On the Relation between Linearity-Generating Processes and Linear-Rational Models

Damir Filipović
(joint with Martin Larsson and Anders Trolle)

Swiss Finance Institute
Ecole Polytechnique Fédérale de Lausanne

Mathematical Finance beyond classical models
ETH Institute for Theoretical Studies, 18 September 2015

ÉCOLE POLYTECHNIQUE

Outline

Linearity-Generating (LG) Processes

Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition

Outline

Linearity-Generating (LG) Processes

Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition

Ingredients

- $\operatorname{FPS}\left(\Omega, \mathcal{F}_{t}, \mathcal{F}, \mathbb{P}\right)$
- State price density process

$$
\zeta_{t}=\zeta_{0} \mathrm{e}^{-\int_{0}^{t} r_{s} d s} \mathcal{E}_{t}(L)
$$

\rightarrow Risk-neutral measure $\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\mathcal{E}_{t}(L)$

- m-dimensional semimartingale X_{t}

Definition LG Process (Gabaix 2009)

$\left(\zeta_{t}, X_{t}\right)$ forms ($m+1$)-dimensional linearity-generating (LG) process if

$$
\begin{aligned}
\mathbb{E}_{t}\left[\frac{\zeta_{T}}{\zeta_{t}}\right] & =\mathcal{A}(T-t)+\mathcal{B}(T-t) X_{t} \\
\mathbb{E}_{t}\left[\frac{\zeta_{T}}{\zeta_{t}} X_{T}\right] & =\mathcal{C}(T-t)+\mathcal{D}(T-t) X_{t}
\end{aligned}
$$

for some continuously differentiable functions $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$.
\Rightarrow Linear T-claims in X_{T} have linear time- t prices in X_{t}

- E.g. zero-coupon bond price

$$
P(t, T)=\mathcal{A}(T-t)+\mathcal{B}(T-t) X_{t}
$$

Hidden Non-degeneracy Assumption

Support of $X_{t^{*}} / \zeta_{t^{*}} X_{t^{*}} / Z_{t^{*}}$ affinely spans \mathbb{R}^{m} for some $t^{*} \geq 0$

Characterization Theorem

The following statements are equivalent:

1. $\left(\zeta_{t}, X_{t}\right)$ forms an LG process;
2. short rate r_{t}, \mathbb{Q}-drift $\mu_{t}^{X, \mathbb{Q}}$ of X_{t} are linear, quadratic in X_{t},

$$
\begin{aligned}
r_{t} & =-A-B X_{t} \\
\mu_{t}^{X, \mathbb{Q}} & =C+\left(r_{t}+D\right) X_{t}=C+(D-A) X_{t}-\left(B X_{t}\right) X_{t}
\end{aligned}
$$

3. drift of $Y_{t}=\left(\zeta_{t}, \zeta_{t} X_{t}\right)$ is strictly linear in Y_{t},

$$
d Y_{t}=K Y_{t} d t+d M_{t}^{Y}
$$

In either case,

$$
K=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad\left(\begin{array}{ll}
\mathcal{A}(\tau) & \mathcal{B}(\tau) \\
\mathcal{C}(\tau) & \mathcal{D}(\tau)
\end{array}\right)=\mathrm{e}^{K \tau}
$$

Sketch of Proof

LG condition holds if and only if either

- The processes

$$
\begin{aligned}
M_{t} & =\mathrm{e}^{-\int_{0}^{t} r_{s} d s}\left(\mathcal{A}(T-t)+\mathcal{B}(T-t) X_{t}\right) \\
N_{t} & =\mathrm{e}^{-\int_{0}^{t} r_{s} d s}\left(\mathcal{C}(T-t)+\mathcal{D}(T-t) X_{t}\right)
\end{aligned}
$$

are \mathbb{Q}-martingales (\rightarrow set drift zero)

- $Y_{t}=\left(\zeta_{t}, \zeta_{t} X_{t}\right)$ satisfies

$$
\mathbb{E}_{t}\left[Y_{T}\right]=\mathrm{e}^{K(T-t)} Y_{t}
$$

Remarks

- Part 3 is definition of LG process given in Gabaix (2009)
- Gabaix (2009) refers to $\left(B X_{t}\right) X_{t}$ in

$$
\mu_{t}^{X, \mathbb{Q}}=C+\left(r_{t}+D\right) X_{t}=C+(D-A) X_{t}-\left(B X_{t}\right) X_{t}
$$

as "linearity-generating twist of an $\operatorname{AR}(1)$ process"

