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Notations

I P(t, T ) denotes the prices of default-free, zero-coupon bonds
for 0 ≤ t ≤ T . Running time is t and maturity of the bond is
T .
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Notations

I P(t, T ) denotes the prices of default-free, zero-coupon bonds
for 0 ≤ t ≤ T . Running time is t and maturity of the bond is
T .

I Y (t, T ) denotes the respective yields, i.e. the compound rate
at t < T for the respective bond

Y (t, T ) := −
1

T − t
logP(t, T ).
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Notations

I P(t, T ) denotes the prices of default-free, zero-coupon bonds
for 0 ≤ t ≤ T . Running time is t and maturity of the bond is
T .

I Y (t, T ) denotes the respective yields, i.e. the compound rate
at t < T for the respective bond

Y (t, T ) := −
1

T − t
logP(t, T ).

I The short rate Rt is the limit of the yield curve for T ↓ t and
0 ≤ t < T .
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Notations

I P(t, T ) denotes the prices of default-free, zero-coupon bonds
for 0 ≤ t ≤ T . Running time is t and maturity of the bond is
T .

I Y (t, T ) denotes the respective yields, i.e. the compound rate
at t < T for the respective bond

Y (t, T ) := −
1

T − t
logP(t, T ).

I The short rate Rt is the limit of the yield curve for T ↓ t and
0 ≤ t < T .

I Today’s yield curve is given in this terminology through
T 7→ Y (0, T ).
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Goals of a model

I Calibration of the model to Market prices

I Recalibration and Consistency

I Pricing and Hedging of Derivatives

I Statistics and Prediction (only here the physical measure plays
a decisice role).
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Basic Approaches

I Short Rate Approach: provide the short rate process with
respect to the martingale measure and use

E

(

exp(−

∫

T

t

Rsds)

∣

∣

∣

∣

Ft

)

= exp (−Y (t, T )(T − t)) .
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Basic Approaches

I Short Rate Approach: provide the short rate process with
respect to the martingale measure and use

E

(

exp(−

∫

T

t

Rsds)

∣

∣

∣

∣

Ft

)

= exp (−Y (t, T )(T − t)) .

I HJM Approach: write a model directly for the processes
(P(t, T ))0≤t≤T

in the historical measure such that no
arbitrage can appear.
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Basic Approaches

I Short Rate Approach: provide the short rate process with
respect to the martingale measure and use

E

(

exp(−

∫

T

t

Rsds)

∣

∣

∣

∣

Ft

)

= exp (−Y (t, T )(T − t)) .

I HJM Approach: write a model directly for the processes
(P(t, T ))0≤t≤T

in the historical measure such that no
arbitrage can appear.

I Generalized Approaches: weaken existence of a short rate
process and/or the existence of martingale measures.
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I Short Rate approach allows to price easily, but (re-)
calibration might be very delicate.
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I Short Rate approach allows to price easily, but (re-)
calibration might be very delicate.

I HJM-approach allows to (re-)calibrate easily, but pricing
might be numerically very challenging.
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Problems

I Short Rate approach allows to price easily, but (re-)
calibration might be very delicate.

I HJM-approach allows to (re-)calibrate easily, but pricing
might be numerically very challenging.

I Consistency appears in both contexts as a problems: the
market data can be fit by many curves, hence there is an a
priori choice how to fit. Is today’s method consistent with
tomorrow’s with respect to the model, i.e. does the chosen
model evolve within the chosen class of curves? For instance
the Svensson-Family of curves is poor in this respect.
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The Vasiček Model

The short rate is given through

dRt = λ(µ(t) − Rt)dt + σdWt ,

which yields the following formulas for calibration:

Y (t, T ) = A(t, T ) + B(t, T )Rt ,

where both terms A, B are explicit in the parameters of the process
λ, µ, σ and today’s Yield Curve (sic!). The second term B depends
only on λ in the typical quasi-exponential form.
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The Vasiček Model

I If one wants the mean reversion level µ to be constant in
time, then A has a very restricted form.
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I If one wants the mean reversion level µ to be constant in
time, then A has a very restricted form.

I If one allows the mean reversion level µ to be time-varying, A

is of general form, but the evolution of A along t is of simple
form, e.g. certain shapes can disappear (basically a shift plus
squared volatility functions...).
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The Vasiček Model

I If one wants the mean reversion level µ to be constant in
time, then A has a very restricted form.

I If one allows the mean reversion level µ to be time-varying, A

is of general form, but the evolution of A along t is of simple
form, e.g. certain shapes can disappear (basically a shift plus
squared volatility functions...).

