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CHAPTER 1

Introduction and motivations

This script follows up on a standard course in Functional Analysis and builds on the
principles of functional analysis to discuss one of the must useful and widespread among
its applications, the analysis, through spectral theory, of linear operators T : H1 → H2

between Hilbert spaces.
The emphasis of the course is on developing a clear and intuitive picture, and we

intend a leisurely pace, with frequent asides to analyze the theory in the context of
particularly important examples.

1.1. What is spectral theory

The goal of spectral theory, broadly defined, can be described as trying to “classify”
all linear operators, and the restriction to Hilbert space occurs both because it is much
easier – in fact, the general picture for Banach spaces is barely understood today –,
and because many of the most important applications belong to this simpler setting.
This may seem like luck, but recall that Hilbert spaces are distinguished among Banach
spaces by being most closely linked to plane (and space) Euclidean geometry, and since
Euclidean geometry seems to be a correct description of our universe at many scales, it
is not so surprising, perhaps, that whenever infinite-dimensional arguments are needed,
they should also be close to this geometric intuition.

One may think of different ways of “classifying” linear operators. Finite-dimensional
linear algebra suggests that two linear maps T1, T2 : H1 → H2 which are linked by a
formula

(1.1) T2 ◦ U1 = U2 ◦ T1,

for some invertible operators Ui : Hi → Hi, share many similar properties. In the
finite-dimensional case, this is because the Ui correspond to changing basis in Hi, which
should be an operation that does not affect the intrinsic properties of the operators.
This interpretation fails in general for infinite-dimensional spaces where no good theory
of bases exists, but the definition still has interest, and one may try to describe all
operators H1 → H2 up to such relations.

Similarly, one can refine this idea if H1 = H2 = H, a single space, by considering that
two operators T1, T2 : H → H should be in the same class if there is a single invertible
U : H → H such that

(1.2) T2 ◦ U = U ◦ T1, i.e. T2 = UT1U
−1.

Again, the interpretation of U as a change of basis is not available, but the notion is
natural.

In linear algebra, the classification problem is successfully solved by the theory of
eigenvalues, eigenspaces, minimal and characteristic polynomials, which leads to a canon-
ical “normal form” for any linear operator Cn → Cn, for n > 1.
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We won’t be able to get such a general theory for H of infinite dimension, but it
turns out that many operators of greatest interest have properties which, in the finite-
dimensional case, ensure an even simpler description: they may belong to any of the
special classes of operators defined on a Hilbert space by means of the adjoint operation
T 7→ T ∗: normal operators, self-adjoint operators, positive operators, or unitary opera-
tors. For these classes, if dimH = n, there is always an orthonormal basis (e1, . . . , en) of
eigenvectors of T with eigenvalues λi, and in this bases, we can write

(1.3) T (
∑
i

αiei) =
∑
i

αiλiei

(corresponding to a diagonal matrix representation).
In the infinite-dimensional case, we can not write things as easily in general, as one

sees in the basic theory of the spectrum in the Banach algebra L(H). However, there
is one interpretation of this representation which turns out to be amenable to great
generalization: consider the linear map

U

{
H → Cn

ei 7→ (0, . . . , 0, 1, 0, . . . , 0), with a 1 in the i-th position.

This map is a bijective isometry, by definition of an orthonormal basis, if Cn has the
standard inner product, and if we define

T1

{
Cn → Cn

(αi) 7→ (αiλi)

then (1.3) becomes

(1.4) T1 ◦ U = U ◦ T.

This is obvious, but we interpret this as follows, which gives a slightly different view
of the classification problem: for any finite-dimensional Hilbert space H, and normal
operator T , we have found a model space and operator (Cn, T1), such that – in the sense
of the previous formula – (H,T ) is equivalent to (Cn, T1) (in fact, unitarily equivalent,
since U is isometric).

The theory we will describe in the first chapters will be a generalization of this type
of “normal form” reduction, which is the point of view emphasized in [RS1, Ch. VII].
This is very successful because the model spaces and operators are indeed quite simple:
they are of the type L2(X,µ) for some measure space (X,µ) (the case of Cn corresponds
to X = {1, . . . , n} with the counting measure), and the operators are multiplication
operators

Tg : f 7→ gf

for some suitable function g : X → C.

1.2. Examples

In order to focus the coming discussions with important examples, here are some
types of operators in Hilbert space.

Example 1.1 (Multiplication operators). We have already hinted at these examples:
they will indeed serve as model for all (normal) operators on Hilbert space. Let (X,µ) be
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a finite measure space (i.e., we have µ(X) < +∞), and let g ∈ L∞(X,µ) be a bounded
function. Then we have a continuous linear map

Mg :

{
L2(X,µ)→ L2(X,µ)

f 7→ gf

indeed, we have ∫
X

|g(x)f(x)|2dµ(x) 6 ‖g‖2
∞‖f‖2,

so that Mg is well-defined and is continuous with norm ‖Mg‖ 6 ‖g‖∞.
Note moreover that

〈Mg(f1), f2〉 =

∫
X

g(x)f1(x)f2(x)dµ(x) = 〈f1,Mḡ(f2)〉,

for all f1, f2 ∈ L2(X,µ), and therefore the adjoint of Mg is given by

M∗
g = Mḡ,

showing among other things that Mg is self-adjoint if and only if g is (almost everywhere)
real-valued.

For g1, g2 ∈ L∞(X,µ), we also have the obvious relation

Mg1(Mg2(f)) = g1(g2f) = g2(g1f) = Mg2(Mg1(f)),

so all the operators Mg for g ∈ L∞(X,µ) commute; in particular, they are all normal.
If X ⊂ C is a bounded measurable set for the Lebesgue measure µ, the case g(x) = x

is particularly important.
The next lemma is here for future reference: it shows that one can not construct

more general (bounded) multiplication operators than those associated with bounded
multipliers:

Lemma 1.2. Let (X,µ) be a finite measure space and let g be a measurable function
X → C. If ϕ 7→ gϕ maps L2(X,µ) to L2(X,µ), not necessarily continuously, then
g ∈ L∞(X).

Proof. We may first observe that the assumption implies, in fact, that T : ϕ 7→ gϕ is
continuous, by the Closed Graph Theorem: indeed, if (ϕn, gϕn) is a convergent sequence in
the graph of T , so that ϕn → ϕ, gϕn → ψ in L2(X,µ), we can extract a subsequence where
both convergence hold µ-almost everywhere. But then gϕn converges almost everywhere
to gϕ and to ψ, so that gϕ = ψ ∈ L2(X,µ), i.e., (ϕ, ψ) lies also in the graph of T .

Now, knowing that T is bounded, we know there is a constant C > 0 such that

‖gϕ‖2 6 C‖ϕ‖2

for any ϕ ∈ L2(X,µ). Consider ϕ to be the characteristic function of the set

XA = {x | |g(x)| > A}

for some A > 0; we obtain

A2µ(XA) 6
∫
X

|g(x)|2|ϕ(x)|2dµ(x) 6 C

∫
X

|ϕ(x)|2dµ(x) = Cµ(XA).

If we select A so that A2 > C, this implies µ(XA) = 0, i.e., g is almost everywhere
6 A, which means g ∈ L∞(X,µ). �
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Example 1.3 (Hilbert-Schmidt operators). One standard example is given by com-
pact operators of Hilbert-Schmidt type. Recall that for a measure space (X,µ), given a
kernel function

k : X ×X → C

such that k ∈ L2(X ×X,µ× µ), we have a bounded operator{
L2(X,µ)→ L2(X,µ)

f 7→ Tk(f)

where

Tkf(x) =

∫
X

k(x, y)f(y)dµ(y).

One knows that Tk is a compact operator (see the next chapter for a review of the
definitions involved), and that its adjoint is given by T ∗k = Tk̃, where

k̃(x, y) = k(y, x)

and in particular Tk is self-adjoint if k is real-valued and symmetric. Examples of this
are k(x, y) = |x− y| or k(x, y) = max(x, y) for X = [0, 1].

Example 1.4 (Unitary operator associated with a measure-preserving transforma-
tion). (See [RS1, VII.4] for more about this type of examples). Let (X,µ) be a finite
measure space again, and let now

φ : X → X

be a bijective measurable map which preserves the measure µ, i.e., we have

(1.5) µ(φ−1(A)) = µ(A) for all measurable set A ⊂ X.

This setting is the basis of ergodic theory, and there is an associated linear map

Uφ

{
L2(X,µ)→ L2(X,µ)

f 7→ f ◦ φ,

which is unitary (i.e., U∗φ = U−1
φ ). Indeed, Uφ is well-defined, and is an isometry, since

for any f ∈ L2(X,µ), we have∫
X

|Uφf(x)|2dµ(x) =

∫
X

|f(φ(x))|2dµ(x) =

∫
X

|f(x)|2dµ(x)

where we use the fact that (1.5) is well-known to be equivalent with the “change of
variable” formula ∫

X

f(x)dµ(x) =

∫
X

f(φ(x))dµ(x)

for all integrable (or non-negative) functions f . Checking unitarity is similar: for any
fi ∈ L2(X,µ), we have

〈Uφ(f1), f2〉 =

∫
X

f1(φ(x))f2(x)dµ(x)

=

∫
X

f1(y)f2(φ−1(y))dµ(y)

which shows that
U∗φ = Uφ−1 ,

while we have also Uφ−1 ◦ Uφ = Uφ ◦ Uφ−1 = Id.
As concrete examples, among many, we have:
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(1) the Bernoulli shift : here X = {0, 1}Z, the space of doubly-infinite sequences
(xn)n∈Z, with xn ∈ {0, 1}, which can be equipped with a natural infinite product Radon
measure1 µ characterized by the property that for any k > 1, any {n1, . . . , nk} ∈ Z
distinct and εj ∈ {0, 1} for 1 6 j 6 k, we have

µ({(xn) | xnj = εj, for 1 6 j 6 k}) =
1

2k

(in particular µ(X) = 1). The map

B

{
X → X

(xn)n∈Z 7→ (xn+1)n∈Z

is bijective and preserves the measure µ (as one can check easily by the characterization
above).

(2) the rotations of the circle: let X = S1 = {z ∈ C | |z| = 1} be the unit circle, and
fix some θ ∈ R. Then the corresponding rotation is defined by

Rθ

{
S1 → S1

z 7→ eiθz,

and if S1 is equipped with the Lebesgue measure dz such that∫
S1

f(z)dz =

∫ 1

0

f(e2iπt)dt,

it is immediate that Rθ is a bijection preserving the measure dz.

Example 1.5 (The Fourier transform). Let n > 1 be an integer. The Fourier trans-
form is defined first as a linear map

F

{
L1(Rn, dx)→ L∞(Rn, dx)

f 7→
(
t 7→

∫
Rn f(x)e−2iπxtdx

)
between Banach spaces, which is clearly continuous with norm ‖F ‖ 6 1. Remarkably,
although the definition does not make sense a priori for f ∈ L2(Rn, dx) (such a function
may not be integrable), one can show the Parseval formula∫

Rn

|f(x)|2dx =

∫
Rn

| F f(t)|2dt

for any f which is smooth and compactly supported on Rn. This implies that, using the
L2-metric, F extends uniquely by continuity to an isometric linear map on the closure
of the space of smooth compactly supported functions. A standard fact of integration
theory is that this closure is the whole L2(Rn, dx), and this provides us with an isometric
linear operator

F : L2(Rn, dx)→ L2(Rn, dx).

Moreover, one can show this extension is surjective (e.g., from the Fourier inversion
formula

f = F f̃ where f̃(x) = f(−x)

which is valid for any integrable f for which F f is also integrable, and the fact that
such functions are dense in L2(Rn, dx)). Thus the Fourier transform is an example of

1 I.e., for the natural product topology on X, µ is finite on compact sets.
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a bijective isometry on L2(Rn, dx), and the Plancherel formula generalizes the Parseval
formula to show that the adjoint F ∗ is the inverse Fourier operator

f 7→ F f̃ ,
i.e., F is unitary.

If the facts we mentioned above are not familiar, complete proofs can be found in
many places, for instance [RS1, Ch. IX] or [W, V.2].

A few additional properties of the Fourier transform will be needed in later chapters;
they are summarized in the section on notation and prerequisites below.

Example 1.6 (The Laplace operator). Consider the linear differential operator

∆ : f 7→ ∂2f

∂x2
+
∂2f

∂y2

for f : R2 → C. Of course, it is not defined for all L2 functions, but if we assume that f1,
f2 are C2 (or more) and both vanish outside a big disc (i.e., they have compact support),
we can at least compute the inner product in L2(R2, dxdy):

〈∆f1, f2〉 =

∫
R2

(∂2f1

∂x2
+
∂2f1

∂y2

)
f2(x, y)dxdy

=

∫
R

∫
R

∂2f1

∂x2
(x, y)f2(x, y)dxdy +

∫
R

∫
R

∂2f2

∂y2
(x, y)f2(x, y)dydx.

Integrating by parts twice each of the inner integral (in x for the first one, in y for the
second), the compact support condition ensures that the “integrated” terms all vanish,
and we obtain

〈∆f1, f2〉 = 〈f1,∆f2〉
for such functions. It is therefore very tempting to say that ∆ is self-adjoint, but this is
not warranted by the usual definition since ∆ is not defined from and to a Hilbert space.

Still, temptation is very hard to resist, especially if one considers the following addi-
tional fact: let M be, formally again, the multiplication operator

M = M−4π2(x2+y2) : f 7→ −4π2(x2 + y2)f,

which is defined and linear also for (say) compactly supported functions on R2. Then,
using the Fourier transform

F : L2(R2, dxdy)→ L2(R2, dxdy),

we can check by elementary integration by parts again that if f is smooth and compactly
supported, we have

(1.6) F (∆f) = M(F f),

or abusing notation, ∆ = F −1M F , which is very similar to (1.4) with the model operator
being multiplication by −4π2(x2 + y2).

