
Quadtree techniques for the construction of
structured auxiliary meshes

Julien Renggli
Professor : Dr. Ralf Hiptmair

Diploma Thesis, Winter term 2005-2006
Seminar of Applied Mathematics

March 1, 2006

The auxiliary space preconditioning presented in [1] and adapted in [3] to H(curl; Ω)-
elliptic variational problems involves the construction of an auxiliary mesh with similar
properties than the unstructured mesh to solve. This auxiliary mesh can be constructed
using a quadtree method, which will subdivide the space in smaller regions until the
required conditions are met. The aim of this thesis is to find an algorithm able to handle
that problem.

Contents

1. Introduction 7
1.1. Motivation . 7
1.2. Approach . 7
1.3. Overview . 8

2. Data structures 9
2.1. Programming aspects . 9
2.2. Mesh storage . 9

3. Algorithm 12
3.1. Initialisation . 15
3.2. 2D version . 17
3.3. 3D version . 19
3.4. Mesh generation . 22
3.5. Computing constants . 23
3.6. Multiple meshes . 23

4. Complexity analysis 26
4.1. Loading . 26
4.2. Initialisation . 26
4.3. Refinement . 27

4.3.1. Uniform refinement . 27
4.3.2. Local refinement . 28

4.4. Generation . 29
4.5. Computing constants . 30

5. Examples 31
5.1. Example 1 . 31

5.1.1. Uniformly refined . 31
5.1.2. Locally refined . 31

5.2. Example 2 . 32
5.3. 2D chip . 32
5.4. 3D ellipsoid . 33
5.5. 3D ”fichera” . 33
5.6. Numerical results . 34

6. Conclusion and outlook 36

3

Bibliography 37

A. File formats 38
A.1. *.vol . 38
A.2. *.am . 38
A.3. *.ref . 39

B. Programme classes 40
B.1. Class Vertex . 40
B.2. Class Polygon . 40
B.3. Class Mesh . 41

C. Command line arguments 43

4

List of Figures

3.1. Splitting of a node . 12
3.2. Basic algorithm . 13
3.3. Orientation of the edges . 16
3.4. Cohen-Sutherland clipping . 17
3.5. 2D intersection between node and edges 18
3.6. 3D intersections between node and surface 20
3.7. Nearest surface in 3D . 22
3.8. Strip B . 24
3.9. Three different meshes . 24

5.1. 2D example 1 . 31
5.2. 2D example 1, locally refined . 32
5.3. 2D example 2 . 32
5.4. 2D chip . 33
5.5. 3D ellipsoid . 33
5.6. 3D ”fichera” . 34

6.1. Sculpture . 36

5

List of symbols and abbreviations

2D Two dimensional space
3D Three dimensional space
STL The Standard Template Library
Th The unstructured mesh, given as input
Ta The unstructured mesh, output of the program
IN The status of a node inside the mesh Th

OUT The status of a node outside the mesh Th

NDEF The status of a node on the boundary of the mesh Th

V The vertices of Th

E The edges of Th

S The polygons of Th

T The polyhedrons of Th

6

1. Introduction

1.1. Motivation

An approach for solving partial differential equations requires a multigrid method based
on auxiliary meshes as auxiliary space preconditioning. This has already been proposed
for the Dirichlet variational problem

−4u + u = f in Ω, u = 0 on Ω

in [8], and more recently extended in the case of an H(curl; Ω)-elliptic variational prob-
lem

curl curlu + u = f in Ω, ut = 0 on ∂Ω

in [3].
Both preconditioners rely on well constructed auxiliary meshes, based on an origi-

nally unstructured mesh. Some conditions must be answered to consider the former
correctly constructed. The auxiliary mesh must be composed of axis-parallel rectangles,
eventually split into two identical triangles connecting the lower left corner to the up-
per right, extended to cuboids when working in three dimensions. It should cover as
much as possible of the space involved in the problem, without overlapping the original
mesh though. Finally, the meshwidths should be of the same size over the whole space,
therefore requiring local refinements to be present in the auxiliary mesh everywhere it
appears in the unstructured mesh.

1.2. Approach

The construction of such an auxiliary mesh Ta can be made by different techniques.
A possible method would be to determine first the mean meshwidth of the original
mesh. Then a regular grid would describe the possible new one. Each of its constitutive
cell would be tested and identified as beeing inside, on the boundary or outside of the
problem. Remaining cells would finally be merged or split to keep local meshwidth
requirements. In order to conserve local refinements that step might require to be called
recursively, in a way, like building a tree. It seems natural to use the tree form from
the beginning, avoiding calculation of a mean meshwidth value which does not mean
anything.

Another possibility could be to construct the smallest rectangle (cuboid) around each
cell of the unstructured mesh, with meshwidth value stored for each of the so constructed
shape. Then the new shapes could be summed, the intersections leading to the auxiliary
mesh. However, the original mesh is mainly composed of triangles, not necessarily

7

parallel to the axes. The surrounding rectangle then covers more than twice the area
of a triangle (in three dimensions, the problem is similar with tetrahedrons and cuboids
instead). This and the difficulty of finding a correct way for summing the shapes, makes
that solution awkward.

The algorithm presented in this thesis uses the idea of a tree, whose leaves will consti-
tute the basis for an auxiliary mesh generation. Using a quadtree, or octree when dealing
with a three dimensional problem, to subdivide the space in four equal subspaces in-
dependent of each other, allows a logarithmic processing. The original mesh must be
provided by any mesh generator able to write it in a format as described in appendix
A.1. The generator used to test the program described in this thesis is Netgen [6], but
other should work as well.

The tree-based approach allows to quickly eliminate large regions of space which are
not part of the problem, while large regions inside it, which are known not to contain any
boundary, are refined very fast without further treatment. Only regions on the boundary
of the unstructured mesh require a robust algorithm able to handle any possible case.
Most of the time is spent there, to determine where the boundary splits inside from
outside.

1.3. Overview

Data structures used by the program will be described in chapter 2. Chapter 3 will
present the algorithm itself, and its complexity will be theoretically analysed in chapter
4. A few examples will follow in chapter 5, showing real values for the time needed, a
comparison of both meshes and a visual comparison of them.

8

2. Data structures

2.1. Programming aspects

The program has been developed in C++, using the Standard Template Library [7] as
containers. Some terms in the rest of this thesis are directly derived from those defined
in the STL documentation.

• Vectors are like arrays of objects, each one stored just after the preceding. Access-
ing any element in the vector, adding or removing an element at the end of the
vector are operations that can be done in constant time, whilst inserting or deleting
an element at any other position in the vector requires to move all subsequently
elements, leading to linear time.

• Lists, on the contrary, contain elements which might be located anywhere in the
memory. Insertion and deletion at any place is done in constant time, whilst access
to any element requires linear time; just the opposite of the vector.

• Sets and Maps are almost the same containers, and store elements in a tree. Ac-
cessing one is therefore done in logarithmic time.

• Iterators are broadly used in the program; they extend the concept of C++ pointers
for containers of the STL. The term pointer comes from the idea that they are like
an arrow that points towards an object in the memory, like an index points towards
an element in an array. To avoid confusion, it will not be made mention of iterators
in this thesis.

Note that the numbering in the vectors lead to some confusions because of the C++
nature of the program. In the files, as in this thesis, indices go from 1 to n. In C++,
they instead go from 0 to n− 1. In itself the change is not too big, but this fact requires
constant attention when dealing with the source code.

