Asymptotic Lower Bounds for Optimal Tracking A Linear Programming Approach

J. Cai ${ }^{1} \quad$ M. Rosenbaum ${ }^{2} \quad$ P. Tankov ${ }^{1}$
${ }^{1}$ LPMA, Université Paris Diderot (Paris 7)
${ }^{2}$ LPMA, Université Pierre et Marie Curie (Paris 6)

16 September 2015

Outline

(1) Formulation of Tracking Problem

- Cost Structure and Control Types
- Asymptotic Framework
(2) Main Results
- Asymptotic Lower Bounds
- Closed-form Examples in Dimension One
- Relation with Utility Maximization
(3) Elements of Proof
- Occupation Measures
- Interpretation as Time-average Control of BM

Tracking Problem

- An agent observes a stochastic target X° in \mathbb{R}^{d} :

$$
d X_{t}^{\circ}=b_{t} d t+\sqrt{a}_{t} d W_{t}, \quad X_{0}^{\circ}=0 .
$$

- And adjusts her position $\left(\psi_{t}\right)_{t \geq 0}$ to minimize the deviation X :

$$
X_{t}=-X_{t}^{\circ}+\psi_{t}
$$

- The objective of the agent is given by :

$$
\inf _{\left(\psi_{t}\right) \in \mathcal{A}} J(\psi), \quad J(\psi)=H_{0}(X)+H(\psi),
$$

where H_{0} is the deviation penalty and H the tracking effort.

Tracking Problem

- Deviation penalty $H_{0}(X)$ is given by :

$$
H_{0}(X)=\int_{0}^{T} r_{t} D\left(X_{t}\right) d t,
$$

where

- $\left(r_{t}\right)$ is a random weight process,
- $D(\varepsilon x)=\varepsilon^{\zeta_{D}} D(x)$, e.g. $D(x)=\left\langle x, \Sigma^{D} x\right\rangle, \zeta_{D}=2$.
- Tracking effort $H(\psi)$ depends on the cost structure.

Outline

(1) Formulation of Tracking Problem

- Cost Structure and Control Types
- Asymptotic Framework
(2) Main Results
- Asymptotic Lower Bounds
- Closed-form Examples in Dimension One
- Relation with Utility Maximization
(3) Elements of Proof
- Occupation Measures
- Interpretation as Time-average Control of BM

Fixed Costs and Impulse Control

- The process $\left(\psi_{t}\right)$ is given by

$$
\psi_{t}=\sum_{0<\tau_{j} \leq t} \xi_{j} .
$$

- The cumulated cost is then given by

$$
H(\psi)=\sum_{0<\tau_{j} \leq T} k_{\tau_{j}} F\left(\xi_{j}\right)+h_{\tau_{j}} P\left(\xi_{j}\right),
$$

- $\left(k_{t}\right)$ and $\left(h_{t}\right)$ are random weight processes.
- $F(\varepsilon \xi)=\varepsilon^{\zeta_{F}} F(\xi), \zeta_{F}=0$, e.g. $F(\xi)=\sum_{i} \mathbb{1}_{\left\{\xi^{\prime} \neq 0\right\}}, \xi=\left(\xi^{1}, \cdots, \xi^{d}\right)^{T}$.
- $P(\varepsilon \xi)=\varepsilon^{\zeta_{P}} P(\xi), \zeta_{P}=1$, e.g. $P(\xi)=\langle p,| \xi| \rangle, p \in \mathbb{R}_{+}^{d}$.
- Examples:
- Discretization of hedging strategies (Fukasawa 2011, 2014, Rosenbaum and Tankov 2012, Gobet and Landon 2014).
- Indifference pricing for option with fixed costs (Wilmott and Whalley 1999).
- Management of index fund (Korn 1999, Atkison and Wilmott 1995, Pliska and Suzuki 2004).
- Utility maximization under fixed costs (Morton and Pliska 1995, Altorovici et al. 2013).

Proportional Costs and Singular Control

- The process $\left(\psi_{t}\right)$ is given by

$$
\psi_{t}=\int_{0}^{t} \gamma_{s} d \varphi_{s}
$$

with $\gamma_{s} \in \Delta=\left\{\gamma \in \mathbb{R}^{d}\left|\sum_{i=1}^{d}\right| \gamma^{i} \mid=1\right\}$ and $\left(\varphi_{s}\right)$ non-decreasing.

- The corresponding cost is usually given as

$$
H(\psi)=\int_{0}^{T} h_{t} P\left(\gamma_{t}\right) d \varphi_{t}
$$

- $\left(h_{t}\right)$ is a random weight process.
- $P(\varepsilon \gamma)=\varepsilon^{\zeta_{P}} P(\gamma), \zeta_{P}=1$, e.g. $P(\gamma)=\langle p,| \gamma| \rangle$ with $p \in \mathbb{R}_{+}^{d}$.
- Examples:
- Utility maximization under proportional costs (Jenecek and Shreve 2004, 2010, Bichuch and Shreve 2013, Soner and Touzi 2012, Possamai et al. 2013, Gerhold et al. 2013, Kallsen and Muhle-Karbe 2013).
- Indifference pricing for option under proportional costs (Davis et al. 1993, Wilmott and Whalley 1997).
- Trend following (Martin and Schöneborn 2011, Martin 2012).

