =
1

9
.

(b) For all n ∈ N, let us define Zn :=
√
n
σ

(
X̄n − µ

)
. By the central limit theorem the

distribution function of Zn converges pointwise to the distribution function Φ of a
standard normal random variable, as n→∞. Therefore, for large n we have

P
(∣∣X̄n − µ

∣∣ ≤ σ

3

)
= P

(
|Zn| ≤

√
n

3

)
≈ Φ

(√
n

3

)
− Φ

(
−
√
n

3

)
= 2Φ

(√
n

3

)
− 1.

We want 2Φ
(√

n
3

)
− 1 ≥ 0.9, i.e. Φ

(√
n

3

)
≥ 0.95. With the table for the standard

normal distribution we obtain
√
n

3
≥ 1.65 and therefore n ≥ 24.5. Since n has to be

an integer, we get nmin = 25.
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8. (10 points) Maximum Likelihood Estimation

The Pareto distribution introduced in Exercise 4 is used a lot in insurance claim mod-
elling. But to use it for simulation, the parameters need to be estimated. Recall that
the density function of a Pareto distribution with parameters γ and m is given by

f(x) =

{
γmγ

xγ+1 if x ≥ m,
0 else.

We observe the reporting of n claims with values x1, x2, . . . , xn.

(a) (4 points) Define and compute the likelihood function and the log-likelihood func-
tion.

(b) (4 points) For a fixed m, give the maximum likelihood estimate for the parameter
γ.

(c) (2 points) For a fixed γ, give the maximum likelihood estimate for the parameter m.

Solution

(a) The likelihood function is defined as

L (γ,m|x1, x2, . . . , xn) :=
n∏
i=1

f(xi) =
n∏
i=1

γmγ

xγ+1
i

1{xi≥m}.

The log-likelihood function is defined as

l (γ,m|x1, x2, . . . , xn) := ln [L (γ,m|x1, x2, . . . , xn)]

=

{
n ln(γ) + nγ ln(m)− (γ + 1)

∑n
i=1 ln(xi) if min

1≤i≤n
xi ≥ m,

−∞ otherwise.

(b) For any given m ≤ min1≤i≤n xi, let us differentiate l with respect to γ:

∂l

∂γ
(γ,m|x1, x2, . . . , xn) =

n

γ
+ n ln(m)−

n∑
i=1

ln(xi),

∂2l

∂γ2
(γ,m|x1, x2, . . . , xn) = − n

γ2
< 0.

Then the equation ∂l
∂γ

(γ,m|x1, x2, . . . , xn) = 0 gives a global minimizer of the log-
likelihood in γ. This gives the estimate

γ̂ =
1

1
n

∑n
i=1 ln(xi

m
)
.

(c) The log-likelihood function is increasing in the parameter m up to min1≤i≤n xi. The
maximum likelihood estimate for m is then

m̂ = min
1≤i≤n

xi.



Probability and Statistics Session Exam - Page 14 of 16 22.08.2017

9. (10 points) Posterior Distribution

Let X1, . . . , Xn be independent, identically distributed random variables sampled from
the Geometric distribution with parameter 0 < θ < 1, which is unknown. Assume that
we have a prior distribution for θ, which is the Beta distribution with parameters α > 0
and β > 0. Recall that the geometric distribution is such that

P (X = x|θ = ϑ) =

{
ϑ(1− ϑ)x−1 if x ∈ N\{0},
0 else,

and that the Beta distribution with parameters α and β has the density function

w(ϑ|α, β) =

{
Γ(α+β)

Γ(α)Γ(β)
ϑα−1(1− ϑ)β−1 if 0 ≤ ϑ ≤ 1,

0 else.

In an experiment we observe X1 = x1, . . . , Xn = xn for some x1, . . . , xn ∈ N\{0}. Show
that the posterior distribution of θ given that (X1, . . . , Xn) = (x1, . . . , xn) is the Beta
distribution with parameters n+ α and β +

∑n
i=1 xi − n.

Solution

First we calculate the joint probability density function of X1, . . . , Xn, θ with respect to
δnN ⊗ Λ|R+ :

fX1,...,Xn,θ(x1, . . . , xn, ϑ) =
Γ(α + β)

Γ(α)Γ(β)
ϑα−1(1− ϑ)β−1ϑn(1− ϑ)y−n · 1ϑ∈(0,1)

=
Γ(α + β)

Γ(α)Γ(β)
ϑn+α−1(1− ϑ)β+y−n−1 · 1ϑ∈(0,1),

where y = x1 + · · · + xn. The marginal law of (X1, . . . , Xn) is obtained by integrating
the joint distribution with respect to ϑ:

fX1,...,Xn(x1, . . . , xn) =

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)
ϑn+α−1(1− ϑ)β+y−n−1dϑ

=
Γ(α + β)

Γ(α)Γ(β)

Γ(n+ α)Γ(β + y − n)

Γ(α + β + y)

So, conditionally given (X1, . . . , Xn) = (x1, . . . , xn), θ has the probability density func-
tion

fθ|(X1,...,Xn)=(x1,...,xn)(ϑ) =
Γ(α + β)

Γ(α)Γ(β)

ϑα+y−1(1− ϑ)β+n−y−1

fX1,··· ,Xn(x1, . . . , xn)
· 1ϑ∈(0,1)

=
Γ(α + β + y)

Γ(n+ α)Γ(β + y − n)
ϑα+n−1(1− ϑ)β+y−n−1 · 1ϑ∈(0,1).