2.2. Mesh storage

The original mesh Th is stored in a file of format *.vol (see appendix A.1 for a more
detailed view of that format). The program will read it, create an auxiliary mesh Ta,
and store it in an *.am file, whose format is very similar (see appendix A.2) than the
former one. Both meshes exist in the program as instantiation of classes; so much the
files are very similar, so much the program stores the meshes in two totally different
ways which will be reviewed here.

9

The unstructured mesh Th is, as in the file version, divided in different lists. They are
the same for two or three dimensions, but don’t represent exactly the same objects.

In three dimensions, a list of all volumes K ∈ Th describing the mesh is stored. These
volumes might be of any form, but consist normally only of tetrahedrons when generated
by Netgen. A second list representing the surfaces S ∈ ∂K completes the first one. Not
all surfaces S are relevant and therefore present, but only those who are also on the
boundary ∂Th of the problem. As it will be seen in the next chapter, that property is
very important since regions on the boundary ∂Th are the most time-consuming part of
the whole algorithm, and the union of all S covers entirely ∂Th. A third list consists of
edges E which are the intersection between two surfaces. Finally, a vector of vertices Vi

is stored, each vertex representing a point in the space.
In two dimensions, the first list remains void. The second contains all surfaces S ∈ Th

describing the unstructured mesh, as if they were the boundary of an infinitesimally thin
volume on the xy-plane. The z value is set to 0. The third list consists of the edges E of
the surfaces, but only those on the boundary ∂Th of the problem. As well the surfaces
S were used by the algorithm for three dimensional problems, as well in 2D those edges
E help the program do its job correctly. Finally, the vector of vertices Vi is the same as
in three dimensions.

All different shapes in the first three lists are actually very similar, and consist of a
number n of apices and of a vector of indices to these apices (see appendix B.2). Those
indices point to the latter vector, where the real vertices Vi are stored. This way, they
can be shared by multiple surfaces at a time without storing multiple copies of the same
point.

The auxiliary mesh Ta is, due to the way it is created, present in the memory in the
form of a tree. Such a tree is build on nodes, which contain four or eight children nodes
each, that here split the space in equal subspaces and contain their own children, and
so on. The tree begins with a single top node, and goes as deeply as needed, until it
reaches a leaf. In the case of the auxiliary mesh, the top node covers just enough space
to surround the whole problem, and its leaves contain all relevant information about the
new mesh to build. A node N covers a portion of space with the shape of a rectangle
(or cuboid), which is defined by only two points : its lower left (back) and upper right
(front) corner, which set respectively the minimum and maximum values a point p might
have along each axis so that p ∈ N . A node N has also a status, which can be one of
the following :

IN : ∀p ∈ N, p ∈ Th (2.1)
OUT : ∀p ∈ N, p /∈ Th (2.2)

NDEF : ∃pi, pj ∈ N |pi ∈ Th, pj /∈ Th. (2.3)

Finally, a node is called a leaf, when it satisfies the condition that it has no child. In
this program, that condition is verified very quickly : there should not be more than
one vertex Vi inside each node. This method has given up here very good results, as the
examples in chapter 5 will show.

10

There is now enough information to create the auxiliary mesh Ta : for all nodes
N i with status IN (or NDEF in some cases, see next chapter for further explanations)
and meeting requirement to be a leaf, the node is a valid element Ki

a and it satisfies∑
Ki

a = Ta.

11

3. Algorithm

The idea behind the algorithm used in the generation of an auxiliary mesh Ta is quite
simple. The dimension of the problem, in this case two or three, does not change the
concept, but leads to some major changes in the implementation.

Starting from a top node that encloses just enough space to surround the original mesh
Th totally (figure 3.1 a)), The space is split in smaller regions totally independent of
each other (figure 3.1 b)). The only relevant information that is needed is the boundary
∂Th, that is stored on the form of edges E or surfaces S. As long as a node is crossed
by some part of the boundary, its status is by definition 2.3 NDEF. When splitting it
in equal subregions though, it will appear that some of the children are not near the
boundary any more : they become either IN or OUT (definitions 2.1 and 2.2). Since
the only known information is on the form of edges or surfaces, the status of each child
must be found at the same time that the splitting is done : the parent must decide the
status of each of its children. As long as the status remains unchanged, nothing is to be
done; an NDEF child will still have some boundary region in it for further use. An IN
node will set strictly all of its children to IN, and an OUT node will not be refined any
further since it is of no interest (note that by definition it can’t contain any vertex Vi,
which makes it automatically a leaf).

a) Initialisation b) 1st step c) 2nd step

Figure 3.1.: On the left the top node encloses the unstructured mesh, hatched. In the
middle, the four children of the top node are created in the first refinement
step. One more step, and two nodes are already totally outside the problem;
they will thereafter be ignored. Two other nodes are fully inside, in grey.

A node N , as framed in the previous chapter, can now be completed with these new
informations. It must have :

1. A status : IN, OUT or NDEF.

2. A size and position : minimum and maximum values defining a rectangle or a
cuboid.

12

3. A vector of all vertices Vi ∈ N .

4. A vector of all boundaries {E|E ∩N 6= ∅} or {S|S ∩N 6= ∅}.
The algorithm is sketched in a flow chart (figure 3.2). The list begins with only the

top node inside it, and it continues until no more node is on the list. The idea of the
algorithm is the same for both two and three dimensions, except for the number of
children (4 or 8) and the type of boundary (E or S). In the implementation, though,
there is one part that differs totally between both versions : the way a child is determined
to be IN or OUT (down left in the flow chart), due to the nature of the boundary that
also increases in dimension. But even there the idea is similar : there are only two sides
(left and right for edges in a plane, up and down for surfaces in a volume), one where
points are inside Th, the other where they are outside. The goal is then to have a quick
way to decide on which side a node lie. For this the concept of orientation is introduced.

Figure 3.2.: The basic algorithm for the quadtree. The one for the octree is the same
but with eight children instead of four.

In 2D Any edge E is whatsoever defined by strictly two vertices, namely vE,1 and vE,2,
in the xy-plane π. For the rest of the thesis, it will be assumed that they are always
orienter from vE,1 to vE,2, thus resulting in a vector −−−−−→vE,1vE,2. For any point p in the
plane, the vector −−−→vE,1p is also required. The dimension of the problem is then increased

13

by one, so that the vector product ∧ exists; the third coordinate is set to zero, and it
satisfies

−−−−−→vE,1vE,2
′ =




x1

y1

0


 ,−−−→vE,1p

′ =




x2

y2

0


 ⇒ −−−−−→vE,1vE,2

′ ∧ −−−→vE,1p
′ =




0
0
z3


 .

The resulting vector has both its x and y coordinates set to zero, only the third one
contains relevant information. A new operator ⊗ is therefore introduced, which returns
the z value of the vector product :

−−−−−→vE,1vE,2 ⊗−−−→vE,1p = x1y2 − x2y1 = z3. (3.1)

The orientation is now chosen so as for any edge E there are two ensembles LE and
RE (for left and right respectively) such that

LE = {p ∈ R2|−−−−−→vE,1vE,2 ⊗−−−→vE,1p > 0}is the ensemble of points inside Th

RE = {p ∈ R2|−−−−−→vE,1vE,2 ⊗−−−→vE,1p < 0}is the ensemble of points outside Th. (3.2)

Of course, this assumption remains valid only in a small area around each edge. Figure
3.3 b) shows an example of correctly oriented edges, and the reason for the names left
and right.