(Absolutely Continuous) Stochastic Control

- The process $\left(\psi_{t}\right)$ is given by

$$
\psi_{t}=\int_{0}^{t} u_{s} d s
$$

- A typical cost structure is

$$
H(\psi)=\int_{0}^{T} I_{t} Q\left(u_{t}\right) d t
$$

where

- $\left(I_{t}\right)$ is a random weight process.
- $Q(\varepsilon u)=\varepsilon^{\zeta_{Q}} Q(u), \zeta_{Q}>1$, e.g. $Q(u)=\left\langle u, \Sigma^{Q} u\right\rangle, \zeta_{Q}=2$.
- Examples:
- Trading with market impact/illiquidity (Almgren and Li, 2014, Rogers and Singh 2007, Guasoni and Weber 2012, 2015a, 2015b, Moreau et al. 2014).
- Trading under proportional cost and market impact (Liu et al. 2014).

Combined Controls

- In the case of combined stochastic and impulse controls, we have

$$
\psi_{t}=\sum_{0<\tau_{j} \leq t} \xi_{j}+\int_{0}^{t} u_{s} d s,
$$

- The cost functional is given by

$$
H(\psi)=\sum_{0<\tau_{j} \leq T}\left(k_{\tau_{j}} F\left(\xi_{j}\right)+h_{\tau_{j}} P\left(\xi_{j}\right)\right)+\int_{0}^{T} I_{t} Q\left(u_{t}\right) d t .
$$

Similarly, one can consider other combination of controls.

- Example :
- Control of exchange rate (Mundaca and Oksendal 1997).

Outline

(1) Formulation of Tracking Problem

- Cost Structure and Control Types
- Asymptotic Framework
(2) Main Results
- Asymptotic Lower Bounds
- Closed-form Examples in Dimension One
- Relation with Utility Maximization
(3) Elements of Proof
- Occupation Measures
- Interpretation as Time-average Control of BM

Asymptotic Framework : Small Tracking Costs

Instead of the original tracking problem:

$$
\begin{gathered}
X_{t}=-X_{t}^{\circ}+\psi_{t} \\
\inf _{\left(\psi_{t}\right) \in \mathcal{A}} J(\psi), \quad J(\psi)=H_{0}(X)+H(\psi)
\end{gathered}
$$

we consider a sequence of tracking problems :

$$
\begin{gathered}
X_{t}^{\varepsilon}=-X_{t}^{\circ}+\psi_{t}^{\varepsilon} \\
\inf _{\left(\psi_{t}^{\epsilon}\right) \in \mathcal{A}^{\varepsilon}} J^{\varepsilon}\left(\psi^{\varepsilon}\right), \quad J^{\varepsilon}\left(\psi^{\varepsilon}\right)=H_{0}\left(X^{\varepsilon}\right)+\varepsilon H\left(\psi^{\varepsilon}\right)
\end{gathered}
$$

with $\varepsilon \rightarrow 0$.

Case Study : Combined Stochastic and Impulse Controls

In the presence of several controls, we consider

$$
\inf _{\left(u^{\varepsilon}, \tau^{\varepsilon}, \xi^{\varepsilon}\right) \in \mathcal{A}^{\varepsilon}} J^{\varepsilon}\left(u^{\varepsilon}, \tau^{\varepsilon}, \xi^{\varepsilon}\right)
$$

with

$$
\begin{aligned}
J^{\varepsilon}\left(u^{\varepsilon}, \tau^{\varepsilon}, \xi^{\varepsilon}\right)=\int_{0}^{T}\left(r_{t} D\left(X_{t}^{\varepsilon}\right)+\right. & \left.\varepsilon^{\beta} Q I_{t} Q\left(u_{t}^{\varepsilon}\right)\right) d t \\
& +\sum_{j: 0<\tau_{j}^{\varepsilon} \leq T}\left(\varepsilon^{\beta_{F}} K_{\tau_{j}^{\varepsilon}} F\left(\xi_{j}^{\varepsilon}\right)+\varepsilon^{\beta_{P}} h_{\tau_{j}^{\varepsilon}} P\left(\xi_{j}^{\varepsilon}\right)\right)
\end{aligned}
$$

and

$$
X_{t}^{\varepsilon}=-X_{t}^{\circ}+\int_{0}^{t} u_{s}^{\varepsilon} d s+\sum_{j: 0<\tau_{j}^{\varepsilon} \leq t} \xi_{j}^{\varepsilon}
$$

The constants $\beta_{Q}, \beta_{F}, \beta_{P}$ are to be determined.

