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The problem

To give the highest model-based price and the cheapest
super-replicating strategy for an American claim, given the prices
of European options.
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Figure: The space of possible paths, and the payoff of the American
claim. The labels at the nodes on the graph consist of a quadruple, the
elements of which are price level, time node probability and payoff of the
American option respectively.
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An Example

The model-based price
Denote by (p, q, r) the transition probabilities of going from (1, 1)
to ((4, 2), (2, 2), (0, 2)) respectively, and by (s, t, u) the transition
probabilities of going from (3, 1) to ((4, 2), (2, 2), (0, 2)).

We have 0 ≤ p ≤ 1/4 and (q, r) = ( 1−4p
2 , 1

2 + p).

Similarly, 1/2 ≤ s ≤ 3/4 and (t, u) = ( 3−4s
2 , s − 1

2 ).

We must have p + s = 4/5.

The value of immediate exercise at (1, 1) is 1, and the value on
continuation is 8p, so that it is optimal to continue if p ≥ 1/8.

It is always optimal to continue at (3, 1) and the value is 8s.

The expected payoff of the American option is then
1
2 [8(p + s) + (1− 8p)+] = 16/5 + ( 1

2 − 4p)+.

Take p as small as possible, ie p = 1/20 to give a best model
based price of 7/2 = 35/10.
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An Example

A super-replicating strategy

Starting with 18/5, purchase 4 Arrow-Debreu securities paying 1 in
state (4, 2) at total cost 8/5, leaving cash of 2.

Hold one unit of asset (forward) over the time-period (0, 1].

If the American option is not exercised at t = 1 again hold a unit
long (forward) position over (1, 2]; otherwise hold a null position in
the stock over (1, 2].



An Example

The super-replication property

At t = 0, the cash holdings are 2.

At t = 1 the cash holdings are 3 in state (3, 1) and 1 in state (1, 1).
This is sufficient to cover the American option if it is exercised.

If the American option is not exercised at t = 1, and if X1 = 3
then including the payoff from the Arrow-Debreu security, at t = 2
the strategy realises (8, 2, 0) in the states ((4, 2), (2, 2), (0, 2))
respectively.

If the option is not exercised at t = 1, and if X1 = 1 then at t = 2
the strategy again realises (8, 2, 0) in the states
((4, 2), (2, 2), (0, 2)).

Hence, the given strategy is a super-replicating strategy.

There is a super-replicating strategy for 18/5 = 36/10 > 35/10.
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An Example

The most expensive model

Consider a pair of models M̂ and M̃.

Suppose (p̂, q̂, r̂ , ŝ, t̂, û) = (1/4, 0, 3/4, 3/4, 0, 1/4) and
(p̃, q̃, r̃ , s̃, t̃, ũ) = (0, 1/2, 1/2, 3/4, 0, 1/4).

Note that both of these models are martingale models; neither
model satisfies the constraint p + s = 4/5.

However, the mixture 1
5M̂ + 4

5M̃ does match call prices.

Assume that the holder of the option learns whether the world is
described by M̂ or M̃ at t = 1 before he is required to decide
whether to exercise the option. Call this model M.

We will show that the price of the American option is maximised
over consistent models by the model M.
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An Example

Optimal exercise under the best model

Under M̂ it is optimal to exercise the American option at t = 2,
and the value of the option is 4.

Under M̃ it is optimal to exercise at (1, 1) and the value of the
American option is 7/2.

Provided the model uncertainty is resolved by t = 1, the price
under the mixed model is

1

5
× 4 +

4

5
× 7

2
=

18

5
.



An Example

The message

‘The obvious approach consists in considering as admissible
martingale measures, all probability measures in which the
co-ordinate process is a martingale in its own filtration’

When valuing American claims this it is not sufficient.

The full value of American claims reflects the ability of the holder
to choose an exercise time which depends on new information.

This is especially valuable when there is event risk (battles for
corporate control, currencies under speculative attack)
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Processes on a bounded lattice

Processes on a bounded lattice

Assume constant deterministic rates and dividends and no
transaction costs. Work with discounted prices throughout.

Let X denote the price of the stock.

Set of traded securities includes European call options on stock.

In particular, it is possible to buy or sell a call on X with strike K
and maturity t for a finite set of traded strikes and maturities.

