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The classical arithmetic large sieve inequality states that, for any real numbers N , Q > 1,
any choice of subsets Ωp ⊂ Z/pZ for primes p 6 Q, we have

(1) |{n 6 N | n (mod p) /∈ Ωp for p 6 Q}| 6 ∆

H
where

H =
∑[

q6Q

∏
p|q

|Ωp|
p− |Ωp|

,

and ∆ is any constant for which the “harmonic” large sieve inequality holds: for any complex
numbers (an), we have

(2)
∑
q6Q

∑∗

a (mod q)

∣∣∣∑
n6N

ane
(an
q

)∣∣∣2 6 ∆
∑
n6N

|an|2,

the notation
∑[

and
∑∗

denoting, respectively, a sum over squarefree integers, and one over

integers coprime with the (implicit) modulus, which is q here.
By work of Montgomery-Vaughan and Selberg, it is known that one can take

∆ = Q2 − 1 +N

(see, e.g., [IK, Th. 7.7]).
There are a number of derivations of (1) from (2); for one of the earliest, see [M1, Ch. 3].

The most commonly used is probably the argument of Gallagher involving a “submultiplica-
tive” property of some arithmetic function (see, e.g., [K, §II.2] for a very general version).

We will show in this note how to prove (1) quite straightforwardly from the dual version
of the harmonic large sieve inequality: ∆ is also any constant for which

(3)
∑
n6N

∣∣∣∑
q6Q

∑∗

a (mod q)

β(q, a)e
(an
q

)∣∣∣2 6 ∆
∑
q6Q

∑∗

a (mod q)

|β(q, a)|2,

holds for arbitrary complex numbers (β(q, a)). This is of some interest because, quite often,1

the inequality (1) is proved by duality from (3), and because, in recent generalized versions of
the large sieve (see [K]), it often seems that the analogue of (3) is the most natural inequality
to prove – or least, the most easily accessible. So, in some sense, one could dispense entirely
with (2) for many applications!

Note that the argument we give is not really a new proof; some ingredients of most (if
not all!) of the previous ones occur – most particularly the Cauchy inequality. There are

1 But not always – Gallagher’s very short proof, found e.g. in [M2, Th. 1, p. 549], proceeds directly, as
does the Montgomery-Vaughan proof.
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other proofs of (1) working directly from the inequality (3) which can be found in the older
literature on the large sieve, usually with explicit connections with the Selberg sieve (see
the references to papers of Huxley, Kobayashi, Matthews and Motohashi in [M2, p. 561]),
although none of those that the author has seen seems to give an argument which is exactly
identical or as well motivated.

Indeed, maybe the most interesting aspect of our proof is that it very easy to motivate.
It flows very nicely from an attempt to improve the earlier inequality

(4) |{n 6 N | n (mod p) /∈ Ωp for p 6 Q}| 6 ∆

K
, K =

∑
p6Q

|Ωp|
p
,

of Rényi, which is most easily proved using (3) instead of (1), as in [K, §II.4].

Let
S = {n 6 N | n (mod p) /∈ Ωp for p 6 Q},

be the sifted set; we wish to estimate from above the cardinality of this finite set. From (3),
the idea is to find an “amplifier” of those integers remaining in the sifted set, i.e., an expres-
sion of the form

A(n) =
∑
q6Q

∑∗

a (mod q)

β(q, a)e
(an
q

)
which is large (in some sense) when n ∈ S. Then an estimate for |S| follows from the usual
Chebychev-type manoeuvre.

To construct the amplifier A(n), we look first at a single prime p 6 Q. If n ∈ S, we
have n (mod p) /∈ Ωp. If we expand the characteristic function of Ωp in terms of additive
characters,2 we have then

0 = 1Ωp(n) =
∑

a (mod p)

α(p, a)e
(an
p

)
, α(p, a) =

1

p

∑
x∈Z/pZ

1Ωp(x)e
(ax
p

)
,

and the point is that the contribution of the constant function (0-th harmonic) is, indeed,
relatively “large”, because it is

α(p, 0) =
|Ωp|
p
,

and exactly reflects the probability of a random element being in Ωp. Thus for n (mod p) /∈
Ωp, we have

(5)
∑∗

a (mod p)

β(p, a)e
(an
p

)
= cp

with

cp =
|Ωp|
p
, β(p, a) = −α(p, a).

If we only use the contribution of the primes in (3), and the amplifier

A(n) =
∑
p6Q

∑
a (mod p)

β(p, a)e
(an
p

)
,

2 We use this specific basis to use (3), but any orthonormal basis containing the constant function 1 would
do the job, as in [K].
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then by (3), we get ∑
n∈S

|A(n)|2 6
∑
n6N

|A(n)|2 6 ∆
∑
p6Q

∑
a (mod p)

|β(p, a)|2.

For n ∈ S, the size of the amplifier is

|A(n)|2 =
∣∣∣∑
p6Q

∑
a (mod p)

β(p, a)e
(an
p

)∣∣∣2 =
∣∣∣∑
p6Q

cp

∣∣∣2 = K2,

by (5), while on the other hand, by applying the Parseval identity in Z/pZ, we get∑
p6Q

∑
a (mod p)

|β(p, a)|2 =
∑
p6Q

(1

p

∑
x∈Z/pZ

|1Ωp(x)|2 − α(p, 0)2
)

=
∑
p6Q

cp(1− cp) 6 K.

