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Abstract. We consider, in the special case of certain one-parameter families of jacobians
of curves defined over a number field, the problem of how the property that the generic fiber
of such a family is absolutely simple “spreads” to other fibers. We show that this question
can be approached using arithmetic geometry or with more analytic methods based on sieve
theory. In the first setting, non-trivial group-theoretic information is needed, while the
version of the sieve we use is also of independent interest.

Introduction

Given a family X → S of algebraic varieties (over a field k, say, with S connected), a
natural question of algebraic geometry is to know what type of properties of the generic
fibre Xη extend to other fibers – and indeed, in which way they extend. As examples, one
can think of Grothendieck’s semicontinuity theorem, which is a general purely algebraic
result of this type. As a second example, a family of curves with smooth generic fiber will
be smooth over an open subset of the base, and after an appropriate base change, all the
fibers will be stable. In an arithmetic setting, a celebrated example of great importance is
the Hilbert Irreducibility Theorem, where it is shown that, for a Galois covering X → Pn

defined over a number field k, the fiber over “most” rational points t ∈ Pn(k) is a finite set
of Galois-conjugate points where G acts freely transitively (in other words, the coordinates
of any point x ∈ X mapping to t generate a Galois extension with Galois group G). Indeed,
quantitative estimates are known for the size of the complement, see for instance [40, Ch. 9],
and arise from very diverse methods, among which we highlight the large sieve arguments
of S.D. Cohen (see for instance [6] or [40, Ch. 13]).

There are arithmetic properties for which the classical methods known in the context of
the Hilbert Irreducibility Theorem do not seem to be directly applicable. One example is
the following question: let A → S be a family of abelian varieties defined over a global field
k, and assume that the generic fibre is simple, or geometrically simple. What can be said
about the set of rational points s ∈ S(k) for which As remains (geometrically) simple1 over
k? Note that for each prime number `, one can pose in this setting the Galois-theoretic
question of understanding how the Galois groups of the `-torsion fields of the fibers vary,
which are instances of Hilbert-irreducibility type problems. In fact, it will turn out that
understanding this, as ` varies, plays an important role in the work that follows.

We will develop a variety of techniques to approach this particular problem, especially
when S = P1

k, and we expect that they would be suitable for many others with a similar
flavor. In fact, the parallel with the known approaches to Hilbert’s theorem will be obvious:
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1 Note here the similarity with the case of Hilbert’s Irreducibility Theorem, when interpreted in terms of

irreducibility of specializations of an irreducible polynomial F (X, Y ) in two variables.
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one set of techniques will be built on arithmetic geometry, while the other will involve sieve
methods, while both will require some group-theoretic information. This familiar appearance
should not be taken too far, however, as the tools involved are quite subtle. In particular, we
appeal to difficult results of group theory which had not yet – to our knowledge – been applied
to arithmetic problems (for some, the only published proof depends on the classification of
finite simple groups). On the sieve side, the method will also be quite original, and will
involve proving a new generalization of Gallagher’s larger sieve inequality over number fields
which is likely to be of independent interest.2

Since the goal of this paper is partly to emphasize the general methods, rather than to
prove a specific particular case, and since the tools borrow quite freely from arithmetic
algebraic geometry, group theory, and analytic number theory, which may not be equally
familiar to the interested readers, we have chosen a fairly expository style of writing. For
instance, we discuss informally the characteristic strengths and weaknesses of the two basic
approaches, and for the sake of clarity, we do not always pursue the strongest possible
conclusions.

To give a concrete form to our results, here are prototypical consequences of the more
general theorems proved in the main body of the paper. They concern a particular type of
families of abelian varieties, namely the family

Af → A1

of Jacobians of the hyperelliptic curves defined by affine equations

y2 = f(x)(x− t), t ∈ A1,

for some fixed squarefree polynomial f ∈ Z[X] of degree 2g, g > 1. It is true (though not
obvious) that the generic fiber of this family is geometrically simple, and hence we can ask
the question discussed above. We phrase it in a quantitative manner. First, for t ∈ Q written
t = a/b with coprime integers a and b 6= 0, let H(t) = max(|a|, |b|) be the height of t. Let
then S(B) denote the set

S(B) = {t ∈ Q | H(t) 6 B, and the fiber Af,t is not geometrically simple.}

We will show that S(B) is “small” in some sense

Theorem A (Arithmetic geometry method). There exists a constant C(f), depending on
f , such that

(1) |S(B)| 6 C(f)

for all B > 1. In other words, there are only finitely many t ∈ Q for which Af,t is not
geometrically simple.

This is a special case of Theorem 8 in Section 1 and is elaborated on in Example 14 in
Section 2.

2 Because of the interest of this sieve statement for analytic number theorists, independently of the
problem in arithmetic geometry which is involved, we have summarized in an Appendix enough information
to understand the latter; hence, readers who are not familiar with abelian varieties may want to read this
Appendix now, and then continue with the introduction and then with Section 3.
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Theorem B (Analytic number theory method). There exist absolute constants C > 0 and
D > 1, independent of f , such that we have

(2) |S(B)| 6 C(g2D(log 2B))11g2

for all B > 1.

This is a special case of Theorem 24 in Section 3, where we have simplified the bound by
worsening it somewhat.

These results show that the “geometric simplicity” property does extend to most fibers
in these families. Here is one reason why this is not at all obvious (which also, hopefully,
suggests what other type of properties might be considered similar). Suppose we first ask
about the question for all complex fibers (where it remains meaningful): how large is the set
of t ∈ C for which Af,t is not geometrically simple? Geometrically, this set is the intersection
between the rational curve in the moduli spaceMg of curves of genus g which “is” the family
Af , and the sublocus NSg ofMg parametrizing curves whose Jacobians are non-simple. The
difficulty arises from the fact that NSg is a countable union of proper subvarieties, and hence
it would suffice for each of those to intersect the family Af in a single rational point (each
distinct from the othes) for Theorem A to fail.

In fact, when g = 2, the non-simple locus NS2 is a countable union of divisors, so a typical
curve intersects this locus infinitely many times; however, our result shows that most of the
intersection points are not rational.

This discussion suggests the following question (which we do not claim to know the answer
to):

Question 1. Is there an absolute constant C such that, for any squarefree polynomial
f ∈ C[x] of degree at least 6, there are at most C complex numbers t such that the Jacobian
of y2 = f(x)(x − t) is not simple? (The condition on the degree ensures that the genus is
not 6 2).

One can also restrict to integral polynomials and rational values of t, and there one may
observe that our proof of Theorem A shows that if we further allow C to depend on the degree
of f (i.e., on the genus of the hyperelliptic curves under consideration), then a conjecture
of Lang [31] implies a positive answer (by the work of Caporaso, Harris, and Mazur [4] who
have deduced from it a bound depending only on g for the number of rational points on a
curve of genus g over Q).