In 3D A surface S is defined by minimum three vertices, but might be as well a polygon
of almost infinite apices. Since meshes generated by Netgen are made of triangles, the
assumption is made that any mesh consists only of triangles. Anyway, a convex polygon
from which three consecutive apices are extracted results in a triangle totally inside of
that polygon. Creating such a virtual triangle from such a polygon is what is implicitly
done and the assumption remains correct in that case. For non convex polygons, though,
it is no more valid and might result in partially or totally wrong meshes Ta.

The vertices of the triangle are named vS,1, vS,2 and vS,3, and it forms a plane πS with
normal vector −→nS where

−→nS = −−−−→vS,1vS,2 ∧ −−−−→vS,1vS,3 =




a
b
c




and
πS : ax + by + cz + d = 0.

Now for any point p =




x1

y1

z1


, the distance between p and πS satisfies

δπS (p) =
ax1 + by1 + cz1 + d√

a2 + b2 + c2
(3.3)

14

which can be reformulated as

δπS (p) =
−−→vS,1p · −→nS√
a2 + b2 + c2

. (3.4)

Both equations are given here, since they both appear from time to time in the algo-
rithm depending on whether the plane πS or the normal vector −→nS is known.

The orientation is now chosen such that for any surface S in the plane πS there are
two ensembles US and DS (for up and down respectively) such that :

US = {p ∈ R3|δπS (p) > 0}is the ensemble of points outside Th

DS = {p ∈ R3|δπS (p) < 0}is the ensemble of points inside Th. (3.5)

Of course, this assumption remains valid only in a small area around each surface.

Now the algorithm is split in three main parts to analyse the way it creates the mesh.
First the initialisation phase where the original mesh Th is loaded and Ta prepared is
sketched. Then the creation of the tree, which is the core of the program, is explained
in two separate sections, one for each dimension. In the third part, the generation of the
mesh is discussed. Finally, a few words are added to explain how the program behaves
when more than one mesh Th are given in the input file.

3.1. Initialisation

The input file is first read and the unstructured mesh Th loaded. Some preprocessing
will then take place. First, a loop over all edges E, respectively surfaces S, sets all their
apices as boundary to indicate they belong to ∂Th. Then, ∂Th itself must be oriented
everywhere the same way, since this feature is required in order for the algorithm to
work correctly. This might have been already done by the mesh generator, but it is
so crucial to the program that it must be verified before going further. Actually, even
though Netgen orients the edges and surfaces it generates, it is not always intuitively
done, as shown in figure 3.3.

The previous section introduced the notion of orientation for both edges and surfaces.
It is now time to put it in practice, assuming the boundary is randomly oriented. Once
again, the two possibilities depending on whether the boundary is made of edges or
surfaces are separated to avoid confusion, even though the idea is very similar.

In 2D Each edge must belong to one and only one surface, since the mesh is not
degenerated. Actually, section 3.6 will nullify that assumption when more than one
mesh Th exists, but for the moment it is assumed only one mesh is present, in order
to simplify things. A loop is therefore executed over all surfaces S, looking for edges.
Every time an edge E is found, a vertex that is an apex of S but does not belong to E,
is stored as v¬E . This vertex is important since it already exists, meaning no calculation

15

a) Wrong b) Correct

Figure 3.3.: A mesh with a hole in the center. On the left, the edges on the outside are
correctly oriented by Netgen, not those around the center. On the right,
all lines are oriented so that on their left side is the mesh, on their right is
nothing.

to find it, and it is known for sure to be on the right of the considered edge, inside Th.
Using definition 3.2, the edge is oriented so that it satisfies

−−−−−→vE,1vE,2 ⊗−−−−−→vE,1v¬E > 0

and the next edge can be searched.

In 3D Each surface belongs to exactly one volume, since the mesh is not degenerated.
The same restriction than above applies, which will be discussed in section 3.6. The loop
is then executed over all volumes K, and boundary surfaces S are searched. Again, one
vertex that is an apex of K but not of S will be stored as v¬S . Since it already exists
and is known to be inside the unstructured mesh, it plays the role of v¬E in the previous
paragraph. This time, v¬S is on the down side of the surface. Using 3.5 as reference, S
is oriented so that it satisfies

−→nS = −−−−→vS,1vS,2 ∧ −−−−→vS,1vS,3,
−−−−→vS,1v¬S · −→nS < 0.

S being any polygon with at least three apices.

Now that the boundary is correctly oriented, it can be given totally to the top node,
since, by definition, that node surrounds Th, that is ∂Th too. For the same reason, every
vertex will also be given to the top of the tree. Doing so, the actual position and size
of the top node can be obtained by finding the extremal values the vertices have. This
could have been found more efficiently as the mesh was loaded or even better when the
edges were reoriented, but the possibility that more than one mesh exist (section 3.6)
forbids it. Anyway, not much time is lost there.

The tree has at this point every bit of information it needs to be built. The refinement
can then take place, following the rules sketched in the flow chart, figure 3.2. The two
and three dimensional cases will be separately analysed in the next two sections.

16

3.2. 2D version

From previous arguments, a node N of status NDEF contains at least one edge that
crosses it. If the number of vertices V ∈ N is lesser or equal to one, then the node is
considered a leaf and the algorithm goes to the next node. Is this not the case, the node
must be split in four equal rectangles, as figure 3.1 shows. The vertices are distributed
to the child in which they each fit (a vertex exactly in the middle of the node would not
be distributed at all since on the boundary of all children. . .). Then, each edge E of the
parent N must be distributed to all children N ′ following the rule E ∩N ′ 6= ∅. This can
be easily verified first by trivial tests : if the edge starts or finishes inside N ′, there is
obviously an intersection. If both apices are outside the limits of the node (both on the
same side), there can’t be any intersection.

All other cases are solved using a Cohen-Sutherland clipping algorithm [5], which can
be understood the following way : given an edge E to be clipped to a node N ′, find all
intersections between E and the left, right, down and top edges of the rectangle defining
N ′. That is, be

vE,1 =
(

x1

y1

)
, vE,2 =

(
x2

y2

)

the end points of E, and x = xclip the left edge of the node; it is assumed that x1 ≷
xclip ≷ x2. The intersecting point is obtained by

vnew =

(
xclip

y1 + (y2−y1)(xclip−x1)
(x2−x1)

)
. (3.6)

The same is applied to the right edge, and the role of x and y coordinates is inverted
for top and down edges. Is the resulting segment inside the area of the rectangle, then
the edge crosses the node. Is there no such segment, the edge doesn’t cross the node.

Figure 3.4.: An example for the Cohen-Sutherland clipping algorithm. The segment
[AB] is clipped on C, then on D and finally on E; the segment [CE] is a true
clipping. The same for the segment [JL] which returns segment [LM]. On
the contrary, segment [FG] does not intersect the rectangle.

A special case happens when the intersection between the edge and the node lie in
whole on the edge of the node. The clipping would suggest that there is an intersection,

17

but the algorithm must correct that result. In figure 3.4 for example, the edges number
42 and 43 lie on the boundary. Would they not be rejected at last, the result would be
that for node C, ∃E ∈ C and therefore would not gain status IN.

Figure 3.5.: Example of a node with its edges (numbered) and children (lettered). The
result of the clipping is that child A receives edges 17 and 18, child B receives
17, 18, 80 and 81, and child D receives edges 79 and 80. Child C has no
intersection, thus is IN since located in the left.