Let $\left\{t_{k}^{\varepsilon}=k \delta^{\varepsilon}, k=0,1, \cdots, K^{\varepsilon}\right\}$ be a partition of $[0, T]$ with $\delta^{\varepsilon} \rightarrow 0$.

$$
\begin{aligned}
J^{\varepsilon}\left(u^{\varepsilon}, \tau^{\varepsilon}, \xi^{\varepsilon}\right)= & \sum_{k=0}^{K^{\varepsilon}-1}\left(\int_{t_{k}^{\varepsilon}}^{t_{k}^{\epsilon}+\delta^{\varepsilon}}\left(r_{t} D\left(X_{t}^{\varepsilon}\right)+\varepsilon^{\beta \alpha} a_{t} Q\left(u_{t}^{\varepsilon}\right)\right) d t\right. \\
& \left.+\sum_{j: t_{k}^{t_{k}}<\tau_{j}^{\varepsilon} \leq t_{k}^{\varepsilon}+\delta^{\varepsilon}}\left(\varepsilon^{\beta \digamma} K_{\tau_{j}^{\varepsilon}} F\left(\xi_{j}^{\varepsilon}\right)+\varepsilon^{\beta P} h_{\tau_{j}^{\varepsilon}} P\left(\xi_{j}^{\varepsilon}\right)\right)\right) \\
= & \sum_{k=0}^{K^{\varepsilon}-1} j_{t_{k}^{\varepsilon}}^{\varepsilon_{k}^{\varepsilon}}\left(t_{k+1}^{\varepsilon}-t_{k}^{\varepsilon}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
j_{t}^{\varepsilon}=\frac{1}{\delta^{\varepsilon}}\left(\int _ { t } ^ { t + \delta ^ { \varepsilon } } \left(r_{s} D\left(X_{s}^{\varepsilon}\right)+\right.\right. & \left.\varepsilon^{\beta_{Q}} l_{s} Q\left(u_{s}^{\varepsilon}\right)\right) d s \\
& \left.+\sum_{j: t<\tau_{j}^{\varepsilon} \leq t+\delta^{\varepsilon}}\left(\varepsilon^{\beta F} k_{\tau_{j}^{\varepsilon}} F\left(\xi_{j}^{\varepsilon}\right)+\varepsilon^{\beta_{P}} h_{\tau_{j}^{\varepsilon}} P\left(\xi_{j}^{\varepsilon}\right)\right)\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
j_{t}^{\varepsilon}=\frac{1}{\delta^{\varepsilon}}\left(\int _ { t } ^ { t + \delta ^ { \varepsilon } } \left(r_{s} D\left(X_{s}^{\varepsilon}\right)+\right.\right. & \left.\varepsilon^{\beta}{ }_{Q} l_{s} Q\left(u_{s}^{\varepsilon}\right)\right) d s \\
& \left.+\sum_{j: t<\tau_{j}^{\varepsilon} \leq t+\delta^{\varepsilon}}\left(\varepsilon^{\beta_{F}} k_{\tau_{j}^{\varepsilon}} F\left(\xi_{j}^{\varepsilon}\right)+\varepsilon^{\beta P} h_{\tau_{j}^{\varepsilon}} P\left(\xi_{j}^{\varepsilon}\right)\right)\right)
\end{aligned}
$$

and as ε tends to zero, we approximately get

$$
J^{\varepsilon}\left(u^{\varepsilon}, \tau^{\varepsilon}, \xi^{\varepsilon}\right) \simeq \int_{0}^{T} j_{t}^{\varepsilon} d t .
$$

Then consider the following rescaling of $\boldsymbol{X}^{\varepsilon}$ over the horizon $\left(t, t+\delta^{\varepsilon}\right]$:

$$
\widetilde{X}_{s}^{\varepsilon, t}=\frac{1}{\varepsilon^{\beta}} X_{t+\varepsilon^{\alpha \beta} s}^{\varepsilon}, \quad s \in\left(0, T^{\varepsilon}\right],
$$

with $T^{\varepsilon}=\varepsilon^{-\alpha \beta} \delta^{\varepsilon}$ and $\alpha=2$.

On the one hand, we have

$$
d \widetilde{X}_{s}^{\varepsilon, t}=\widetilde{b}_{s}^{\varepsilon, t} d s+\sqrt{\widetilde{a}_{s}^{\varepsilon, t}} d \widetilde{W}_{s}^{\varepsilon, t}+\widetilde{u}_{s}^{\varepsilon, t} d s+d\left(\sum_{0<\widetilde{\tau}_{j}^{\varepsilon, t} \leq s} \widetilde{\xi}_{j}^{\varepsilon}\right)
$$

with

$$
\begin{gathered}
\widetilde{b}_{s}^{\varepsilon, t}=-\varepsilon^{(\alpha-1) \beta} b_{t+\varepsilon^{\alpha \beta} s}, \quad \widetilde{a}_{s}^{\varepsilon, t}=a_{t+\varepsilon^{\alpha \beta} s}, \quad \widetilde{W}_{s}^{\varepsilon, t}=-\frac{1}{\varepsilon^{\beta}} W_{t+\varepsilon^{\alpha \beta} s}, \\
\widetilde{u}_{s}^{\varepsilon, t}=\varepsilon^{(\alpha-1) \beta} u_{t+\varepsilon^{\alpha \beta} s}^{\varepsilon}, \quad \widetilde{\xi}_{j}^{\varepsilon}=\frac{1}{\varepsilon^{\beta}} \xi_{j}^{\varepsilon}, \quad \widetilde{\tau}_{j}^{\varepsilon, t}=\frac{1}{\varepsilon^{\alpha \beta}}\left(\tau_{j}^{\varepsilon}-t\right) \vee 0 .
\end{gathered}
$$