Here are now some general comments to compare Theorems A and B, which also apply
more generally to the two underlying methods. Theorem A may initially appear to be much
stronger. But note that in (1), we have no idea about the actual value of C(f), in particular
about how it may vary with f , whereas in Theorem B, the bound (2) is effective in terms of
f . In particular this means we can prove bounds for similar problems involving families with
more than one parameter (i.e., over a more complicated base than the affine or projective
line, for instance we could look at the two-parameter family of Jacobians of

y2 = f(x)(x− t)(x− v),

for fixed square-free f of degree 2g−1), and this also means that one can deduce upper bound
from (2) for the smallest height of a point t ∈ Q such that the variety Af,t is geometrically
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simple (indeed, a simple computations shows that there exists some t of height 6 B for
which At is geometrically simple, where

B = C ′(D′g4)11g2

for some constants C ′ > 0, D′ > 1 which are computable in terms of C and D).
This situation may be compared with the problem of counting rational points on a plane

curve X of genus > 2: the theorem of Faltings shows that this set of points is finite, but
it gives no effective bound for the heights of the solutions, and only estimates (depending
badly on X) for the number of points, while on the other hand, the method of Heath-Brown
(see [25]) yields a completely explicit bound, depending only on the degree of X, for the
number of points on X of height at most B.

Another remark of interest in the comparison with the Hilbert Irreducibility Theorem is
that the results are stronger: the bounds for the size of S(B) are much better than those
known for a general “thin” set (see [40, §13.1]). This is particularly transparent with the
sieve argument, since our application of the larger sieve is much stronger than the large sieve
could give.

Acknowledgments. We wish to thank the referee for indicating a simplification and
slight strengthening of our larger-sieve bound.

The first-named author’s work was partially supported by NSF-CAREER Grant DMS-
0448750 and a Sloan Research Fellowship.

Notation. As usual, |X| denotes the cardinality of a set, and Fq is a field with q elements.
For a number field k, Zk denotes its ring of integers, and for a prime ideal p ⊂ Zk, Fp is the
residue field Zk/p.

By f � g for x ∈ X, or f = O(g) for x ∈ X, where X is an arbitrary set on which f is
defined, we mean synonymously that there exists a constant C > 0 such that |f(x)| 6 Cg(x)
for all x ∈ X. The “implied constant” refers to any value of C for which this holds. It
may depend on the set X, which is usually specified explicitly, or clearly determined by the
context.

1. Methods from arithmetic geometry, I

In this section and the next we consider a field k which is finitely generated over the prime
field, e.g., k could be a number field or a function field over a finite field.3 We also assume
that the characteristic of k, if positive, is not equal to 2.

The first conditions arise because we need to know that the following mild weakening of
Mordell’s conjecture holds for k:

Theorem 2. With k as above, there is a constant g1(k) such that for any smooth projective
curve C/k of genus g > g1(k), the set C(k) of k-rational points on C is finite.

Proof. At a minimum we must have g > 2, and if char(k) = 0, then we may take g1(k) = 2.
If C is not defined over an algebraic closure of the prime field of k, then this is a combination
of results of Manin–Grauert [34], [17] (for char(k) = 0) and Samuel [37] (for char(k) > 0).
If char(k) = 0 and C is defined over the algebraic closure of Q, then the argument in the
corollary of Theorem 1 of [35] reduces this to the celebrated theorem of Faltings [11]. The

3 These will be the only fields arising in the analytic section, and the reader can think of these as the
most important.
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case which can force us to take g1(k) > 2 is when k = Fq(X) for a smooth projective variety
X/Fq and C is defined over Fq. If Fq is algebraically closed in k, then elements of the
complement C(k)−C(Fq) correspond to dominant maps X → C and repeated composition
with the Frobenius C → C gives rise to an infinite subset of C(k). However, the following
proposition shows if we take g1(k) = dimH0(X×Fq Fq,Ω1), there are no such elements, hence
C(k) = C(Fq) is finite. �

Proposition 3. Let Y/Fq be a smooth projective curve of genus g. For any dominant map

f : X → Y where X/Fq is a smooth projective variety, we have g 6 dimH0(X,Ω1).

The following proof was suggested by J.F. Voloch.

Proof. If f : X → Y is inseparable, then there is a purely inseparable map of curves Z → Y
through which f factors and such that X → Z is separable. Moreover, the genus of Y is at
most the genus of Z, so up to replacing Y with Z we may assume f is separable. Then the
pullback map of differentials

f ∗ : H0(Y,Ω1)→ H0(X,Ω1)

is an embedding (cf. [41, Theorem 1 in III.6.2]), and since dim(H0(Y,Ω1)) = g, the conclusion
follows. �

Let now C/k be a smooth curve, and let A/k(C) be a principally-polarized abelian variety
of dimension g over the function field of C. Let ` be a prime which is invertible in k and let
A[`] be the `-torsion of A.

There is an embedding of the group G = Gal(k(C)(A[`])/k(C)) into Γ = Aut(A[`]), where
Aut is understood to refer to the group of linear automorphisms preserving the symplectic
Weil pairing, up to a scalar. The subgroup of symplectic automorphisms of A[`] is denoted
Γ0. We therefore have isomorphisms

Γ ' GSp(2g,F`), Γ0 ' Sp(2g,F`)

(where GSp(2g) is the group of symplectic similitudes, also sometimes written CSp(2g) or
even SSp(2g).)

By the geometric monodromy of A modulo `, we mean the image of the absolute Galois
group of ks(C) in Γ0. We say A has big monodromy mod ` if the geometric monodromy of
A is the whole symplectic group Γ0, so that Γ0 6 G. If v is a place of k(C), we write Av for
the fiber over v of the Neron model of A over C and Gv 6 G for the decomposition group.
We say Av has big monodromy modulo ` if Av is an abelian g-fold and if Γ0 6 Gv 6 G. In
all this, if ` is clear from the context, we may simply speak of geometric monodromy, or say
that A or Av has big monodromy, without specifying `.

These notions are relevant for our basic problem because of the following sufficient criterion
for geometric simplicity, which will be our main tool in this and the next section. This makes
precise the fairly intuitive fact that a factorization of an abelian variety forces the monodromy
group to preserve the factors, and hence is incompatible with having big monodromy; but
because the factorization may exist only over an extension of k, and is valid only up to
isogeny, this requires some care.