When all edges have been distributed, the algorithm will be able to determine the
status of each child N ′. All of them that have at least one intersection with an edge
will by definition have their status set to NDEF. The other have equal chances to be IN
or OUT, depending on their position relative to the edges in the parent. There comes
the explanation why the edges were first orientated : on the left are nodes of status IN,
on the right with status OUT. Obviously, when a child does contain at least one vertex
inside it, it can’t have status OUT, thus is IN; this happens but not always. Moreover,
not all meshes are convex which complicates a little bit the task. An extreme example
of what might happen is given in figure 3.5. Child C has no intersection, not even with
edges 42 or 43. Remembering 2.1 and 3.2, any point pC ∈ C will suffice to determine
the status of the whole node. Here it should satisfy

−−−−−→vE,1vE,2 ⊗−−−−→vE,1pC > 0.

The problem is that taking a random edge, or more likely the edge with the highest
or lowest number, might result in wrong results. For example with edge 17 :

−−−−−−→v17,1v17,2 ⊗−−−−→v17,1pC < 0

which is obviously wrong.
Another rule is needed to find the correct edge to work with. The argument is the

following : the unstructured mesh Th is compact. This implies that its boundary ∂Th

is closed and continuous. Thereafter, the edge nearest a given point pC will define the
correct orientation for pC . That point pC is taken as the common corner of the parent

18

N and the chosen child N ′, on the example the left down corner. The chosen edge will
be either 18 or 79, both being equally correct.

It is to mention that edges 42 and 43, if they are rejected by the algorithm, must
somehow be conserved. Actually, they are needed in order to compute the constant Cδ,
so they are stored in a special vector to allow that. Otherwise, they are treated like
normal vectors.

A final remark : here, the parent was considered as of status NDEF, since it contained
edges. It has also be made mention that those of status OUT are not refined since
they are of no importance and can’t contain any vertex. On the contrary, nodes that
are defined as IN are the most important since they compose the auxiliary mesh Ta;
they must be refined until leaves are reached, but since they contain no edge and their
children cover the same region as them, this whole section will not be necessary, and all
children will automatically receive status IN.

3.3. 3D version

This version is similar to the previous one, with surfaces instead of edges. The total
number of children is also increased to eight, and each node has the form of an axis-
parallel cuboid defined by two vertices : left down back and right up front. The goal
is once again to distribute vertices and boundary to the children, in the most efficient
way possible. For vertices, a simple comparison with extremal values is sufficient. For
surfaces S, the solution is not as simple as in two dimensions. To determine if there is
an intersection between S and a children node N ′, the trivial cases are first verified :
either there is at least one vS,i ∈ N ′, and the intersection exists, or all vS,i’s are on the
same side of the node, meaning the surface is totally outside the child.

Using definition 3.5 and equations 3.3 and 3.4, it is possible to find any other possible
intersection. The different possibilities are shown in figure 3.6 : on the left there is no
intersection; on the right, the two types of real intersections are shown. In b) the node
crosses the surface. That means, the intersection between at least one edge of the node
and the surface S is non void. In d), the surface S crosses the node; the intersection
between an edge of S and one side of the node is non void. Of course, a mixing of both
possibilities is very likely to happen.

To algorithmically separate the possibilities shown, each one of the eight node’s corners
are tested against the plane πS . If all of them are positive (or negative), then situation
a) occurs. Is it not the case, then one of the three other situations is met. The last
one (d) is the easiest to verify, using a Liang-Barsky clipping algorithm [4] in three
dimensions. It is similar than the Cohen-Sutherland presented before, except for a few
details. Any good computer graphics book like [5] or [2] should cover that topic for
better understanding the different types of clipping algorithms.

When no intersection is found after that test, it is not possible to immediately conclude
S ∩ N ′ = ∅. On the contrary, situation b) might come true, so it must still be tested.
Every node is axis-parallel; this implies that its edges are parallel to one of the axes.

19

a) No intersection at all b) The node crosses the surface

c) Intersection in π but not with surface d) The surface crosses the node

Figure 3.6.: Up left, the node N is totally on one side of the plane πS . Down left, some
points are up the plane, some down, but there is still no intersection between
S and N . On the right, the two types of cases that might happen (or a mix
between both) : either the edges of the node cross the surface (up), or the
edges of the surface cross the node (down).

20

Projecting the whole problem to a plane perpendicular to that axis reduces that edge to
a single point. The surface S itself will be projected to a two dimensional triangle, or a
degenerated line. The latter will not be used any further. The problem is now reduced
to verifying if a point is inside a triangle. Be p the point, projection of the edge, and
v′S,1, v

′
S,2 and v′S,3 the projected apices of the surface S.

Suppose a projection on the xy-plane πxy. Be p′ the projection of the edge E to a
single point, and v′S,1, v

′
S,2 and v′S,3 the projected apices of the surface S on that plane,

forming surface S′. Then labelling O as the centre of origin of the plane, there is :

−−−−→
v′S,1v

′
S,2 =

(
x1

y1

)
,
−−−−→
v′S,1v

′
S,3 =

(
x2

y2

)
,
−−−→
v′S,1p

′ =
(

x3

y3

)

and p′ ∈ S′ ≡ E ∩ S 6= ∅ if and only if ∃α, β ≥ 0, α + β ≤ 1 such that

−→
Op′ =

−−−→
Ov′S,1 + α · −−−−→v′S,1v

′
S,2 + β · −−−−→v′S,1v

′
S,3. (3.7)

Like in two dimensions, there are now some children who have at least an intersection
with the boundary, thus of status NDEF, and some who must be decided to be either
IN or OUT. As in the previous section, children that have at least one vertex Vi in them
automatically gain status IN. For the other, argument 3.5 is invoked, and the nearest
surface S ∈ N must be chosen to find the correct plane πS to work with. Unfortunately,
finding that surface is not as easy as it was to find the correct edge. The intersection
S ∩N results in a segment and is much more complicated to extract the nearest surface.
Figure 3.7 shows two ideas of choosing the closest surfaces to a node (projected in two
dimensions) : on the left, equation 3.3 is used, thus picking surface number 2; on the
right, the smallest distance between the centre of the node and the centre of gravity of
the surface is searched, which again returns surface number 2.

The solution implemented, but that alas does not function in all cases, is slightly
different than what is illustrate here. It draws axis-parallel lines from the centre of the
node and looks for intersections, as if the line was an edge in figure 3.6 b). Using equation
3.7 as reference, it is searched for an intersection between the line and any surface S. If
such an intersection exists, the distance between it and the middle point of the node is
stored; the surface corresponding to the nearest intersection will be taken in account.

In case no intersection has been found along all axes, the nearest edge with respect to
its centre of gravity will be chosen. This happens from time to time, and this solution
will not ensure correct results when meshes are not quite convex. But it is still more
reliable than the other possibility, the distance between the node and the plane πS .

Either way, the closest surface S that has been chosen will return the status of the
node using equation 3.4, without caring about the normalisation factor : all that is of
interest is the sign of δ. Is it positive, the child has status OUT; is it negative, then
IN. In most examples tested with the program, the resulting auxiliary meshes Ta were
correctly created. Only one very irregular mesh had nodes generated where they should
not have been, see chapter 5.