As we will see in Chapter 4, this type of formal computation can be given a rigor-
ous basis: this is the theory of “unbounded” (non-continuous) linear operators between
Hilbert spaces, which can be developed from the principle of looking at operators which
are linear and defined on a dense subspace of a Hilbert space and satisfy certain proper-
ties, from which it is in particular possible to define an adjoint, and for which a suitable
spectral theorem can be obtained. One can guess that it is necessary to be quite careful,
and the following fact reinforces this: as we know (and will recall), if T : H → H is
a continuous operator on a Hilbert space, and T is for instance self-adjoint, then any
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λ ∈ σ(T ) – in particular any eigenvalue λ – is real. However, for the Laplace operator,
observe that formally we can take

f(x, y) = eax+by

for arbitrary complex parameters a and b, obtaining a smooth function with

∆f = (a2 + b2)f,

and of course a2 + b2 runs over the whole complex plane as (a, b) range over C!
It can already be guessed on our example, and it will also be seen, in the next section

and in later chapters, that extending spectral theory to unbounded operators is not just
a question of seeking maximal generality. For instance, the mathematical formalism of
Quantum Mechanics (which we will discuss as an application of spectral theory) depends
on this extension.

Example 1.7 (Diagonal operators). Another class of operators, which are in fact
special cases of multiplication operators, are the diagonal operators obtained by fixing
an orthonormal basis (ei)i∈I of a Hilbert space H, and defining

T

{
H → H

ei 7→ αiei

for i ∈ I, where the scalars αi are chosen so that max |αi| < +∞. To relate this to a
multiplication operator, take

X = (I, counting measure),

so that L2(X) is identified with H through the isometry{
L2(X)→ H

f 7→
∑

i∈I f(i)ei,

and (αi) is identified with a function g ∈ L∞(X) for which we have T = Mg.

Example 1.8 (Unitary representations of topological groups). In this final example,
we consider a topological group G, i.e., a group G which is given a topology (assumed to
be Hausdorff) for which the group operations

(x, y) 7→ xy, x 7→ x−1

are both continuous. Important examples of such groups are R or C (with addition), R×

or ]0,+∞[ (with multiplication), GL(n,R) (with product of matrices) or its subgroup
SL(n,R) = {g ∈ GL(n,R) | det(g) = 1}.

A unitary representation of G is a group homomorphism

ρ : G→ U(H)

where H is a Hilbert space and U(H) is the group of unitary operators on H. The latter
is given with the strong topology and ρ is then assumed to be continuous for this topology,
which means that for any vector v ∈ H, the map{

G→ H

g 7→ ρ(g)(v)

is assumed to be continuous.
We see that a representation ρ gives us a large family of unitary operators on H,

parametrized by the group G. The spectral theory, applied to those, can lead to a
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better understanding of ρ, and then of G. Even for G looking “simple enough”, as in
the examples given, the fact that U(H) is a group of unitary operators, whereas (say)
GL(n,R) does not have this feature, means that this may bring to light new information
concerning G.

As an example, assume that G has a non-trivial measure dµ(g) which is left-invariant :
for any integrable function f and any fixed h ∈ G, we have∫

G

f(hg)dµ(g) =

∫
G

f(g)dµ(g),

(it is known that such a measure always exists, and is unique up to multiplication by
a non-zero positive real number, if G is locally compact, like all the examples we gave;
quite often, this measure also satisfies∫

G

f(gh)dµ(g) =

∫
G

f(g)dµ(g),

but this is not always true). Then one can show (continuity requires some epsilon-
management) that defining

ρ(g)

{
L2(G, dµ)→ L2(G, dµ)

f 7→ (h 7→ f(g−1h))

gives a unitary representation of G. Notice that, for a given g, this operator is a special
case of Example 1.4.

Another basic example arises when G = R with the group law given by the usual
addition law and the standard topology. Then a unitary representation R → U(H) is
also called a one-parameter unitary group of operators. We will see a parametrization
of all such one-parameter groups in Section 6.2, in terms of unbounded self-adjoint op-
erators, and we will see that those one-parameter groups are intimately related to the
mathematical formalism of Quantum Mechanics

1.3. Motivation for spectral theory

Now let’s come back to a general motivating question: why should we want to classify
operators on Hilbert spaces (except for the fact that the theory is quite beautiful, and
that it is especially thrilling to be able to say something deep and interesting about non
continuous linear maps)?

The basic motivation comes from the same source as functional analysis does: for
applications, we often need (or want) to solve linear equations

T (v) = w,

between Banach spaces, in particular Hilbert spaces. For this purpose, having an explicit
classification in terms of simple models can be very useful: first, if we have a relation
like (1.1), with Ui invertible, we have

T1(v) = w if and only if T2(v1) = w1, with v1 = U1(v), w1 = U2(w).

So if we understand the “model” operator T2 and the invertible maps U1, U2, we
can reduce the solution of linear equations involving T1 to those involving T2. Similarly
with (1.2) or (1.4).

Now notice that for model multiplication operators (Example 1.1) T2 = Mg on
L2(X,µ), the solution of Mg(f) = h is (formally at least) immediate, namely f = h/g;
this corresponds intuitively to diagonal systems of linear equations, and of course requires
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more care than this: the function g might have zeros, and the ratio h/g might not be in
L2(X,µ).

In particular, still formally, note how the Fourier transform together with (1.6) strong-
ly suggests that one should try to solve equations involving the Laplace operator, like
∆f = g, by “passing to the Fourier world”. This is indeed a very fruitful idea, but
obviously requires even more care since the operators involved are not continuous.

Besides this rough idea, we will see other reasons for trying to develop spectral theory
the way it is done. However, this should be sufficient, at least, to launch with confidence
on the work ahead...

1.4. Prerequisites and notation

Prerequisites for the script are the basic principles of functional analysis for Hilbert
and Banach spaces, though for the most part it is the theory of Hilbert spaces which is
most important. For many examples, it is also important to have a good understanding
of integration theory on a general measure space.

Below, the most important facts are recalled and, in the next chapter, we survey and
summarize the basic facts of general spectral of Banach algebras that we will use, as well
as the basic theory of compact operators on a Hilbert space. However, we start with
describing some notation.

1.4.1. Notation. Most notation is very standard, and we only summarize here the
most common. We write |X| for the cardinality of a set, and in particular |X| = +∞
means that X is infinite, with no indication on the infinite cardinal involved.

In topology, we use the French traditional meaning of a compact space: a compact
space is always assumed to be Hausdorff.

By f � g for x ∈ X, or f = O(g) for x ∈ X, where X is an arbitrary set on
which f is defined, we mean synonymously that there exists a constant C > 0 such that
|f(x)| 6 Cg(x) for all x ∈ X. The “implied constant” is any admissible value of C. It
may depend on the set X which is always specified or clear in context. The notation f � g
means f � g and g � f . On the other hand f(x) = o(g(x)) as x → x0 is a topological
statement meaning that f(x)/g(x)→ 0 as x→ x0. We also use the O() notation in other
types of expressions; the meaning should be clear: e.g., f(x) 6 g(x)+O(h(x)) for x ∈ X,
means that f 6 g + h1 in X for some (non-negative) function h1 such that h1 = O(h).
(For instance, x 6 x2 +O(1) for x > 1, but it is not true that x− x2 = O(1)).

In measure theory, we will use sometimes image measures : if (X,Σ, µ) and (Y,Ω, ν)
are two measure spaces and f : X → Y is a measurable map, the image measure f∗(µ)
on (Y,Ω) is the measure such that

(1.7) f∗(µ)(B) = µ(f−1(B))

for all B ∈ Ω; the measurability of f shows that this is well-defined, and it is easy to check
that this is a measure. The formula above generalizes easily to the general integration
formula

(1.8)

∫
Y

ϕ(y)df∗(µ)(y) =

∫
X

ϕ(f(x))dµ(x)

for any measurable function ϕ on Y (in the sense that whenever one of the two integrals
exists, the other also does, and they are equal).
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We will denote integrals by either of the following notation:∫
X

fdµ =

∫
X

f(x)dµ(x).

In the particular case of the space X = Rn, n > 1, we will denote simply by dx the
Lebesgue measure on Rn.

We also recall the definition of the support suppµ of a Borel measure µ on a topological
space X: this is defined by

(1.9) suppµ = {x ∈ X | µ(U) > 0 for all open neighborhood U of x},
and is also known to be the complement of the largest open subset U ⊂ X (for inclusion)
with µ(U) = 0.

1.4.2. Reminders. As often in analysis, some important arguments in spectral the-
ory will depend on approximation arguments : to define various objects, in particular
linear maps between Banach or Hilbert spaces (say V → W ), we start by performing
the construction for vectors in a suitable “nice” subspace V0 ⊂ V , and then claim that
it extends to the whole space automatically. This requires two properties to be checked:
the first is that the “nice” subspace V0 be dense in V (for some norm or topology), and
the second is that the construction over V0 be continuous for the same norm on V and
some norm on W for which the latter is complete.

Note that the first point (the density of V0) is potentially independent of the desired
construction and of W , so that the same choice of V0 might be suitable for many purposes.
Here are some well-known examples which we will use:

• The most famous example is probably the Weierstrass approximation theorem;
we recall the following general version:

Theorem 1.9 (Stone-Weierstrass). Let X be a compact topological space. Let
A ⊂ C(X) be any subalgebra of the space of complex-valued continuous functions
on X such that

1 ∈ A, f ∈ A⇒ f̄ ∈ A,
and for any two points z1, z2 ∈ X, there exists f ∈ A with f(z1) 6= f(z2). Then
A is dense in C(X) for the L∞ norm ‖f‖C(X) = maxx∈X |f(x)|.

Remark 1.10. The condition that A be stable under conjugation can some-
times be omitted, but it is necessary in general; for instance, the space A of
continuous functions on the closed unit disc D of C which are holomorphic inside
the disc forms a proper closed subalgebra of C(D) which satisfies all conditions
except the stability under conjugation.

The following corollary is used particularly often:

Corollary 1.11. Let X ⊂ R be a compact set of real numbers with the
induced topology. Then the space of (restrictions to X of) polynomial functions
on X is dense in C(X) for the L∞ norm.

Proof. It is clear that the space A of polynomial functions on X is a sub-
algebra of C(X), containing 1, and that it separates points (the single function
x 7→ x already does, and is in A). Moreover, if

f(x) =
∑

06j6d

α(j)xj ∈ A,
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we have

f̄(x) =
∑

06j6d

ᾱ(j)xj,

since x̄ = x, which means that f̄ ∈ A also. The Stone-Weierstrass concludes the
proof. �

Another corollary is the following:

Corollary 1.12. The linear combinations of the functions{
R→ C

x 7→ 1
x−λ

where λ ranges over non-real elements of C is dense in the space C0(R) of
continuous functions on R with limit 0 at ±∞, for the supremum norm.

Proof. Consider the compact space X = R∪{∞}, with the usual topology
on R and with neighborhoods of ∞ defined as the complements of compact
subsets (i.e., the one-point compactification of R). It is easy to check that
functions f ∈ C0(R) extend to continuous functions on X with f(∞) = 0, and
that

C(X) ' C0(R)⊕C

where the second summand corresponds to constant functions. Now the linear
combinations of functions as described forms an algebra stable A0 under conju-
gation (by partial-fraction decomposition), separating points, and A = A0⊕C ⊂
C(X) is an algebra stable under conjugation which separates points and contains
the constants. By the Stone-Weierstrass Theorem, A is therefore dense in C(X).
Now consider any function f ∈ C0(R); from the above, we can write f as a
uniform limit over X of functions fn ∈ A. We write

fn = gn + cn, gn ∈ A0, cn ∈ C;

then we have fn(∞) = cn → f(∞) = 0, and therefore gn = fn − cn ∈ A0 also
converges uniformly on X to f , in particular gn converges to f in C0(R). �

• The next example is a standard fact of measure theory. Recall that a Radon
measure µ on a locally compact topological space X is a Borel measure such
that µ(K) < +∞ for all compact subsets K ⊂ X. Then the following holds:

Lemma 1.13. Let X be a locally compact topological space. For any p such
that 1 6 p < +∞, the space Cc(X) of compactly-supported continuous functions
on X is dense in the space Lp(X,µ), for the Lp-norm. In particular, this space
is dense in L2(X,µ).

As a special case, this implies that the characteristic function of a subset
with finite measure in X can be approached arbitrarily closely (in any Lp norm
with 1 6 p < +∞) by continuous functions with compact support.
• In the case where X = U ⊂ Rn is an open subset of euclidean space, for some
n > 1, we have the distinguished Lebesgue measure dx, and we also have the
notion of smoothness. The approximation by continuous functions with compact
support can be refined:

11



Lemma 1.14. Let U ⊂ Rn be an open subset of Rn for some n > 1. Let
C∞c (U) be the space of compactly-supported functions on U which have compact
support. Then for 1 6 p < +∞, the space C∞c (U) is dense in Lp(U, dx) for the
Lp-norm.

We also recall the Riesz-Markov theorem identifying measures with positive linear
functionals on spaces of continuous functions:

Theorem 1.15. Let X be a locally compact topological space, let Cb(X) be the Banach
space of bounded functions on X, with the supremum norm. Let ` : Cb(X) → C be a
linear map such that f > 0 implies `(f) > 0. Then there exists a unique Radon measure
µ such that ∫

X

f(x)dµ(x) = `(f)

for all f ∈ Cb(X).