Proposition 4. For any g > 1, there is a constant `1(g) > 1 satisfying the following: if
` > `1(g) and A/k is an abelian variety of dimension g over a field k such that A has
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big monodromy modulo `, then A satisfies Endk̄(A) = Z and in particular is geometrically
simple.

Proof. By a theorem of Chow, we have Endk̄(A) = Endks(A) for any abelian variety A/k
(see [8, Th 3.19]), so it suffices to prove the corresponding statement with the endomorphism
ring over ks instead of over k̄.

Next, for any A/k, note that the rank of the endomorphism ring Endks(A′), as a Z-module,
is constant as A′ runs over the isogeny class of A. If A is not geometrically simple, there is an
abelian variety A′ in this isogeny class which splits over k̄ as A1×A2, with A1, A2 of dimension
> 1. By the previous paragraph, this means in particular that Endks(A′) contains a non-
trivial endomorphism π satisfying π2 = π (e.g., the projection onto the non-trivial factor
A1), and then Z[π] is a rank-two Z-submodule of Endks(A′) and thus Endks(A) 6= Z (since it
has rank > 2). In particular, by contraposition, A is geometrically simple if Endks(A) = Z.

Now, let ` be a prime number such that some abelian variety A/k has big monodromy
modulo ` and satisfies Endks(A) 6= Z. Then, by the theory of abelian groups, there is an
endomorphism ψ in Endks(A) such that Z[ψ] is a rank-two Z-submodule of Endks(A) and
moreover Endks(A)/Z[ψ] has no `-torsion. The latter assumption implies that the image of
Z[ψ] in End(A[`]) ' M2g(F`) is a rank-two F`-submodule, because otherwise ψ −m would
be divisible by ` for some m ∈ Z. More precisely, we may find ψ such that the image of ψ
in End(A[`]) does not lie in the scalar subgroup F×` .

Let K be the Galois closure of the splitting field of ψ (i.e., K is the fixed field of the
subgroup of Gal(k̄/k) fixing ψ) and let H be its Galois group of K(A[`])/K. There is a
natural inclusion H → G, where G is the monodromy group of A modulo `.

Since the action of ψ on A[`] commutes with H and ψ does not lie in the scalar subgroup
F×` 6 End(A[`]), Schur’s Lemma implies that the subgroup H 6 M2g(F`) does not act
absolutely irreducibly on A[`]. Since G ∩ Γ0 = Γ0 does have this property (because of the
big monodromy assumption), H ∩ Γ0 is a proper subgroup of Γ0. Now, if ` > 3, we know
that Γ0 is generated by its elements of order `, because they generate a normal subgroup and
Z(Γ0) = {±1} is the only proper normal subgroup (see [45, Theorem 5]). Thus, there exists
at least one element σ of order ` in the complement G−H. In particular, the σ-orbit of H
in the permutation representation on G/H has ` elements, hence we find that [G : H] > `.

On the other hand, the Galois group Gal(K/k) acts faithfully on the free Z-module
EndK(A), so that it is isomorphic to a finite subgroup F of GL(n,Z) for some n 6 2g.
By a theorem of Minkowski, F injects into GL(n,Z/3Z) (see for instance [42]) and thus its
order is bounded by a constant depending only on g. Let `1(g) be this constant. Since Galois
theory gives

[G : H] 6 |Gal(K/k)|,
it follows from this and the previous paragraph that

` 6 [G : H] 6 |F | 6 `1(g),

as desired. �

Our first (and most general) approach to the problem mentioned in the introduction uses
some deep group-theoretic results of Liebeck–Saxl [33] and Guralnick [19], in order to apply
Proposition 4. This is contained in the following result:
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Proposition 5. If g1 > 0 is a constant, then there is a constant `2(g1) satisfying the follow-
ing. If ` > `2(g1) and X → C is a geometric Galois cover with group G = Sp(2g,F`), then
for any proper subgroup H < G, the genus of X/H is at least g1.

Proof. In the case where f is tamely ramified (for instance in characteristic zero), this follows
from [33, Corollary 2 to Theorem 1], and in the general case, this follows from [19, Theorem
1.5]. �

Remark 6. The constant `2(g1) is conjectured to be independent of g1 ([19, Conjecture 1.6]),
and in the tame case this follows from [14, Theorem A].

What is required for Proposition 5 is a very thorough understanding of the maximal proper
subgroups of Sp(2g,F`). As written, the results in [33] and [19] both use the classification
of finite simple groups. More precisely, the proof of Corollary 9.5 in [19] uses Theorem 1 of
[33] which in turn rests on the classification-dependent Theorem 4.1 of [32]. However, we
learned from Guralnick [20] that Magaard has an unpublished proof of Theorem 1 of [33]
which does not use the classification.

Proposition 5 forms the main content of the following proposition.

Proposition 7. If ` > `2(g1(k)) and A has big monodromy mod `, then Av has big mon-
odromy mod ` for all but finitely many v ∈ C(k).

Proof. Let X/k be the smooth curve with function field k(C)(A[`]). The map of curves
X → C is generically Galois with group G containing Γ0. Let v be a point in C(k) and let
w be a point in X lying over v with decomposition group Gv 6 Γ. If H 6 G is a subgroup
not containing Γ0, and Gv 6 H, then the image of w in the quotient curve X/H has degree
[Gv : Gv ∩ H] = 1 over v, hence is a k-rational point of X/H. In particular, to prove the
theorem it suffices to show that X/H has genus greater than g1(k) for any proper subgroup
H < G because then Theorem 2 implies that⋃

H<G

(X/H)(k)

is finite. But this is exactly Proposition 5 applied to the proper subgroup H ∩ Γ0 of Γ0. �

We can now deduce the following concrete application:

Theorem 8. Let k be an infinite field of finite type over the prime field, for instance a
number field. Let g > 1 be an integer, and let f ∈ k[X] be a squarefree polynomial of degree
2g.

Let A be the Jacobian of the hyperelliptic curve of genus g over k(t) with affine model

y2 = f(x)(x− t).
Then there are only finitely many t ∈ k such that At is not geometrically simple.

Proof. By a result of J-K. Yu and the third author [21], A has big monodromy modulo `
for any ` > 3. Choosing ` > max(2, `1(g), `2(g1(k))) yields the desired result by combining
Proposition 4 and Proposition 7. �

Remark 9. Zarhin has recently shown [47, Th. 1.5] that over any field K of characteristic 0,
the Jacobian of an hyperelliptic curve with equation

y2 = f(x)(x− t), f ∈ K[X], t ∈ K, deg(f) = 2g > 8, f(t) 6= 0,
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is always absolutely simple under the condition that the splitting field of the polynomial f
has Galois group containing the alternating group A2g. This gives many examples where the
finite exceptional set of Theorem 8 is actually empty!