By continuity of a_{t}, we have

$$
d \widetilde{X}_{s}^{\varepsilon, t} \simeq \sqrt{a_{t}} d \widetilde{W}_{s}^{\varepsilon, t}+\widetilde{u}_{s}^{\varepsilon, t} d s+d\left(\sum_{0<\tau_{j}^{\varepsilon_{j}, t} \leq s} \widetilde{\xi}_{j}^{\varepsilon}\right) .
$$

On the other hand, we have (by continuity of r_{t}, l_{t}, k_{t} and h_{t}),

$$
\begin{aligned}
& j_{t}^{\varepsilon} \simeq \frac{1}{T^{\varepsilon}}\left(\int_{0}^{T^{\varepsilon}}\left(\varepsilon^{\beta \zeta_{D}} r_{t} D\left(\widetilde{X}_{s}^{\varepsilon, t}\right)+\varepsilon^{\beta_{Q}-(\alpha-1) \zeta_{Q} \beta} l_{t} Q\left(\widetilde{u}_{s}^{\varepsilon, t}\right)\right) d s\right. \\
&\left.+\sum_{0<\widetilde{\tau}_{j}^{\varepsilon, t} \leq T^{\varepsilon}}\left(\varepsilon^{\beta_{F}-\left(\alpha-\zeta_{F}\right) \beta} k_{t} F\left(\widetilde{\xi}_{j}^{\varepsilon}\right)+\varepsilon^{\beta P-\left(\alpha-\zeta_{P}\right) \beta} h_{t} P\left(\widetilde{\xi}_{j}^{\varepsilon}\right)\right)\right)
\end{aligned}
$$

Assume that

$$
\beta \zeta_{D}=\beta_{Q}-(\alpha-1) \zeta_{Q} \beta=\beta_{F}-\left(\alpha-\zeta_{F}\right) \beta=\beta_{P}-\left(\alpha-\zeta_{P}\right) \beta,
$$

then

$$
j_{t}^{\varepsilon} \simeq \varepsilon^{\beta \zeta_{D}} I_{t}^{\varepsilon},
$$

with

$$
I_{t}^{\varepsilon}=\frac{1}{T^{\varepsilon}}\left(\int_{0}^{T^{\varepsilon}}\left(r_{t} D\left(\widetilde{X}_{s}^{\varepsilon, t}\right)+I_{t} Q\left(\widetilde{u}_{s}^{\varepsilon, t}\right)\right) d s+\sum_{0<\widetilde{\tau}_{j}^{\varepsilon, t} \leq T^{\varepsilon}}\left(k_{t} F\left(\widetilde{\xi}_{j}^{\varepsilon}\right)+h_{t} P\left(\widetilde{\xi}_{j}^{\varepsilon}\right)\right)\right)
$$

Lower Bounds and the Time-average Control of BM (TACBM)

In summary, we expect to have
where $I=I(a, r, I, k, h)$ is the optimal cost of time-average control of BM :

$$
I=\inf _{(u, \tau, \xi)} \varlimsup_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}\left[\int_{0}^{T}\left(r D\left(X_{s}\right)+I Q\left(u_{s}\right)\right) d s+\sum_{0<\tau_{j} \leq S}\left(k F\left(\xi_{j}\right)+h P\left(\xi_{j}\right)\right)\right],
$$

with

$$
d X_{s}=\sqrt{a} d W_{s}+u_{s} d s+d\left(\sum_{0<\tau_{j} \leq s} \xi_{j}\right) .
$$

Outline

（1）Formulation of Tracking Problem
－Cost Structure and Control Types
－Asymptotic Framework
（2）Main Results
－Asymptotic Lower Bounds
－Closed－form Examples in Dimension One
－Relation with Utility Maximization
（3）Elements of Proof
－Occupation Measures
－Interpretation as Time－average Control of BM