I Calibration can be done perfectly today, but recalibraton
might soon pose problems.

I A HJM equation can be formulated. On the space of Yield
Curves this evolution is a time-homogenous Markov process!
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Typical trajectories

Gaussian Ornstein−Uhlenbeck Processes

drt = θ(µ − rt)dt+σdWt
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Today’s Yield Curve

EUR Term Structure as of  2001−05−31
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Affine OU-Models

The appropriate generalization of the Vasiček Model in a diffusion
setting are OU-Models

dZt = (b(t) − ΛZt)dt +
d

∑

i=1

σidW i

t

in R
N with vectors b(t), σi and a matrix Λ. The short rate appears

as one component of the vector process (Zt)t≥0. The affine
solution structure is analogous, in particular

Y (t, T ) = A(t, T ) +
N

∑

i=1

Bi (t, T )Z i

t ,

where completely similar assertions to the Vasiček Model hold:
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I If one wants the mean reversion level µ to be constant in
time, then A has a very restricted form.

I If one allows the mean reversion level µ to be time-varying, A

is of general form, but the evolution of A along t is of simple
form, e.g. certain shapes can disappear (basically a shift plus
squared volatility functions...).

I Calibration can be done perfectly today, but recalibraton
might soon pose problems.

I HJM-equation can be formulated, which is time-homogenous.
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Affine OU-Models

I If one wants the mean reversion level µ to be constant in
time, then A has a very restricted form.

I If one allows the mean reversion level µ to be time-varying, A

is of general form, but the evolution of A along t is of simple
form, e.g. certain shapes can disappear (basically a shift plus
squared volatility functions...).

I Calibration can be done perfectly today, but recalibraton
might soon pose problems.

I HJM-equation can be formulated, which is time-homogenous.

I More parameters will in principle bring better results, but also
less stability of fitting procedures. We do not (sic!) obtain
more flexibility in the terms A, B.
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Just for fun...

One starts to obtain new phenomena by choosing the OU-process

dZt = (b(t) − ΛZt)dt +
d

∑

i=1

σidW i

t

in an infinite dimensional Banach space X with vectors b(t), σi and
an unbounded operator −Λ, which generates a strongly continuous
semigroup. The short rate then appears as application of a linear
functional l : X → R on the process (Zt)t≥0. Here we can obtain
new types of functions Bi in order to improve the (re-)calibration.
However, the price to pay is an infinite number of Bi to fit.
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Non-Gaussian OU-Models

One also starts to obtain new phenomena by choosing the
OU-process non-Gaussian, i.e. through replacing the Wiener
process by a Lévy process (such that the resulting strong solution
admits an invariant measure at the end of the day).

dZt = (b(t) − ΛZt)dt +
d

∑

i=1

σidLi

t

The structure is again similar to the previous ones, with the fine
difference that the evolution over time of A is more flexible!
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The one-dimensional factor

The model is conveniently written as

dRt = −λRt dt + dZλt ,

where the mean-reversion level is absorbed by the drift of the Levy
process (Zλt)t≥0. We will only consider the case where Zt is a
Levy subordinator, i.e. an almost surely increasing Levy process.
This property will imply that Zt has no diffusion part, positive
jumps only and non-negative drift. Apart from that it also implies
that Rt is positive a.s., which is not true for the Vasiček model.
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Tractability

One can write the solution explicitly as

Rt = e−λtR0 +

∫

t

0
e−λ(t−s) dZλs

and
∫

T

t

rs ds = α(T − t, λ)rt +

∫

T

t

α(T − s, λ) dZλs

where we define

α(T , λ) =
1 − e−λT

λ
.

Under certain conditions there are exponential formulas, which
allow to calculate yields explicitly,

Y (t, T ) =
1

T − t
α(T − t, λ)Rt −

λ

T − t

∫

T

t

κ (−α(T − s, λ)) ds.
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Additonal Freedom

Obviously here the function κ, which comes from the invariant
distribution of the OU-process creates more flexibility in the model.
In particular time-homogenous short-rate models admit quite
general functions A(t, T ), in contrast to Vasiček-like models. This
additional, in principle infinite-dimensional degree of freedom, can
be applied to produce typical shapes of curves and to observe their
behavior over time.
The following example shows a super-position of two independent
OU-processes with infinite jump intensity and the resulting yield
curves along a sample trajectory. The typical double-humped
structure of the yield curve is preserved and depends on the
relative levels of the factors.
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Typical Shapes of Yield Curves

Two Superimposed Inverse Gaussian OU−processes
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Yield curve at time t = 2y
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Yield curve at time t = 4y
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Yield curve at time t = 5y
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