Malliavin Calculus: Absolute continuity and regularity

Josef Teichmann

ETH Zürich

Oxford 2011

Isonormal Gaussian process

A Gaussian space is a (complete) probability space together with a Hilbert space of centered real valued Gaussian random variables defined on it. We speak about Gaussian spaces by means of a coordinate space.

Let (Ω, \mathcal{F}, P) be a complete probability space, H a Hilbert space, and $W: H \to L^2[(\Omega, \mathcal{F}, P); \mathbb{R}]$ a linear isometry. Then W is called isonormal Gaussian process if W(h) is a centered Gaussian random variable for all $h \in H$.

A Gaussian space is called *irreducible* if $\mathcal{F}_H = \mathcal{F}$. In the sequel we shall work with irreducible Gaussian spaces equipped with one isonormal Gaussian process.

Calculation rules

We denote the Malliavin derivative by $D:\mathcal{D}^{1,2} o L^2 \otimes H$ and have that

$$D(FG) = GDF + FDG$$

for $F,G,FG\in\mathcal{D}^{1,2}$ if the right hand side is square integrable. The Skorohod integral is denoted by δ and we have the following rule, which is the dual version of the previous Leibnitz rule:

$$\delta(Fu) = F\delta(u) - \langle u, DF \rangle$$

for $F \in \mathcal{D}^{1,2}$ and $u, Fu \in \mathsf{dom}_{1,2}(\delta)$ if the right hand side is square integrable.

A one-dimensional theorem

Let F be a random variable in $\mathcal{D}^{1,2}$ and suppose that $\frac{\mathcal{D}F}{||\mathcal{D}F||_H^2}$ is Skorohod integrable. Then the law of F has a continuous and bounded density f with respect to the Lebesgue measure λ given by

$$f(x) = E\left[1_{\{F>x\}}\delta\left(\frac{DF}{||DF||_H^2}\right)\right]$$

for real x.

We consider $\psi(y) = 1_{[a,b]}(y)$ for a < b and $\phi(y) := \int_{-\infty}^{y} \psi(x) dx$. Since $\phi(F) \in \mathcal{D}^{1,2}$ we obtain

$$\langle D(\phi(F)), DF \rangle_H = \psi(F) ||DF||_H^2$$

which allows to compute $\psi(F)$. By integration by parts

$$E(\psi(F)) = E\left(\left\langle D(\phi(F)), \frac{DF}{||DF||_H^2} \right\rangle_H\right) =$$

$$= E\left(\phi(F) \delta\left(\frac{DF}{||DF||_H^2}\right)\right)$$

which leads to

$$P(a \le F \le b) = E\left(\int_{-\infty}^{F} \psi(x) dx \, \delta\left(\frac{DF}{||DF||_{H}^{2}}\right)\right) =$$

$$= \int_{a}^{b} E\left(1_{\{F>x\}} \, \delta\left(\frac{DF}{||DF||_{H}^{2}}\right)\right) dx$$

by Fubini's theorem.

The Gagliardo-Nirenberg inequality

It holds that

$$||f||_{L^{\frac{N}{N-1}}} \leq \prod_{i=1}^{N} ||\partial_i f||_{L^1}^{\frac{1}{N}}$$

for $f \in C_0^{\infty}(\mathbb{R}^m)$ and $N \geq 2$.

How to detect densities

Let μ be a finite measure on \mathbb{R}^N and assume that there are constants c_i for i=1,...,N such that

$$\left| \int_{\mathbb{R}^m} \partial_i \phi(x) \mu(dx) \right| \leq c_i ||\phi||_{\infty}$$

for all $\phi \in C_0^\infty(\mathbb{R}^m)$, then μ is absolutely continuous with respect to the Lebesgue measure.

We show the case for $N \geq 2$: we shall show that the density of μ belongs to $L^{\frac{N}{N-1}}$ for N > 1. We take a Dirac sequence ψ_{ϵ} for $\epsilon > 0$ and a sequence of smooth bump functions $0 \leq c_M \leq 1$ with

$$c_M(x) = \begin{cases} 1 \text{ for } ||x|| \le M \\ 0 \text{ for } ||x|| \ge M + 1 \end{cases}$$

where we assume that the partial derivatives are bounded uniformly with respect to M. Then the measures $c_M(\psi_{\epsilon} * \mu)$ have densities $p_{M,\epsilon}$ belonging to $C_0^{\infty}(\mathbb{R}^N)$.