In the theorems above we have used the fact that A has big monodromy modulo some
prime ` in order to show that almost all the fibers Av have big monodromy modulo the
same `. It is worth pointing out that the hypothesis that Av has big monodromy modulo a
sufficiently large fixed `0 actually implies that it has big monodromy modulo almost all `,
although we will only prove it for global fields.

Proposition 10. Suppose k is a global field, i.e. a number field or a function field of a curve
over a finite field. If Av has big monodromy modulo `0, for some `0 > 5, then there is a
constant `3(Av) so Av has big monodromy modulo ` for every prime ` > `3(Av).

Proof. If Av has big monodromy for `0 > 5, then the `0-adic monodromy group of Av contains
Aut(T`0A) ' Sp(2g,Z`0) (see [39, Lemme 1]). Therefore, if k is a number field, then [38,
2.2.7] and [39, Théorème 3] imply that for every sufficiently large `, the `-adic monodromy
group of B contains Sp(2g,Z`). If k is a function field over a finite field, then one can apply
[39, 8.2] to deduce a similar statement. �

It is worth noting here that this method does not allow the bound `3(Av) to be chosen
independently of Av. To prove such a uniform bound over a rational function field, for
example, would require showing that the Siegel modular varieties parametrizing abelian g-
folds with ‘H-level structure’ contain no unexpected rational curves; this can be carried out
when g = 1, since the Siegel modular variety is just a curve (see [7]) but seems difficult in
general. A theorem of Nadel [36] proves such a result (as a special case of a much more
general theorem) when H is the trivial subgroup of Sp(2g,F`).

2. Methods from arithmetic geometry, II

In the special case of families of hyperelliptic curves contemplated in the present paper,
we can also obtain results using easier group theory in place of Proposition 5, as we now
explain. Again, we will use Proposition 4 to obtain geometric simplicity.

We continue with the notation introduced in the previous section except that now we must
work in characteristic zero, so we assume k is finitely generated over a number field. This
implies that Theorem 2 is valid with g1(k) = 2.

First of all, we remark that when A has big monodromy modulo a sufficiently large ` and
at least three fibers where the reduction is not potentially good, then one can show that
Av has big monodromy modulo ` via the results in [22], which require only Thompson’s
classification of so-called quadratic pairs [46].

By restricting A further, we can make our work even simpler, while still proving a general
enough result to obtain the theorems stated in the introduction. For this, we say A degen-
erates simply at v if the identity component of Av is the extension of an abelian variety by
a one-dimensional torus and if the component group of Av has order prime to `. There are
only finitely many v where A degenerates simply. From the group-theoretic point of view,
this geometric condition is useful because of the following fact:

Lemma 11. With notation as above, if A degenerates simply at v, then the inertia group
Iv 6 Gv is generated by a transvection.
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Proof. By [18, (2.5.4) and Corollaire 3.5.2], Iv is generated by a unipotent element τ satisfying
dim((τ − 1)A[`]) 6 1, so τ is either a transvection or is trivial. Moreover, A[`] does not split
over the strict henselization of the local field k(C)v because the component group of Av
has order prime to ` (cf. [18, (11.1.3)]), hence k(C)(A[`]) ramifies over v and τ 6= 1 is a
transvection, as claimed. �

We will also use here the following group-theoretic lemma, the potential significance of
which is clear from the previous one.

Lemma 12. If ` > 3, then a subgroup of Sp(2g,F`) which contains `2g−1 transvections is
the whole of Sp(2g,F`).

Proof. This follows immediately from a theorem of Brown and Humphries [3], which gives
a criterion for a set of transvections to generate the symplectic group Sp(2g,F`). More pre-
cisely, recall that there is a natural bijection between cyclic groups generated by transvec-
tions and lines in F2g

` ; namely, we take the group generated by τ to the 1-dimensional space

(τ − 1)(F2g
` ). Let S ⊂ P(F2g

` ) be a set of subgroups generated by transvections. Let G(S) be
the graph with set of vertices S and with edges given by those pairs (s1, s2) ∈ S × S such
that the space spanned by s1 and s2 (thought of as lines in F2g

` ) is not isotropic. Then [3]

shows that (for ` > 3), S generates G if and only if the elements of S span F2g
` , and if G(S)

is connected. If the lines in S fail to span all of F2g
` , then obviously

|S| 6 `2g−1 − 1

`− 1
.

On the other hand, if G(S) is the disjoint union of two subgraphs G1 and G2, the subspaces
of F2g

` spanned by the vertices of G1 and G2 must be mutually orthogonal, so in particular
the union of these vector spaces contains at most (`2g−1 − 1)/(` − 1) lines. In either case,
the number of transvections contained in S is at most `2g−1 − 1. �

Now we deduce the following:

Proposition 13. Let k be a field finitely generated over a number field, let C/k be a smooth
projective curve, and let A/k(C) be a principally-polarized abelian g-fold. Suppose ` > 3 is
a prime such that A has big monodromy modulo ` and that A degenerates simply at⌈ 2(`2g − 1)

(`g − `g−1)2

⌉
or more places. Then Av has big monodromy modulo ` for all but finitely many v ∈ C(k).

Proof. We can assume that the places where A degenerates simply are in C(k), because
the conclusion will even be stronger after extending scalars to a field of definition of those
places. Then, let again X/k be the smooth curve with function field k(C)(A[`]). The map of
curves X → C is generically Galois with group G contained in Γ. Again, we use Theorem 2,
applied to the curves X/H as H ranges over proper subgroups of Γ0. As in the proof of
Proposition 7, and because g1(k) = 2 now, it suffices to show that all such X/H have genus
at least 2.

Fix a proper subgroup H < Γ0 and let Y/k be the quotient curve X/H. Suppose v is a
point where A degenerates simply and let τ ∈ Iv be a generator. There is an action of τ on
the sheets of Y ×k ks which is exactly the permutation action on the cosets of Γ0/H: the
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orbits correspond to the points of Y ×k ks over v and the size of an orbit is the ramification
index. Every orbit has 1 or ` elements and the coset gH is fixed by τ if and only if g−1τg
lies in H. In particular, the computation of the ramification of Y → C at v is reduced to a
problem about the conjugates of transvections in G.

By Lemma 12, we have
|τG ∩H|
|τG|

6
`2g−1 − 1

`2g − 1
,

so there are at least
`2g−2(`− 1)

`2g − 1
[G : H]

points of Y ×k ks over v of ramification degree `. Therefore, if we write m for the number
of v in C(k) where A degenerates simply, then from the Riemann-Hurwitz formula we have
that

2g(Y )− 2 > [G : H]
(m`2g−2(`− 1)2

`2g − 1
+ 2g(C)− 2

)
.