See, e.g., [RS1, Th. IV.4], for the proof. We note in passing the well-known useful
fact that a positive linear functional ` of this type is necessarily continuous: indeed,
positivity implies that if f and g are real-valued and f 6 g, we have `(f) 6 `(g). Then
|f | 6 ‖f‖∞ leads to

`(|f |) 6 `(1)‖f‖∞
while

−|f | 6 f 6 |f |
gives |`(f)| 6 `(|f |) 6 `(1)‖f‖∞ for f real-valued, and finally

|`(f + ig)| 6 |`(f)|+ |`(g)| 6 2`(1)‖f + ig‖∞
for general functions.

We end by recalling two facts concerning the Fourier transform, in addition to the
definition of Example 1.5. First of all, consider the functions

gm,σ(x) = exp(− (x−m)2

2σ2 )

for x ∈ R, m ∈ R, σ > 0. These are standard “gaussians”, and their Fourier transforms
are well-known: we have

(1.10) F gm,σ(y) = σ
√

2π exp(−2π2σ2y2 − 2iπmy).

Since this computation will be used in Chapter 6, we recall quickly how one may
proceed: by an affine change of variable, one reduces to the case of g(x) = g0,(2π)−1/2(x) =

e−πx
2
, and in that case we have

F g(y) = g(y),

as follows by differentiating

F g(y) =

∫
R

e−πx
2−2iπxydx

under the integral sign: after a further integration by parts, one derives that

F g′(y) = −2πyF g(y),

a differential equation with solution given by

F g(y) = F g(0)e−πy
2

.
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Finally, the value

F g(0) =

∫
R

e−πx
2

dx = 1

is classical.
The last fact we will use (again in Chapter 6, in particular Section 6.5) is the defi-

nition of the Schwartz space S(R) and the fact that F , restricted to S(R), is a linear
isomorphism with inverse given by the inverse Fourier transform. This space S(R) is
defined to be the space of C∞ functions ϕ such that, for any k > 0 and m > 0, we have

lim
|x|→+∞

(1 + |x|)mϕ(k)(x) = 0.

This space is dense in L2(R) for the L2 metric (and in L1(R) for the L1 metric), since it
contains the dense space C∞c (R) of smooth compactly supported functions (Lemma 1.14).
The usefulness of S(R) is precisely that, however, the Fourier transform does not send
compactly supported functions to compactly supported functions (in fact, no non-zero
function f has the property that both f and F f are compactly supported).

The gaussian functions gm,σ give standard examples of functions in S(R) which are
not in C∞c (R).

We note that it is sometimes useful (and necessary in comparing with other books or
papers) to use other normalizations of the Fourier transform, e.g., to consider the map

F1

{
L1(Rn, dx)→ L∞(Rn, dx)

f 7→
(
t 7→ 1√

2π

∫
Rn f(x)e−iπxtdx

)
.

We have thus

F1(f)(t) =
1√
2π
F f
( t

2π

)
and one gets in particular that F1 is also unitary for the L2-metric (say on S(R)) and
extends to a linear isometry of L2(R) with inverse given by replacing −ixt by ixt in the
definition.

When we deal with unbounded operators on a Hilbert space, it will be useful to
remember the Closed Graph Theorem:

Theorem 1.16. Let V , W be Banach spaces and T : V → W a linear map, not
necessarily continuous. Then in fact T is continuous, if and only if, the graph

Γ(T ) = {(v, w) ∈ V ×W | w = T (v)} ⊂ V ×W
is the closed subset of V ×W , relative to the product metric.

A similar but slightly less well-known result will also be useful: the Hellinger-Toeplitz
Theorem; however, we will state it in the course of Chapter 4.

1.4.3. Integration of Hilbert-space valued functions. The reader may skip this
section in a first reading, since we will only require its contents during the proof of Stone’s
Theorem in Section 6.2. Precisely, we will need to use integrals of the type∫

R

A(t)dt

where A is a function on R with values in a Hilbert spaceH, typically infinite-dimensional.
Since such integrals are not usually considered in standard classes of measure theory, we
explain here briefly how they are defined, and describe a few of their properties. All of
the latter can be summarized by saying “the integral behaves like an integral”...

13



Proposition 1.17 (Integral of Hilbert-space valued functions). Let H be a Hilbert
space and let

A : R −→ H

be a function which is weakly measurable, in the sense that for all v ∈ H, the function{
R −→ C

t 7→ 〈v, A(t)〉

is measurable, and the function
t 7→ ‖A(t)‖

is measurable.
Assume further that A is bounded and compactly supported, i.e., A(t) = 0 outside

of a compact set. Then there exists a unique vector x ∈ H such that

〈v, x〉 =

∫
R

〈v, A(t)〉dt

for all v ∈ H.

The vector given by this proposition is denoted

x =

∫
R

A(t)dt.

Proof. This is a simple consequence of the Riesz Representation Theorem for Hilbert
spaces: we define a linear form

`A : H −→ C

by

`A(v) =

∫
G

〈v, A(t)〉dt.

The integral is well-defined because of the assumptions on A: the integrand is mea-
surable, bounded and compactly supported, hence integrable. Moreover

|`A(v)| 6 C‖v‖
with

C =

∫
G

‖A(t)‖dt < +∞

(again because A is compactly supported), so that `A is continuous. By the Riesz theorem,
there exists therefore a unique vector x ∈ H such that

`A(v) = 〈v, x〉
for all v ∈ H, and this is precisely what the proposition claims. �

The integral notation is justified by the following properties:
– The integral is linear with respect to A. (This is clear.)
– For all w ∈ H, we have

(1.11) 〈x,w〉 =

∫
R

〈A(t), w〉dt

More generally, for any continuous linear map T : H → H1, where H1 is another
Hilbert space, we have

(1.12) T
(∫

R

A(t)dt
)

=

∫
R

T (A(t))dt.
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(Indeed, let y = T (x) be the left-hand side; then for v ∈ H1, we have

〈v, y〉 = 〈v, T (x)〉 = 〈T ∗v, x〉 =

∫
R

〈T ∗v, A(t)〉dt =

∫
R

〈v, T (A(t))〉dt

which is the defining property of the right-hand side; because of the unicity of the integral,
the two sides must be equal in H1.)

– For any fixed t0 ∈ R, we have

(1.13)

∫
R

A(t+ t0)dt =

∫
R

A(t)dt

(indeed, if x denotes the left-hand side, we have

〈v, x〉 =

∫
R

〈v, A(t+ t0)〉dt =

∫
R

〈v,A(t)〉dt

for all v ∈ H, since the Lebesgue measure is invariant under translation; hence again the
identity holds.)

– Suppose An : R −→ H is a sequence of weakly measurable H-valued functions,
which have a common compact support and are uniformly bounded; if there exists a
weakly-measurable function A such that

An(t) −→ A(t), for all t ∈ R,

then

(1.14) lim
n→+∞

∫
R

An(t)dt =

∫
R

A(t)dt

(indeed, replacing An with An−A, we can assume that A = 0; then let xn be the integral
of An, which we must show tends to 0 as n→ +∞; we use the formula

‖xn‖ = sup
‖v‖61

|〈v, xn〉,

and note that if v ∈ H has norm at most 1, we have

|〈v, xn〉| =
∣∣∣∫

R

〈v,An(t)〉dt
∣∣∣ 6 ∫

R

‖An(t)‖dt,

hence by taking the supremum over v, we get

‖xn‖ 6
∫
R

‖An(t)‖dt,

and the right-hand side converges to 0 by the dominated convergence theorem in view of
the assumptions, e.g., if K ⊂ R is a common compact support of the An, C a common
upper bound for ‖An(t)‖, we have

‖An(t)‖ 6 CχK(t),

for all t and all n, and this is an integrable function on R.)
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CHAPTER 2

Review of spectral theory and compact operators

In this chapter, we review for completeness the basic vocabulary and fundamental
results of general spectral theory of Banach algebras over C. We then recall the re-
sults concerning the spectrum of compact operators on a Hilbert space, and add a few
important facts, such as the definition and standard properties of trace-class operators.

2.1. Banach algebras and spectral theory

A Banach algebra (over C, and which we always assume to have a unit) is a Banach
space A with a multiplication operation

(a, b) 7→ ab

which obeys the usual algebraic rules (associativity, distributivity with addition), is C-
linear, and interacts with the norm on A by the two conditions

‖ab‖ 6 ‖a‖ ‖b‖, ‖1‖ = 1.

Of course, by induction, one gets

‖a1a2 · · · ak‖ 6 ‖a1‖ · · · ‖ak‖
(even for k = 0, if the usual meaning of an empty product in an algebra is taken, namely
that the empty product is the unit 1, either in A or in C).

The basic examples are A = L(V ), the Banach space of continuous linear maps
V → V , where V is itself a Banach space, with the usual operator norm

‖T‖L(V ) = sup
‖v‖61

‖T (v)‖ = sup
v 6=0

‖T (v)‖
‖v‖

and the composition as product. In particular, this includes the case A = L(H), where
H is a Hilbert space, in which case there is an additional structure on A, the adjoint
operation

T 7→ T ∗,

which is characterized by

〈Tv, w〉 = 〈v, T ∗w〉, for all v, w ∈ H.
This adjoint satisfies the following rules: it is additive, involutive (i.e., we have

((T ∗)∗ = T ), conjugate-linear, i.e. (αT )∗ = ᾱT ∗, and

(2.1) ‖T ∗‖ = ‖T‖ =
√
‖T ∗T‖ =

√
‖TT ∗‖.

Given an arbitrary Banach algebra A, we have the spectrum of elements of A, defined
by

σ(a) = {λ ∈ C | λ · 1− a /∈ A×},
the complement of which is the resolvent set. Here A× is the group (under multiplication)
of invertible elements of A, those a such that there exists b with ab = ba = 1.

16



The crucial feature of Banach algebras, in which the submultiplicativity of the norm
and the completeness of the underlying vector space both interact, is the following lemma:

Lemma 2.1. Let A be a Banach algebra. Then A× is open in A, and more precisely,
for any a0 ∈ A×, for instance a0 = 1, there exists δ > 0 such that for any a ∈ A with
‖a‖ < δ, we have a0 + a ∈ A× with

(a0 + a)−1 = a−1
0

∑
k>0

(−1)k(a−1
0 a)k,

where the series converges absolutely. If a0 = 1, one can take δ = 1.

Proof. We have

‖(−1)k(a−1
0 a)k‖ 6 ‖a−1

0 a‖k 6 ‖a−1
0 ‖k‖a‖k,

so the series converges absolutely in A if ‖a‖ < ‖a−1
0 ‖−1. The fact that its a−1

0 times its
sum is the inverse of a0 + a is then checked by the usual geometric series argument. �

The basic property of σ(a) ⊂ C is that it is a compact, non-empty subset of C – the
last part, which is the most delicate, depends on using the field of complex numbers, as
can be seen already in the simplest case of finite-rank matrices.

Example 2.2. A simple example shows that the restrictions just described are the
only general conditions on the spectrum: any compact subset K ⊂ C can occur as the
spectrum of some element of some Banach algebra.

Indeed, consider first more generally a compact topological space X and let A = C(X)
with the supremum norm. This Banach space is a Banach algebra with the pointwise
product of functions. Now given f ∈ A, we have

(2.2) σ(f) = f(X) ⊂ C,

since a function g ∈ A is invertible if and only if 0 /∈ g(X) (the inverse of a continuous
function which has no zero is itself continuous).

If we now fix K ⊂ C a non-empty compact subset, we can take X = K and f : x 7→ x
in C(X) = C(K), and deduce that σ(f) = K in that case.

In the situation of interest to us, where A = L(H) with H a Hilbert space, two
refinement are possible: one can isolate, using the adjoint, special subclasses of operators
with particular spectral properties (and this will be very important), and on the other
hand, one can partition the spectrum in three disjoint subsets.

We start with this second idea: given T ∈ L(H) and λ ∈ σ(T ), one says that:
– λ is in the point spectrum σp(T ) if Ker(λ − T ) is not zero, i.e., if λ − T is not

injective; this is called an eigenvalue;
– λ is in the residual spectrum σr(T ) if λ−T is injective, and the closure of the image

of λ− T is not equal to H;
– λ is in the continuous spectrum σc(T ) of λ − T is injective, not surjective, but its

image is dense in H.
It is is consequence of the Banach Isomorphism Theorem that these three possibilities

exhaust the cases where λ− T is not invertible in L(H). All three types of spectrum can
occur, though any one of them could be empty for a given operator T .

Remark 2.3. We consider in particular the continuous spectrum: if λ ∈ σc(T ), we
can define an inverse mapping

(λ− T )−1

{
Im(λ− T )→ H

v 7→ the only w ∈ H with λw − T (w) = v,
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which is an unbounded linear operator, defined on a dense subspace of H: these will be
studied more systematically in Chapter 4, and it will turn out that it is often possible
to study such unbounded operators by seeing them as “inverses” of injective operators T
which have dense image (see, for instance, the proof of the Spectral Theorem 4.42).

Note also that (λ−T )−1 is surjective (again by definition of the continuous spectrum),
so from the point of view of solving linear equations, it corresponds to a case where we
can solve uniquely the equation with arbitrary right-hand side, but we can not do it in
a continuous way, or equivalently, we can not do it with an at-most-linear control of the
norm of the solution in terms of the norm of the parameter.

Special classes of operators on a Hilbert space are defined as follows:
– T is positive if we have

〈T (v), v〉 > 0 for all v ∈ V,

– T is normal if

T ∗T = TT ∗,

and this is equivalent with

(2.3) ‖T (v)‖ = ‖T ∗(v)‖ for all v ∈ V,

which may be a more natural condition;
– T is self-adjoint if

T ∗ = T,

and this is equivalent with

(2.4) 〈T (v), v〉 ∈ R for all v ∈ V,

which shows that any positive operator is also self-adjoint;
– T is unitary if it is invertible and

T−1 = T ∗,

so that in particular a unitary T is normal.
A basic analogy to keep in mind compares L(H) with C, as follows, based on the

analogy of the adjoint with the complex conjugation:
– T self-adjoint corresponds to z ∈ R;
– T unitary corresponds to |z| = 1;
– T positive corresponds to z ∈ [0,+∞[.
One may also notice the following useful fact: for any T ∈ L(H), the operators TT ∗

and T ∗T are both self-adjoint and positive: indeed, we have

〈TT ∗(v), v〉 = ‖T (v)‖2 for all v.

