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The paradigmatic problem in portfolio optimization

Problem

E[U(XT )] 7→ max! (Px)

where XT runs through the set C(x) of random non-negative
variables of the form

XT = x +

∫ T

0
H(t)dS(t).

x: initial endowment, H admissible trading strategy
U: R+ 7→ R utility function, e.g. U(x) = log(x).



Basic observation

C(x) can also be described as the set

C(x) = {XT ∈ L0+(P) : EQ [XT ] ≤ x},

for all equivalent martingale measures Q ∈Me(S).
This is the content of the super-replication theorem.

Viewing the elements Q ∈Me(S) as constraints, the primal
problem (P) may be viewed as a convex optimization problem on
the entire cone L0+(P) under (one or infinitely many) linear
constraints.

E[U(XT )] 7→ max! (Px)

EQ [XT ] ≤ x , ∀Q ∈Me(S).



There is a well-known duality theory which allows to – somewhat
formally – associate to the primal problem (Px) over the set L0+(P)
a dual problem (Dy ) over the set Me(S) of constraints

E
[
V
(
y
dQ

dP

)]
7→ min! (Dy )

where Q ranges in Me(S), y > 0 is a scalar Langrange multiplier,
and V is the conjugate function of U

V (y) = sup
x>0
{U(x)− xy}.

Basic background: the Hahn-Banach Theorem in its version as
Min-Max Theorem.

Task

Identify precise (and hopefully sharp) conditions to turn the above
formal reasoning into mathematical theorems.



Transaction Costs

There are very many ramifications of the above theme. We now
focus on markets under transaction costs.

We fix a strictly positive càdlàg stock price process S = (St)0≤t≤T .

For 0 < λ < 1 we consider the bid-ask spread [(1− λ)S , S ].

A self-financing trading strategy is a predictable, finite variation
process ϕ = (ϕ0

t , ϕ
1
t )0≤t≤T such that

dϕ0
t ≤ −St(dϕ1

t )+ + (1− λ)St(dϕ
1
t )−

The trading strategy ϕ is called 0-admissible if the liquidation
value remains non-negative

ϕ0
t + (1− λ)St(ϕ

1
t )+ − St(ϕ

1
t )− ≥ 0



Definition [Jouini-Kallal (’95), Cvitanic-Karatzas (’96),
Kabanov-Stricker (’02),...]

A consistent price system is a pair (S̃ ,Q) such that Q ∼ P, the
process S̃ takes its value in [(1− λ)S , S ], and S̃ is a Q-martingale.

Identifying Q with its density process

Z 0
t = E

[
dQ
dP |Ft

]
, 0 ≤ t ≤ T

we may identify (S̃ ,Q) with the R2-valued martingale
Z = (Z 0

t ,Z
1
t )0≤t≤T such that

S̃ := Z1

Z0 ∈ [(1− λ)S ,S ] .

For 0 < λ < 1, we say that S satisfies (CPSλ) if there is a
consistent price system for transaction costs λ.



Theorem [Guasoni, Rasonyi, S. (’10)]:

Let S = (St)0≤t≤T be a continuous process. TFAE
(i) For each µ > 0, S does not allow for arbitrage under

transaction costs µ.
(ii) For each µ > 0, (CPSµ) holds, i.e. consistent price systems

under transaction costs µ exist.

Remark [Guasoni, Rasonyi, S. (’08)]

If the process S = (St)0≤t≤T is continuous and has conditional full
support, then (CPSµ) is satisfied, for all µ > 0.
For example, exponential fractional Brownian motion verifies this
property.



Portfolio optimisation

The set of non-negative claims attainable at price x is

C(x) =


XT ∈ L0+ : there is a 0−admissible ϕ = (ϕ0

t , ϕ
1
t )0≤t≤T

starting at (ϕ0
0, ϕ

1
0) = (x , 0) and ending at

(ϕ0
T , ϕ

1
T ) = (XT , 0)


Given a utility function U : R+ → R define again

u(x) = sup{E[U(XT )] : XT ∈ C(x)}.

Cvitanic-Karatzas (’96), Deelstra-Pham-Touzi (’01),
Cvitanic-Wang (’01), Bouchard (’02),...



Question 1

What are conditions ensuring that C(x) is closed in L0+(P). (w.r. to
convergence in measure) ?