Discussion

- Existence of LG processes $\left(\zeta_{t}, X_{t}\right)$?
- Carr, Gabaix, Wu (2009) specify Y_{t},

$$
d Y_{t}=K Y_{t} d t+d M_{t}^{Y}
$$

and set $\zeta_{t}=Y_{1 t}$ and $X_{t}=Y_{2 . . m+1, t} / Y_{1, t}$

- Problem: Y_{t} is not stationary: $Y_{1 t}>0$ and $\mathbb{E}\left[Y_{1 t}\right] \rightarrow 0$
- $X_{t}=Y_{2 . . m+1, t} / Y_{1, t}$ is stationary, but \ldots
- no functional relation between ζ_{t} and X_{t} (e.g. $\bar{\zeta}_{t}=N_{t} \zeta_{t}$)
- nontrivial viability conditions for X_{t} in view of

$$
0<P(t, T)=\mathcal{A}(T-t)+\mathcal{B}(T-t) X_{t} \leq 1
$$

- quadratic \mathbb{Q}-drift and highly nonlinear \mathbb{P}-drift of X_{t}

Outline

Linearity-Generating (LG) Processes

Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition

Definition (Filipović, Larsson, Trolle 2014)

An m-dimensional linear-rational (LR) model consists of an m-dimensional semimartingale Z_{t} with linear drift,

$$
d Z_{t}=\left(b+\beta Z_{t}\right) d t+d M_{t}^{Z}
$$

and parameters $\alpha, \phi \in \mathbb{R}$ and $\psi \in \mathbb{R}^{m}$ such that

$$
\zeta_{t}=\mathrm{e}^{-\alpha t}\left(\phi+\psi^{\top} Z_{t}\right)>0
$$

Linear-rational Term Structure

LR model implies linear-rational bond prices

$$
\begin{aligned}
P(t, T) & =\mathbb{E}_{t}\left[\frac{\zeta_{T}}{\zeta_{t}}\right] \\
& =\mathrm{e}^{-\alpha(T-t)} \frac{\phi+\psi^{\top} \mathrm{e}^{\beta(T-t)} \int_{0}^{T-t} \mathrm{e}^{-\beta s} b d s+\psi^{\top} \mathrm{e}^{\beta(T-t)} Z_{t}}{\phi+\psi^{\top} Z_{t}}
\end{aligned}
$$

and short rate

$$
r_{t}=-\left.\partial_{T} \log P(t, T)\right|_{T=t}=\alpha-\frac{\psi^{\top}\left(b+\beta Z_{t}\right)}{\phi+\psi^{\top} Z_{t}}
$$

Representation as LG Process

- Define normalized factor

$$
X_{t}=\frac{Z_{t}}{\phi+\psi^{\top} Z_{t}}
$$

- Simple algebraic fact (if $\phi \neq 0$):

$$
\frac{p+q^{\top} Z_{t}}{\phi+\psi^{\top} Z_{t}}=\frac{p}{\phi}+\left(q-\frac{p \psi}{\phi}\right)^{\top} X_{t}
$$

\Rightarrow Bond price and short rate become linear in X_{t}

Outline

> Linearity-Generating (LG) Processes

> Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition

Representation Theorem: m-dim LR as $(m+1)$-dim LG

An m-dimensional LR model

$$
d Z_{t}=\left(b+\beta Z_{t}\right) d t+d M_{t}^{Z}, \quad \zeta_{t}=\mathrm{e}^{-\alpha t}\left(\phi+\psi^{\top} Z_{t}\right)
$$

can be represented as $(m+1)$-dimensional LG process $\left(\zeta_{t}, X_{t}\right)$ through $X_{t}=\frac{Z_{t}}{\phi+\psi^{\top} Z_{t}}$ if and only if $b=C \phi$.

The respective $Y_{t}=\left(\zeta_{t}, \zeta_{t} X_{t}\right)$ in Characterization Theorem is

$$
Y_{t}=\mathrm{e}^{-\alpha t}\left(\phi+\psi^{\top} Z_{t}, Z_{t}\right)
$$

and the matrix K in $d Y_{t}=K Y_{t} d t+d M_{t}^{Y}$ is given by

$$
\begin{align*}
& A=-\alpha+\psi^{\top} C, \quad B=\psi^{\top}\left(-C \psi^{\top}+\beta\right) \\
& C=\frac{b}{\phi}, \quad D=-\alpha \operatorname{Id}-C \psi^{\top}+\beta \tag{}
\end{align*}
$$