21

a) Point nearest to plane b) Point nearest to center of gravity

Figure 3.7.: Two projections of the 3D problem, with the child to test on bottom right.
On the left, the middle point of the node is tested against the plane of all
triangles; the nearest is surface #2, which will result in wrong results. On
the right, the middle point of the node is tested against the center of gravity
of all triangles; the nearest is again surface #2.

3.4. Mesh generation

As the algorithm reaches a leaf of the tree, it will not refine the mesh any further. But
the node is already being treated, so another function is called. That function has the
purpose of generating the auxiliary mesh Ta. Nodes with status OUT are not of concern,
since they are totally outside mesh Th. Those with status IN are on the contrary very
interesting. The program then creates the corners of the node. As for the original mesh,
they might be shared two or more other nodes. Therefore, it searches in a map whether
they already exist. If yes, the index to that corner is returned. If no, the corner is put
inside the map and the new index is returned.

With the indices returned, surfaces are created the same way it has been done up here
: a triangle is defined by an index to each of its three corners, a cuboid by an index to
each of its eight corners. If an xml file is wanted, all relevant informations are written
in the file. Nothing else is written for the moment, it is just stored in a vector.

Note that in two dimensions, it is possible for nodes with status NDEF to be partially
generated, since a node is rectangular and Ta consists of triangles : it might be that the
lower (or upper, both are possible) triangle should be considered with status IN, while
the edges cross the rest of the node. This is tested every time a node of status NDEF is
also a leaf.

When the tree is finished, the vector is post-processed and the final file can be written,
with first all surfaces or volumes, and then all apices listed. The result can be directly
used in the preconditioners or compared with the original mesh visually.

22

3.5. Computing constants

Additionally to the main algorithm, a tool to determine some constants can be called
with the --C argument in the command line (see appendix C for more informations
about command line arguments). Computed constants are :

• ρ : a parameter representing the shape of any triangle (tetrahedron) K in the
original mesh. It compares the length hK of the longest edge to the radius rK of
the inner circle (sphere) of any K in mesh Th :

ρ(Th) := max
K∈Th

hK

rK
,

hK := max{|x− y| : x,y ∈ K}
rK := max{r > 0 : ∃x ∈ K; |x− y| < r ⇒ y ∈ K}.

The smallest value it has, the less degenerate the triangles are.

• Ca is the smallest positive constant for which

C−1
a h ≤ ha ≤ Cah

is valid ∀Ka ∈ Ta; ha := max{|x− y| : x,y ∈ Ka}, h(x) = hK∀x ∈ K.

• C∂ requires first some definitions :

– ∂Th is the boundary of the unstructured mesh.

– For p ∈ ∂Th,

hp :=
1

]Tp
∑

K∈Tp
hK , Tp := {K ∈ Th : p ∈ K}

is the local meshwidth at p

– B is the boundary strip (see figure 3.8) :

B :=
⋃
{K ∈ Th : K * Ta}

then C∂ is defined as the smallest constant > 0 such that

B ⊂
⋃

p∈∂Th

Bp, Bp := {x ∈ B : |x− p| < C∂hp}.

3.6. Multiple meshes

The algorithm described before works correctly for simple meshes where only one surface
(volume) is described, with maybe some ”holes” like in figure 3.3. A new problem arises
when the unstructured mesh represents for example two different materials, one inside
the other. There, the boundary between as defined by Netgen can’t be seen as a real
boundary any more. In 2D, as in figure 3.9, edges can in such a case be shared between

23

Figure 3.8.: The strip B (shaded) for some mesh Th.

Figure 3.9.: Three different meshes : light grey, grey and black. Edges 4-5 are boundary
to both grey and light grey but not boundaries of the whole. The same for
9-10, 10-11, 11-12 and 12-9.

24

two different meshes, thus not be located on the real boundary ∂Th. When considering
each mesh separately, those edges are on the local boundary; this is not true any more
for the whole mesh.

The meshes are therefore handled separately, and the initialisation has to be slightly
modified. The different meshes have different surface numbers, and this can be exploited
to tell each node to whom mesh it belongs. Edges (and surfaces) on the real boundary
will still be oriented the same way. All other are oriented with respect to the mesh with
the lowest number, but will know as well to with other mesh they belong (obviously they
can’t belong to more than two meshes at a time). Each auxiliary mesh is generated from
the lowest number to the highest, and any time an edge is called for the second time,
its orientation is inverted. For example, in figure 3.9, let’s say the grey mesh is called
first (has the lowest mesh number). Edge 4-5 is correctly oriented for the moment.
When light grey mesh is treated, edge 4-5 will have its orientation inverted and the
corresponding auxiliary mesh can be created.

The 3D problem is handled the same way, each surface belonging to at maximum two
volumes.

25

4. Complexity analysis

The algorithm are analysed here for their computational cost, first theoretically, then
experimentally. It is assumed only one mesh for simplicity. The variables used here are
:

• E : The number of edges.

• S : The number of surfaces.

• T : The number of tetrahedrons.

• V : The number of vertices (apices).

which can vary on number depending of the problem handled.
The analysis is separated in different parts as seen in the main file of the program.

4.1. Loading

The original mesh must be loaded in the program. The function Mesh::load is respon-
sible for that. It reads a file containing all relevant informations :

• In 2D : surfaces, edges, vertices ⇒ O(E + S + V).

• In 3D : everything ⇒ O(E + S + T + V).

Then the apices of the problem have to be found in both cases with the same simple
algorithm ⇒ O(E).

Finally, the correct orientation must be found for the edges or the surfaces :

• In 2D : O(S · E).

• In 3D : O(T · S).

All together, the loading process is simplified to :

• In 2D : O(S ·E + V).

• In 3D : O(T · S + V + E).

4.2. Initialisation

The edges (respectively surfaces) have to be passed one at a time to the tree. The same
for the vertices. All together, the initialisation process then takes :

• In 2D : O(E + V).

• In 3D : O(S + V).

26

4.3. Refinement

The auxiliary mesh is constructed from top to bottom. There are two cases to distinguish
: first, the unstructured mesh Th is uniformly refined, so that the vertices can be assumed
to be well distributed in the space. This results in a well balanced tree of deepness log4V ,
respectively log8V . On the contrary, when Th is locally refined, almost all vertices are
distributed in a very narrow region, while the rest of the space is quite void. It isn’t
possible to balance the tree, which will have a linear deepness V . The top node is set to
be at deepness d = 1.

The boundary of the problem is where the algorithm has to work the most; the rest
is either ignored or treated very quickly. It seems also safe to assume that 3 children
out of 4 (7 out of 8) are still in an NDEF region, while the rest has as many chances to
be IN than to be OUT. This, because it is the maximum number of children an edge (a
surface) can cross (worst case scenario).

4.3.1. Uniform refinement

The tree is here well balanced, having a logarithmic deepness. The two and three
dimensional problems are treated separately as usual.

In 2D The rules for a node Ni at deepness d = i are the following :

• It contains Vi = V
4i−1 vertices; dispatching them to each child takes O(V

4i−1).

• From above assumption, it contains about Ei = E
3i−1 edges. Clipping (equation

3.6) is done in constant time; dispatching the edges then takes O(E
3i−1).

• Determining the status of any child that is crossed by no edges first requires the
edges of the parent to be sorted as shown in figure 3.5. The rest is done in constant
time, therefore a cost of O(Ei).