In particular, the right hand side is positive since m(`g − `g−1)2 > 2(`2g − 1), hence
Y = X/H has genus at least two. �

Example 14. When A is the Jacobian of

y2 = f(x)(x− t)
with deg(f) = 2g, we observe that, for ` > 3, A degenerates simply at every prime v in
k(t) corresponding to the specialization of t to a root of f(x). A priori, one could apply the
description of the monodromy of A about v given in [22, Section 5] to deduce that it is a
transvection, which is why we want it to be simply degenerate (see Lemma 11), but one can
also perform a geometric computation to check this directly.

The fact that Av is the extension of an abelian variety by a one-dimensional torus, for
instance, from [1, §9.2, Example 8]. The key point is that the fiber of the curve over v is
smooth away from a single ordinary double point.

To compute the order of the component group of Av, one must compute the minimal
regular model of the curve over v, which a straightforward calculation reveals to be the union
of curve C1 of genus g−1 and a curve C2 of genus 0 (Remark IV.7.7 and Example IV.7.7.1 of
[44] give a nice concrete treatment of the blowing-up process required for this computation).
Moreover, C1 and C2 intersect in two points, from which it follows that one has the divisor
intersection numbers C2

1 = C2
2 = −2 and C1 · C2 = 2 (cf. [44, Proposition IV.8.1]). Using

this information one applies [1, §9.6, Theorem 1] to deduce that the component group of Av
is isomorphic to Z/2Z.

So when g > 2, we immediately recover Theorem 8 using Proposition 13. (The case g = 1
is standard; see for instance [7].)

3. Methods from analytic number theory

The analytic approach to our problem is based on the conjunction of two sieves: the sieve
for Frobenius of the last-named author (see [28]), which is a version of the large sieve, and a
generalisation of Gallagher’s larger sieve [15]. The prototype of this approach was described
in [28, Prop. 6.3], which used a standard large sieve instead of the larger sieve. The latter
is much more efficient here.
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This combination of two sieves is quite appealing, and it may be of interest in other
applications. Although we do not know of any previous use of the large sieve to set up a
larger sieve, the second-named author has, in earlier work, used the larger sieve to prepare
for application of the large sieve (see [10]).

The sieve arises because, instead of the “big monodromy” argument in Proposition 4, we
will detect non-simple abelian varieties by means of the following alternate criterion:

Proposition 15. Let k be a number field and A/k be an abelian variety. Let p ⊂ Zk be
a prime ideal of k with residue field Fp such that A has good reduction at p. If the abelian
variety Ap/Fp obtained by reduction of A modulo p is geometrically simple, then so is A.

Proof. This is a tautology, given the theory of reductions of abelian varieties: if A is not
geometrically simple, there exists an isogeny

A ' A1 × A2

with dimA1, dimA2 > 1, which is defined over some finite Galois extension k′/k. The factors
A1 and A2 have good reduction at p, and so, after reducing, we obtain a corresponding non-
trivial factorization for Ap defined over the residue extension of k′/k at p. �

Remark 16. It is well-known that there exist integral polynomials which are irreducible over
Q but which are reducible modulo every prime (this is due to Hilbert; see, e.g., [2], where
it is shown that such polynomials exist of every non-prime degree). Similarly, there are
examples of geometrically simple abelian varieties defined over a number field which are not
geometrically simple modulo any prime (see the review [13] by R. Fisher of a paper by C.
Adimoolam, and the results of Hashimoto and Murabayashi [24]). It would be interesting to
know if the analogue of the finiteness statement (1) holds for the set S ′(B) of parameters of
height 6 B for which At is not simple modulo all primes.

Sieve methods, in particular the large sieve, will be used to detect factorizations of abelian
varieties over finite fields (much as they can be used to detect irreducible polynomials), and
thus we will proceed by applying Proposition 15 at many different primes.

We first give a new formulation of Gallagher’s sieve in number fields. The works of
Hinz [26] and Goldberg [16] contain other versions, which are much more restricted and
weaker, and there is also an ongoing work in progress of D. Zywina with a similar result. It
is quite interesting that the efficiency of our argument depends crucially on using the height
function in the number field, and not some cruder measure of size based on the coefficients
in some integral basis, for instance (other sieves are usually not really sensitive to this type
of choice of a norm).

Note that the terminology “larger sieve” arises because this statement is most efficient
when trying to control the size of a set which does not intersect a very large number of
residue classes modulo a set of primes.

Proposition 17. Let k/Q be a number field, let B > 0 be a constant, and let A be a finite
set of elements of k such that H(a) 6 B for all a ∈ A, where H denotes the height in k,
normalized as described below.

11



Let S be a finite set of prime ideals in the ring of integers Zk. If the order of the image of
A under the reduction map k → P1(Fp) is 6 ν(p) for all p ∈ S, then we have

|A| 6

∑
p∈S

logNp− log(2[k:Q]B2)

∑
p∈S

logNp

ν(p)
− log(2[k:Q]B2)

,

provided the denominator in this expression is positive.

Remark 18. For many applications, the weaker estimate

(3) |A| 6

∑
p∈S

logNp

∑
p∈S

logNp

ν(p)
− log(2[k:Q]B2)

,

also valid when the denominator is positive, is sufficient. Indeed, this is what we will use.

We indicate which definition of the height we consider, since there are competing normal-
izations; we follow [43, VIII.5], i.e., our H is the same as Silverman’s Hk. Thus let Mk be
the set of places of k, defined as in [43, VIII.5, p. 206] (the set of absolute values on k, which
coincide with the standard absolute values when restricted to Q), and let | · |v denote the
absolute value associated with v ∈Mk.

For a ∈ k, the height of a is defined by

H(a) =
∏
v∈Mk

max(1, |a|nv
v )

where nv is the local degree at v, i.e., nv = [kv : Qv], where kv and Qv are the completions of
k (resp. Q) with respect to the metric defined by | · |v (in particular nv = 2 if v is a complex
place).

We will need the following easy and well-known results:

(4) H(a) = H(a−1) H(ab) 6 H(a)H(b) H(a+ b) 6 2[k:Q]H(a)H(b)

for all a, b ∈ k×. We also recall that if v ∈ Mk is a non-archimedean place, associated with
a prime ideal p, then we have

(5) |a|nv
v = (Np)−vp(a),

where vp is the p-adic valuation and Np = |Fp| = |Zk/pZk| is the order of the residue field.
We also comment briefly on the reduction map k → P1(Fp): if a ∈ k and vp(a) < 0 (i.e.,

if p “divides the denominator” of a), then the image of a modulo p is the point at infinity
(denoted ∞) in P1(Fp). We write simply a ≡ ∞ (mod p) to indicate that this is the case.