We assume that time is discrete, and that the time parameter is
restricted to lie in a set T0 = {t0 = 0 < t1 < . . . < tN = T}.
We assume for each maturity tn ∈ T the set of traded strikes is K
where

K = {x1, x2, . . . xJ}

and 0 < x1 < x2 . . . < xJ .
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Processes on a bounded lattice

Since holding a call with strike zero is equivalent to holding the
stock, and since the stock is traded, it is useful to consider 0 to be
a traded strike.

(Note: the price of a zero-strike call must equal X0 = s0.)

Let X = {0, x1, x2, . . . xJ}.
We identify X with a set of levels for the price process X and build
processes which live on the lattice X × T .

We assume that the option can only be exercised at a date
τ ∈ T = T0 \ {0} = {t1, . . . , tN}.
The American claim is characterized by a function a : X ×T → R+

which is typically decreasing in time and convex in x .



Processes on a bounded lattice

Assumption

1. The set of call option prices has the following properties:
I For 1 ≤ n ≤ N, s0 = c0,n ≥ c1,n ≥ c2,n ≥ · · · ≥ cJ,n ≥ 0.
I For 1 ≤ n ≤ N, 1 ≥ c0,n−c1,n

x1
≥ c1,n−c2,n

x2−x1
≥ · · · ≥ cJ−1,n−cJ,n

xJ−xJ−1
.

I For 1 ≤ n ≤ N − 1, and for 0 ≤ j ≤ J, cj,n+1 ≥ cj,n.

2. In addition cJ,N = 0.

Let C be the (J + 1)× N matrix with elements cj ,n.

Define the (J + 1)× N matrix P via its entries pj ,n

pj ,n =


1− s0−c1,n

x1
j = 0;

cj−1,n−cj,n
xj−xj−1

− cj,n−cj+1,n

xj+1−xj 1 ≤ j < J;
cJ−1,n−cJ,n
xJ−xJ−1

j = J.

(1)
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Processes on a bounded lattice

Definition

MX ,T =MX ,T (C) is the set of models (i.e. a filtration
F = (F0,Ft1 , . . .FtN ) and a probability measure P supporting a
stochastic process X = (Xtn)0≤n≤N taking values in X ) such that
X0 = s0, and

1. the process X is consistent with C in the sense that
E[(Xtn − xj)

+] = cj ,n or equivalently P(Xtn = xj) = pj ,n;

2. X is a (P,F)-martingale.

M defines a model based price for the American option:
φ(M) = φa(M) = supτ EM [a(Xτ , τ)].

Define the highest model-based price
PX ,T (a,C) = supM∈MX ,T (C) φ

a(M).
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Processes on a bounded lattice

Definition
A semi-static trading strategy (B,Θ = (Θ1,Θ2)) on (X ,T ) is a composition of

1. Arrow-Debreu style European options with payoff (bj,n) if X is in state xj at time tn (for 1 ≤ n ≤ N).
The payoff/cost of such a strategy is

GB
T =

∑
1≤n≤N

∑
0≤j≤J

bj,n I{Xtn =xj} HC(B) =
∑

1≤n≤N

∑
0≤j≤J

bj,npj,n.

2. A dynamic hedging position of Θtn units held over (tn, tn+1]. Here Θtn = Θ1(xt1 , . . . xtn ) if the option

has not yet been exercised and Θtn = Θ2(xt1 , . . . xtn , tj ) if the option was exercised at tj with j ≤ n. If

exercise occurs at ρ ∈ T then the payoff along a price path (s0 = x0, xt1 , . . . xtN ) is

GΘ
T =

N (ρ)−1∑
n=1

Θ1
tn

(xt1 , . . . , xtn )(xtn+1
− xtn ) +

N−1∑
n=N (ρ)

Θ2
tn

(xt1 , . . . , xtn , ρ)(xtn+1
− xtn ),

where N (ρ) = min{n : tn ≥ ρ}. The cost is zero.

The time-T payoff GT = GB,Θ
T

/total cost is

GT (xt1 , . . . xtN , ρ) = GB
T + GΘ

T , HC(B,Θ) = H(B) =
∑

1≤n≤N

∑
0≤j≤J

bj,npj,n



Processes on a bounded lattice

Definition

A semi-static trading strategy (B,Θ = (Θ1,Θ2)) super-replicates
the American claim if GT (xt1 , . . . xtN , ρ) ≥ a(xρ, ρ) for all
(xt1 , . . . xtN ) with xtn ∈ X and all ρ. Let S = SX ,T (a) be the set of
super-replicating semi-static strategies.