We apply the Gagliardo-Nirenberg inequality and have to estimate additionally

$$\begin{aligned} ||\partial_{i} p_{M,\epsilon}||_{L^{1}} &\leq \int_{\mathbb{R}^{N}} c_{M}(x) \left| \left((\partial_{i} \psi_{\epsilon}) * \mu \right) \right| (dx) \\ &+ \int_{\mathbb{R}^{N}} \left| \partial_{i} c_{M}(x) \right| (\psi_{\epsilon} * \mu) (dx) \\ &\leq \int_{\mathbb{R}^{N}} \left| \int_{\mathbb{R}^{N}} \psi_{\epsilon}(x - y) \nu_{i}(dy) \right| dx \\ &+ \int_{\mathbb{R}^{N}} \left| \partial_{i} c_{M}(x) \right| (\psi_{\epsilon} * \mu) (dx) \end{aligned}$$

where ν_i denotes the signed finite measure on \mathbb{R}^N induced by $\phi \mapsto \int \partial_i \phi \mu(dx)$ for $\phi \in C_b^\infty(\mathbb{R}^N)$. This expression is bounded by a constant independent of M and ϵ by Fubini's theorem.

The unit ball of $L^{\frac{N}{N-1}}$ is weakly compact, so we find a weak limit of $c_M \left(\psi_{\epsilon} * \mu \right)$ in $L^{\frac{N}{N-1}}$: on the one hand

$$\int_{\mathbb{R}^N} g(x) c_M(x) (\psi_{\epsilon} * \mu) (dx) \to \int_{\mathbb{R}^N} g(x) \mu(dx)$$

for $g\in L^\infty(\mathbb{R}^N)$ as $M\to\infty$ and $\epsilon\to 0$. However, since there exists a weak limit p we obtain

$$\int_{\mathbb{R}^N} g(x)\mu(dx) = \int_{\mathbb{R}^N} g(x)p(x)dx$$

which is the desired result.

Localization

We denote $F \in \mathcal{D}^{1,p}_{loc}$ for some $p \geq 1$, if there exists a sequence $(\Omega_n, F_n)_{n \geq 0}$, where Ω_n is a measurable set and $F_n \in \mathcal{D}^{1,p}$ for $n \geq 0$ such that

$$\Omega_n\uparrow\Omega$$
 almost surely, $F_n1_{\Omega_n}=F1_{\Omega_n}$ almost surely.

The Malliavin Covariance atrix

Take now a random vector $F := (F^1, ..., F^N)$, which belongs to $\mathcal{D}^{1,1}_{loc}$ componentwise. We associate to F the Malliavin (covariance) matrix γ_F , which is a non-negative, symmetric random matrix:

$$\gamma(F) := \gamma_F := (\langle DF^i, DF^j \rangle_H)_{1 \le i, j \le N}.$$

From regular invertibility of this matrix we shall obtain the basic condition on the existence of a density.

Main theorem

Let F be a random vector satisfying

- 1. $F^i \in \mathcal{D}_{loc}^{2,4}$ for all i = 1, ..., N.
- 2. The matrix γ_F is invertible almost surely.

Then the law of F is absolutely continuous with respect to the Lebesgue measure.

We shall assume $F^i \in \mathcal{D}^{2,4}$ for each i=1,...,N first. We fix a test function $\phi \in C_0^{\infty}(\mathbb{R}^N)$, then by the chain rule $\phi(F) \in \mathcal{D}^{2,4}$, consequently

$$D(\phi(F)) = \sum_{i=1}^{N} \frac{\partial \phi}{\partial x_{i}}(F) DF^{i},$$
$$\left\langle D(\phi(F)), DF^{j} \right\rangle_{H} = \sum_{i=1}^{N} \frac{\partial \phi}{\partial x_{i}}(F) \gamma_{F}^{ij}$$

and therefore by invertibility

$$\frac{\partial \phi}{\partial x_i}(F) = \sum_{i=1}^N \left\langle D(\phi(F)), DF^j \right\rangle_H (\gamma_F^{-1})^{ij}.$$

In the sequel we have to apply a localization argument: consider the compact subset $K_m \subset GL(N)$ of matrices σ with $|\sigma^{ij}| \leq m$ and $|\det(\sigma)| \geq \frac{1}{m}$ for i,j=1,...,m. We can define $\psi_m \in C_0^\infty(M_N(\mathbb{R}))$ with $\psi_m \geq 0$, $\psi_m|_{K_m} = 1$ and $\psi_m|_{GL(N)\setminus K_{m+1}} = 0$, which is easily possible since K_m is an exhaustion of GL(N) by compact sets such that $K_m \subset (K_{m+1})^\circ$. Now we can integrate reasonably the above equation

$$E(\psi_m(\gamma_F)\frac{\partial \phi}{\partial x_i}(F)) = \sum_{i=1}^N E(\psi_m(\gamma_F) \langle D(\phi(F)), DF^j \rangle_H(\gamma_F^{-1})^{ij}).$$

Remark that $\psi_m(\gamma_F)DF^j(\gamma_F^{-1})^{ij} \in \text{dom}_{1,2}(\delta)$, since $\psi_m(\gamma_F)(\gamma_F^{-1})^{ij}$ is a bounded random variable (it equals the inversion rational function applied to γ_F times a smooth function with compact support applied to γ_F , but $\gamma_F \in \mathcal{D}^{2,4}$) and

$$E\left(\left(\psi_{\mathit{m}}(\gamma_{\mathit{F}})(\gamma_{\mathit{F}}^{-1})^{ij}\right)^{2}\left\langle \mathit{DF}^{j},\mathit{DF}^{j}\right\rangle_{\mathit{H}}\right)<\infty.$$