Proof of Proposition 17. The proof is very similar to the original argument of Gallagher [15].
Let

∆ =
∏
a,b∈A
a6=b

H(a− b)

12



which is real number > 1. We will compare upper and lower bounds for ∆ to obtain the
larger sieve inequality. By (4), we first have the easy upper bound

(6) ∆ 6 (2[k:Q]B2)|A|(|A|−1).

On the other hand, we bound the height from below as follows: by (4) again, switching to
the inverse to use (5) with positive valuations, we have

∆ =
∏
a6=b

H((a− b)−1) >
∏
a6=b

∏
p∈S

vp(a−b)>0

(Np)vp(a−b).

It follows that

log ∆ >
∑
a6=b

∑
p∈S

vp(a−b)>0

(logNp) =
∑
a6=b

∑
p∈S

a≡b (mod p)

(logNp).

Now, for all p ∈ S and α ∈ P1(Fp), define

Rp(α) = |{a ∈ A | a ≡ α (mod p)}|.
We obtain

log ∆ >
∑
p∈S

(logNp)
∑
a6=b

a≡b (mod p)

1

=
∑
p∈S

(logNp)
∑
a,b∈A

a≡b (mod p)

1− |A|
∑
p∈S

logNp

=
∑
p∈S

(logNp)
∑

α∈P1(Fp)

Rp(α)2 − |A|
∑
p∈S

logNp.

However, by Cauchy-Schwarz, and by definition of ν(p), we have the familiar lower bound

∑
α∈P1(Fp)

Rp(α)2 >

( ∑
α∈P1(Fp)

Rp(α)
)2

ν(p)
=
|A|2

ν(p)
,

and therefore we obtain

log ∆ >
∑
p∈S

{ |A|2
ν(p)

− |A|
}

logNp.

Finally, putting things together, we obtain∑
p∈S

{ |A|2
ν(p)

− |A|
}

logNp 6 log ∆ 6 |A|(|A| − 1) log(2[k:Q]B2).

Simplifying by |A| and re-arranging gives the result. �

When applying this proposition, we typically know some upper bound on ν(p), on average
over S, and estimate the right-hand side of (3). In our case, ν(p) will be quite small (less
than (Np)1−δ for some δ > 0), so that if the set S is chosen to be

S = {p ⊂ Zk | Np 6 x}
13



for some parameter x > 2 (as is typically the case), the first sum in the denominator grows
fairly rapidly as x grows.

The strength of the final estimates stems from this, but in a way which is rather surprising
compared with the large sieve (for instance): it will come from the fact that one can choose x
quite small to make the denominator positive; then the numerator is also fairly small, hence
so is A, but the actual size of the denominator is, in fact, of little significance (though it
does contribute a small saving factor, the quality of the upper bound – in this range at least
– comes mainly from the small size of x).

From this sketch, one can guess that the only really delicate issue that may arise is if one
tries to have estimates uniform in terms of k, for then one is led directly to the difficult issue
of showing that there are sufficiently many prime ideals with small norm.

In order to clarify the mechanism, we define

(7) βk(x; δ) = min
{
t > 2 |

∑
Np6t

(Np)−1+δ > x
}
, for t > 2, 0 6 δ < 1,

which, intuitively, quantifies the “convergence to equilibrium” in the Prime Ideal Theorem
for k. Note in particular that

βk(x; δ) > min{n > 2 | there is some prime ideal of norm n},
since any sum over primes of smaller norm is zero by definition.

If k is considered to be fixed, we can deduce, by summation by parts, from the Prime
Ideal Theorem that ∑

Np6t

(Np)−1+δ =
tδ

log tδ
+O

(
log

1

δ
+

tδ

(log tδ)2

)
,

for δ > 0 and t > 2 with tδ > 2, where the implied constant depends on k only. It then
follows easily that

(8) βk(x; δ)� (2x log x)1/δ

for x > 2, where the implied constant depends only on k.

Corollary 19. Let k/Q be a number field and let A be a finite set of elements of k such that
H(a) 6 B for all a ∈ A, and such that, for all prime ideals p in Zk, the order of the image
of A under the reduction map k → P1(Fp) is 6 ν(p) where

ν(p) 6 C(Np)1−γ−1

(logNp)

for some constants C > 0 and γ > 1.
Then we have

|A| 6 2[k : Q]βk

(
2C log(2[k:Q]B2); γ−1

)
(log(2[k:Q]B2))−1.

Proof. Write δ = γ−1. Applying Proposition 17 (in the form of (3)) with S taken to be the
set

S = {p | Np 6 x}
for some x > 2 to be determined later, the denominator of (3) is

− log(2[k:Q]B2) +
∑
p∈S

logNp

ν(p)
> − log(2[k:Q]B2) + C−1

∑
Np6x

(Np)−1+δ.

14



Thus if we take
x = βk

(
2C log(2[k:Q]B2); δ

)
,

then the definition (7) shows that the denominator is > log(2[k:Q]B2).
We bound the numerator, on the other hand, rather wastefully in terms of k:∑

Np6x

logNp 6 [k : Q](log x)π(x) 6 2[k : Q]x,

(by the Brun-Titchmarsh or Chebychev upper-bound for π(x)). The result is then a direct
translation of Proposition 17. �

Under various assumptions, one can easily transform this into concrete results. For sim-
plicity, we do this for a fixed number field; there, using (8), we obtain:

Corollary 20. Let k be a fixed number field. With assumption as in Corollary 19, we have

|A| � (log(2[k:Q]B2))γ−1(4C log(2C log(2[k:Q]B)))γ,

for all B > 2, the implied constant depending only on k.

Example 21. For k = Q, using a lower-bound such as

π(x) >
1

6

x

log x

for x > 2 (which follows, e.g., from [23, p. 342]), one gets easily (and rather wastefully) that

βQ(x; δ) 6
(12x

δ
log

2x

δ

)1/δ

,

and hence

|A| 6 2
(24C

δ

)1/δ

(log 2B2)1/δ−1
(

log
{4C

δ
log(2B2)

})1/δ

,

under the assumption of Corollary 19 for k = Q.

Now we come to the application to the splitting of Jacobians in our hyperelliptic families.
We use the following result, which is itself proved using a version of the large sieve, to derive
assumptions such as those in Corollary 19, involving the type of conditions in Proposition 15.

Proposition 22. Let Fq be a finite field with q elements, let g > 1 be an integer and let
f ∈ Fq[X] be a squarefree polynomial of degree 2g. For t ∈ Fq, let At be the Jacobian of the
hyperelliptic curve Ct with affine equation

Ct : y2 = f(x)(x− t).
Then we have

(9) |{t ∈ Fq | f(t) 6= 0 and At is not geometrically simple}| � g2q1−γ−1

(log q)

where γ = 4g2 + 2g + 4 and the implied constant is absolute.