Define the cost of the cheapest super-replicating semi-static
strategy: HX ,T (a,C) = inf(B,Θ)∈SX ,T (a) HC(B,Θ).
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Processes on a bounded lattice

Theorem

ΦX ,T (a,C)

= sup
M∈MX ,T2 (C)

EM [a(Xτ∆
, τ∆)] = sup

M∈MX ,T2 (C)

φa(M)

= PX ,T (a,C)=HX ,T (a,C)

= inf
(B,Θ)∈SX ,TM (a)

HC(B,Θ)

= ΨX ,T (a,C).



Processes on a bounded lattice

Definition

MX ,T2 (C) ⊆MX ,T (C) is the set of models (i.e. a filtration
F = (F0,Ft1 , . . .FtN ) a probability measure P supporting a
bivariate, discrete-time, stochastic process
(X ,∆) = (Xtn ,∆tn)0≤n≤N taking values in X × {1, 2} for n ≥ 1)
such that (X0,∆0) = (s0, 1) and

1. (X ,∆) is Markov with respect to price, so that
P(Xtn+1 = xk |Ftn) = P(Xtn+1 = xk |Xtn ,∆tn).

2. ∆ is non-decreasing, with ∆tN = 2.

3. the probability that ∆tn+1 = 2, conditional on ∆tn = 1
depends on n and Xtn+1 only.

τ∆ = min{tn : ∆tn = 2}.



Processes on a bounded lattice

A process (X ,∆) in MX ,T2 can be characterized by a pair of
(J + 1)× (J + 1)× (N − 1) matrices G1 and G2 (with entries
g δj ,k,n) specifying the joint probability of successive states:

g δj ,k,n = P(Xtn = xj ,Xtn+1 = xk ,∆tn = δ)

Mass entering a node must equal the mass at the node must equal
the mass leaving the node. Thus∑

0≤i≤J
(g1

i ,j ,n−1 + g2
i ,j ,n−1) = pj ,n =

∑
0≤k≤J

(g1
j ,k,n + g2

j ,k,n)

X is a martingale: ∑
0≤k≤J

(xk − xj)g
δ
j ,k,n = 0.
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Processes on a bounded lattice

By hypothesis the process ∆ is non-decreasing. It is convenient to
introduce an auxiliary (J + 1)× N matrix F which records the
probability of arriving at node (j , 2) at time n having been in
regime 1 at time n − 1.

Let F = (fj ,n) where fj ,n ≥ 0 is given by the joint probability
fj ,n = P(Xtn = j ,∆tn−1 = 1,∆tn = 2). Then

fj ,n =


∑

0≤k≤J g
2
j ,k,1 n = 1∑

0≤k≤J g
2
j ,k,n −

∑
0≤i≤J g

2
i ,j ,n−1

=
∑

0≤i≤J g
1
i ,j ,n−1 −

∑
0≤k≤J g

1
j ,k,n 1 < n < N

pj ,N −
∑

0≤i≤J g
2
i ,j ,N−1 =

∑
0≤i≤J g

1
i ,j ,N−1 n = N

.

We set g2
j ,k,0 = 0 and g2

j ,k,N = pj ,N I{j=k}. The equation for F

simplifies to fj ,n =
∑

0≤k≤J g
2
j ,k,n −

∑
0≤i≤J g

2
i ,j ,n−1.



Processes on a bounded lattice

Linear Program

The pricing problem LX ,TP is to find the value ΦX ,T = ΦX ,T (a,C):
i.e. to find the (J + 1)× N matrix F and the two
(J + 1)× (J + 1)× (N − 1) matrices G1 and G2 which maximise∑

1≤n≤N

∑
0≤j≤J

a(xj , tn)fj ,n

subject to F ≥ 0, G1 ≥ 0, G2 ≥ 0, and

(a)
∑

0≤k≤J(g1
j ,k,n + g2

j ,k,n) = pj ,n.

(b)
∑

0≤i≤J(g1
i ,j ,n−1 + g2

i ,j ,n−1) = pj ,n.

(c)
∑

0≤k≤J(xk − xj)g
1
j ,k,n = 0.

(d)
∑

0≤k≤J(xk − xj)g
2
j ,k,n = 0.