Consequently we can apply integration by parts to arrive at

$$E(\psi_{m}(\gamma_{F})\frac{\partial \phi}{\partial x_{i}}(F)) = E(\phi(F)\sum_{j=1}^{N} \delta\left(\psi_{m}(\gamma_{F}) DF^{j} (\gamma_{F}^{-1})^{ij}\right))$$

$$\leq ||\phi||_{\infty} E\left(\left|\sum_{i=1}^{N} \delta\left(\psi_{m}(\gamma_{F}) DF^{j} (\gamma_{F}^{-1})^{ij}\right)\right|\right).$$

Hence we obtain that for any $A \in \mathcal{B}(\mathbb{R}^N)$ with zero Lebesgue measure

$$\int_{F^{-1}(A)} \psi_m(\gamma_F) dP = 0$$

holds true, but as $m \to \infty$ – via property 2 of the assumptions – $\int_{F^{-1}(A)} dP = 0$. Therefore $F_*P \ll \lambda$.

In general – for $F \in \mathcal{D}^{2,4}_{loc}$ – we calculate for F_n and obtain the result by the property that $F_n^{-1}(A) \to F^{-1}(A)$.

Detection of smooth densities

Let μ be a finite measure on \mathbb{R}^N and $A \subset \mathbb{R}^N$ open. Assume that there are constants c_{α} for a multiindex α such that

$$\left| \int_{\mathbb{R}^N} \partial_{\alpha} \phi(x) \mu(dx) \right| \leq c_{\alpha} ||\phi||_{\infty}$$

for all $\phi \in C_b^\infty(\mathbb{R}^N)$ with compact support in A, then the restriction of μ to A is absolutely continuous with respect to the Lebesgue measure and the density is smooth.

Main theorem in the smooth case

Let F be a random vector satisfying

- 1. $F^i \in \mathcal{D}^{\infty}$ for all i = 1, ..., N.
- 2. The matrix γ_F is invertible almost surely and $\frac{1}{\det(\gamma_F)} \in L^{\infty-0}$.

Then the law of F is absolutely continuous with respect to Lebesgue measure and the existing density is smooth.

A more geometric point of view

Let $g: \Omega \to \mathbb{R}^N$ be a random variable with well-defined covariance matrix $\gamma(g)$, then we can define for any vector $z \in \mathbb{R}^N$ the covering vector field $Z \in L^2(\Omega, \mathcal{F}, P) \otimes H$ via

$$\langle Dg^j, Z \rangle_H = z^j.$$

Apparently one solution is given by

$$Z = \sum_{i=1}^{N} Dg^{i}(\gamma(g)^{-1}z)^{i},$$

since for i = 1, ..., N

$$\langle Dg^j, Z\rangle_H = \sum_{i=1}^{N} \langle Dg^j, Dg^i\rangle_H (\gamma(g)^{-1}z)^i = z^j.$$

A more geometric point of view

Hence the previously calculated solutions are in fact lifts of vectors to covering vector fields on the given Gaussian space. Usually \boldsymbol{Z} can be chosen to be Skorohod-integrable, whence integration by parts will work. This leads to the following theorem:

Let $F \in \mathcal{D}^{\infty}$ and $\frac{1}{\det(\gamma_F)} \in L^{\infty-0}$, then for any multiindex $\alpha \in \mathbb{N}^N$ we obtain for all $\phi \in C_b^{\infty}(\mathbb{R}^N)$.

$$E(\partial_{\alpha}\phi(F)) = E(\phi(F)Q_{\alpha})$$

by integration by parts for some random variable $Q_{\alpha} \in \mathcal{D}^{\infty}$ (independent of ϕ).

We do the proof by induction: for $\alpha=0$ there is nothing to show. Let us assume now that it holds for $|\alpha|< k$ and we choose some β of order k. Without restriction we assume that $\partial_{\alpha}=\partial_{\beta}\partial_{1}$, whence

$$E(\partial_{\beta}\partial_{1}\phi(F)) = E(\partial_{1}\phi(F)Q_{\beta})$$

$$= E(\langle D\phi(F), Z \rangle Q_{\beta})$$

$$= E(\phi(F)(Q_{\beta}\delta(Z) - \langle DQ_{\beta}, Z \rangle)),$$

where Z is a covering vector field for e_1 . This proves the statement for ∂_{α} and completes the induction.

Proof for the smooth case

Choose
$$\phi_{\xi}(x) = \exp(\langle \xi, x \rangle)$$
, then

$$||\xi||^k |E(\exp(\langle \xi, F \rangle)| \le |E(\exp(\langle \xi, F \rangle)Q_k) \le E(|Q_k|) < \infty,$$

which means that the characteristic function of g tends to zero as $\xi \to \infty$ faster than any polynomial in the Fourier variable ξ . This in turn means that there is a smooth density with bounded derivatives of all orders.

With the same methodology one can show that the density is in fact Schwarz.