• Children with status OUT will be ignored. Those with status IN (which happens
about half of the time) must only be refined until each vertex stands alone in its
own node. This is done in O(Vi).

and the sum of all costs is O(3
2 ·Vi+2Ei) for one node. The tree goes down to d = log4(V)

which leads to a total of

O

(
3
2

(
d∑

i=1

(
3
4

)i−1
)

V + 2dE

)
≤ O

(
9
2
· V + 2dE

)

= O(V + Elog4V)

In 3D A node Ni at deepness d = i has following rules :

• It contains Vi = V
8i−1 vertices, thus dispatching them to each child takes O(V

8i−1).

27

• From above assumption, it contains about Si = S
7i−1 boundary surfaces. Clipping

is done in constant time; dispatching the surfaces to each child then takes O(S
7i−1).

• Finding the status of any child that has no crossing surfaces needs for each child
to first find the closest edge. This is done in O(Si), and the rest needs constant
time. This part has then again a cost of O(S

7i−1).

• Children with status OUT will be ignored. Those with status IN must only dis-
patch their vertices in as many children, leading to O(V

·8i−1).

and the sum of all costs is O(3
2 ·Vi+2Si) for one node. The tree goes down to d = log8(V)

which leads to a total of

O

(
3
2

(
d∑

i=1

(
7
8

)i−1
)

V + 2dS

)
≤ O

(
21
2
· V + 2dS

)

= O(V + S log8 V)

4.3.2. Local refinement

The tree is assumed to be in the worst case, that is where each time only one child
containing all remaining vertices but one. The deepness of the tree is then d = V . The
rules are slightly modified, and depend also whether the refinement takes place on the
boundary or inside the mesh. Only the former, worst case, is analysed here.

In 2D A node Ni at deepness d = i is subject to :

• It contains Vi = V − i vertices; dispatching them to each child takes O(V − i).

• It contains about Ei = E
3i−1 edges. Clipping (equation 3.6) is done in constant

time; dispatching the edges then takes O(E
3i−1).

• Determining the status of any child that is crossed by no edges first requires the
edges of the parent to be sorted as shown in figure 3.5. The rest is done in constant
time, therefore a cost of O(Ei).

• Children with status OUT will be ignored. Those with status IN (which happens
about half of the time) must only be refined until each vertex stands alone in its
own node. Since the worst case is analysed here, it is assumed that any child with
that status is the one who already contains only one vertex. The cost is then O(1),
which is ignored.

and the sum of all costs is O(Vi +2Ei) for one node. The tree goes down to d = V which
leads to a total of

O

(
d∑

i=1

(V − i) + 2dE

)
= O(V2 + V ·E).

28

In 3D A node Ni at deepness d = i has following rules :

• It contains Vi = V − i vertices, thus dispatching them to each child takes O(V − i).

• From above assumption, it contains about Si = S
7i−1 boundary surfaces. Clipping

is done in constant time; dispatching the surfaces to each child then takes O(S
7i−1).

• Finding the status of any child that has no crossing surfaces needs for each child
to first find the closest edge. This is done in O(Si), and the rest needs constant
time. This part has then again a cost of O(S

7i−1).

• Children with status OUT will be ignored. Those with status IN must only dis-
patch their vertices. As in the 2D case, this is done in constant time since worst
case is assumed.

and the sum of all costs is O(Vi +2Si) for one node. The tree goes down to d = V which
leads to a total of

O

(
d∑

i=1

(V − i) + 2dS

)
= O(V2 + V · S).

Note that a supplementary dimension does not implies a dramatic increase in costs.
The only difference lies in the type of boundary, edges for 2D, surfaces for 3D.

4.4. Generation

Once the tree reaches a leaf, the auxiliary mesh is completed when needed. Leaves with
status OUT are ignored. Those with status NDEF are ignored in three dimensions, but
might still be considered in two dimensions : one of the two triangles might be included
in the final auxiliary mesh Ta. This is done in O(E

3d−1). The number of resulting triangles
is insignificant in comparison of all those generated every time an IN leaf is found.

The generation at this step is done by just inserting the apices of a shape in a vector.
In two dimensions, there are two triangles (ignoring NDEF leaves) forming a rectangle,
thus 6 vertices; in three dimensions, there is one cuboid, or 8 vertices. The corners
required to build such shapes must be stored in a map : they can’t exist twice if they
are shared by two (or more) nodes. Insertion in a map is done in logarithmic time,
depending on how many vertices were inserted before.

Thus, the time needed to prepare the mesh is :

• In 2D : There are about 3d−1 NDEF leaves and V
2 IN leaves. The cost is then

O(E + V
2 log2(V ′)).

• In 3D : There are about V
2 IN leaves. The cost is then O(V

2 · log2(8V)) = O(V ·
log2V).

But the auxiliary mesh Ta is present only in memory at that time; it must still be
written in the output file. Vertices are stored in a map, and the result must be a vector

29

: they will be sorted relative to their position in space, first x, then y and finally z if
it exists. This sorting has already been made while inserting new vertices; what is still
unknown is the index to each generated vertex V ′

i . This is found in O(V ′).
When the indices are known, the shapes K ′ defining the auxiliary mesh Ta can be

written in O(K ′). The total of K ′ is equal to (twice) the number of IN leaves. That is,
this step is done in O(V).

The vertices themselves are then written, in O(V ′) again. Since V ′ is proportional to
K ′, it results that V ′ ∝ V .

To summarise, the costs to generate the auxiliary mesh Ta are :

• In 2D : O(E + V · log2(V))

• In 3D : O(V · log2(V))

4.5. Computing constants

To compute the constants described in the previous chapter, the program requires some
time, trying to minimise it as much as possible. They are computed simultaneously
where possible.

In 2D

• ρ & Ca : S · log4V

• hp : V · S
• C∂ : E + log4V + E · S

which sums up to O(S · log4V + (V + E) · S)

In 3D

• ρ & Ca : T · log8V

• hp : V · T
• C∂ : S + log8V + S · V

which sums up to O(T · log8V + (T + S) ·V)

30

5. Examples

Some examples can be discussed now that the algorithm has been analysed. Images will
show original mesh in light grey, and auxiliary mesh in black. The constants will be all
put together at the end of this chapter.

5.1. Example 1

5.1.1. Uniformly refined

This mesh has been created in the only goal to test as many situations as possible.
The original mesh is refined uniformly so that a level number higher by one consists of
four times as many triangles. Level 0 is of no interest, since the auxiliary mesh is void.
Level 1 contains already some nodes and shown on the left in figure 5.1. On the right
is level 2. In figure 5.1 a), there are large regions where the unstructured mesh Th is

a) 1 level of refinement b) 2 levels of refinement

Figure 5.1.: On the left, some quite large regions are ”missing” (no black rectangles are
shown); that is corrected on the right

not covered at all by Ta. This happens when a single vertex is present in that region,
thus the corresponding node is a leaf with status NDEF. It also happens sometimes that
a roundoff error occurs; for example 10 becomes 9.9999, and the edge that should lie
vertically at y = 10 is not vertical any more. Thus, the boundary comes inside the node
and an artificial intersection is found by the algorithm.

5.1.2. Locally refined

Now only one point is refined. Once it is done in the boundary, once in the middle of
the mesh. Example 1 with uniform refinement level 1 is taken as basis. Figure 5.2 shows

31

the results of the local refinement.

a) On the boundary b) In the middle

Figure 5.2.: The mesh of example 1, refined locally

5.2. Example 2

Another two dimensional example, given as tutorial by Netgen, is shown in figure 5.3.
Once again, strange patterns can be seen along the left edge because of the form of the

Figure 5.3.: The second example

triangles in the original mesh and roundoff errors. Here the third level of refinement is
shown, since previous ones have holes in the auxiliary mesh.

