(K, N) exponentially concave functions, and short-term relative arbitrage

Soumik Pal University of Washington, Seattle

ETH, Sep 16, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Goal of the talk

・ロト ・ 日 ・ モー ・ モー ・ うへぐ

Exponential concavity

• φ defined on an open convex $D \subset \mathbb{R}^n$ is exponentially concave if

$$\Phi := e^{\varphi}$$

is concave.

- Primarily interested in $D = \Delta$, unit simplex in \mathbb{R}^n .
- positive coordinates, adds to 1.
- Market: *n* stocks. $\mu = (\mu_1, \ldots, \mu_n) \in \Delta$.
- Market weights:

 μ_i = Proportion of the total capital that belongs to *i*th stock.

ション ふゆ アメリア メリア しょうくの

Portfolios

- All long portfolio: $\pi = (\pi_1, \ldots, \pi_n) \in \Delta$.
- Portfolio weights:

 π_i = Proportion of the total value that belongs to *i*th stock.

イロト 不良 アイボア イボ うくの

- For us $\pi = \pi(\mu) : \Delta \to \overline{\Delta}$.
- Function from unit simplex to its closure.
- $\pi(\mu) \equiv \mu$ Market portfolio, a buy-and-hold portfolio.

Relative value

- $V_{\pi}(\cdot)$ Value process of π . $V_{\pi}(0) =$ 1.
- $V_{\mu}(\cdot)$ Index. $V_{\mu}(0) =$ 1. Self-financing.
- Relative value process: $V(t) = V_{\pi}(t)/V_{\mu}(t)$.
- **Relative arbitrage**: for some $q \in (0,1)$ and T > 0,

$$P(V(T) \ge 1) = 1, \quad P(V(T) > 1) > 0, \quad P\left(\inf_{0 \le t \le T} V(t) \ge q\right) = 1.$$

- **Qn**: Do relative arbitrages exist? Can we estimate *T*?
- Challenge: Make minimal modeling assumptions. Model-free strategies.

The Fernholz decomposition

- φ exponentially concave on Δ .
- For $\mu \in \Delta$, define **FGP**

$$\frac{\pi_i}{\mu_i} = 1 + D_{e_i - \mu}\varphi, \quad i = 1, 2, \dots, n.$$

• Then $\pi: \Delta \to \overline{\Delta}$ is a portfolio map. $\mu(t)$ Itô process:

$$\log V(t) = \varphi(\mu(t)) - \varphi(\mu(0)) - \frac{1}{2} \int_0^t \frac{1}{\Phi} \operatorname{Hess}\Phi(d\mu(s)).$$

Under diversity, range(φ) is bounded. Under 'volatility', the second part grows unbounded. Long term model-free relative arbitrage.

Long-term vs. Short-term relative arbitrages.

- A high-dimensional **Definition**.
- Family of equity markets for each n. Portfolio $\pi(n)$ for each n.
- $\pi(n)$ beats the market by time T_n .
- **Long term**: $\lim_{n\to\infty} T_n = \infty$. Short term: $\lim_{n\to\infty} T_n = 0$.
- Typical examples of FGP portfolios in SPT are long-term relative arbitrages under diversity and volatility.
- Relevant: P.-Wong ('14) proved the converse.
- In discrete time, in the absence of any modeling assumptions, the only relative arbitrage portfolios maps from Δ to Δ are FGP.

Are short-term relative arbitrages possible?

- Do model-free short-term relative arbitrages exist?
- Model dependent examples are known.
- The source of arbitrage can be large in two ways:

$$-\frac{1}{\Phi}$$
Hess $\Phi(d\mu(t))$

うして ふぼう ふほう ふほう ふしつ

- Either very large volatility, or very concave Φ.
- Very concave Φ affects its range, and hence risky.