Representation Corollary 1: m-dim LR as $(m+2)$-dim LG

By increasing dimension can always assume $b=0$:

$$
\bar{Z}_{t}=\binom{Z_{t}}{1}, \quad \bar{b}=0, \quad \bar{\beta}=\left(\begin{array}{cc}
\beta & b \\
0 & 0
\end{array}\right), \quad M_{t}^{\bar{Z}}=\binom{M_{t}^{Z}}{0}, \quad \bar{\psi}=\binom{\psi}{0}
$$

is econ equivalent $(m+1)$-dim LR model with strictly linear drift

$$
d \bar{Z}_{t}=\bar{\beta} \bar{Z}_{t} d t+d M_{t}^{\bar{Z}}, \quad \zeta_{t}=\mathrm{e}^{-\alpha t}\left(\phi+\bar{\psi}^{\top} \bar{Z}_{t}\right)
$$

Corollary 3.1.
m-dim $L R$ model can always be represented as $(m+2)$-dim LG process through

$$
\bar{X}_{t}=\frac{\left(Z_{t}, 1\right)}{\phi+\psi^{\top} Z_{t}}
$$

The respective $\bar{Y}_{t}=\left(\zeta_{t}, \zeta_{t} \bar{X}_{t}\right)=\mathrm{e}^{-\alpha t}\left(\phi+\psi^{\top} Z_{t}, Z_{t}, 1\right) \ldots$

Representation Corollary 2

For given parameters A, B, C, D condition (*) holds if and only if

$$
\left(\begin{array}{ll}
1 & -\psi^{\top}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=-\alpha\left(\begin{array}{ll}
1 & -\psi^{\top}
\end{array}\right)
$$

Corollary 3.2.

The functions $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of an $(m+1)$-dimensional $L G$ process can be obtained from an m-dimensional $L R$ model if and only if the respective matrix K admits a left-eigenvector v^{\top} with $v_{1} \neq 0$.

Counterexample

For $B \neq 0, C=0, D=A$ Id there exists no such left-eigenvector.
\Rightarrow not every $(m+1)$-dimensional LG process $\left(\zeta_{t}, X_{t}\right)$ can be represented as LR model of dimension m or lower.

Characterization Theorem $\Rightarrow(m+1)$-dim LG process $\left(\zeta_{t}, X_{t}\right)$ can always be represented as $(m+1)$-dim LR model

$$
Z_{t} \equiv Y_{t}=\left(\zeta_{t}, \zeta_{t} X_{t}\right), \quad \zeta_{t}=Z_{1, t}
$$

Next step: characterize those $(m+1)$-dim LG processes that can be represented as m-dim LR model

Representation Theorem: $(m+1)$-dim LG as m-dim LR

Consider ($m+1$)-dim LG process $\left(\zeta_{t}, X_{t}\right)$ and let $Y_{t}=\left(\zeta_{t}, \zeta_{t} X_{t}\right)$.
The following statements are equivalent:

1. $\left(\zeta_{t}, X_{t}\right)$ can be represented as m-dim LR model
2. there exist parameters α, ϕ, ψ such that

$$
\left(\begin{array}{ll}
1 & -\psi^{\top}
\end{array}\right) Y_{t}=\phi \mathrm{e}^{-\alpha t}
$$

3. there exist nonzero $v \in \mathbb{R}^{m+1}$ and function $f(t)$ such that

$$
\begin{equation*}
v^{\top} Y_{t}=f(t) \tag{**}
\end{equation*}
$$

Note: $\left({ }^{* *}\right) \Rightarrow M_{t}^{Y}-M_{0}^{Y} \perp v$

Mean Reversion

Semimartingale S_{t} is mean-reverting to mean-reversion level θ if $\frac{1}{T-t} \int_{t}^{T} \mathbb{E}_{t}\left[S_{u}\right] d u \rightarrow \theta$ as $T \rightarrow \infty$ almost surely for all $t \geq 0$.

Representation Theorem: $(m+1)$-dim LG as m-dim LR

Consider $(m+1)$-dim LG process $\left(\zeta_{t}, X_{t}\right)$ and let $Y_{t}=\left(\zeta_{t}, \zeta_{t} X_{t}\right)$.
The following statements are equivalent:

1. $\left(\zeta_{t}, X_{t}\right)$ can be represented as m-dim LR model Z_{t} and Z_{t} is mean-reverting to level $\theta \in \mathbb{R}^{m}$ satisfying $\phi+\psi^{\top} \theta>0$;
2. $\mathrm{e}^{\alpha t} Y_{t}$ is mean-reverting to level $\widetilde{\theta} \in \mathbb{R}^{m+1}$ satisfying $\widetilde{\theta}_{1}>0$
for some α.