5.3. 2D chip

The chip shown as an example for multiple meshes on figure 3.9 is presented now.
The different parts work independently, and are assembled at the final stage of the
construction.

32

Figure 5.4.: The chip

5.4. 3D ellipsoid

A three dimensional example, an ellipsoid. Here no refinement had to be use, even the
raw mesh generated by Netgen was nicely handled by the program.

Figure 5.5.: The ellipsoid

5.5. 3D ”fichera”

Another three dimensional example, given in the Netgen example with name fichera. It
looks like an assemblage of seven small cubes that form a bigger cube from which one
corner is missing. The fichera is composed only by cuboid forms. Since no roundoff error
appeared, the auxiliary mesh Ta covers exactly the same space than the unstructured
mesh Th, resulting in a perfect C∂ = 0 value ! Ca on the contrary is not equal to 1,
because some nodes have been split one time more than it were in the original mesh.

33

Figure 5.6.: The fichera

5.6. Numerical results

For the examples discussed above, plus a few other ones with an explicit name, the
numerical results are shown in the following tables. The columns are : a name, the
number of vertices, the number of shapes on ∂Th, the number of shapes forming Th, ρ,
Ca, C∂ , time to initialise the problem, to build the tree, an to write the auxiliary mesh
in a file. All times are given in seconds.

The results show very interesting values. The constant Ca is an indicator that shows
how similar both meshes Th and Ta are. Its value is always chosen to be greater or equal
to one, the closer the better. Even with an increasing refinement, its value remains
stable, increasing just a little. The same applies for C∂ when the original mesh is not
too distorted. In the first example though, its value doubles at each further refinement.
This probably comes from the great distortion of the original mesh.

The times are also of some interest. Loading of the mesh is the most time-consuming
part of the program. First, it must read the mesh in an external file. More than that, it
must correct the orientation of the edges, which requires many long loops. The creation
of the tree itself doesn’t takes much time, as the final writing of the mesh in a file. This
tends to confirm the complexity analysis.

Not shown are times to compute the constants. They are the real bottleneck of the
program : in the example of the ellipsoid, uniformly refined three times, it requires about
125 seconds. In comparison with the 17.5 seconds required to load the mesh, it once
again seems to confirm the analysis of the problem.

34

Type of mesh V E S ρ Ca C∂ t1 t2 t3

Example 1, lvl 0 9 8 8 41.099 2.82843 0.67049 0 0 0
Example 1, lvl 1 25 16 32 41.099 2.82843 2.16388 0.01 0 0
Example 1, lvl 2 81 32 128 41.099 2.82843 4.32777 0.01 0.01 0
Example 1, lvl 3 289 64 512 41.099 3.62215 8.65554 0.05 0.01 0.02
Example 1, lvl 4 1089 128 2048 41.099 7.24431 17.3111 0.19 0.03 0.09
Example 1, lvl 5 4225 256 8192 41.099 7.24431 34.6221 0.76 0.14 0.11
Example 1, lvl 6 16641 512 32768 41.099 7.24431 69.2443 1.33 0.18 0.45
Example 1.2, a) 37 24 48 41.099 5.65685 5.53588 0 0 0
Example 1.2, b) 71 18 122 41.099 4.1818 3.45004 0 0 0
Example 2, lvl 0 12 12 10 15.203 6.50987 0.41602 0 0 0
Example 2, lvl 1 33 24 40 15.203 6.50987 0.97072 0.01 0 0
Example 2, lvl 2 105 48 160 15.203 6.50987 0.69337 0.02 0 0.01
Example 2, lvl 3 369 96 640 15.203 6.50987 0.81343 0.06 0.02 0.03
Example 2, lvl 4 1377 192 2560 15.203 6.50987 0.97072 0.24 0.05 0.13

Chip, lvl 1 37 26 56 13.627 4.4376 2.52982 0 0 0

Table 5.1.: Numerical results for two dimensional problems

Type of mesh V S T ρ Ca C∂ t1 t2 t3

Ellipsoid, lvl 0 100 170 28 11.836 3.86767 1.92973 0.04 0.01 0
Ellipsoid, lvl 1 540 680 211 18.283 7.39261 2.89276 0.33 0.07 0.02
Ellipsoid, lvl 2 3467 2720 214 19.174 7.66315 3.03051 2.36 0.17 0.17
Ellipsoid, lvl 3 24677 10880 217 19.730 7.61601 3.39847 17.5 1.21 1.54

Cone, lvl 0 237 444 575 16.533 5.87157 1.98446 0.14 0.04 0.02
Cone, lvl 2 1270 1776 4600 25.542 7.34567 3.48741 1.10 0.06 0.05
Ferrit, lvl 0 512 366 2755 12.565 5.90989 1.67208 0.26 0.08 0.04

Fichera 17 30 25 9.631 4.55895 0 0.01 0 0

Table 5.2.: Numerical results for three dimensional problems.

35

6. Conclusion and outlook

The program works well under normal conditions. The generated mesh has the properties
required for the preconditioners presented in the introduction, it covers as much space
as possible with properties similar than the unstructured mesh (constants Ca and C∂).

There are yet some improvements that could be made in further versions : first, some
3D meshes Ta are partially wrong because the nearest surface search chose the incorrect
boundary surface. This happens but only in particular cases where the boundary is not
convex, and folded around itself, like in figure 6.1. Changing the way the nearest surface
is found would solve that problem.

Figure 6.1.: A sculpture in St.-Gallen; in the centre there are two wrong nodes.

The input file has also some limitations. When using only triangles and tetrahedrons
to create an unstructured mesh Th there is no problem. Normally, Netgen generates
such files. But when dealing for example with an hp-refined mesh, cuboids and other
shapes are created. The auxiliary mesh seems to be correctly created, but the constants
that are computed can’t be trusted any more; they show only an approximation of what
their real value is. Therefore no such example has been listed in table 5.2.

The local refinement has been implemented only as a small tool aside of the main
problem. It has been created at the early stage of development of the program, and only
for two dimensional meshes. The locally refined unstructured mesh T ′h that is created is
stored in the file myGrid.vol. It can be used to compare both meshes in a viewer, but
should not be used for anything else. In particular, multiple meshes as in example 5.3
might not be correctly refined that way.

36

Bibliography

[1] T. F. Chan and J. Zou, A convergence theory of multilevel additive schwarz
methods on unstructured meshes, Numerical Algorithms, 13 (1996), pp. 365–398.

[2] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hugues, Computer
Graphics, Principles and Practice (2nd Edition), Addison-Wesley, 1995.

[3] R. Hiptmair, G. Widmer, and J. Zou, Auxiliary space preconditioning in
h0(curl, ω), Numer. Math., (2005). Submitted. Published as Technical Report
CUHK-2005-06 (327), Department of Mathematics, The Chinese University of
Hong Kong.

[4] Y.-D. Liang and B. A. Barsky, A new concept and method for line clipping,
ACM Transactions on Graphics 3, 1 (1984), pp. 1–22.

[5] W. M. Newman and R. F. Sproull, Principles of Interactive Computer
Graphics (2nd Edition), McGraw-Hill International Editions, 1979.

[6] J. Schöberl, Netgen - an advancing front 2d/3d-mesh generator based on abstract
rules, Comput. Visual. Sci., 1 (1997), pp. 41–52.