Theorem: Combined Stochastic and Impulse Controls

Consider

$$
\begin{gathered}
J^{\varepsilon}\left(u^{\varepsilon}, \tau^{\varepsilon}, \xi^{\varepsilon}\right)=\int_{0}^{T}\left(r_{t} D\left(X_{t}^{\varepsilon}\right)\right. \\
\left.+\varepsilon^{\beta Q} I_{t} Q\left(u_{t}^{\varepsilon}\right)\right) d t \\
+\sum_{j: 0<\tau_{j}^{\varepsilon} \leq T}\left(\varepsilon^{\beta_{F}} k_{\tau_{j}^{\varepsilon}} F\left(\xi_{j}^{\varepsilon}\right)+\varepsilon^{\beta P} h_{\tau_{j}^{\varepsilon}} P\left(\xi_{j}^{\varepsilon}\right)\right) \\
X_{t}^{\varepsilon}=-X_{t}^{\circ}+\int_{0}^{t} u_{s}^{\varepsilon} d s+\sum_{j: 0<\tau_{j}^{\varepsilon} \leq t} \xi_{j}^{\varepsilon}
\end{gathered}
$$

Under mild conditions, we have for any sequence $\left(u^{\varepsilon}, \tau^{\varepsilon}, \xi^{\varepsilon}\right) \in \mathcal{A}^{\varepsilon}$,

$$
\liminf _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{\beta C_{D}}} J^{\varepsilon}\left(u^{\varepsilon}, \tau^{\varepsilon}, \xi^{\varepsilon}\right) \geq_{p} \int_{0}^{T} l\left(a_{t}, r_{t}, l_{t}, k_{t}, h_{t}\right) d t .
$$

See below for an exact definition of I.

Theorem: Singular Control Only

Consider

$$
\begin{aligned}
J^{\varepsilon}\left(u^{\varepsilon}, \gamma^{\varepsilon}, \varphi^{\varepsilon}\right) & =\int_{0}^{T} r_{t} D\left(X_{t}^{\varepsilon}\right) d t+\int_{0}^{T} \varepsilon^{\beta_{P}} h_{t} P\left(\gamma_{t-}^{\varepsilon}\right) d \varphi_{t}^{\varepsilon}, \\
X_{t}^{\varepsilon} & =-X_{t}^{\odot}+\int_{0}^{t} \gamma_{s-}^{\varepsilon} d \varphi_{s}^{\varepsilon} .
\end{aligned}
$$

Under mild conditions, we have for any sequence $\left(\gamma^{\varepsilon}, \varphi^{\varepsilon}\right) \in \mathcal{A}^{\varepsilon}$,

$$
\liminf _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{\beta \zeta_{D}}} J^{\varepsilon}\left(\gamma^{\varepsilon}, \varphi^{\varepsilon}\right) \geq_{p} \int_{0}^{T} I\left(a_{t}, r_{t}, h_{t}\right) d t .
$$

Here, $I=I(a, r, h)$ can be related to
$I=\inf _{(u, \gamma, \varphi)} \varlimsup_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}\left[\int_{0}^{T} r D\left(X_{s}\right) d s+\int_{0}^{T} h P\left(\gamma_{s}\right) d \varphi_{s}\right], \quad d X_{s}=\sqrt{a} d W_{s}+\gamma_{s} d \varphi_{s}$.

Outline

Formulation of Tracking Problem

- Cost Structure and Control Types
- Asymptotic Framework
(2) Main Results
- Asymptotic Lower Bounds
- Closed-form Examples in Dimension One
- Relation with Utility Maximization
(3) Elements of Proof
- Occupation Measures
- Interpretation as Time-average Control of BM

Explicit expressions

Explicit expressions in dimension one

We obtain explicit expressions (several of them already known) for the lower bounds and optimal controls in the local and global cases in the following situations in dimension one:

- Stochastic control.
- Impulse control.
- Singular control.
- Combined Stochastic and Impulse controls.
- Combined Stochastic and Singular controls.

Explicit expressions: Combined Stochastic and Impulse controls

Local problem

$$
\varlimsup_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}\left[\int_{0}^{T}\left(r X_{t}^{2}+\mid u_{t}^{2}\right) d t+\sum_{0<\tau_{j} \leq T}\left(k+h\left|\xi_{j}\right|\right)\right]
$$

- Optimal cost: $\iota\left(a^{2} r l\right)^{1 / 2}, \iota(a, r, l, k, h) \in(0,1)$.
- $u^{*}(x)=-\frac{1}{21} w^{\prime}(x ; a, r, l, k, h)$.
- Impulse part: hitting times of domain $\left[-x^{*}, x^{*}\right]$ with $x^{*}=x^{*}(a, r, l, k, h)$.
- $\xi^{*}\left(\pm x^{*}\right)= \pm \widetilde{x}^{*}(a, r, l, k, h)$.
- Optimally controlled process:

$$
d X_{t}^{*}=\sqrt{a} d W_{t}-\frac{w^{\prime}\left(X_{t}^{*}\right)}{2 l} d t+d\left(\sum_{\tau_{j} \leq t}\left(1_{X_{\tau_{j}}^{*}=-x^{*}} \xi^{*}-1_{X_{\tau_{j}}^{*}=x^{*}} \xi^{*}\right)\right)
$$