(e) fj ,n −
∑

0≤k≤J g
2
j ,k,n +

∑
0≤i≤J g

2
i ,j ,n−1≤0



Processes on a bounded lattice

Linear Program

The hedging problem LX ,TH is to:
find the three (J + 1)× N matrices E1, E2 and V and the two
(J + 1)× (N − 1) matrices D1 and D2 which minimise∑

0≤j≤J,1≤n≤N
(e1

j ,n + e2
j ,n)pj ,n +

∑
0≤j≤J

vj ,Npj ,N

subject to V ≥ 0, and

(i) vj ,n ≥ a(xj , tn);

(ii) e1
j ,n + e2

k,n+1 + (xk − xj)d
1
j ,n ≥ 0;

(iii) e1
j ,n + e2

k,n+1 + (xk − xj)d
2
j ,n − vj ,n + vk,n+1 ≥ 0;

and e1
j ,N = e2

j ,1 = 0.

Let the optimum value be given by ΨX ,T = ΨX ,T (a,C).



Processes on a bounded lattice

Definition

Given three (J + 1)× N matrices E1, E2 and V and two
(J + 1)× (N − 1) matrices D1 and D2, the quintuple
(E1,E2,D1,D2,V) can be interpreted as a semi-static trading
strategy for the agent in the following sense:

1. Let bj ,n = (e1
j ,n + e2

j ,n) for 1 ≤ n ≤ N − 1 and

bj ,N = (e1
j ,N + e2

j ,N + vj ,N).

2. Let θ1
tn(xt1 , . . . , xtn) = θ1

tn(xtn) = d1
j ,n if xtn = xj .

3. Let θ2
tn(xt1 , . . . , xtn , σ) = θ2

tn(xtn) = d2
j ,n if xtn = xj .

Proposition

If the quintuple (E1,E2,D1,D2,V) is feasible for LX ,TH and if
xtn ∈ X for 1 ≤ n ≤ N then the semi-static trading strategy in the
Definition super-replicates the American claim.



Processes on a bounded lattice

hn(x) =
∑

0≤j≤J hj ,nI{x=xj}; N (t) = min{tn : tn ≥ t}.
Suppose that X follows the path (s0, y1, . . . , yN) with yi ∈ X . The
terminal payoff GT = GT (y1, . . . , yN , τ) is

GT =
N∑

n=1

(e1
n(yn) + e2

n(yn)) + vN(yN) +

N (τ)−1∑
1

(yn+1 − yn)d1
n (yn)

+
N−1∑
N (τ)

(yn+1 − yn)d2
n (yn)

This can be rewritten as

a(yτ , τ) + e2
1 (y1) + e1

N(yN) + {vN (τ)(yτ )− a(yτ , τ)}

+

N (τ)−1∑
1

{
e1
n(yn) + e2

n+1(yn+1) + (yn+1 − yn)d1
n (yn)

}
+

N−1∑
N (τ)

{
e1
n(yn) + e2

n+1(yn+1) + (yn+1 − yn)d2
n (yn)− vn(yn) + vn+1(yn+1)

}



Processes on a bounded lattice

The main result repeated

Theorem

ΦX ,T (a,C)

= sup
M∈MX ,T2 (C)

EM [a(Xτ∆
, τ∆)] = sup

M∈MX ,T2 (C)

φa(M)

= PX ,T (a,C)=HX ,T (a,C)

= inf
(B,Θ)∈SX ,TM (a)

HC(B,Θ)

= ΨX ,T (a,C).



Extensions

Extension to processes on R+ × T .

Assumption

Time is discrete and takes values in the finite set T0. The price
process X = (Xt)t∈T0 takes values in R+. a is defined on R+ × T
and in addition to being positive, a is convex in its first argument
and limx↑∞ a(x , tn)/x < R.

Theorem

ΦX ,T (a,C) = PR+,T (a,C) = HR+,T (a,C) = ΨX ,T (a,C).

The most expensive model-based price amongst models which are
consistent with the observed call prices is attained by a
price/regime model in which the price only takes values in X — an
element of MX ,T2 (C).



Extensions

Extension to processes on T = [0,T ].

Assumption

Time is continuous and takes values in the set T = [0,T ]. The
price process X = (Xt)t∈T takes values in R+. The American
option payoff A : R+ × T 7→ R is positive, convex in its first
argument with limx A(x , t)/x < R for each t ∈ [0,T ] and
decreasing in its second argument.

Theorem

Define a(x , tk) = limt↓tk−1
A(x , t) = A(x , tk−1+). Then

ΦX ,T (a,C) = sup
M∈MR+,T(C)

φA(M) = inf
(B,Θ)∈SR+,T(A)

HC(B) = ΨX ,T (a,C).



Extensions

Extension to call price sets with no call of zero price
Return to the discrete time setting.

Assume the American option payoff a : R+ × T 7→ R is positive,
convex and has at most linear growth.