[7] A. Stepanov and M. Lee, The Standard Template Library. HP Technical Report
HPL-94-34, February 1995.

[8] J. Xu, The auxiliary space method and optimal multigrid preconditioning
techniques for unstructured grids, Computing, 56 (1996), pp. 215–235.

37

A. File formats

A.1. *.vol

This very simple, almost self-describing, format is the default format used by Netgen
(Use File : Save Mesh). It represents the unstructured mesh Th. The file is split in
different parts. Each part begins with a line describing what kind of elements will
follow. The second line determines how long the list is, then each element is written,
one at a line. Comments can be written on a line beginning with a] and are ignored.
The first three lines of the file are a header giving the type of the file and the dimension
of the problem. The parts that can be expected by the program discussed here are :

• volumeelements : In 3D, they are the shapes K constituting the unstructured mesh
Th. In 2D, they just don’t exist. A mesh number, useful when multiple meshes are
involved, is given. The number of corners of the shape, normally 4, comes next.
Finally, an index to each of these corners is written.

• surfaceelementsgi : In 3D, this is the boundary of the mesh; in 2D, these are the
shapes K forming Th. A mesh number is given first, useful when dealing with
multiple meshes. Three parameters are ignored. Then the number of corners of
each shape is written (normally 3), directly followed by the indices to these vertices.

• edgesegmentsgi2 : The edges, boundary of the 2D problem. The first two param-
eters are ignored, leaving the start and end points of the segment as indices.

• points : The full list of all vertices relevant for the mesh Th. The x, y and z
coordinates are all what is given there.

A.2. *.am

This format is very similar to the previous .vol format, and represents the auxiliary mesh
Ta generated by the program. The header summarises the type of mesh stored and its
dimension.. The different parts are then subdivided in an analogue way as above, with
the following sections :

• surface : The triangles forming the 2D mesh Ta (not present in 3D). The number
of apices is given, set to 3. Then the indices to the corresponding vertices are
written.

• cuboid : The cuboids forming the 3D mesh Ta (not present in 2D). The number of
apices is given, set to 8. Then the indices to the corresponding vertices are written.

38

• points : The list of all vertices relevant for the mesh Ta. The x, y and z coordinates
are written there.

A.3. *.ref

The files with that extension contain information where to refine the mesh locally. The
format is not very different than the previous ones, and each part is given with a label,
a number of elements, and the elements themselves.

• points : The indices to vertices to locally refine.

39

B. Programme classes

B.1. Class Vertex

This class represents vertices, or apices. Its members are :

• Member datas

– bool boundary : This boolean is set to true if the vertex is on the boundary,
else it is left to false.

– vector<double> position : The coordinates of the problem : [0] represents
x, [1] y and [2] z.

• Constructors

– Vertex(int d) : Initialises the vertex with dimension d (default 3); boundary
is set to false.

– Vertex(const Vertex v) : Copy constructor, to initialise a vertex with the
same values as another.

• Operators

– = : Affectation operator.

– != : Comparison operator.

• Member functions

– at(int i) : An equivalent to getX() and setX() using indices.

– double getX() : Returns the value along the x axis (analogue for y and z).

– double hash() : Returns the hash value of the vertex to sort it in a map.

– bool isBoundary() : Returns true if the vertex is on the boundary.

– setBoundary(bool b) : Sets boundary to the value of b (true by default).

– setX(double x) : Sets the value of the x axis (analogue for y and z)

B.2. Class Polygon

This class represents any polygon (in 2D : line, triangle) or polyhedron (in 3D : tetrahe-
drons) whom vertices are stored in a separate vector. The class doesn’t know anything
about the vertices except for their indices.

40

• Member datas

– bool boundary : This boolean is set to true if the polygon is on the boundary,
else it is left to false.

– int size : The number of points defining the polygon / polyhedron.

– vector<unsigned int> vertices : The index to the vertices (1..n).

• Constructors

– Polygon(int s) : Initialises the polygon with size s; boundary is set to false.

– Polygon(const Polygon v : Copy constructor, to initialise a polygon with
the same values as another.

• Operators

– = : Affectation operator.

• Member functions

– at(int i) : Access to the index of the i-th vertex.

– bool isBoundary() : Returns true if the polygon is on the boundary.

– setBoundary(bool b) : Sets boundary to the value of b (true by default).

– getSize() : Returns the number of apices of the polygon.

B.3. Class Mesh

This class is used to store the unstructured mesh Th and perform some operations on it.
For example, it is inside that class that the mesh can be locally refined or its constants
ρ, Ca and C∂ are computed. It is also from that class that the Quadtree (Octree) is
initialised.

• Member datas

– int dimension : The size of the problem (2D or 3D).

– int verbose : A parameter to set how much information should be displayed.

∗ 0 : The only information displayed is to tell the auxiliary mesh has been
created.

∗ 1 : Some useful informations about Th are printed.
∗ 2 : The same, plus some timing informations.
∗ 3 : Debugging informations.

– list<Polygon> edges : A list of edges on the boundary.

– list<Polygon> surfaces : A list of surfaces (only boundaries in 3D).

– vector<Vertex> vertices : The list of all vertices used by the mesh.

41

– vector<unsigned int> local points : A list of points to refine the node
locally.

– extremes : Minimal and maximal values of the vertices along each axis.

• Constructors

– Mesh() : Default constructor.

• Member functions

– compute C() : Computes the constants ρ, Ca, C∂ .

– display2D() : A function to display the polygon using OpenGL (exists also
for 3D).

– init(Quadnode *) : Initialise the quadtree (exists also for Octree).

– load(string file) : Reads the specified file and load the mesh Th it con-
tains.

– find boundary vertices() : Mark all vertices that belong to a boundary
edge as boundary themselves.

– finish edges() : Find the correct orientation for the boundary.

– int getDimension() : Returns the dimension of the mesh.

– refine(string file) : Refine the mesh locally following instructions writ-
ten in the specified file.

– setVerbose(int v) : Set the verbose level to v.

– write(string file) : Write the unstructured mesh in the specified file.

42

C. Command line arguments

The program, called amr, is called simply by running the command ./amr -in input file.vol .
The output file storing the auxiliary mesh is then myGrid.am, in the current directory.
Some options are available, listed here in tables separating the ones that require an
additional argument and the ones that don’t. The whole synopsis is :

./amr -in filename.vol [-out filename.am] [-ref filename.ref] [--C]
[--xml|-xml filename.xml] [--C] [-verbose [0|1|2|3]] [--help]

Table C.1.: Command line arguments with 1 parameter.
--C Prints informations about the constants Ca

and C∂ .
--xml Write the xml informations into the default

file, myGrid.xml.
--help Prints the list of all parameters.

Table C.2.: Command line arguments with 2 parameters.
-in input file The input file, of the format .vol.
-out output file The output file, of the format .am (default is

myGrid.am).
-xml xml file An optional output file, of the format .xml

describing all nodes of the quadtree.
-ref refinement file A file, of the format .ref, which describes a

local refinement to apply. The locally refined
unstructured mesh so created is stored in the
file myGrid.vol, but should not be used ex-
cept to compare the meshes in the viewer.

-verbose level Prints some additional messages, like times-
tamps (level 2), warning messages (level 3).

There is a viewer aside of the program, compiled with the command make viewer.
Its synopsis is

./viewer -in filename.vol -out filename.am

43