Explicit expressions: Combined Stochastic and Impulse controls

Global problem

$$
\int_{0}^{T}\left(r_{t} X_{t}^{2}+\varepsilon^{\beta} Q \mid u_{t}^{2}\right) d t+\sum_{0<\tau_{j} \leq T}\left(\varepsilon^{\beta} F_{\tau_{j}}+\varepsilon^{\beta P} h_{\tau_{j}}\left|\xi_{j}\right|\right) .
$$

- Optimal cost: $\int_{0}^{T} \iota\left(a_{t}, r_{t}, l_{t}, k_{t}, h_{t}\right)\left(a_{t}^{2} r_{t} l_{t}\right)^{1 / 2} d t$.
- $u_{t}^{*}(x)=-\frac{1}{2 h_{t}} w^{\prime}\left(x ; a_{t}, r_{t}, l_{t}, k_{t}, h_{t}\right)$,
- Impulse part: hitting times of domain $\left[-x_{t}^{*}, x_{t}^{*}\right]$ with

$$
\begin{gathered}
x_{t}^{*}=x^{*}\left(a_{t}, r_{t}, l_{t}, k_{t}, h_{t}\right) . \\
\bullet \xi_{t}^{*}\left(\pm x_{t}^{*}\right)= \pm \pm \widetilde{x}^{*}\left(a_{t}, r_{t}, l_{t}, k_{t}, h_{t}\right) .
\end{gathered}
$$

Outline

(1)

Formulation of Tracking Problem

- Cost Structure and Control Types
- Asymptotic Framework
(2) Main Results
- Asymptotic Lower Bounds
- Closed-form Examples in Dimension One
- Relation with Utility Maximization
(3) Elements of Proof
- Occupation Measures
- Interpretation as Time-average Control of BM
- Denote the frictionless optimal wealth/strategy by $\left(w_{t}^{*}\right)$ and $\left(\varphi_{t}^{*}\right)$, and

$$
d S_{t}=b_{t}^{S} d t+\sqrt{a_{t}^{S}} d W_{t}
$$

- The indirect risk tolerance process is defined by

$$
R_{t}=-u^{\prime}\left(t, w_{t}^{*}\right) / u^{\prime \prime}\left(t, w_{t}^{*}\right) .
$$

- Denote the dual martingale measure \mathbb{Q} by

$$
\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{T}}=\frac{u^{\prime}\left(T, w_{T}^{*}\right)}{u^{\prime}\left(0, w_{0}^{*}\right)} .
$$

- In a market with proportional costs, the portfolio dynamics is given by

$$
w_{s}^{t, w_{t}, \varepsilon}=w_{t}^{\varepsilon}+\int_{t}^{s} \varphi_{u}^{\varepsilon} d S_{u}-\int_{t}^{s} \varepsilon^{\beta_{P}} h_{u} d\left\|\varphi^{\varepsilon}\right\|_{u},
$$

The problem of utility maximization is given by

$$
u^{\varepsilon}\left(t, w_{t}\right)=\sup _{\varphi^{\varepsilon}} \mathbb{E}\left[U\left(w_{T}^{t, w_{t}, \varepsilon}\right)\right] .
$$

- As $\varepsilon \rightarrow 0$, we expect that $\varphi_{t}^{\varepsilon}$ is close to φ_{t}^{*} and obtain heuristically $u^{\varepsilon}(0, w)-u(0, w) \simeq-u^{\prime}\left(w_{0}\right) \mathbb{E}^{\mathbb{Q}}\left[\int_{0}^{T} \frac{a_{t}^{S}}{2 R_{t}}\left(\varphi_{t}^{\varepsilon}-\varphi_{t}^{*}\right)^{2} d t+\varepsilon^{\beta_{\rho}} \int_{0}^{T} h_{t} d\left\|\varphi^{\varepsilon}\right\|_{t}\right]$.
- In general, the problem of utility maximization with small market frictions can be formally approximated by the problem of tracking if we take

$$
r_{t} D(x)=\frac{1}{2 R_{t}} x^{\top} a_{t}^{S} x
$$

- It follows that

$$
\frac{1}{\varepsilon^{\beta \zeta_{D}}}\left(u^{\varepsilon}(0, w)-u(0, w)\right) \simeq-u^{\prime}\left(w_{0}\right) \mathbb{E}^{\mathbb{Q}}\left[\int_{0}^{T} I_{t} d t\right]
$$

cf. Soner and Touzi 2012, Kallsen and Muhle-Karbe 2013.