Theorem [Cvitanic-Karatzas (’96), Campi-S. (’06)]:

Suppose that (CPSµ) is satisfied, for all µ > 0, and fix λ > 0.
Then C(x) = Cλ(x) is closed in L0(Ω,F ,P).



The dual objects

Definition

We denote by D(y) the convex subset of L0+(P)

D(y) = {yZ 0
T = y dQ

dP , for some consistent price system (S̃ ,Q)}

and
D(y) = sol (D(y))

the closure of the solid hull of D(y) taken with respect to
convergence in measure.



Definition [Kramkov-S. (’99), Karatzas-Kardaras (’06),
Campi-Owen (’11),...]

Fix the adapted càdlàg process S and λ > 0.
We call an optional process Z = (Z 0

t ,Z
1
t )0≤t≤T a super-martingale

deflator if Z 0
0 = 1, Z

1

Z0 ∈ [(1− λ)S ,S ], and for each 0-admissible,
self-financing ϕ the value process

ϕ0
tZ

0
t + ϕ1

tZ
1
t = Z 0

t (ϕ0
t + ϕ1

t
Z1
t

Z0
t

)

is a (optional strong) super-martingale.

Remark

A consistent price system Z = (Z 0
t ,Z

1
t )0≤t≤T is a super-martingale

deflator.



Proposition (Czichowsky, S. (’14)):

The closure D(y) of D(y) can be characterized as

D(y) = {yZ 0
T},

where Z = (Z 0
t ,Z

1
t )0≤t≤T is an (optional strong) super-martingale

deflator.



Interlude: Limits of Martingales:

Theorem (Czichowsky, S. (’14)):

Let (Mn)∞n=1 be a sequence of non-negative martingales, starting
of Mn

0 = 1.
Then there exist Nn ∈ conv(Mn,Mn+1, . . .) and a limiting optional
strong super-martingale M such that

Nn → M

in the following sense: for every [0,T ]-valued stopping time τ we
have

lim
n→∞

Nn
τ = Mτ

in probability.



Theorem (Czichowsky, S. (’14))

Let S be a continuous process, 0 < λ < 1, suppose that (CPSµ)
holds true, for some 0 < µ < λ, suppose that U has reasonable
asymptotic elasticity and u(x) < U(∞), for x <∞.
Then C(x) and D(y) are polar sets:

XT ∈ C(x) iff 〈XT ,YT 〉 ≤ xy , for YT ∈ D(y)

YT ∈ D(y) iff 〈XT ,YT 〉 ≤ xy , for XT ∈ C(y)

Therefore by the abstract results from [Kramkov-S. (’99)] the
duality theory for the portfolio optimisation problem works as
nicely as in the frictionless case: for x > 0 and y = u′(x) the
following assertions hold true:



Duality properties:

(i) There is a unique primal optimiser X̂T (x) = ϕ̂0
T which is the

terminal value of a trading strategy (ϕ̂0
t , ϕ̂

1
t )0≤t≤T .

(i ′) There is a unique dual optimiser ŶT (y) = Ẑ 0
T

which is the terminal value of a super-martingale deflator
(Ẑ 0

t , Ẑ
1
t )0≤t≤T .

(ii) U ′(X̂T (x)) = Ẑ 0
T (y), −V ′(Ẑ 0

T (y)) = X̂T (x)

(iii) The process (ϕ̂0
t Ẑ

0
t + ϕ̂1

t Ẑ
1
t )0≤t≤T is a martingale and

{dϕ̂1
t > 0} ⊆ { Ẑ1

Ẑ0
= S},

{dϕ̂1
t < 0} ⊆ { Ẑ1

Ẑ0
= (1− λ)S}.



Shadow Price Processes

Theorem [Cvitanic-Karatzas (’96)]

In the setting of the above theorem suppose that (Ẑt)0≤t≤T is a local
martingale.

Then Ŝ = Ẑ 1

Ẑ 0
∈ [(1− λ)S ,S ] is a shadow price, i.e. the optimal portfolio

for the frictionless market Ŝ and for the market S under transaction costs
λ coincide.