We see that the posterior distribution of θ given that (X1, . . . , Xn) = (x1, . . . , xn) is the
Beta distribution with parameters α + n and β + y − n.
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10. (10 points) Hypothesis Test

The printers of the student computer room are submitted to a heavy workload. Let
X1, . . . , X9 model the lifetime (in months) for 9 of the printers. We assume that
X1, . . . , X9 are independent and normally distributed with unknown mean µ and vari-
ance equal to 4 months. Moreover, assume that we observe the following number of
months of service for the 9 printers:

25, 26, 22, 29, 23, 20, 30, 28, 31.

We want to test the hypothesis

H0 : µ = 25 against H1 : µ 6= 25.

Build a statistical test to test the above hypothesis at the level α = 0.05. In particular,
give the test statistic you use, its distribution under H0, the rejection region and decide
whether we can reject the null hypothesis in this particular situation.

Solution Under H0, we have Xi ∼ N (25, 4) for all i ∈ {1, . . . , 9}. We use the test
statistic

T := T (X1, . . . , X9) :=
√

9
1
9

∑9
i=1(Xi − 25)

2
=

1

6

9∑
i=1

(Xi − 25),

which is standard normally distributed under H0. For our sample we get

T (25, 26, 22, 29, 23, 20, 30, 28, 31) =
1

6
· 9 =

3

2
.

We want to design a two-sided test, the rejection region should be symmetric around 25.
We want to find cα such that

P (|T | ≥ cα) ≤ α.

We have

P (|T | ≥ cα) = P (T ≤ −cα) + P (T ≥ cα)

= 2P (T ≤ −cα)

= 2[1− P (T ≤ cα)].

Therefore P (|T | ≥ cα) ≤ α is equivalent to P (T ≤ cα) ≥ 0.975, that is to say (from the
table) cα = 1.96.

The rejection region is then (−∞,−1.96] ∪ [1.96,∞). The value of the test statistic for
the given set of values is not in the rejection set, so we do not reject the null hypothesis.



Probability and Statistics Session Exam - Page 16 of 16 22.08.2017

Standard normal (cumulative) distribution function.

P (X ≤ x) =

∫ x

−∞

1√
2π

exp

(
−y

2

2

)
dy, for x > 0

0 1 2 3 4 5 6 7 8 9

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6408 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .97725 .97778 .97831 .97882 .97932 .97982 .98030 .98077 .98124 .98169
2.1 .98214 .98257 .98300 .98341 .98382 .98422 .98461 .98500 .98537 .98574
2.2 .98610 .98645 .98679 .98713 .98745 .98778 .98809 .98840 .98870 .98899
2.3 .98928 .98956 .98983 .99010 .99036 .99061 .99086 .99111 .99134 .99158
2.4 .99180 .99202 .99224 .99245 .99266 .99286 .99305 .99324 .99343 .99361
2.5 .99379 .99396 .99413 .99430 .99446 .99461 .99477 .99492 .99506 .99520
2.6 .99534 .99547 .99560 .99573 .99585 .99598 .99609 .99621 .99632 .99643
2.7 .99653 .99664 .99674 .99683 .99693 .99702 .99711 .99720 .99728 .99736
2.8 .99744 .99752 .99760 .99767 .99774 .99781 .99788 .99795 .99801 .99807
2.9 .99813 .99819 .99825 .99831 .99836 .99841 .99846 .99851 .99856 .99861

3.0 .998650 .998694 .998736 .998777 .998817 .998856 .998893 .998930 .998965 .998999
3.1 .999032 .999065 .999096 .999126 .999155 .999184 .999211 .999238 .999264 .999289
3.2 .999313 .999336 .999359 .999381 .999402 .999423 .999443 .999462 .999481 .999499
3.3 .999517 .999534 .999550 .999566 .999581 .999596 .999610 .999624 .999638 .999651
3.4 .999663 .999675 .999687 .999698 .999709 .999720 .999730 .999740 .999749 .999758
3.5 .999767 .999776 .999784 .999792 .999800 .999807 .999815 .999822 .999828 .999835
3.6 .999841 .999847 .999853 .999858 .999864 .999869 .999874 .999879 .999883 .999888
3.7 .999892 .999896 .999900 .999904 .999908 .999912 .999915 .999918 .999922 .999925
3.8 .999928 .999931 .999933 .999936 .999938 .999941 .999943 .999946 .999948 .999950
3.9 .999952 .999954 .999956 .999958 .999959 .999961 .999963 .999964 .999966 .999967