We recall the proofs that (2.3) and (2.4) correspond to normal and self-adjoint op-
erators, respectively; clearly in either case, the operator definition implies the stated
relations for 〈T (v), v〉 or ‖T (v)‖. Conversely, notice that both (2.3) and (2.4) can be
expressed using the adjointness as

〈A(v), v〉 = 〈B(v), v〉 for all v,

for some operators A and B for which A = B is the desired conclusion (e.g., A = TT ∗,
B = T ∗T for the normal property). So we need only recall the next lemma:
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Lemma 2.4. Let A, B in L(H) be such that

〈A(v), v〉 = 〈B(v), v〉 for all v.

Then we have A = B; the result also holds if the condition is assumed to be valid only
for ‖v‖ = 1. The converse is of course true.

Proof. By linearity, one can assume B = 0. Then for all fixed v, w ∈ H and any α,
β ∈ C, expanding leads to

0 = 〈A(αv + βw), αv + βw〉 = αβ̄〈A(v), w〉+ ᾱβ〈A(w), v〉.
This, as an identity valid for all α and β, implies the coefficients 〈A(v), w〉 and

〈A(w), v〉 are both zero. But if this is true for all v and w, putting w = A(v) gives
A = 0. �

This lemma also call to mind the following useful property of the spectrum in L(H):
we have

σ(T ) ⊂ N(T ),

the closure of the numerical range defined by

N(T ) = {〈T (v), v〉 | ‖v‖ = 1}.
Another important feature of Hilbert spaces is the formula

(2.5) r(T ) = ‖T‖
for the spectral radius

r(T ) = max{|λ| | λ ∈ σ(T )} = inf
n>1
‖T n‖1/n = lim

n→+∞
‖T n‖1/n,

of a normal operator (the equalities in this definition are themselves non-obvious results);
indeed, (2.5) follows from the limit formula and the simpler fact that

(2.6) ‖T 2‖ = ‖T‖2

for a normal operator in L(H).
One can see easily that

(2.7) λ ∈ σp(T ) if and only if λ̄ ∈ σr(T ∗)
(because if e0 is a non-zero eigenvector of λ− T , we have

〈(λ̄− T ∗)(v), e0〉 = 〈v, (λ− T )e0〉 = 0,

we see that the image of λ̄ − T ∗ is included in the closed kernel of the non-zero linear
functional v 7→ 〈v, e0〉), and in particular it follows that the residual spectrum of a self-
adjoint operator T is empty.

The continuous spectrum can be difficult to grasp at first; the following remark helps
somewhat: if λ ∈ C is not in σp(T ) ∪ σr(T ) then λ ∈ σc(T ) if and only if

(2.8) there exist vectors v with ‖v‖ = 1 and ‖(T − λ)v‖ arbitrarily small.

Indeed, the existence of a sequence of such vectors with ‖(T −λ)vn‖ → 0 is equivalent
with the fact that the map (already described){

Im(T − λ)→ H

w 7→ v such that (T − λ)v = w

is not continuous (not bounded on the unit sphere). Intuitively, these sequences are
“almost” eigenvectors.
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2.2. Compact operators on a Hilbert space

As a general rule, we can not expect, even for self-adjoint operators, to have a spectral
theory built entirely on eigenvalues, as is the case for finite-dimensional Hilbert spaces.
There is, however, one important special class of operators for which the eigenvalues
essentially suffice to describe the spectrum: those are compact operators, of which the
Hilbert-Schmidt operators of Example 1.3 are particular cases.

2.2.1. Reminders. We recall the two equivalent definitions of compact operators:
T ∈ L(H) is compact, denoted T ∈ K(H), if either (1) there exists a sequence of operators
Tn ∈ L(H) with dim Im(Tn) < +∞ for all n, and

lim
n→+∞

Tn = T, in the norm topology on L(H);

or (2) for any bounded subset B ⊂ H (equivalently, for the unit ball of H), the image
T (B) ⊂ H is relatively compact, meaning that its closure is compact.

Although the first definition might suggest that compact operators are plentiful, the
second shows this is not so: for instance, in any infinite dimensional Hilbert space, since
the closed unit ball of H is not compact,1 it follows that the identity operator is not in
K(H). On the other hand, the first definition quickly shows that if T ∈ K(H) is compact
and S ∈ L(H) is arbitrary, we have

ST, TS ∈ K(H),

or in algebraic language, K(H) is a two-sided ideal in the Banach algebra L(H).
It follows also from the first definition that K(H) is closed in L(H). In fact, it is

known that if H is separable, K(H) is the only closed two-sided ideal in L(H), with the
exception of 0 and L(H) of course.

Here is the basic spectral theorem for a compact operator in L(H), due to Riesz,
Fredholm, Hilbert and Schmidt.

Theorem 2.5 (Spectral theorem for compact operators). Let H be an infinite dimen-
sional Hilbert space, and let T ∈ K(H) be a compact operator.

(1) Except for the possible value 0, the spectrum of T is entirely point spectrum; in
other words

σ(T )− {0} = σp(T )− {0}.
(2) We have 0 ∈ σ(T ), and 0 ∈ σp(T ) if and only if T is not injective.
(3) The point spectrum outside of 0 is countable and has finite multiplicity: for each

λ ∈ σp(T )− {0}, we have

dim Ker(λ− T ) < +∞.
(4) Assume T is normal. Let H0 = Ker(T ), and H1 = Ker(T )⊥. Then T maps

H0 to H0 and H1 to H1; on H1, which is separable, there exists an orthonormal basis
(e1, . . . , en, . . .) and λn ∈ σp(T )− {0} such that

lim
n→+∞

λn = 0,

and

T (en) = λnen for all n > 1.

1 Any sequence (en) of vectors taken from an orthonormal basis satisfies ‖en − em‖2 = 2 for all
n 6= m, so it has no Cauchy subsequence, and a fortiori no convergent subsequence!
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In particular, if (fi)i∈I is an arbitrary orthonormal basis of H0, which may not be
separable, we have

T
(∑
i∈I

αifi +
∑
n>1

αnen

)
=
∑
n>1

λnαnen

for all scalars αi, αn ∈ C for which the vector on the left-hand side lies in H, and the
series on the right converges in H. This can be expressed also as

(2.9) T (v) =
∑
n>1

λn〈v, en〉en.

In Example 3.20, we will prove the self-adjoint case using the general spectral theorem
for bounded self-adjoint operators.

Note that (2.9) will be the most commonly used version of this statement for T a
normal compact operator, where the (en) form an orthonormal basis of Ker(T )⊥ and
T (en) = λnen.

Corollary 2.6 (Fredholm alternative). Let H be a Hilbert space, let T ∈ K(H),
and let λ ∈ C− {0}. If there is no non-trivial solution 0 6= v ∈ H to

T (v)− λv = 0,

then for every w ∈ H, there is a unique v ∈ H such that

T (v)− λv = w.

Moreover, this unique solution is bounded by ‖v‖ 6 C‖w‖ for some constant C > 0.

Proof. Indeed, the assumption is that λ /∈ σp(T ) − {0}, and this means λ /∈ σ(T )
since the non-zero spectrum is purely made of eigenvalues. Thus (T −λ) is invertible, �

Part (4) of the Theorem has a type of converse:

Proposition 2.7. Any diagonal operator defined on a separable Hilbert space H by
fixing an orthonormal basis (en)n>1 and putting

T (en) = λnen

for some sequence (λn) of complex numbers with λn → 0 is a compact operator on L(H),
and its spectrum is the set of values of (λn), with the addition of 0 if H is infinite-
dimensional.

Note there may be multiplicities of course. For the proof, note that Part (4) means
that any compact operator on a separable Hilbert space has such a “diagonal” model,
which can be considered to be defined (via the orthonormal basis) on the space `2(N).

2.2.2. First applications. We now show a simple application which is the prototype
of many similar statements further on, and shows the potential usefulness of the spectral
theorem.

Proposition 2.8. Let H be a Hilbert space and let T ∈ K(H) be a positive compact
operator. Then there exists a positive operator S ∈ K(H) such that S2 = T , which is

denoted
√
T or T 1/2. It is unique among positive bounded operators.

Proof. Consider the orthogonal decomposition

H = H0 ⊕H1
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as in Part (4) of Theorem 2.5 (which applies since positive operators are self-adjoint, hence
normal), and an arbitrary choice of orthonormal basis (en) of H1 made of eigenvectors of
T with T (en) = λnen. We have

λn = λn〈en, en〉 = 〈λnen, en〉 = 〈T (en), en〉 > 0

for all n by the positivity assumption. Then we define simply

S(v0 + v1) =
∑
n>1

√
λnαnen

for any v0 ∈ H0 and

v1 =
∑
n>1

αnen ∈ H1.

This is a diagonal operator with coefficients (
√
λn) which tend to zero, to we know

that S ∈ K(H) is well-defined and compact.
Then we compute simply that for all v ∈ H as above, we have

S2(v) = S(S(v0 + v1)) = S
(∑
n>1

√
λnαnen

)
=
∑
n>1

λnαnen = T (v),

using the continuity of S.
We now show unicity. Let S ∈ L(H) be such that S2 = T , S > 0. Then ST = S ·S2 =

S2 · S = TS, so S and T commute, and it follows that for any non-zero eigenvalue λn of
T , S induces a positive operator

Sn : Ker(T − λn)→ Ker(T − λn),

on the finite-dimensional λn-eigenspace of T . This finite-dimensional operator Sn satisfies
S2
n = λnId, hence its only eigenvalues are among ±

√
λn. Since it is positive,

√
λn is in

fact the only eigenvalue, and this implies that Sn =
√
λnId.

In addition, we have

‖S(v)‖2 = 〈S(v), S(v)〉 = 〈T (v), v〉,

and so Ker(S) = {v | 〈T (v), v〉 = 0}. By the expression

〈T (v), v〉 =
∑
n>1

λn|〈v, en〉|2

in terms of an orthonormal basis of eigenvectors (en) (see (2.9)), and the positivity λn > 0
of the eigenvalues, we have 〈T (v), v〉 = 0 if and only if v is perpendicular to the span of
(en), i.e., by the construction, if and only if v ∈ Ker(T ). Thus the positive operator S
with S2 = T is uniquely determined on each eigenspace of T , and on the kernel of T . By
the spectral theorem, this implies that S is unique. �

Remark 2.9. (1) This positive solution to S2 = T is in fact unique among all bounded
operators, but this is not yet obvious.

Also, we can clearly do the same thing to construct many more such operators: es-
sentially, for any suitable function f : C → C, we can define f(T ) by putting f(λn) as
eigenvalue for en. This type of general construction will indeed be of great importance
later, but we keep a complete treatment for the spectral theory of bounded (and then
unbounded) operators.

(2) This proposition is in fact true for all positive bounded operators T ∈ L(H), as
will be shown in the next chapter.
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Since, for any compact operator T ∈ K(H), we have T ∗T > 0, this justifies the
following definition:

Definition 2.10. Let T ∈ K(H) be an arbitrary compact operator. The compact

positive operator
√
T ∗T , as defined by the previous proposition, is denoted |T |.

Note that if T > 0, then of course |T | = T . We use this proposition to find a
generalization of the Spectral Theorem to all compact operators.

Remark 2.11. It is not true that |T1 + T2| 6 |T1|+ |T2|.
Proposition 2.12. Let H be a Hilbert space and let T ∈ K(H). There exist two

orthonormal systems (en) and (fn) in H, and positive real numbers sn with sn → 0 as
n→ +∞, such that

T (v) =
∑
n>1

sn〈v, en〉fn,

for all v ∈ H. Moreover the sn are the non-zero eigenvalues of the positive compact
operator |T |.

Note that the (en) and (fn) may span a proper subspace of H. Also neither are
eigenvectors of T in general: for any m > 1, we have

T (em) = smfm, T (fm) =
∑
n>1

sn〈fm, en〉fn.

Proof. The operator T ∗T is a compact positive operator, and so we can find S ∈
K(H) with S2 = T ∗T . Moreover, we have

(2.10) ‖S(v)‖2 = 〈S(v), S(v)〉 = 〈T ∗T (v), v〉 = ‖T (v)‖2

for all v ∈ H. This means in particular that T (v) = 0 if and only if S(v) = 0 (i.e.,
Ker(S) = Ker(T )), and implies that the linear map

U

{
Im(S)→ H

v 7→ T (w) where S(w) = v,

is well-defined, and then that it is isometric, and in particular continuous. In shorthand,
the definition can be expressed as

U(S(w)) = T (w)

for w ∈ H.
We can then extend U by continuity to the closure H1 = Im(S), and (if needed) by 0

to
H⊥1 = Im(S)⊥ = Ker(S),

and we have the relation US = T by the remark above.
In addition, apply the Spectral Theorem to S to find a sequence (sn) of eigenvalues

of H and a countable orthonormal system (en) such that

S(v) =
∑
n>1

sn〈v, en〉en.

If we let fn = U(en), the isometry of U means that (fn) is still an orthonormal system,
and we have by definition

T (v) = U ◦ S(v) =
∑
n>1

sn〈v, en〉fn.

�
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Remark 2.13. The decomposition of T as US, where U is an isometry and S is
positive is an analogue of the polar decomposition z = reiθ of a complex number z ∈ C
with r > 0 and θ ∈ R. We will see it come into play in other contexts.