Mean-reversion levels are related by $\widetilde{\theta}=\left(\phi+\psi^{\top} \theta, \theta\right)$.

Outline

Linearity-Generating (LG) Processes

Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition

Markov Valuation

Hansen and Scheinkman (2009) "Long-term Risk: An Operator Approach", Econometrica

- Economy described by Markov state \mathbf{X}_{t}
- State price density forms positive multiplicative functional:

$$
\frac{\zeta_{T}(\mathbf{X})}{\zeta_{t}(\mathbf{X})}=\frac{\zeta_{T-t}\left(\mathbf{X} \circ \theta_{t}\right)}{\zeta_{0}\left(\mathbf{X} \circ \theta_{t}\right)}
$$

\Rightarrow Pricing semigroup \mathbb{S}_{t} :

$$
\mathbb{S}_{t} f(\mathbf{x})=\mathbb{E}_{\mathbf{x}}\left[\frac{\zeta_{t}}{\zeta_{0}} f\left(\mathbf{X}_{t}\right)\right]
$$

Multiplicative Decomposition Theorem

Let $\varphi(\mathbf{x})$ be positive eigenfunction of pricing semigroup \mathbb{S}_{t} with eigenvalues $\mathrm{e}^{\rho t}$ then ζ_{t} admits the multiplicative decomposition

$$
\zeta_{t}=\mathrm{e}^{\rho t} \frac{1}{\varphi\left(\mathbf{X}_{t}\right)} \hat{M}_{t}
$$

where \hat{M}_{t} is a positive martingale with $\hat{M}_{0}=1$.
If \mathbf{X}_{t} is recurrent and stationary under \mathbb{A} given by $\left.\frac{d \mathbb{A}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\hat{M}_{t}$ then this decomposition is unique.

HS (2009) also provide conditions for existence of positive ef $\varphi(\mathbf{x})$

LR Models Revisited

An m-dimensional LR model

$$
d Z_{t}=\left(b+\beta Z_{t}\right) d t+d M_{t}^{Z}, \quad \zeta_{t}=\mathrm{e}^{-\alpha t}\left(\phi+\psi^{\top} Z_{t}\right)
$$

satisfies multiplicative decomposition for

$$
\rho=-\alpha, \quad \varphi(\mathbf{x})=\frac{1}{\phi+\psi^{\top} z}, \quad \hat{M}_{t}=1
$$

and can be (part of) recurrent and stationary Markov process!

LR Models Revisited cont'd

- \mathbb{A} is long forward measure:

$$
\frac{\zeta_{t} P(t, T)}{\zeta_{0} P(0, T)}=\frac{\phi+\mathbb{E}_{t}\left[\psi^{\top} Z_{T}\right]}{\phi+\mathbb{E}\left[\psi^{\top} Z_{T}\right]} \rightarrow 1 \quad \text { as } T \rightarrow \infty
$$

Hence deflating by ζ_{t} / ζ_{0} amounts to discounting by gross return on long-term bond $\lim _{T \rightarrow \infty} \frac{P(t, T)}{P(0, T)}$

It also implies that the long-term bond is growth optimal under \mathbb{A} (Qin, Linetsky 2015)

- Flexible market price of risk specification: free to modify

$$
\zeta_{t} \rightsquigarrow \zeta_{t} \hat{M}_{t}
$$

for some auxiliary density process \hat{M}_{t}

Conclusion

- LG processes are related to LR models
- $\{m$-dim LR models $\} \subset\{(m+1(2))$-dim LG processes $\}$
- $\{(m+1)$-dim LG processes $\} \subset\{(m+1)$-dim LR models $\}$
- $(m+1)$-dim LG process \in \{mean-rev. m-dim LR models $\}$ if and only if mean-reverting after exponential scaling
- HS decomposition theorem favors mean-reverting LR model specification

Conclusion

- LG processes are related to LR models
- $\{m$-dim LR models $\} \subset\{(m+1(2))$-dim LG processes $\}$
- $\{(m+1)$-dim LG processes $\} \subset\{(m+1)$-dim LR models $\}$
- $(m+1)$-dim LG process $\in\{$ mean-rev. m-dim LR models $\}$ if and only if mean-reverting after exponential scaling
- HS decomposition theorem favors mean-reverting LR model specification

LR models $=$ "reasonable" specifications of LG processes