So we obtain

K2|S| 6 ∆K,

i.e., exactly Rényi’s inequality (4), by this technique.
To go further, we must exploit all the squarefree integers q 6 Q (and not only the primes)

to construct the amplifier. This is most easily described using the Chinese Remainder The-
orem to write

Z/qZ '
∏
p|q

Z/pZ, (Z/qZ)× '
∏
p|q

(Z/pZ)×,

and putting together the amplifiers modulo primes p | q: if n ∈ S then n (mod p) /∈ Ωp for
all p | q, and hence multiplying out (5) over p | q, we find constants β(q, a) ∈ C, defined for
(a, q) = 1 (because β(p, a) is defined for a coprime with p), such that∑∗

a (mod q)

β(q, a)e
(an
q

)
=
∏
p|q

cp.

Moreover, because the product decomposition of the Chinese Remainder Theorem is com-
patible with the Hilbert space structure involved, we have∑∗

a (mod q)

|β(q, a)|2 =
∏

p mod q

∑∗

a (mod p)

|β(p, a)|2 =
∏
p|q

cp(1− cp).

Arguing as before, we obtain from (3) – using all squarefree moduli q 6 Q this time – that

(6) |S| 6 ∆
A

B2
,

with

A =
∑[

q6Q

∏
p|q

cp(1− cp), B =
∑[

q6Q

∏
p|q

cp.

This is not quite (1), but we have some flexibility to choose another amplifier, namely,
notice that this expression is not homogeneous if we multiply the coefficients β(q, a) by
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scalars independent of a, and we can use this to find a better inequality. Precisely, let

γ(q, a) =
∏
p|q

γ(p, a), with γ(p, a) = λpβ(p, a).

Then we have the new amplification property∑∗

a (mod q)

γ(q, a)e
(an
q

)
=
∏
p|q

λpcp

with altered “cost” given by ∑∗

a (mod q)

|γ(q, a)|2 =
∏
p|q

λ2
pcp(1− cp),

so that, arguing as before, we get

|S| 6 ∆
A1

B2
1

with

A1 =
∑[

q6Q

∏
p|q

λ2
pcp(1− cp), B1 =

∑[

q6Q

∏
p|q

λpcp.

If we wish to seem clever, we can select

λp =
1

1− cp
=

p

p− |Ωp|
,

as if by magic: since

cpλp = λ2
pcp(1− cp) =

|Ωp|
p− |Ωp|

,

this leads to A1 = B1 = H, hence to |S| 6 ∆H−1, which is (1). But this choice is not
just a random one: the problem is to optimize a quadratic form (namely A1) with a linear
constraint given by B1, and the choice above is the best one. This is checked, as usual, with
Cauchy’s inequality: writing

cq =
∏
p|q

cp, c̃q =
∏
p|q

(1− cp), λq =
∏
p|q

λp

for ease of notation, we have

B2
1 =

(∑[

q6Q

λqcq

)2

6
(∑[

q6Q

λ2
qcq c̃q

)(∑[

q6Q

cq
c̃q

)
= A1H,

with equality if λp is as given above, or in other words

A1

B2
1

>
1

H
,

with equality for this specific choice of λp.
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Remark. (1) The last “optimization” step is reminiscent of the Selberg sieve. Indeed, it is
well known that the Selberg sieve is related to the large sieve, and particularly with the dual
inequality (3), as explained in [HR, p. 125]. Note however that the coefficients we optimize
for, being of an “amplificatory” nature, and different from the coefficents λd typically sought
for in Selberg’s sieve, which are akin to the Möbius function and of a “mollificatory” nature.

(2) The argument does not use any particular feature of the classical sieve, and thus
extends immediately to provide a proof of the general large sieve inequality of [K, Prop.
2.3] which is directly based on the dual inequality [K, Lemma 2.8]; readers interested in the
formalism of [K] are encouraged to check this.

Example. What are the amplifiers above in some simple situations? In the case – maybe
the most important – where we try to count primes, we then take Ωp = {0} to detect integers
free of small primes by sieving, and (5) becomes∑∗

a (mod p)

(
−1

p

)
· e
(an
p

)
=

1

p
,

if p - n. Then, for q squarefree, the associated detector is the identity∑∗

a (mod q)

µ(q)

q
e
(an
q

)
=

1

q
,

if (n, q) = 1, or in other words, it amounts to the well-known formula∑∗

a (mod q)

e
(an
q

)
= µ(q)

for the values of a Ramanujan sum with coprime arguments. Note that in this case, the
optimization process above replaced cp = 1

p
with

λpcp =
1

p− 1
,

which is not a very big change – and indeed, for small sieves, the bound (6) is not far from (1),
and remains of the right order of magnitude.

On the other hand, for an example in a large sieve situation, we can take Ωp to be the set
of squares in Z/pZ. The characteristic function (for odd p) is

1Ωp(x) =
∑

a (mod p)

τ(p, a)e
(ax
p

)
with coefficients given – essentially – by Gauss sums

τ(p, a) =
1

p

(
1 +

1

2

∑∗

x (mod p)

e
(ax2

p

))
.

Then cp tends to 1/2 as p → +∞, while λpcp tends to 1. This difference leads to a
discrepancy in the order of magnitude of the final estimate: using standard results on bounds
for sums of multiplicative functions, (6) and taking Q =

√
N , we get

|S| �
√
N(logN)1/4,

instead of |S| �
√
N that follows from (1).
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