The Volatility-Stabilized model example

- A large volatility example provided by Fernholz-Karatzas '05, Banner-Fernholz '08.
- Let $\tau_i(t)$ diffusion coefficient of log $\mu_i(t)$:

$$au_i(t) = rac{d}{dt} \left< \log \mu_i(t) \right> = rac{1}{\mu_i^2} rac{d}{dt} \left< \mu_i, \mu_i \right> (t).$$

ション ふゆ アメリア メリア しょうくの

• Consider ranked market weights: $\mu_{(n)}(t) \le \mu_{(n-1)}(t) \le \cdots \le \mu_{(1)}(t).$

The Volatility-Stabilized model example

Assume $\exists C > 0$ such that

$$au_{(n)}(t) \geq rac{\mathcal{C}}{\mu_{(n)}(t)} \geq Cn, \quad ext{for all } t \geq 0.$$

• (Fernholz-Karatzas '05). Relative arbitrage exists over time $[0, T_n]$ where

$$T_n = \frac{2\mathrm{Ent}\left(\mu(0)\right)}{n-1}$$

ション ふゆ アメリア メリア しょうくの

- Proof is a direct application of Fernholz's decomposition.
- (Banner-Fernholz '08) Exists over $[0, \delta]$ for any $\delta > 0$ for any n.

Capital distribution curve

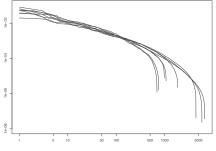


Figure 1: Capital distribution curves: 1929–1999

- The extreme volatility assumption is crucial and does not fit capital distribution curve.
- log $\mu_{(i)}$ vs. log *i* data is roughly linear with slope \approx negative **one**.
- Volatility stabilized models do not produce such stable shapes.

Goal of the talk

 Will construct short-term relative arbitrages that work even under bounded volatility τ_i assumption.

イロト 不良 アイボア イボ うくの

- If time permits, we will talk a little bit about the underlying geometry.
- The main idea is high dimensional convex geometry and concentration of measure.

Short-term relative arbitrage in high dimensions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

The Pareto distribution

- **1**. Fix $n \in \mathbb{N}$.
- 2. $\alpha \in \Delta$ such that $\alpha_i \propto 1/i$, Pareto(-1).

$$\alpha_i = \frac{1/i}{\sum_{j=1}^n 1/j} \approx \frac{1}{i \log n}$$

ション ふゆ アメリア メリア しょうくの

- 3. Suppose $\mu(0) \in K$, a **typical neighborhood** around α .
- 4. Will discuss what typical means.
- 5. The indices (μ_1, \ldots, μ_n) are chosen by rank.

Main theorem: idea

• Main idea: the top ranks fluctuate less than the bottom ranks.

Main theorem: idea

- Main idea: the top ranks fluctuate less than the bottom ranks.
- Let $X_i = n\mu_i$. Assume continuous semimartingales.

$$\mu_i = \frac{X_i}{\sum_{j=1}^n X_j}, \quad i = 1, 2, \dots, n.$$

Intuition: X_i is approximately price of the *i*th stock price if $\sum_{i=1}^{n} X_i \approx n$.

Main theorem: idea

- Main idea: the top ranks fluctuate less than the bottom ranks.
- Let $X_i = n\mu_i$. Assume continuous semimartingales.

$$\mu_i = \frac{X_i}{\sum_{j=1}^n X_j}, \quad i = 1, 2, \dots, n.$$

- Intuition: X_i is approximately price of the *i*th stock price if $\sum_{i=1}^{n} X_i \approx n$.
- Divide the index as

$$A = \left[1, \frac{n}{(\log n)^2}\right], \qquad B = \left[\frac{n}{(\log n)^2} + 1, n\right].$$

If n = 5000, $|A| \approx 68$. Vanishing fraction of n for large n.

Main theorem:assumptions

Suppose $\exists T \in (0,1)$, and $\alpha(T), C(T), \lambda(T) > 0$ independent of n such that ...