Assumption

The set of option prices has the following properties:

I For 1 ≤ n ≤ N, s0 = c0,n > c1,n > c2,n > cJ,n > 0.

I For 1 ≤ n ≤ N,
1 >

c0,n−c1,n

x1
>

c1,n−c2,n

x2−x1
> · · · > cJ−1,n−cJ,n

xJ−xJ−1
> 0.

I For 1 ≤ n ≤ N − 1, and for 1 ≤ j ≤ J, cj ,n+1 > cj ,n.

Theorem

ΦX ,∞,T (a,C) = PR+,T (a,C) = HR+,T (a,C) = ΨX ,∞,T (a,C).



Extensions

Introduce the (J + 2)× N matrix P̂ via p̂j ,n = pj ,n for 0 ≤ j ≤ J
and p̂J+1,n = cJ,n.

Linear Program

The pricing problem LX ,∞,TP is to find (J + 2)× N matrix F and
(J + 2)× (J + 2)× (N − 1) matrices G1 and G2 which maximise∑

0≤j≤J

∑
1≤n≤N

a(xj , tn)fj ,n +
∑

1≤n≤N
fJ+1,n lim

x↑∞

a(x , tn)

x

subject to F ≥ 0, G1 ≥ 0, G2 ≥ 0, and

(a)
∑

0≤k≤J(g1
j ,k,n + g2

j ,k,n) = p̂j ,n; 0 ≤ j ≤ J,∑
0≤k≤J+1(g1

J+1,k,n + g2
J+1,k,n) = p̂J+1,n;

(b) . . .

Let the optimum value be given by ΦX ,∞,T = ΦX ,∞,T (a,C).



Extensions

There is no consistent model in MX ,T2 (C) for which the model
price equals ΦX ,∞,T (a,C).

Instead, we give a sequence of consistent models for which the
model based price converges to ΦX ,∞,T .



An Example

An Example

The current price of the underlying is 100. T = {t1, . . . , tN = T},
K = {50, 100, 150}.
Let (qm)1≤m≤N be a set of probabilities which sum to 1.

Define the set of call option prices by C = cj ,n where for 1 ≤ n ≤ N

cj ,n =


100 j = 0
50 j = 1
25
∑n

i=1 qi j = 2
0 j = 3

Consider now an American option which has payoff
a(x , tn) = (bn − x)+ where (bn)n∈N={1,...,N} is decreasing with
100 < b1 < 150. The option must be exercised at one of the dates
{t1, . . . tN}. Set aj ,n = a(xj , tn).



An Example

For the primal pricing problem define G1 and G2 via

g1
2,1,n =

qn+1

2
I{n≤n∗−1} g1

2,2,n =
n∗∑
n+2

qi g1
2,3,n =

qn+1

2
I{n≤n∗−1}

g2
1,1,n =

1

2

∑
m≤n

qm g2
2,1,n =

qn+1

2
I{n≥n∗} g2

2,2,n =
N∑

(n∗+1)∨(n+2)

qm

g2
2,3,n =

qn+1

2
I{n≥n∗} g2

3,3,n =
1

2

∑
m≤n

qm

all other entries being zero. The entries of F are given by

f1,n =
qn
2
I{n≤n∗} f2,n =

(
N∑

n∗+1

qi

)
I{n=1} f3,n =

qn
2
I{n≤n∗}

The model based price of the American call (using the stopping
time τ = inf{tm ∈ T : ∆tm = 2}) is

Φ =
∑
j ,n

fj ,naj ,n = (b1 − 100)
N∑

n∗+1

qi +
n∗∑
1

qn
2

(bn − 50)



An Example

Set D1 = 0, E2 = 0 and define V, D2 and E1 by

v0,n = max{bn, 3(b1 − 100)}
v1,n = (bn − 50)I{n≤n∗} + 2(b1 − 100)I{n>n∗}
v2,n = (b1 − 100)
v3,n = 0

e1
j ,n = (vj ,n − vj ,n+1)

for 0 ≤ j < 3, d2
j ,n = (vj+1,n+1 − vj ,n+1)/50 with d2

J,n = 0

The feasibility conditions of the dual problem are satisfied.

Further, Ψ =
∑

j ,n(e1
j ,n + e2

j ,n)pj ,n +
∑

j vj ,Npj ,N is given by

Ψ =
n∗∑
1

(bn − 50)
qn
2

+ (b1 − 100)
N∑

n∗+1

qm
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