2.2.3. Variational computations of eigenvalues. We now present an important
result which sometimes can be used to compute or estimate eigenvalues of a compact
operator. It is, again, a generalization of a result valid for the finite-dimensional case,
but since those are not as well-known as some of the others, it is of some interest even in
that case.

Let H be a Hilbert space and T ∈ K(H) a positive operator. The positive eigenvalues
of T , counted with multiplicity, form either a finite sequence (e.g., if dimH < +∞), or a
sequence tending to 0. We can in any case enumerate them in decreasing order

λ1 > λ2 > · · · > λn · · · > 0,

where the sequence may terminate if dimH < +∞. This is an unambiguous definition
of functions

λk : T 7→ λk(T )

for k > 1 and T ∈ K(H) positive.

Proposition 2.14 (Courant-Raylegh minimax principle). With notation as above,
we have

(2.11) λk = max
dimV=k

min
v∈V−{0}

〈T (v), v〉
‖v‖2

,

and

(2.12) λk = min
dimV=k−1

max
v∈V ⊥−{0}

〈T (v), v〉
‖v‖2

for any k > 1 such that λk is defined, and in particular, those maxima and minima exist.
In both cases, V runs over subspaces of H of the stated dimension, and in the first case
it is assumed that V ⊂ Ker(T )⊥.

Proof. Fix an orthonormal basis (en) of Ker(T )⊥ such that

v =
∑
n>1

〈v, en〉en, T (v) =
∑
n>1

λn〈v, en〉en

for all v ∈ Ker(T )⊥; the second formula is in fact valid for all v ∈ V , and orthonormality
of the basis gives the formulas

〈T (v), v〉 =
∑
n>1

λn|〈v, en〉|2, ‖v‖2 =
∑
n>1

|〈v, en〉|2,

for all v ∈ V . Since λn > 0 for all n > 1, each term of the sums is non-negative, and by
positivity we can write

〈T (v), v〉 >
∑

16n6k

λn|〈v, en〉|2,

and then
〈T (v), v〉 > λk

∑
16n6k

|〈v, en〉|2,

since the eigenvalues are ordered in decreasing order. If we restrict v to the k-dimensional
subspace Vk spanned by e1,. . . , ek, we note first that Vk ⊂ Ker(T )⊥, and then that the
above gives

〈T (v), v〉 > λk‖v‖2, v ∈ Vk,
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and therefore

inf
v∈Vk−{0}

〈T (v), v〉
‖v‖2

> λk,

and in fact this is a minimum and an equality, since v = ek ∈ Vk achieves equality.
So the right-hand side of (2.11) – assuming the maximum is attained – is at least equal

to λk. Now let V be any subspace of Ker(T )⊥ with dimV = k. Consider the restriction

Pk : V → Vk

of the orthogonal projection onto Vk. Its kernel is V ∩ V ⊥k ; if it is non-zero, then for
v ∈ V ⊥k ∩ V , we have

〈T (v), v〉 =
∑
n>k+1

λn|〈v, en〉|2 6 λk+1‖v‖2 6 λk‖v‖2,

and if V ⊥k ∩ V = 0, Pk must be bijective since V and Vk have dimension k. Thus we can
find v ∈ V with

v = ek + w, w ∈ V ⊥k ,
and then

〈T (v), v〉 = λk + 〈T (w), w〉 6 λk + λk+1‖w‖2 6 λk‖v‖2.

It follows that the right-hand side of (2.11) is 6 λk, showing the equality holds. In
the other direction, with Vk−1 as before, we see that

〈T (v), v〉 6 λk‖v‖2

for v ∈ V ⊥k−1 − {0}, with equality if v = ek, so that the right-hand side of (2.12) is 6 λk,
with equality for V = Vk−1. If V is any subspace with dimV = k − 1, the restriction to
Vk, which has dimension k, of the orthogonal projection on V must have non-zero kernel,
so we find a non-zero vector v ∈ V ⊥ ∩ Vk. Thus

〈T (v), v〉 =
∑

16j6k

λj|〈v, ej〉|2 > λk‖v‖2

showing that

max
v∈V ⊥−{0}

〈T (v), v〉
‖v‖2

> λk,

and hence that the right-hand side of (2.12), with an infimum instead of minimum, is
> λk. Hence the infimum is a minimum indeed, and is equal to λk. �

Example 2.15. (1) For k = 1, the minimax characterization (2.12) gives simply

λ1 = max
v 6=0

〈T (v), v〉
‖v‖2

= r(T ),

which was already known.
(2) For k = 2, we obtain

λ2 = min
w 6=0

max
v 6=0
v⊥w

〈T (v), v〉
‖v‖2

,

and in fact the proof shows that the minimum over w ∈ H − {0} can be restricted to a
minimum over vectors w ∈ Ker(T − λ1). In some important applications, the maximal
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eigenvalue λ1 is known and it is also known that its eigenspace has dimension 1, and is
spanned by some explicit vector e1. In that case, the next-largest eigenvalue is given by

λ2 = max
v 6=0
v⊥e1

〈T (v), v〉
‖v‖2

,

which can be a very convenient expression.

The following corollary shows the usefulness of this characterization of eigenvalues.
We recall that λk(T ) designates the k-th eigenvalue of T , in decreasing order.

Corollary 2.16 (Monotonicity and continuity). Let H be a Hilbert space.
(1) If T1, T2 ∈ K(H) are positive compact operators such that

〈T1(v), v〉 6 〈T2(v), v〉

for all v ∈ V , then we have

λk(T1) 6 λk(T2) for all k > 1.

(2) Let T1, T2 be positive compact operators such that

‖T1 − T2‖L(H) 6 ε,

for some ε > 0. Then for all k > 1, we have

|λk(T1)− λk(T2)| 6 ε.

In particular, from (2) it follows that if (Tn) is a sequence of positive compact operators
such that Tn → T as n→∞, in the topology for L(H), then T (which is also a positive
compact operator) satisfies

lim
n→+∞

λk(Tn) = λk(T )

for all k > 1.

Proof. (1) For any subspace V ⊂ H with dimV = k − 1, we have by assumption

max
v∈V ⊥−{0}

〈T1(v), v〉
‖v‖2

6 max
v∈V ⊥−{0}

〈T2(v), v〉
‖v‖2

,

and hence (2.12) shows immediately that λk 6 µk.
(2) The assumption implies that

|〈T1(v), v〉 − 〈T2(v), v〉| = |〈(T1 − T2)(v), v〉| 6 ε‖v‖2

for all v ∈ H, by the Cauchy-Schwarz inequality, or in other words that for v ∈ H, we
have

〈T2(v), v〉 − ε‖v‖2 6 〈T1(v), v〉 6 〈T2(v), v〉+ ε‖v‖2.

Hence, for any fixed k > 1 and any V ⊂ H with dimV = k − 1, we have

max
v∈V ⊥−{0}

〈T2(v), v〉
‖v‖2

− ε 6 max
v∈V ⊥−{0}

〈T1(v), v〉
‖v‖2

6 max
v∈V ⊥−{0}

〈T2(v), v〉
‖v‖2

+ ε,

and then from (2.12) we derive

λk(T2)− ε 6 λk(T1) 6 λk(T2) + ε, i.e. |λk(T1)− λk(T2)| 6 ε,

as desired. �
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2.2.4. Trace class operators. An important operation for finite-dimensional oper-
ators is the trace. This, indeed, has the important feature of being both easy to compute
when the operator is expressed as a matrix in a certain basis, and of existing indepen-
dently of the choice of any basis: in other words, the trace of two operators in L(Cn) is the
same whenever two operators are “equivalent” in the sense of conjugacy under GL(n,C)
– so, for instance, it can be used to check that some operators are not equivalent.

It naturally seems desirable to extend the definition of the trace to more general
operators, but clearly requires great care. One may hope that compact operators would
make a good setting, since their spectrum is (apart from 0, which should not be a problem
for a trace...) entirely composed of eigenvalues, and one may hope to define

(2.13) Tr(T ) =
∑
n>1

λn,

where (λn) are the non-zero eigenvalues of T ∈ K(H), with multiplicity, if the series
makes sense. Unfortunately, we may recall that any sequence (λn) of non-zero complex
numbers such that λn → 0 can be the set of (non-zero) eigenvalues of a compact operator
on some Hilbert space, and thus the series (2.13) can not be expected to converge better
than a general series of complex numbers...

The series suggests, however, a special class where things should be better, in analogy
with integration theory: if T > 0, the series makes sense, provided it is accepted that its
value lies in [0,+∞] (e.g., if λn = 1

n
).

Definition 2.17. Let H be a Hilbert space and let T > 0 be a positive compact
operator with non-zero eigenvalues (λn(T ))n>1. The trace of T is the sum of the series∑

n>1

λn(T )

in [0,+∞].

Here are the basic properties of this trace (note that even the additivity is not at all
clear from such a definition!)

Proposition 2.18. Let H be a separable Hilbert space.
(1) If T > 0 is a positive compact operator, and (en)n>1 is any orthonormal basis of

H, then we have

(2.14) Tr(T ) =
∑
n>1

〈T (en), en〉.

(2) If T1, T2 are positive and compact, and α, β are in [0,+∞[, we have

Tr(αT1 + βT2) = αTr(T1) + β Tr(T2).

If T1 6 T2, in sense that T2 − T1 > 0, we have

Tr(T1) 6 Tr(T2).

(3) If T > 0 and T is compact, and if U ∈ L(H) is unitary, then UTU−1 is compact
and positive, and

Tr(UTU−1) = Tr(T ).

Note that the last property can not be stated (yet) as Tr(UT ) = Tr(TU) because the
operators UT and TU are not necessarily positive (of course, we know they are compact).
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Proof. (1) [Note that (2.14) is intuitively reasonable: if we think in matrix terms, the
right-hand side is the sum of the diagonal coefficients of the infinite matrix representing
T in the orthonormal basis (en)]

First, by positivity of T , the series indicated also makes sense, in [0,+∞], as a series
with non-negative terms. Second, if (en) is chosen specially so that it is a basis of
eigenvectors of T , with T (en) = λn(T )en, then we have obviously 〈T (en), en〉 = λn(T ),
and hence (2.14) holds for such a basis. To conclude, it is therefore enough to show that
the right-hand side is independent of the orthonormal basis chosen for the computation
(and in fact of the order of the vectors in the basis).

Let therefore (fm)m>1 be another (or the same, for what we care) orthonormal basis;
all the steps in the following computation are justified by the non-negativity of the terms
involved: we have∑

m>1

〈T (fm), fm〉 =
∑
m>1

∑
n>1

λn(T )|〈fm, en〉|2

=
∑
n>1

λn(T )
∑
m>1

|〈fm, en〉|2 =
∑
n>1

λn(T )
∑
m>1

|〈en, fm〉|2

=
∑
n>1

λn(T )‖en‖2 = Tr(T ).

where we use the fact that (fm) is an orthonormal basis to compute 1 = ‖en‖2 by
Parseval’s identity.

(2) Both parts are now clear; for instance, since obviously αT1 + βT2 is positive and
compact, we can compute the trace in a fixed orthonormal basis (en) of H, where we
have ∑

n>1

〈(αT1 + βT2)(en), en〉 = α
∑
n>1

〈T1(en), en〉+ β
∑
n>1

〈T2(en), en〉.

(3) This is also clear because

〈UTU−1(en), en〉 = 〈T (fn), fn〉
with fn = U−1(en) = U∗(en) by unitarity, and because if (en) is an orthonormal basis,
then so is (fn) (again because U is unitary), so that (1) gives the result. Alternatively,
one can check that the eigenvalues of T and UTU−1 coincide with multiplicity. �

We proceed to define general trace class compact operators as suggested by integration
theory. We recall the definition of |T | from Definition 2.10.

Definition 2.19. Let H be a separable Hilbert space. A compact operator T ∈ K(H)
is said to be of trace class if

Tr(|T |) = Tr(
√
T ∗T ) < +∞.

Note that if sn(T ) are the non-zero eigenvalues of |T |, we have by definition

(2.15) Tr(|T |) =
∑
n>1

sn(T ).

Proposition 2.20. Let H be a separable Hilbert space.
(1) If T ∈ K(H) is of trace class, then for any orthonormal basis (en)n>1 of H, the

series

(2.16)
∑
n>1

〈T (en), en〉
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converges absolutely in H, and its sum is independent of the chosen basis. It is called the
trace Tr(T ) of T .

(2) The set of trace-class operators is a linear subspace TC(H) of K(H), and it is
indeed a two-sided ideal in L(H) containing the finite-rank operators and dense in K(H);
the trace map

Tr : TC(H)→ C

is a linear functional on TC(H), which coincides with the trace previously defined for
positive compact operators of trace class. It is not continuous.

(3) For any normal operator T ∈ TC(H) with non-zero eigenvalues (λn)n>1, the series∑
n>1

λn

converges absolutely, and we have

Tr(T ) =
∑
n>1

λn.

(4) For any S ∈ L(H) and any T ∈ TC(H), we have ST , TS ∈ TC(H) and

Tr(ST ) = Tr(TS).

Remark 2.21. One can show that, conversely, if an arbitrary operator T ∈ L(H) is
such that ∑

n>1

〈T (en), en〉

converges absolutely for all orthonormal bases (en), then T is compact. It is then of
course of trace class.

Proof. (1) We use the structure for T given by Proposition 2.12, namely

T (v) =
∑
n>1

sn〈v, en〉fn,

where (sn) is the sequence of non-zero eigenvalues of the positive compact operator |T | and
(en), (fm) are orthonormal systems; of course, the series converges in H. In particular,
we have by assumption ∑

n>1

sn = Tr(|T |) < +∞.