Sketch of Proof

Suppose (w.l.g.) that (Ẑt)0≤t≤T is a true martingale. Then dQ̂
dP = Ẑ 0

T

defines a probability measure under which the process Ŝ = Ẑ 1

Ẑ 0
is a

martingale. Hence we may apply the frictionless theory to (Ŝ ,P).

Ẑ 0
T is (a fortiori) the dual optimizer for Ŝ .

As X̂T and Ẑ 0
T satisfy the first order condition

U ′(X̂T ) = Ẑ 0
T ,

X̂T must be the optimizer for the frictionless market Ŝ too. �



Question

When is the dual optimizer Ẑ a local martingale?
Are there cases when it only is a super-martingale?



Theorem [Czichowsky-S.-Yang (’14)]

Suppose that S is continuous and satisfies (NFLVR), and suppose
that U : (0,∞)→ R has reasonable asymptotic elasticity. Fix
0 < λ < 1 and suppose that u(x) < U(∞), for x <∞.
Then the dual optimizer Ẑ is a local martingale. Therefore Ŝ = Ẑ1

Ẑ0

is a shadow price.

Remark

The condition (NFLVR) cannot be replaced by requiring (CPSλ),
for each λ > 0. But (NFLVR) can be replaced by (NUPBR).

Theorem [Czichowsky-S. (’15)]

Suppose that S is continuous and sticky, and suppose that
U : R→ R has reasonable asymptotic elasticity. Fix 0 < λ < 1 and
suppose that u(x) < U(∞), for x <∞.
Then the dual optimizer Ẑ is a local martingale. Therefore Ŝ = Ẑ1

Ẑ0

is a shadow price.



A case study: Fractional Brownian Motion and Exponential
Utility

Fractional Brownian Motion for H ∈ ]12 , 1[:

Bt = C (H)

∫ t

−∞

(
(t − s)H−

1
2 −

(
|s|H−

1
21(−∞,0)

))
dWs , 0 ≤ t ≤ T ,

We may further define a non-negative stock price process
S = (St)0≤t≤T by letting

St = exp(Bt), 0 ≤ t ≤ T ,

or, slightly more generally,

St = exp(σBt + µt), 0 ≤ t ≤ T .



Theorem [Czichowsky-S. (’15)]

For St = exp(σBt + µt) and exponential utility U(x) = −e−x the
utility optimization problem has a perfectly satisfactory solution
(the duality theory works just as in the formal reasoning).

In particular, there is a shadow price process Ŝ(t) which is an Itô
diffusion process of the form

dŜt

Ŝt
= σ̂tdWt + µ̂tdt

for some predictable processes σ̂ and µ̂. The process Ŝ is a local
martingale under the probability measure Q̂, where

dQ̂

dP
= exp

( ∫ T

0
− µ̂t
σ̂t

dWt −
1

2

∫ T

0

( µ̂t
σ̂t

)2
dt
)

This theorem has a surprising consequence on the pathwise
behaviour of fractional Brownian trajectories.



Theorem [Czichowsky-S. (’15)]

Let (Bt)0≤t≤T be fractional Brownian motion with Hurst index
H ∈ (12 , 1) and α > 0.

There is an Itô diffusion process (X̂t)0≤t≤T such that

Bt − α ≤ X̂t ≤ Bt , 0 ≤ t ≤ T ,

holds true almost surely.

In addition, X̂ can be constructed in such a way that (eX̂t )0≤t≤T is

a local martingale under some measure Q̂ equivalent to P.

For ε > 0, we may choose α > 0 sufficiently small so that the
trajectory (X̂t)0≤t≤T touches the trajectories (Bt)0≤t≤T as well as
(Bt − α)0≤t≤T with probability bigger than 1− ε.



Theorem [R. Peyre (’15)]

Let (BH
t )t≥0 be fractional Brownian motion and τ a finite stopping

time.
Then, for each ε > 0, we have
infτ≤t≤τ+ε B

H
t < BH

τ < supτ≤t≤τ+ε B
H
t , a.s.

Interpretation [R. Peyre, Ch. Bender]:

(Exponential) fractional Brownian motion does not allow for simple
arbitrage.

Corollary [Czichowsky, S., Yang]:

For power utility

U(x) =
xα

α
, x > 0

where α < −0, there is a shadow price process (as well as the
usual positive results) for the financial market St = exp(BH

t ).