Main theorem:assumptions

- Suppose $\exists T \in (0,1)$, and $\alpha(T), C(T), \lambda(T) > 0$ independent of n such that ...
- For $i \in A$, exponential tails:

$$P\left(\sup_{0\leq t\leq T}\frac{X_i(t)-X_i(0)}{t^{\alpha}\sqrt{X_i(0)}}>a\right)\leq Ce^{-\lambda a}$$

For $i \in B$, moment bound:

$$\mathbb{E}\left(\sup_{0\leq t\leq \tau}\frac{X_{i}(t)-X_{i}(0)}{t^{\alpha}\sqrt{X_{i}(0)}}\right)^{2}\leq C.$$

• Assume $\exists \underline{\tau} > 0$ such that

$$au_i = rac{d}{dt} \left\langle \log \mu_i(t) \right\rangle \geq \underline{ au}, \quad ext{for all } i.$$

イロト 不良 アイボア イボ うくの

Main theorem:statement

Theorem (P.-'15)

Suppose \exists (Ω, \mathcal{F}, P) such that, for every n, a market of dimension n exists satisfying the previous conditions. There exists portfolio maps π_n , for each n, such that

Almost surely, $\exists n_0$ such that for all $n \ge n_0$, the relative value of π_n is strictly larger than one by time

$$O\left(\frac{(\log n)^2}{n}\right).$$

■ For all n ≥ n₀, a.s., the relative value never drops below 1/2 during that time interval.

ション ふゆ アメリア メリア しょうくの

Main theorem:statement

Theorem (P.-'15)

Suppose \exists (Ω, \mathcal{F}, P) such that, for every n, a market of dimension n exists satisfying the previous conditions. There exists portfolio maps π_n , for each n, such that

Almost surely, $\exists n_0$ such that for all $n \ge n_0$, the relative value of π_n is strictly larger than one by time

$$O\left(\frac{(\log n)^2}{n}\right).$$

- For all n ≥ n₀, a.s., the relative value never drops below 1/2 during that time interval.
- High dimensional short-term strong relative arbitrage.

Idea: Big ranks do not change drastically very fast.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Idea: Big ranks do not change drastically very fast.

イロト 不良 アイボア イボ うくの

- What processes satisfy exponential tails?
- Example: X_i is BESQ(δ) with $X_i(0) \gg 1$.

Idea: Big ranks do not change drastically very fast.

ション ふゆ アメリア メリア しょうくの

- What processes satisfy exponential tails?
- Example: X_i is BESQ(δ) with $X_i(0) \gg 1$.
- What processes satisfy the variance bound?

Idea: Big ranks do not change drastically very fast.

うして ふぼう ふほう ふほう ふしつ

- What processes satisfy exponential tails?
- Example: X_i is $BESQ(\delta)$ with $X_i(0) \gg 1$.
- What processes satisfy the variance bound?
- Example: X_i is GBM and $X_i(0)$ bounded.

Idea: Big ranks do not change drastically very fast.

うして ふぼう ふほう ふほう しょう

- What processes satisfy exponential tails?
- Example: X_i is $BESQ(\delta)$ with $X_i(0) \gg 1$.
- What processes satisfy the variance bound?
- Example: X_i is GBM and $X_i(0)$ bounded.
- VSM satisfies all conditions.
- We only need local bounds $T \approx 0$.

The construction: high-dimensional convex analysis

(K,N) exponential concavity

 (Erbar-Kuwada-Sturm '14) A function φ is (K, N) exponentially concave if Φ := exp (φ/N) is concave and satisfies:

$$\frac{1}{\Phi} \text{Hess } \Phi \leq -\frac{K}{N}I.$$

ション ふゆ アメリア メリア しょうくの

- They have somewhat general definition. Related to curvature-dimension inequalities. Bochner inequalities.
- Entropy is (1, n) exponentially concave in $\mathcal{P}_2(\mathbb{R}^n, \|\cdot\|)$.