Now, if (ϕk)k>1 is an arbitrary orthonormal basis, we have for all k > 1 the formula

〈T (ϕk), ϕk〉 = 〈
∑
n>1

sn〈ϕk, en〉fn, ϕk〉

=
∑
n>1

sn〈ϕk, en〉〈fn, ϕk〉,

where the convergence in H and continuity of the inner product justify the computation.
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Now we see that, provided the interchange of the series is justified, we get after
summing over k that ∑

k>1

〈T (ϕk), ϕk〉 =
∑
k>1

∑
n>1

sn〈ϕk, en〉〈fn, ϕk〉,

=
∑
n>1

sn
∑
k>1

〈ϕk, en〉〈fn, ϕk〉

=
∑
n>1

sn〈fn, en〉

which is, indeed, independent of the basis! So we proceed to justify this computation, by
checking that the double series ∑

k>1

∑
n>1

sn〈ϕk, en〉〈fn, ϕk〉

is absolutely convergent. Since, by the above, we also have∑
k>1

|〈T (ϕk), ϕk〉| 6
∑
k>1

∑
n>1

|sn〈ϕk, en〉〈fn, ϕk〉|,

this will also check that the series of 〈T (ϕk), ϕk〉 converges absolutely for a trace class
operator.

Now to work: since sn > 0, we get by Cauchy-Schwarz inequality (in `2(N))∑
n>1

|sn〈ϕk, en〉〈ϕk, fn〉| 6
(∑
n>1

sn|〈ϕk, en〉|2
)1/2(∑

n>1

sn|〈ϕk, fn〉|2
)1/2

for any k > 1. We now sum over k, and apply once more the Cauchy-Schwarz inequality
in `2(N):∑

k>1

∑
n>1

|sn〈ϕk, en〉〈ϕk, fn〉| 6
(∑
k>1

∑
n>1

sn|〈ϕk, en〉|2
)1/2(∑

k>1

∑
n>1

sn|〈ϕk, fn〉|2
)1/2

,

but (since for series with positive terms there is no problem exchanging the two sums,
and because (ϕk) is an orthonormal basis) we have∑

k>1

∑
n>1

sn|〈ϕk, en〉|2 =
∑
n>1

sn‖en‖2 =
∑
n>1

sn < +∞,

and exactly the same for the other term. This proves the absolute convergence we wanted,
and in fact ∑

n>1

∑
k>1

|sn〈ϕk, en〉〈ϕk, fn〉| 6
∑
n>1

sn(T ).

(2) Since it is easy to see that |λT | = |λ||T | if λ ∈ C and T ∈ K(H) (where the two
| · | are quite different things...), it follows that λT ∈ TC(H) if T ∈ TC(H), and that
Tr(λT ) = λTr(T ). So we must show that if T1, T2 are trace-class operators, then so is
T3 = T1 + T2.

We now denote by sn(T ) the eigenvalues, in decreasing order, of |T | for T ∈ K(H).
We will bound sn(T3) in terms of suitable values sn1(T1), sn2(T2), using the variational
characterization (2.12).

Let V ⊂ H be a subspace of dimension n− 1, and let

ρi(V ) = max
v⊥V
v 6=0

〈(T ∗i Ti)(v), v〉
‖v‖2

= max
v⊥V
v 6=0

‖Ti(v)‖2

‖v‖2
, for 1 6 i 6 3.
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By (2.12), sn(T3) is the minimum of ρ3(V )1/2 over all subspaces of dimension n− 1 in
H. Now for n > 1, write

(2.17) n− 1 = n1 − 1 + n2 − 1, where n1 > 1, n2 > 1,

and for any V with dimV = n− 1, let V1 and V2 be subspaces of V of dimension n1 − 1
and n2 − 1 respectively. Then

V ⊥ ⊂ V ⊥1 , V
⊥

2 ,

and since we have

‖T3(v)‖ 6 ‖T1(v)‖+ ‖T2(v)‖, v ∈ V ⊥,
we get

ρ3(V )1/2 6 ρ1(V1)1/2 + ρ2(V2)1/2.

By (2.12), we derive

sn(T3) 6 ρ1(V1)1/2 + ρ2(V2)1/2,

an inequality which is now valid for any choices of subspaces V1, V2 with dimension n1−1,
n2 − 1 respectively. Consequently

sn(T3) 6 sn1(T1) + sn2(T2)

whenever (2.17) holds (this inequality is due to K. Fan).
Next, for given n, we select n1 and n2 as close as possible to n/2; summing then over

n > 1, we see that at most two possible values of n give a given value of n1, n2, and thus
we derive ∑

n>1

sn(T3) 6 2
∑
n>1

sn(T1) + 2
∑
n>1

sn(T2) < +∞.

The rest of part (2) is easy: the linearity of the trace follows from the definition
(1) once it is known it is well-defined for a linear combination of trace-class operators.
Moreover, the finite-rank operators are sums of rank 1 operators, and for these T ∗T has
a single non-zero eigenvalue, so they, and their sums by what precedes, are of trace class.
Since finite-rank operators are dense in K(H), so are the trace-class ones. If T > 0 is
in TC(H), we have |T | = T and (1) shows the trace defined for TC(H) coincides with
the trace for positive operators. And finally, the trace is not continuous, since there
exist positive compact operators with norm 1 and arbitrarily large trace (use diagonal
operators with eigenvalues decreasing from 1 but defining convergent series with larger
and larger sums, e.g., ∑

n>1

1

nσ
→ +∞, as σ > 1→ 1.

(3) If T ∈ TC(H) is normal, we can use an orthonormal basis (en) for which T (en) =
λnen to compute the trace (2.16), and we obtain∑

n>1

〈T (en), en〉 =
∑
n>1

λn,

which is thus a convergent series with value Tr(T ).
(4) If S is unitary, it is clear that ST , TS are in TC(H) for T ∈ TC(H) (indeed,

(ST )∗(ST ) = T ∗T , (TS)∗(TS) = S−1T ∗TS, which have the same eigenvalues as T ∗T ).
Further, if (en) is an orthonormal basis, we get∑

n>1

〈(ST )en, en〉 =
∑
n>1

〈S(TS)fn, en〉 =
∑
n>1

〈(TS)fn, fn〉,

31



where fn = S−1(en) is another orthonormal basis (because S is unitary!), the inde-
pendence of the trace from the choice of basis when computed as in (2.16) leads to
Tr(ST ) = Tr(TS) for unitary S.

Now the point is that we can use the linearity to deduce from this that, given T ∈
TC(H), the set of S ∈ L(H) for which ST and TS are in TC(H) and

Tr(TS) = Tr(ST )

is a linear subspace of L(H) containing the unitaries. But the lemma below shows that
this subspace is all of L(H), and the desired result follows. �

Here is the lemma we used.

Lemma 2.22. Let H be a Hilbert space. For any T ∈ L(H), there exist Ui, 1 6 i 6 4,
unitary, and αi ∈ C, 1 6 i 6 4, such that

T = α1U1 + · · ·+ α4U4.

Remark 2.23. If this sounds surprising, recall that in C, any complex number is the
sum of at most two real multiples of elements of modulus 1 (namely, z = Re(z) · 1 +
Im(z) · i).

Proof. Imitating the real-imaginary part decomposition, we can first write

T =
T + T ∗

2
+ i

T − T ∗

2i
,

and each of the two terms is self-adjoint, so it is enough to show that any self-adjoint
T ∈ L(H) is a combination (with complex coefficients) of two unitary operators. We
may even assume that ‖T‖ 6 1, by scaling properly. We then use the fact stated in
Remark 2.9, (2) [which will be proved in the next chapter, independently of this section]
that a square root exists for any positive operator. Here, we have

〈(Id− T 2)(v), v〉 = ‖v‖2 − ‖T (v)‖2 > 0

for all v (recall T = T ∗), hence the operator S =
√

Id− T 2 exists. We have

T =
T + iS

2
+
T − iS

2
,

and the proof is then completed by checking that (T ± iS) are unitary: indeed, we have

(T + iS)(T − iS) = T 2 + S2 = Id,

so both are invertible with (T + iS)−1 = T − iS, and since S and T are self-adjoint, we
have also (T + iS)∗ = T − iS. �

The proof brings the following useful additional information:

Corollary 2.24. Let H be a Hilbert space and let T ∈ TC(H) be a trace-class
operator. Then we have

|Tr(T )| 6 Tr(|T |).
Moreover, if T is given by the decomposition

T (v) =
∑
n>1

sn〈v, en〉fn

a described by Proposition 2.12, we have

Tr(T ) =
∑
n>1

sn〈fn, en〉.
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Remark 2.25. One can show that, in fact, we have

Tr(|T1 + T2|) 6 Tr(|T1|) + Tr(|T2|),
from which one deduces that TC(H) is a Banach space with the norm

‖T‖TC = Tr(|T |).
In fact (see, e.g., [RS1, Th. VI.26]), one can show that the trace leads to isomorphisms

(TC(H), ‖ · ‖TC) ' K(H)′,

where K(H)′ is the dual of the Banach space K(H) (seen as closed subspace of L(H)),
by sending T ∈ TC(H) to the linear functional

S 7→ Tr(TS)

on K(H). Similarly, we have

L(H) ' (TC(H), ‖ · ‖TC)′

by the same map sending T ∈ L(H) to the linear functional S 7→ Tr(TS) for S ∈ TC(H).

Example 2.26. Let (X,µ) be a finite measure space and T = Tk a Hilbert-Schmidt
operators associated to a kernel function k : X ×X → C. Then we have the following
important property of the non-zero eigenvalues (λn) of T :∑

n>1

|λn|2 =

∫
X×X

|k(x, y)|2dµ(x)dµ(y) < +∞.

This follows from the expansion of k given by

(2.18) k(x, y) =
∑
n>1

λnen(x)en(y),

where T (en) = λnen, which is valid in L2(X ×X).
This means that the positive compact operator S = T ∗T , which has eigenvalues |λn|2,

has finite trace given by

Tr(S) =

∫
X×X

|k(x, y)|2dµ(x)dµ(y).

Now assume that in addition that X is a compact metric space, µ a finite Borel
measure on X, and that the kernel function k is real-valued, symmetric (so that Tk is
self-adjoint), and continuous on X ×X (for the product topology). Then one can show
(Mercer’s Theorem, see [W, Satz VI.4.2] for the special case X = [0, 1], µ the Lebesgue
measure) the following:

– The eigenfunctions en of Tk are continuous functions on X;
– The expansion (2.18) is valid pointwise and uniformly for (x, y) ∈ X ×X;
– The operator Tk is of trace class and we have

Tr(Tk) =
∑
n>1

λn =

∫
X

k(x, x)dµ(x).

This integral over the diagonal can be interpreted as an analogue of the expression of
the trace as sum of diagonal elements of a matrix.
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CHAPTER 3

The spectral theorem for bounded operators

In this chapter, we start generalizing the results we proved for compact operators to
the class of normal bounded operators T ∈ L(H). We follow mostly [RS1, Ch. VII].

If T ∈ L(H) is a normal, bounded but not compact, operator, it may well not have
sufficiently many eigenvalues to use only the point spectrum to describe it up to (unitary)
equivalence. For instance, the (self-adjoint) multiplication operators Mx on L2([0, 1]) (see
Example 1.1 in Chapter 1) has no eigenvalues in L2([0, 1]): f ∈ Ker(λ−Mx) implies

(x− λ)f(x) = 0 almost everywhere,

hence f(x) = 0 for almost all x 6= λ, i.e., f = 0 in L2.
So we must use the full spectrum to hope to classify bounded operators. This does

indeed give a good description, one version of which is the following, that we will prove
in this chapter:

Theorem 3.1. Let H be a separable Hilbert space and T ∈ L(H) a continuous normal
operator. There exists a finite measure space (X,µ), a unitary operator

U : H → L2(X,µ)

and a bounded function g ∈ L∞(X,µ), such that

Mg ◦ U = U ◦ T,

or in other words, for all f ∈ L2(X,µ), we have

(UTU−1)f(x) = g(x)f(x),

for (almost) all x ∈ X.

Example 3.2. Let T be a compact normal operator T , and assume for simplicity
that all its eigenvalues are non-zero and distinct. Then the representation

T (v) =
∑
n>1

λn〈v, en〉en

in terms of an orthonormal basis of eigenvectors (en) corresponds to Theorem 3.1 in the
following way: the measure space is

(X,µ) = ({eigenvalues of T}, counting measure),

with U given by

U(v) = (〈v, eλ〉)λ, where T (eλ) = λeλ for λ ∈ X,

and the function g is defined by

g(λ) = λ.

To prove Theorem 3.1, we must see how to associate a measure space to T . The
example of compact operators suggests that X should be (related to) the spectrum σ(T )
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of T . As for the measure, it will ultimately be obtained from the theorem of Markov-
Riesz identifying measures as elements of the dual of the Banach space (C(X), ‖ · ‖∞) of
continuous functions on a compact space X = σ(T ), using linear functionals defined by

`(f) = 〈f(T )v, v〉,
where f is a continuous function on σ(T ). (The idea is that the measure detects how
much of a vector is “concentrated” around a point in the spectrum). To make sense of
this, we must first define what is meant by f(T ). This will be the content of the first
section; note that in the previous chapter, we saw already how useful such constructions
can be (see Proposition 2.8).

3.1. Continuous functional calculus for self-adjoint operators

The goal of this section is to show how to define f(T ) for a self-adjoint operator
T ∈ L(H) and f ∈ C(σ(T )). Theorem 3.1 will be deduced in the next section for these
operators, and then generalized to normal ones using some tricks.

The definition of what f(T ) should be is clear for certain functions f : namely, if

p(z) =
d∑
j=0

αjz
j

is a polynomial in C[X], restricted to σ(T ), then the only reasonable definition is

p(T ) =
d∑
j=0

αjT
j ∈ L(H).