Proof. Fix a prime number ` 6= p. For t ∈ Fq, we let Pt denote the numerator of the zeta
function of Ct, which is the integral polynomial of degree 2g given by

Pt = det(1− TF | H1(At,Z`)),

where H1(At,Z`) ' H1(Ct,Z`) is the first étale cohomology group of At or Ct (this is the
“spectral interpretation” of the zeros of the zeta function of Ct).
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Let Gt be the Galois group of the splitting field of Pt. We write W for the Weyl group of
the symplectic group Sp(2g), or more concretely, the group of order 2gg! consisting of signed
permutation matrices in GL(n,Z). From the application of the sieve for Frobenius in [29,
Remark after Th. 8.13], it is known that Gt is, most of the time, isomorphic to W : we have

|{t ∈ Fq | f(t) 6= 0 and Gt 6' W}| � g2q1−γ−1

(log q),

where γ = 4g2 + 2g + 4 and the implied constant is absolute (the earlier result in [28, Th.
6.2] has γ = 4g2 + 3g + 5 instead, which is virtually indistinguishable; it also misses the g2

factor, due to a slip in the final step of the estimate).
Precisely, this result trivially implies (9) if “geometrically simple” is replaced by “simple”,

since an isogeny (over Fq) of the type

(10) At ' A1 × A2

with dimA1, dimA2 > 1, implies that

(11) Pt = det(1− TF | H1(A1,Z`)) det(1− TF | H1(A2,Z`)),

where both factors are integral polynomials of degree > 1, which can certainly not occur if
Pt has Galois group W .

To claim the result stated in the geometric context, one must exclude factorizations as
above which hold after At is base-extended by a finite extension of Fq. For fixed g, one can
adapt straightforwardly the corresponding qualitative argument of Chavdarov [5, Th. 2.1,
Lemma 5.3]. The dependency on g might be worse than what we claim when applying this
directly, but for g > 5 (at least), one can use instead the following elementary argument
exploiting the size of the Galois group. First, one can show (see [30, Prop. 2.4, (2)]) that
Gt ' W and g > 5 imply that the only multiplicative relations between zeros of Pt must
follow from the Riemann Hypothesis, i.e., if (α1, . . . , α2g) are the inverse roots of Pt, we have
Q⊗Z R = T , where

R = {(ni) ∈ Z2g |
∏
i

αni
i = 1},

T = {(mi) ∈ Q2g |
∑
j

mj = 0, and mi = mj if αi = ᾱj}.

Now if (10) holds over Fqm , m > 1, it is easy to see that there must be a relation αmj = αmk
with j 6= k, and this corresponds to a relation (ni) ∈ R with ni = 0 except nj = nk = m,
which is incompatible with the definition of T . �

Remark 23. The uniformity in g is a nice additional feature of the sieve method, but it is not
necessarily crucial here; the uniformity in terms of the characteristic of Fq is what matters
for the later use of this proposition.

It is worth noting one common feature of the geometric and analytic approaches here: the
proof of Proposition 22 depends crucially on the same result of J-K. Yu (reproved in [21])
concerning the monodromy modulo ` of our hyperelliptic families, over finite fields.

Theorem 24. Let k/Q be a number field, g > 1 an integer and f ∈ k[X] a squarefree
polynomial of degree 2g. For t ∈ k, not a zero of f , let At be the Jacobian of the hyperelliptic
curve with affine equation

y2 = f(x)(x− t).
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For B > 1, let

S(B) = {t ∈ k | H(t) 6 B and At is not geometrically simple}.
Then there exists an absolute constant D > 0 such that, for B > 2, we have

|S(B)| � (log(2[k:Q]B2))γ−1(g2D log log(2[k:Q]B))γ,

with γ = 4g2 + 2g + 4, where the implied constant depends only on k.

Proof. The basic observation is that, if t ∈ S(B) then for any prime ideal p, t (mod p) ∈
P1(Fp) is either a zero of f modulo p, or ∞, or else (f(t) being non-zero modulo p so that
At has good reduction modulo p, and its fiber over p then being not geometrically simple),
t (mod p) lies in the set Ωp defined by (9) for f relative to q = Np.

Hence the image of S(B) modulo p has cardinality ν(p) with

ν(p) 6 2g + 1 + |Ωp| � g2(Np)1−γ−1

(logNp),

where the implied constant is absolute by Proposition 22. Thus Corollary 20 directly implies
the result. �

Remark 25. In an extremely narrow range, the large sieve (as used originally in [28]) is better
than the larger sieve. Indeed, as discussed with many examples in [9], the original larger
sieve is better when the number of permitted residue classes (i.e., the size of Ωp, in our case)
is smaller than half of Np (this is not quite true anymore in our inequality because of the
term log(2[k:Q]B2) in the denominator). Proposition 22 clearly shows that we can not prove
this4 unless Np is (roughly) larger than δ−1/δ (with δ � g2). But the bound in Proposition 22
also becomes trivial for g not much beyond this point, so the range of applicability where
the large sieve would be the best is very small.

Appendix: survey of abelian varieties for analytic number theorists

While the basic information about abelian varieties that we use will certainly be well-
known to readers more familiar with the methods of Sections 1 and 2, this is less likely to be
the case for readers whose interests lie more in the direction of analytic number theory and
sieves. In order to motivate the basic problem for these readers, we summarize here briefly
some background information, which we hope will suffice to make accessible the contents of
Section 3 for such readers.

The simplest case of abelian varieties is that of elliptic curves; although our basic question
of geometric simplicity is not of interest in this setting (any elliptic curve is geometrically
simple), a basic knowledge of elliptic curves can help motivate and understand the general
theory. We refer for this to Silverman’s book [43], and to the summary in [27, §11.10], which
may also be helpful.

Let k be a number field (for instance, k = Q). An abelian variety A defined over k is, first
of all, a proper irreducible variety over k; that is, we may think of A as a subset of projective
space over k cut out by some set of homogeneous equations in the coordinates which generate
a prime ideal. (In practice, though, one almost never writes down these equations!) What
makes A an abelian variety is the presence of a group law: a map from A×A to A which is
given by polynomials in the coordinates, and satisfies the usual group axioms – associativity,
presence of an inverse, and so on. (One might compare A with the more familiar example

4 It may be true, for all we know.
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of SLn /k, which is also determined as a subset of kn
2

by a set of equations, and which also
has a group operation which is polynomial in the matrix entries. The difference is that A
is cut out by equations in projective space, while SLn is cut out by equations in the affine
space kn

2
.)