Outline

(1) Formulation of Tracking Problem

- Cost Structure and Control Types
- Asymptotic Framework
(2) Main Results
- Asymptotic Lower Bounds
- Closed-form Examples in Dimension One
- Relation with Utility Maximization
(3) Elements of Proof
- Occupation Measures
- Interpretation as Time-average Control of BM

Occupation Measures

Key quantities

Define

$$
\begin{aligned}
& \mu_{t}^{\varepsilon}=\frac{1}{T^{\varepsilon}} \int_{0}^{T^{\varepsilon}} \delta_{\left\{\left\{\widetilde{X}_{s}^{\varepsilon, t}, \tilde{u}_{s}^{\varepsilon}, t\right)\right\}} d s, \\
& \rho_{t}^{\varepsilon}=\frac{1}{T^{\varepsilon}} \sum_{0<\widetilde{\tau}_{j}^{\varepsilon, t} \leq T^{\varepsilon}} \delta_{\left\{\left(\widetilde{x}_{\tilde{\tau}_{j}^{s, t}}^{s, t}-\tilde{\xi}_{\xi}\right)\right\}} .
\end{aligned}
$$

Cost Functional

On the one hand,

$$
I_{t}^{\varepsilon}=\frac{1}{T^{\varepsilon}}\left(\int_{0}^{T^{\varepsilon}}\left(r_{t} D\left(\widetilde{X}_{s}^{\varepsilon, t}\right)+l_{t} Q\left(\widetilde{u}_{s}^{\varepsilon, t}\right)\right) d s+\sum_{0<\tau_{j}^{\varepsilon, t} \leq T^{\varepsilon}}\left(k_{t} F\left(\widetilde{\xi}_{j}^{\varepsilon}\right)+h_{t} P\left(\widetilde{\xi}_{j}^{\varepsilon}\right)\right)\right)
$$

can be written as

$$
\varepsilon_{t}^{\varepsilon}=\int C_{t}^{A}(x, u) d \mu_{t}^{\varepsilon}(d x, d u)+\int C_{t}^{B}(x, \xi) d \rho_{t}^{\varepsilon}(d x, d \xi)
$$

where

$$
C_{t}^{A}(x, u)=r_{t} D(x)+I_{t} Q(u), \quad C_{t}^{B}(x, \xi)=k_{t} F(\xi)+h_{t} P(\xi)
$$

Linear Constraint

On the other hand, by Ito's formula,

$$
\begin{aligned}
f\left(\widetilde{X}_{T_{\varepsilon}^{\varepsilon}}^{\varepsilon, t}\right)-f\left(\widetilde{X}_{0+}^{\varepsilon, t}\right)= & \int_{0}^{T^{\varepsilon}} f^{\prime}\left(\widetilde{X}_{s}^{\varepsilon, t}\right) \sqrt{\widetilde{a}_{s}^{\varepsilon, t}} d \widetilde{W}_{s}^{\varepsilon, t} \\
& +\int_{0}^{T^{\varepsilon}} \frac{1}{2} \sum_{i j} \widetilde{a}_{i j, s}^{\varepsilon, t} \partial_{i j}^{2} f\left(\widetilde{X}_{s}^{\varepsilon, t}\right) d s+\int_{0}^{T^{\varepsilon}} \sum_{i} \widetilde{u}_{i, s}^{\varepsilon, t} \partial_{i} f\left(\widetilde{X}_{s}^{\varepsilon, t}\right) d s \\
& +\sum_{0<\tau_{j}^{s, t} \leq T^{\varepsilon}}\left(f\left(\widetilde{X}_{\widetilde{\tau}_{j}^{\varepsilon}, t}^{\varepsilon, t}+\widetilde{\xi}_{j}^{\varepsilon}\right)-f\left(\widetilde{X}_{\widetilde{\tau}_{j}^{\varepsilon, t}}^{\varepsilon, t}\right)\right) .
\end{aligned}
$$

Linear Constraint

Hence,

$$
\begin{aligned}
& =\frac{1}{T^{\varepsilon}}\left(f\left(\widetilde{X}_{T^{\varepsilon}}^{s, t}\right)-f\left(\widetilde{X}_{0+}^{s, t}\right)-\int_{0}^{T^{\varepsilon}} f^{\prime}\left(\tilde{X}_{s}^{s, t}\right) \sqrt{\tilde{a}_{s}^{\varepsilon}, t} d \widetilde{W}_{s}^{\varepsilon, t}\right) .
\end{aligned}
$$

We deduce that

$$
\int A^{a_{t}} f(x, u) d \mu_{t}^{\varepsilon}(x, u)+\int B f(x, \xi) d \rho_{t}^{\varepsilon}(x, \xi) \simeq 0, \quad \forall f \in C_{0}^{2}\left(\mathbb{R}^{d}\right)
$$

where

$$
A^{a} f(x, u)=\frac{1}{2} \sum_{i, j} a_{i j} \partial_{i j}^{2} f(x)+\langle u, \nabla f(x)\rangle, \quad B f(x, \xi)=f(x+\xi)-f(x) .
$$