(K,N) exponential concavity

 (Erbar-Kuwada-Sturm '14) A function φ is (K, N) exponentially concave if Φ := exp (φ/N) is concave and satisfies:

$$\frac{1}{\Phi} \text{Hess } \Phi \leq -\frac{K}{N}I.$$

- They have somewhat general definition. Related to curvature-dimension inequalities. Bochner inequalities.
- Entropy is (1, n) exponentially concave in $\mathcal{P}_2(\mathbb{R}^n, \|\cdot\|)$.
- We are interested in (n, 1) exponentially concave functions in dimension n. That is, φ is exponentially concave and

$$\frac{1}{\Phi} \text{Hess } \Phi \leq -nl.$$

Do such functions exist?

- The diameter of the domain of the function must be at most $O\left(1/\sqrt{n}\right)$.
- Example: Fix $x_0 \in \mathbb{R}^n$ and let

$$\varphi(x) = \log \cos \left(\sqrt{n} \left\|x - x_0\right\|\right), \quad \left\|x - x_0\right\| < \frac{\pi}{2\sqrt{n}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• What other natural set has diameter $1/\sqrt{n}$?

Do such functions exist?

- The diameter of the domain of the function must be at most $O\left(1/\sqrt{n}\right)$.
- Example: Fix $x_0 \in \mathbb{R}^n$ and let

$$\varphi(x) = \log \cos \left(\sqrt{n} \|x - x_0\| \right), \quad \|x - x_0\| < \frac{\pi}{2\sqrt{n}}.$$

- What other natural set has diameter $1/\sqrt{n}$?
- Unit simplex in dimension *n* has **typical** diameter $\approx 1/\sqrt{n}$ around $x_0 = (1/n, \dots, 1/n)$.
- Concentration of measure. Most of the volume is at most $1\sqrt{n}$ away from x_0 . But not all ...

ション ふゆ アメリア メリア しょうくの

Back to Pareto

Recall $\alpha \in \Delta$, $\alpha_i \propto 1/i$.

- We will take $x_0 = \alpha$. Atypical for uniform distribution on Δ .
- Reference measure: Dirichlet($n\alpha$). Density

$$p(x) \propto \prod_{i=1}^n x_i^{n\alpha_i-1}, \quad x \in \Delta.$$

Same exponential family as uniform. Just a shift of mean.

$$E(X) = \alpha, \quad X \sim \text{Diri}(n\alpha),$$

Var(X) $\approx \frac{\alpha_i}{n}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Typical neighborhood

Domain of
$$\varphi(x) = \log \cos \left(\sqrt{n} \|x - \alpha\| \right)$$
 is
$$\left\{ x : \sqrt{n} \|x - \alpha\| < \pi/2 \right\}.$$

Lemma: For any r > 0,

$$\mathsf{Diri}\left(\sqrt{n} \, \|X - \alpha\| > 1 + r\right) \le \frac{c}{(1+r)^2 \log n}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Typical neighborhood

• Domain of
$$\varphi(x) = \log \cos \left(\sqrt{n} \|x - \alpha\| \right)$$
 is
$$\left\{ x : \sqrt{n} \|x - \alpha\| < \pi/2 \right\}.$$

Lemma: For any r > 0,

$$\mathsf{Diri}\left(\sqrt{n} \, \|X - \alpha\| > 1 + r\right) \le \frac{c}{(1+r)^2 \log n}.$$

LCL

$$\mathcal{K} = \left\{ x \in \Delta : \ \sqrt{n} \, \| x - \alpha \| \le \pi/3.1 \right\}, \quad 1 < \pi/3.1 < \pi/2.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Then $\text{Diri}(K) \approx 1$ and $K \subseteq \text{Dom}(\varphi)$. Assume $\mu(0) \in K$.

The drift process

• Choose $K \subset K_1 \subset \text{Domain}(\varphi)$. Say

$$K_1 := \left\{ x : \sqrt{n} \| x - \alpha \| < \frac{\pi}{3} \right\}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Starting from inside K, how long does it take to exit K_1 ?