Since k is contained in C, we can ask not only about the group of solutions over k to the
defining equations of A, but about the set of complex solutions, denoted A(C). Write g for
the dimension of A. It is known that A is necessarily isomorphic to Cg/Λ for some lattice
Λ ' Z2g ⊂ Cg; in the 1-dimensional case g = 1, A is an elliptic curve over k.

In particular, it follows that the subgroup A[n] of elements of order dividing n in A, for
any integer n > 1, is isomorphic to (Z/nZ)2g, and moreover the fact that A is defined over
k easily implies that the coordinates of elements in A[n] are algebraic numbers, which all
together generate a finite Galois extension k(A[n]) of k.

Algebraic curves provide a natural source of abelian varieties via the construction of the
Jacobian, which over C goes back to Jacobi, and over k to Weil. To each non-singular
algebraic curve C/k of genus g, one can attach a natural abelian variety J(C) over k of
dimension g. One nice feature of Jacobians is that they are principally polarized: this is a
kind of self-duality which imposes on J(C)[n] a natural perfect pairing

J(C)[n]× J(C)[n]→ µn ' Z/nZ

where µn denotes the group of n-th roots of unity.
In fact, the action of Gal(k̄/k) on the coordinates of k(A[n]) is not merely linear, but

compatible with the symplectic pairing above and its action on the roots of unity; thus it
provides a representation

Gal(k̄/k)→ Aut(A[n]) ' GSp(2g,Z/nZ).

The primary examples of abelian varieties treated in this paper are Jacobians of curves; in
any event, all the abelian varieties we consider are for simplicity assumed to be principally
polarized.

The most delicate issue for Section 3 is that of reductions of an abelian variety modulo
prime ideals of Zk. Suffice it to say here that this can be defined for all but finitely many
prime ideals of k (the “primes of bad reduction”), and that if concrete equations for A are
given so that, modulo p, the resulting equations still define a smooth algebraic variety, then
the reduction coincides pretty much with the näıve notion of looking at solutions of the
equations with coefficients in extensions of the residue field Zk/p.

Now our basic problem takes root in the following definition: an abelian variety A/k is
simple if and only if there is no nontrivial abelian variety B over k which is a subvariety of
A, except A itself. It is geometrically simple if it remains simple even when considered as an
abelian variety over an algebraically closed field containing k (such as C when k is a number
field, or an algebraic closure of a finite field when k is finite).

Implicit in the notion of geometric simplicity is that, for most lattices Λ ⊂ Cg, the quotient
Cg/Λ is not an abelian variety. It is merely a complex torus; the condition that it embeds as
an algebraic subvariety of projective space imposes very strong restrictions on Λ (originally
described by Riemann.) In particular, if Cg/Λ is an abelian variety, it is not usually possible
to find a subspace V ⊂ Cg, V /∈ {0,Cg}, such that Λ ∩ V is a lattice in V and V/(Λ ∩ V ) is
an abelian variety. In other words, abelian varieties over C are “typically” simple.
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Now the question considered in this paper is essentially the following: we form a family,
parameterized by elements in k, of curves; then we have an associated family of Jacobian
varieties, and we ask: how frequent is it that those abelian varieties are not geometrically
simple?

The basic approach in Section 3 is founded on the following fact: if an abelian variety A/k
is not geometrically simple, then its reduction modulo a prime ideal p has the same property
(which is intuitive enough). Moreover, a result going back in principle to Poincaré shows
that a non-trivial subvariety B ⊂ A is “essentially” a direct factor, i.e., we have

A ' B × C

for some other abelian subvariety C, up to finite groups (“up to isogeny”). This is the
property (10) which leads to the factorization (11) which we use to control the occurence of
non-geometrically simple varieties.
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algébrique, I, Seminaire de Géometrié Algébrique du Bois-Marie 1967–1969, (SGA 7 I), no. 9, Lecture
Notes in Math. 288, Springer, Berlin, 1972, 313–523.

[19] Guralnick, R. Monodromy groups of coverings of curves. Galois groups and fundamental groups, 1–46,
Math. Sci. Res. Inst. Publ., 41, Cambridge Univ. Press, Cambridge, 2003.

[20] Guralnick, R. (Personal communication). 2007.
19



[21] Hall, C. Big symplectic or orthogonal monodromy modulo `. Duke Math J., vol. 141 (2008), no.1,
179–203

[22] Hall, C. Maximal subgroups of classical groups containing a quadratic element (In progress).
[23] Hardy, G.H. and Wright, E.M. An introduction to the theory of numbers. 5th Edition, Oxford Univ.

Press, 1979.
[24] Hashimoto, K. and Murabayashi, N. Shimura curves as intersections of Humbert surfaces and defining

equations of QM-curves of genus two. Tohoku Math. J. (2) 47 (1995), no. 2, 271–296.
[25] Heath-Brown, D.R. The density of rational points on curves and surfaces. Ann. of Math. (2), 155(2)

(2002) 553–595.
[26] Hinz, J. Square-Free values of cubic polynomials in algebraic number fields. J. of Number Theory 32

(1986), 203–320.
[27] Iwaniec, H. and Kowalski, E. Analytic number theory. Colloquium Publ. 53, A.M.S, 2004.
[28] Kowalski, E. The large sieve, monodromy and zeta functions of curves. J. reine angew. Math., 601

(2006), 29–69.
[29] Kowalski, E. The large sieve and its applications: arithmetic geometry, random walks and discrete

groups. Cambridge Tracts in Math. 175, Cambridge University Press 2008.
[30] Kowalski, E. The large sieve, monodromy and zeta functions of algebraic curves, II: Independence of

the zeros. Int. Math. Res. Not. IMRN 2008, Art. ID rnn 091, 57 pp.
[31] Lang, S. Hyperbolic and Diophantine analysis. Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159–205.
[32] Liebeck, M. On the orders of maximal subgroups of the finite classical groups. Proc. London Math. Soc.

(3) 50 (1985), no. 3, 426–446.
[33] Liebeck, M. and Saxl, J. Minimal degrees of primitive permutation groups, with an application to

monodromy groups of covers of Riemann surfaces. Proc. London Math. Soc. (3) 63 (1991), no. 2, 266–
314.

[34] Manin, Ju. I. Rational points on algebraic curves over function fields. Izv. Akad. Nauk SSSR Ser. Mat. 27
(1963), 1395–1440.

[35] Martin-Deschamps, M. La construction de Kodaira-Parshin. Seminar on arithmetic bundles: the Mordell
conjecture (Paris, 1983/84). Astérisque No. 127 (1985), 261–273.
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