Remark 3.3. In fact, this definition makes sense for any T ∈ L(H), not only for T
normal, but there is a small technical point which explains why only normal operators
are really suitable here: if σ(T ) is finite, polynomials are not uniquely determined by
their restriction to σ(T ), and the definition above gives a map C[T ] → L(H), not one
defined on C(σ(T )). We can not hope to have a functional calculus only depending on
the spectrum if this apparent dependency is real. And indeed, sometimes it is: consider
the simplest example of the operator given by the 2× 2 matrix

A =

(
0 1
0 0

)
∈ L(C2).

We then have σ(A) = {0}, but although the polynomials p1 = X and p2 = X2

coincide on {0}, we have p1(A) = A 6= p2(A) = 0.
However, if we assume that T is normal, the problem disappears as one observes the

following fact: if p ∈ C[T ] is a polynomial such that p is zero on σ(T ), and T is normal,
then p(T ), as defined above, is zero. Indeed, this follows from the relation

‖p(T )‖L(H) = ‖p‖C(σ(T )) = max
λ∈σ(T )

|p(λ)|,

which is proved in Lemma 3.6 below – it will be clear that there is no circularity in
applying this here.

This suggests a general definition, using the approximation principles discussed in
Section 1.4.2: from the Weierstrass Approximation Theorem (Corollary 1.11), applied
to X = σ(T ) ⊂ R for T self-adjoint, we know that functions f ∈ C(σ(T )) can be
approximated uniformly by polynomial functions. This suggests to define

(3.1) f(T ) = lim
n→+∞

pn(T ),
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where (pn) is a sequence of polynomials such that ‖f − pn‖C(X) → 0.
This definition is indeed sensible and possible, and the basic properties of this con-

struction are given in the following theorem. Roughly speaking, any operation on (or
property of) the functions f which is reasonable corresponds to analogue operation or
property of f(T ).

Theorem 3.4 (Continuous functional calculus). Let H be a Hilbert space and T ∈
L(H) a self-adjoint bounded operator. There exists a unique linear map

φ = φT : C(σ(T ))→ L(H),

also denoted f 7→ f(T ), with the following properties:
– (0) This extends naturally the definition above for polynomials, i.e., for any p ∈

C[X] as before, we have

φ(p) = p(T ) =
d∑
j=0

α(j)T j.

– (1) This map is a Banach-algebra isometric homomorphism, i.e., we have

φ(f1f2) = φ(f1)φ(f2) for all fi ∈ C(σ(T )), φ(Id) = Id,

and

(3.2) ‖φ(f)‖ = ‖f‖C(σ(T )).

In addition, this homomorphism has the following properties:
(2) For any f ∈ C(σ(T )), we have φ(f)∗ = φ(f̄), i.e., f(T )∗ = f̄(T ), and in particular

f(T ) is normal for all f ∈ C(σ(T )). In addition

(3.3) f > 0⇒ φ(f) > 0.

(3) If λ ∈ σ(T ) is in the point spectrum and v ∈ Ker(λ−T ), then v ∈ Ker(f(λ)−f(T )).
(4) More generally, we have the spectral mapping theorem:

(3.4) σ(f(T )) = f(σ(T )) = σ(f), where σ(f) is computed for f ∈ C(σ(T )).

Remark 3.5. Given (1), the property (0) is implied solely by C-linearity of φ and by
the fact that φ(z 7→ z) = T .

Proof. As already observed, the essence of the proof of existence of φ is to show
that (3.1) is a valid definition. In fact, if we can prove (3.2) for f = p ∈ C[X], we can
deduce that the map

Φ : (C[X], ‖ · ‖C(σ(T )))→ L(H)

which maps p to p(T ) is linear, continuous, and in fact isometric. Hence it extends
uniquely by continuity to C(σ(T )), and the extension remains isometric. By continuity,
the properties

φ(f1f2) = φ(f1)φ(f2), φ(f)∗ = φ(f̄),

which are valid for polynomials (using T = T ∗ for the latter), pass to the limit and are
true for all f . It follows that

f(T )∗f(T ) = φ(f̄)φ(f) = φ(f̄f) = φ(ff̄) = f(T )f(T )∗,

so f(T ) is always normal (and self-adjoint if f is real-valued). Moreover, if f > 0, we can
write

f = (
√
f)2 = g2
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where g > 0 is also continuous on σ(T ). Then g(T ) is well-defined, self-adjoint (because
g is real-valued), and for all v ∈ V , we have

〈f(T )v, v〉 = 〈g(T )2v, v〉 = ‖g(T )v‖2 > 0,

which shows that f(T ) > 0.
Hence we see that the following lemma is clearly of the essence:

Lemma 3.6. Let H be a Hilbert space.
(1) For T ∈ L(H) arbitrary and any polynomial p ∈ C[X], define Φ(p) = p(T ) ∈ L(H)

as before. Then we have

(3.5) σ(φ(p))) = p(σ(T )).

(2) Let T ∈ L(H) be normal and let p ∈ C[X] be polynomial. Then we have

(3.6) ‖φ(p)‖L(H) = ‖p‖C(σ(T )).

Proof of the lemma. For (1), consider an arbitrary λ ∈ C; we can factor the
polynomial p(X)− λ in C[X]:

p(X)− λ = α
∏

16i6d

(X − λi),

for some α ∈ C× and complex numbers λi ∈ C (not necessarily distinct). Since the map
p 7→ p(T ) is an algebra homomorphism, it follows that

p(T )− λ · Id = α
∏

16i6d

(T − λi).

If λ is not in p(σ(T )), the solutions λi to p(z) = λ are not in σ(T ); hence the T − λi
are then all invertible, hence so is p(T )− λ. In other words, we have (by contraposition)

σ(p(T )) ⊂ p(σ(T )).

Conversely, if λ ∈ p(σ(T )), one of the λi is in σ(T ). Because the factors commute, we
can assume either i = 1, if T − λi is not surjective, in which case neither is p(T )− λi; or
i = d, in case T − λi is not injective, in which case neither is p(T )− λi. In all situations,
λ ∈ σ(p(T )), proving the converse inclusion.

For (2), we note first that φ(p) = p(T ) is normal if T is. By the Spectral Radius
formula (2.5), we have

‖p(T )‖ = r(p(T )) = max
λ∈σ(p(T ))

|λ|,

and by (3.5), we get

‖p(T )‖ = max
λ∈p(σ(T ))

|λ| = max
λ∈σ(T )

|p(λ)|,

as desired. �

It remains to check that additional properties (3) and (4) of the continuous functional
calculus f 7→ f(T ) hold. For (3), let v ∈ Ker(λ − T ). Write f as a uniform limit of
polynomials pn ∈ C[X]; since T (v) = λv, we have also by induction and linearity

pn(T )v = pn(λ)v,

and by continuity we get f(T )(v) = f(λ)v.
For (4), we first recall (Example 2.2) that for a compact topological space X, C(X),

with the supremum norm, is itself a Banach algebra, for which the spectrum is given by
σ(f) = f(X) for f ∈ C(X). So for f ∈ C(σ(T )), we have indeed σ(f) = f(σ(T )).
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We prove first by contraposition that λ ∈ σ(f(T )) implies that λ ∈ f(σ(T )). Indeed,
if the latter does not hold, the function

g(x) =
1

f(x)− λ
is a continuous function in C(σ(T )), and therefore the bounded operator S = φ(g) is
defined by what precedes. The relations

g · (f − λ) = (f − λ) · g = 1,

valid in C(σ(T )), imply by (1) that

g(T )(f(T )− λ) = (f(T )− λ)g(T ) = Id,

i.e., that S = (f(T )− λ)−1, so that λ is not in the spectrum of f(T ), as expected.
Conversely, let λ = f(λ1) with λ1 ∈ σ(T ). We need to check that λ ∈ σ(f(T )). We

argue according to the type of λ1; if λ1 ∈ σp(T ), then (3) shows that f(λ1) ∈ σp(f(T )),
as desired.

Since σr(T ) = ∅ for T self-adjoint, we are left with the case λ1 ∈ σc(T ). We use
the observation (2.8), applied first to T − λ1, and transfer it to f(T ) − λ. Let v be an
arbitrary vector with ‖v‖ = 1 and p ∈ C[X] an arbitrary polynomial. We write

‖(f(T )− λ)v‖ 6 ‖(f(T )− p(T ))v‖+ ‖(p(T )− λ)v‖
6 ‖(f(T )− p(T ))v‖+ ‖(p(T )− p(λ1))v‖+ |(p(λ1)− λ|‖v‖
6 ‖f(T )− p(T )‖L(H) + |p(λ1)− λ|+ ‖(p(T )− p(λ1))v‖
6 ‖f − p‖C(σ(T )) + |p(λ1)− λ|+ ‖(p(T )− p(λ1))v‖.

Now write
p(X)− p(λ1) = q(X)(X − λ1),

so that
‖(f(T )− λ)v‖ 6 ‖f − p‖C(σ(T )) + |p(λ1)− λ|+ ‖q‖ ‖(T − λ1)v‖,

for all v in the unit sphere of H. Now fix ε > 0 arbitrary; we can find a polynomial p
such that ‖f − p‖C(σ(T )) < ε/3 and such that

|p(λ1)− λ| < ε

3
.

Then for all v with ‖v‖ = 1, we have

‖(f(T )− λ)v‖ 6 2ε

3
+ ‖q‖ ‖(T − λ1)v‖,

where q is now fixed by the choice of p. Since λ1 ∈ σc(T ), we can find (see (2.8)) a vector
v with ‖v‖ = 1 and ‖(T − λ1)v‖ < ε/3‖q‖, and then deduce that

‖(f(T )− λ)v‖ < ε.

As ε > 0 was arbitrarily chosen, this implies by (2.8) that λ ∈ σc(f(T )). At this
point, we have proved completely that f(σ(T )) ⊂ σ(f(T )), and this concludes the proof
of (4), which was the last item remaining to conclude the proof of Theorem 3.4. �

The next corollary generalizes Proposition 2.8, where the existence part was restricted
to compact operators.

Corollary 3.7. Let T ∈ L(H) be a positive operator. For any n > 1, there exists a
positive normal operator T 1/n such that

(T 1/n)n = T.
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Note that such an operator is unique, but we will prove this only a bit later. (At
the moment, we do not know enough about how the spectrum helps describe how the
operator acts).

Proof. Since T > 0, we have σ(T ) ⊂ [0,+∞[, hence the function f : x 7→ x1/n is
defined and continuous on σ(T ). Using the fact that

f(x)n = x,

the functional calculus implies that f(T )n = T . Moreover f > 0, and hence f(T ) > 0 by
Theorem 3.4. �

Here is another simple corollary which will be generalized later, and which shows how
the functional calculus can be used to “probe” the spectrum.

Corollary 3.8. Let H be a Hilbert space and T ∈ L(H) a bounded self-adjoint
operator. Let λ ∈ σ(T ) be an isolated point, i.e., for some ε > 0, σ(T )∩]λ−ε, λ+ε[= {λ}.
Then λ is in the point spectrum.

Proof. The fact that λ is isolated implies that the function f : σ(T ) → C which
maps λ to 1 and the complement to 0 is a continuous function on σ(T ). Hence we can
define P = f(T ) ∈ L(H). We claim that P is non-zero and is a projection to Ker(T −λ);
this shows that λ is in the point spectrum.

Indeed, first of all P 6= 0 because ‖P‖ = ‖f‖C(σ(T )) = 1, by the functional calculus.
Next, we have f = f 2 in C(σ(T )), and therefore P = f(T ) = f(T )2 = P 2, which shows
that P is a projection. Next, we have the identity

(x− λ)f(x) = 0, for all x ∈ σ(T ),

of continuous functions on σ(T ), hence by applying the functional calculus, we get

(T − λ)P = 0,

which shows that 0 6= Im(P ) ⊂ Ker(T − λ). �

Example 3.9. Let H be a separable Hilbert space, and T ∈ K(H) a compact self-
adjoint operator. Writing

T (v) =
∑
n>1

λn〈v, en〉

where (λn) are the non-zero (real) eigenvalues of T and en are corresponding eigenvectors,
then f(T ) is defined on σ(T ) = {0} ∪ {λn} by

f(T )v = f(0)P0(v) +
∑
n>1

f(λn)〈v, en〉en

where P0 ∈ L(H) is the orthogonal projection on Ker(T ).

Example 3.10. Here is an example which is both very simple and extremely impor-
tant; indeed, in view of the spectral theorem (Theorem 3.1) proved in this chapter, this
example describes all self-adjoint bounded operators on a Hilbert space.

Let H = L2(X,µ) for a finite measure space (X,µ), and let g ∈ L∞(X) be a real-
valued bounded function. The multiplication operator Mg (see Example 1.1) is then
self-adjoint on H. The spectrum σ(Mg) is the essential range of g, defined as follows:

σ(Mg) = {x ∈ R | µ(g−1(]x− ε, x+ ε[)) > 0 for all ε > 0}.
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Indeed, we have first Mg − λ = Mg−λ; formally first, we can solve the equation
(Mg − λ)ϕ = ψ, for any ψ ∈ L2(X,µ), by putting

ϕ =
ψ

g − λ
,

and this is in fact the only solution as a set-theoretic function on X. It follows that we
have λ ∈ ρ(Mg) if and only if the operator

ψ 7→ (g − λ)−1ψ

is a bounded linear map on L2(X,µ). By Lemma 1.2, we know this is equivalent to asking
that 1/(g−λ) be an L∞ function on X. This translates to the condition that there exist
some C > 0 such that

µ({x ∈ X | |(g(x)− λ)−1| > C}) = 0,

or equivalently

µ({x ∈ X | |g(x)− λ| < 1

C
}) = 0,

which precisely says that λ is not in the essential range of g.
Comparing with (1.9) and the definition (1.7) of an image measure, it is convenient to

observe that this can also be identified with the support of the image measure ν = g∗(µ)
on R:

σ(Mg) = supp g∗(µ).

In particular, if X is a bounded subset of R and g(x) = x, the spectrum of Mx is the
support of µ.