LP Characterization for Lower Bounds

Theorem: LP version of the lower bound

The lower bound is given by

$$
I^{P}=\inf _{(\mu, \rho)} \int_{\mathbb{R}_{x}^{d} \times \mathbb{R}_{u}^{d}} C^{A}(x, u) \mu(d x \times d u)+\int_{\mathbb{R}_{x}^{d} \times \mathbb{R}_{\xi}^{d} \backslash\left\{0_{\xi}\right\}} C^{B}(x, \xi) \rho(d x \times d \xi),
$$

with $(\mu, \rho) \in \mathcal{P}\left(\mathbb{R}_{x}^{d} \times \mathbb{R}_{u}^{d}\right) \times \mathcal{M}\left(\mathbb{R}_{x}^{d} \times \mathbb{R}_{\xi}^{d} \backslash\left\{0_{\xi}\right\}\right)$ verifying

$$
\int_{\mathbb{R}_{x}^{d} \times \mathbb{R}_{u}^{d}} A^{a} f(x, u) \mu(d x \times d u)+\int_{\mathbb{R}_{x}^{d} \times \mathbb{R}_{\xi}^{d} \backslash\left\{0_{\xi}\right\}} B f(x, \xi) \rho(d x \times d \xi)=0, \quad \forall f \in C_{0}^{2}\left(\mathbb{R}_{x}^{d}\right) .
$$

- For the previous examples in dimension one, I^{P} is equal to

$$
I=\inf _{(u, \tau, \xi)} \varlimsup_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}\left[\int_{0}^{T}\left(r D\left(X_{s}\right)+I Q\left(u_{s}\right)\right) d s+\sum_{0<\tau_{j} \leq T}\left(k F\left(\xi_{j}\right)+h P\left(\xi_{j}\right)\right)\right]
$$

with

$$
d X_{s}=\sqrt{a} d W_{s}+u_{s} d s+d\left(\sum_{0<\tau_{j} \leq s} \xi_{j}\right) .
$$

- But a relaxed version of controlled BM is needed for general case.

Outline

Formulation of Tracking Problem

- Cost Structure and Control Types
- Asymptotic Framework
(2) Main Results
- Asymptotic Lower Bounds
- Closed-form Examples in Dimension One
- Relation with Utility Maximization
(3) Elements of Proof
- Occupation Measures
- Interpretation as Time-average Control of BM

Time-average control of BM via Martingale Problem

Definition (Kurtz and Stockbridge 1998, 2001)

A triplet (X, Λ, Γ) with (X, Λ) an $\mathbb{R}_{X}^{d} \times \mathcal{P}\left(\mathbb{R}_{u}^{d}\right)$-valued process and Γ an $\mathcal{L}\left(\mathbb{R}_{x}^{d} \times \mathbb{R}_{\xi}^{d}\right)$-valued random variable is a solution of the controlled martingale problem for $\left(A^{a}, B\right)$ with initial distribution $\nu_{0} \in \mathcal{P}\left(\mathbb{R}_{x}^{d}\right)$ if there exists a filtration $\left(\mathcal{F}_{t}\right)$ such that the process $\left(X, \Lambda, \Gamma_{t}\right)$ is \mathcal{F}_{t}-progressive, X_{0} has distribution ν_{0} and for every $f \in C_{0}^{2}\left(\mathbb{R}_{X}^{d}\right)$,

$$
f\left(X_{t}\right)-\int_{0}^{t} \int_{\mathbb{R}_{u}^{d}} A^{a} f\left(X_{s}, u\right) \Lambda_{s}(d u) d s-\int_{\mathbb{R}_{x}^{d} \times \mathbb{R}_{\xi}^{d} \times[0, t]} B f(x, \xi) \Gamma(d x, d \xi, d s)
$$

is an \mathcal{F}_{t}-martingale.

Definition (MP formulation of time-average control problem)

The time-average control problem under the martingale formulation is given by

$$
\begin{aligned}
I^{M}=\inf _{(X, \Lambda, \Gamma)} \limsup _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}[& \int_{0}^{t} \int_{\mathbb{R}_{u}^{d}} C_{A}\left(X_{s}, u\right) \Lambda_{s}(d u) d s \\
& \left.+\int_{\mathbb{R}_{x}^{d} \times \mathbb{R}_{\xi}^{d} \times[0, t]} C_{B}(x, \xi) \Gamma(d x, d \xi, d s)\right] .
\end{aligned}
$$

over all solutions of the martingale problem $\left(A^{a}, B\right)$ with any initial distribution $\nu_{0} \in \mathcal{P}\left(\mathbb{R}_{x}^{d}\right)$.

Theorem: Equivalence between I^{P} and I^{M}

We have $I^{M}=I^{P}$, if the following conditions holds.
(1) A and B satisfy Condition 1.2 in Kurtz/Stockbridge 2001. In particular,

$$
|A f(x, u)| \leq a_{f} \psi_{A}(x, u), \quad|B f(x, \xi)| \leq b_{f} \psi_{B}(x, \xi)
$$

(2) C_{A} is non-negative and inf-compact.
(3) C_{B} is non-negative and lower semi-continuous, and

$$
\inf _{(x, \xi) \in \mathbb{R}_{x}^{d} \times \mathbb{R}_{\xi}^{d}} C_{B}(x, \xi)>0 .
$$

(9) There exist constants θ and $0<\beta<1$ such that

$$
\psi_{A}(x, u)^{1 / \beta} \leq \theta\left(1+C_{A}(x, u)\right), \quad \psi_{B}(x, \xi)^{1 / \beta} \leq \theta C_{B}(x, \xi) .
$$