The drift process

• Choose $K \subset K_1 \subset \text{Domain}(\varphi)$. Say

$$\mathcal{K}_1 := \left\{ x : \sqrt{n} \| x - \alpha \| < \frac{\pi}{3} \right\}.$$

Starting from inside K, how long does it take to exit K₁?
At least reciprocal of poly-log n with high probability

$$\frac{1}{(\log n)^2}$$

イロト 不良 アイボア イボ うくの

Exit time from a typical set

Lemma

Let $\varsigma = \inf \{t \ge 0 : \mu(t) \notin K_1\}$. If $\mu(0) \in K$, then

$$P\left(\varsigma > \frac{1}{(\log n)^2}\right) \ge 1 - O\left(\frac{1}{n^{\gamma}}\right), \quad \gamma > 1.$$

On K_1 , we get

$$-rac{1}{\Phi} ext{Hess }\Phi(d\mu(t))\geq rac{ au}{4}rac{n}{\left(\log n
ight)^2}dt.$$

The range of φ on K_1 is bounded by

$$-\log\cos(\pi/3) = \log 2.$$

Construction of the relative arbitrage

Recall Fernholz's decomposition:

$$\log V(t) = \varphi(\mu(t)) - \varphi(\mu(0)) - \frac{1}{2} \int_0^t \frac{1}{\Phi} \operatorname{Hess}\Phi(d\mu(s)).$$

- Within K_1 , the first part is bounded by log 2, while drift increases at rate $n/(\log n)^2$.
- Thus, relative arbitrage happens by time

$$O\left(\frac{(\log n)^2}{n}\right),$$

unless $\varsigma < 1/(\log n)^2$, which is very unlikely.

Use Borel-Cantelli to get almost sure statement. Done!

Information geometry of the unit simplex

Multiplicative cyclical monotonicity

- Why are exponentially concave functions necessary?
- Relative value process $V = V_{\pi}/V_{\mu}$.

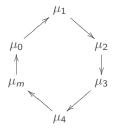
$$\frac{\Delta V(t)}{V(t)} = \sum_{i=1}^{n} \pi_i(t) \frac{\Delta \mu_i(t)}{\mu_i(t)}.$$

• Fix T > 0. V(0) = 1.

$$V(T) = \prod_{t=0}^{T-1} \left(1 + \left\langle \frac{\pi(\mu(t))}{\mu(t)}, \mu(t+1) - \mu(t) \right\rangle \right).$$

・ロト・西ト・ヨト・ヨー もんぐ

The special case of cycles



- Market cycles through a sequence of size *m*.
- Let $\eta = V(m+1)$. Dichotomy:

$$\eta < 1$$
, or $\eta \ge 1$.

・ロト ・ 日 ・ ・ 日 ・ ・

3.1

• After k cycles: $V(k(m+1)) = \eta^k$.

Multiplicative Cyclical Monotonicity

• If
$$\eta < 1$$
, the $\lim_{t \to \infty} V(t) = \lim_{k \to \infty} \eta^k = 0.$

• π not a relative-arbitrage.

Multiplicative Cyclical Monotonicity

If
$$\eta < 1$$
, the
$$\lim_{t o \infty} V(t) = \lim_{k o \infty} \eta^k = 0.$$

- π not a relative-arbitrage.
- Say π is **not** MCM if such a cycle exists.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• Otherwise π is MCM.

Theorem (P.-Wong '14) Suppose π is MCM. $\exists \Phi : \Delta \rightarrow (0, \infty)$, concave:

$$\frac{\pi_i}{\mu_i} = 1 + D_{e_i - \mu} \log \Phi(\mu).$$

If Φ not affine, π is a pseudo-arbitrage in discrete/continuous time.

 $Outperformance \ over \ cycles \Leftrightarrow a symptotic \ outperformance \ over \ all \ paths.$

イロト 不良 アイボア イボ うくの

Many congratulations to Joseph and Walter!

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