For f ∈ C(σ(Mg)), the operator f(Mg) is given by f(Mg) = Mf◦g. Here, the compo-
sition f ◦ g is well-defined in L∞(X), although the image of g might not lie entirely in
σ(Mg), because the above description shows that

µ(x | g(x) /∈ σ(Mg)) = ν(R− σ(Mg)) = 0,

(the complement of the support being the largest open set with measure 0) so that,
for almost all x, g(x) does lie in σ(Mg) and therefore f(g(x)) is defined for almost all
x (of course we can define arbitrarily the function on the zero-measure subset where
g(x) /∈ σ(Mg), and this does not change the resulting multiplication operator denoted
Mf◦g).

3.2. Spectral measures

Using the functional calculus, we can clarify now how the spectrum “represents” an
operator T and its action on vectors v ∈ H.

Proposition 3.11. Let H be a Hilbert space, let T ∈ L(H) be a self-adjoint operator
and let v ∈ H be a fixed vector. There exists a unique positive Radon measure µ on σ(T ),
depending on T and v, such that∫

σ(T )

f(x)dµ(x) = 〈f(T )v, v〉

for all f ∈ C(σ(T )). In particular, we have

(3.7) µ(σ(T )) = ‖v‖2,

so µ is a finite measure.
This measure is called the spectral measure associated to v and T .
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Proof. This is a direct application of the Riesz-Markoc Theorem (Theorem 1.15);
indeed, we have the linear functional

`

{
C(σ(T ))→ C

f 7→ 〈f(T )v, v〉
.

This is well-defined and positive, since if f > 0, we have f(T ) > 0, hence 〈f(T )v, v〉 >
0 by definition.By the Riesz-Markov theorem, therefore, there exists a unique Radon
measure µ on σ(T ) such that

`(f) = 〈f(T )v, v〉 =

∫
σ(T )

f(x)dµ(x)

for all f ∈ C(σ(T )).
Moreover, taking f(x) = 1 for all x, we obtain (3.7) (which also means that ‖`‖ =

‖v‖2). �

Example 3.12. Let H be a separable, infinite-dimensional Hilbert space and let
T ∈ K(H) be a compact self-adjoint operator expressed by (2.9) in an orthonormal basis
(en) of Ker(T )⊥ consisting of eigenvectors for the non-zero eigenvalues λn 6= 0 of T . We
have then, by Example 3.9, the formula

f(T )v = f(0)P0(v) +
∑
n>1

f(λn)〈v, en〉en

for all v ∈ H, where P0 is the orthogonal projection on Ker(T ). Thus, by definition, we
have ∫

σ(T )

f(x)dµ(x) = f(0)‖P0(v)‖2 +
∑
n>1

f(λn)|〈v, en〉|2

for all continuous functions f on σ(T ). Note that

σ(T ) = {0} ∪ {λn | n > 1},

and that, since λn → 0 as n→ +∞, f is thus entirely described by the sequence (f(λn)),
with

f(0) = lim
n→+∞

f(λn).

Hence the formula above means that, as a measure on σ(T ), µ is a series of Dirac
measures at all eigenvalues (including 0) with weight

µ(0) = ‖P0(v)‖2, µ(λn) =
∑

λm=λn

|〈v, em〉|2,

(the sum is needed in case there is an eigenvalue with multiplicity > 1). Equivalently, to
be concise in all cases: for all λ ∈ σ(T ), µ(λ) is equal to ‖vλ‖2, where vλ is the orthogonal
projection of v on the eigenspace Ker(T − λ).

This example indicates how, intuitively, one can think of µ in general: it indicates
how the vector v is “spread out” among the spectrum; in general, any individual point
λ ∈ σ(T ) carries a vanishing proportion of the vector, because µ({λ}) is often zero. But
if we consider a positive-measure subset U ⊂ σ(T ), µ(U) > 0 indicates that a positive
density of the vector is in “generalized eigenspaces” corresponding to that part of the
spectrum.
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Example 3.13. Let (X,µ) be a finite measure space and T = Mg the multiplication
operator by a real-valued bounded function on L2(X,µ). Consider ϕ ∈ L2(X,µ). What
is the associated spectral measure? According to Example 3.10, the functional calculus
is defined by f(T ) = Mf◦g for f continuous on σ(T ) (which is the support of the measure
ν = g∗(µ) on R). We have therefore

〈f(T )ϕ, ϕ〉 =

∫
X

f(g(x))|ϕ(x)|2dµ(x) =

∫
R

f(y)dν̃(y)

where

ν̃ = g∗(|ϕ|2dµ),

by the standard change of variable formula for image measures. Since the support of ν̃
is contained in the support of ν, this can be written as

〈f(T )ϕ, ϕ〉 =

∫
σ(T )

f(y)dν̃(y)

which means, of course, that the spectral measure associated with ϕ is the measure ν̃,
restricted to σ(T ).

Notice the following interesting special cases: if ϕ = 1, the spectral measure is simply
ν; and if, in addition, X ⊂ R is a bounded subset of the real numbers and g(x) = x,
then the spectral measure is simply µ itself.

3.3. The spectral theorem for self-adjoint operators

Using spectral measures, we can now understand how the spectrum and the functional
calculus interact to give a complete description of a self-adjoint operator in L(H).

To see how this works, consider first v ∈ H and the associated spectral measure µv,
so that

〈f(T )v, v〉 =

∫
σ(T )

f(x)dµv(x)

for all continuous functions f defined on the spectrum of T . In particular, if we apply
this to |f |2 = ff̄ and use the properties of the functional calculus, we get

‖f(T )v‖2 =

∫
σ(T )

|f(x)|2dµv(x) = ‖f‖2
L2(σ(T ),µv).

In other words, the (obviously linear) map{
(C(σ(T )), ‖ · ‖L2)→ H

f 7→ f(T )v

is an isometry. The fact that µv is a Radon measure implies that continuous functions are
dense in the Hilbert space L2(σ(T ), µv), and so there is a continuous (isometric) extension

U : L2(σ(T ), µv)→ H.

In general, there is no reason that U should be surjective (think of the case where
v = 0). However, if we let Hv = Im(U) ⊂ H, the subspace Hv is closed, and it is stable
under T : indeed, the closedness comes from the fact that U is an isometry, and to show
that T (Hv) ⊂ Hv, it is enough to show that

T (U(f)) ∈ Hv
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for f ∈ C(σ(T )), or even for f a polynomial function, since the image of the those
functions is dense in Hv. But we have indeed

(3.8) T (U(f)) = T (f(T )v) = T
(∑

j

α(j)T j
)

=
∑
j

α(j)T j+1v = (xf)(T )(v)

which lies in Hv.
We see even more from this last computation. Denote by Tv (for clarity) the restriction

of T to Hv:

Tv : Hv → Hv

so that U is now an isometric isomorphism

U : L2(σ(Tv), µv)→ Hv.

We can therefore interpret Tv as (unitarily equivalent to) an operator S = U−1TvU
on L2(σ(T ), µv), and since1 we have

(3.9) Tv(U(f)) = (xf)(T )(v) = U(xf)

by (3.8), extended by continuity from polynomials to L2(σ(T ), µv), it follows that

S(f)(x) = xf(x)

(in L2), i.e., that S is simply the multiplication operator Mx defined on L2(σ(T ), µv).
This is therefore a special case of Theorem 3.1 which we have now proved, for the case
where some vector v is such that Hv = H.

Remark 3.14. It is extremely important in this reasoning to keep track of the measure
µv, which depends on the vector v, and to remember that L2 functions are defined up to
functions which are zero almost everywhere. Indeed, it could well be that v has support
“outside” a fairly sizable part of the spectrum, and then the values of a continuous
function f on this part are irrelevant in seeing f as an L2 function for µv: the map

C(σ(T ))→ L2(σ(T ), µv)

is not necessarily injective.

The standard general terminology is the following:

Definition 3.15. Let H be a Hilbert space and let T ∈ L(H). A vector v ∈ H is
called a cyclic vector for T if the vectors T n(v), n > 0, span a dense subspace of H. In
particular, H is then separable.

By the density of polynomials in C(σ(T )), a vector v is cyclic for a self-adjoint operator
if and only if Hv = H in the notation above.

It is not always the case that T admits a cyclic vector. However, we have the following
lemma which allows us to reduce many questions to this case:

Lemma 3.16. Let H be a Hilbert space and let T ∈ L(H) be a self-adjoint operator.
Then there exists a family (Hi)i∈I of non-zero, pairwise orthogonal, closed subspaces of H
such that H is the orthogonal direct sum of the Hi, T (Hi) ⊂ Hi for all i, and T restricted
to Hi is, for all i, a self-adjoint bounded operator in L(Hi) which has a cyclic vector.

1 We write x for the function x 7→ x to simplify notation.
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Proof. It is clearly a matter of iterating the construction of Hv above (since Tv, by
definition, admits v as cyclic vector), or rather, given the possibly infinite nature of the
induction, it is a matter of suitably applying Zorn’s Lemma. We sketch this quite quickly,
since the details are very straightforward and close to many of its other applications. First
of all, we dispense with the case H = 0 (in which case one takes I = ∅). Note also that
since v ∈ Hv as defined above, we have Hv = 0 if and only if v = 0.

Let O be the set of subsets I ⊂ H−{0} such that the spaces Hv for v ∈ I are pairwise
orthogonal, ordered by inclusion. We can apply Zorn’s Lemma to (O,⊂): indeed, if T is
a totally ordered subset of O, we define (as usual...)

J =
⋃
I∈T

I ⊂ H,

and if v, w are in J , they belong to some I1, I2, in T , respectively, and one of I1 ⊂ I2 or
I2 ⊂ I1 must hold; in either case, the definition of O shows that Hv and Hw are (non-zero)
orthogonal subspaces. Consequently, J is an upper bound for T in O.

Now, applying Zorn’s Lemma, we get a maximal element I ∈ O. Let

H1 =
⊕
v∈I

Hv,

where the direct sum is orthogonal and taken in the Hilbert space sense, so elements of
H1 are sums

v =
∑
i∈I

vi, vi ∈ Hi,

with
‖v‖2 =

∑
i∈I

‖vi‖2 < +∞.

To conclude the proof, we must show that H1 = H. Because H1 is closed (by definition
of the Hilbert sum), if it is not the case, there exists v0 ∈ H⊥1 − {0}, and then

I ′ = I ∪ {v0}
clearly lies in O and is strictly larger than I. So by maximality, we must have H1 = H
indeed. �

Note that if H is separable, the index set in the above result is either finite or count-
able, since each Hi is non-zero.

We can now prove Theorem 3.1 for self-adjoint operators.

Theorem 3.17 (Spectral theorem for self-adjoint operators). Let H be a separable
Hilbert space and T ∈ L(H) a continuous self-adjoint operator. There exists a finite
measure space (X,µ), a unitary operator

U : H → L2(X,µ)

and a bounded function g ∈ L∞(X,µ), such that

Mg ◦ U = U ◦ T.

Proof. Consider a family (Hn)n>1 (possibly with finitely many elements only) of
pairwise orthogonal non-zero closed subspaces of H, spanning H, for which T (Hn) ⊂ Hn

and T has a cyclic vector vn 6= 0 on Hn. By replacing vn with 2−n/2‖vn‖−1vn, we can
assume that ‖vn‖2 = 2−n. Let µn = µvn be the spectral measure associated with vn (and
T ), so that

µn(σ(T )) = ‖vn‖2 = 2−n.
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By the argument at the beginning of this section, we have unitary maps

Un : L2(σ(T ), µn)→ Hn ⊂ H,

such that U−1
n TUn = Mx, the operator of multiplication by x. Now define

X = {1, 2, . . . , n, . . .} × σ(T ),

with the product topology, and the Radon measure defined by

µ({n} × A) = µn(A)

for n > 1 and A ⊂ σ(T ) measurable. It is easily checked that this is indeed a measure.
In fact, functions on X correspond to sequences of functions (fn) on σ(T ) by mapping f
to (fn) with

fn(x) = f(n, x),

and ∫
X

f(x)dµ(x) =
∑
n>1

∫
σ(T )

fn(x)dµn(x)

whenever this makes sense (e.g., if f > 0, which is equivalent with fn > 0 for all n, or if
f is integrable, which is equivalent with fn being µn-integrable for all n). In particular

µ(X) =
∑
n>1

µn(σ(T )) =
∑
n>1

2−n < +∞,

so (X,µ) is a finite measure space. Moreover, the map

V

{
L2(X,µ)→

⊕
n>1 L

2(σ(T ), µn)

f 7→ (fn)

is then clearly a surjective isometry. We construct U by defining

U
(∑
n>1

wn

)
= V −1

(∑
n>1

U−1
n (wn)

)
for all wn ∈ Hn; since all Hn together span H, this is a linear map defined on all of H,
and it is a unitary map with inverse

U−1(f) =
∑
n>1

Un(fn).

Then consider

g

{
X 7→ C

(n, x) 7→ x
.

which is bounded and measurable, and finally observe that the n-th component of U(v),
for v expressed as

v =
∑
n>1

Un(fn),

is U−1
n (Un(fn)) = fn, hence the n-th component of U(T (v)) is

T (fn) = xfn,

which means exactly that U ◦ T = Mg ◦ U . �
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This spectral theorem is extremely useful; it immediately implies a number of results
which could also be proved directly from the continuous functional calculus, but less
transparently.

Note that the method of proof (treating first the case of cyclic operators, and then
extend using Zorn’s Lemma) may also be a shorter approach to other corollaries, since in
the cyclic case one knows that the multiplication function can be taken to be the identity
on the spectrum.

Example 3.18. We continue with the example of a multiplication operator T = Mg

associated with a bounded function g, acting on H = L2(X,µ) for a finite measure space
(X,µ). For a given ϕ ∈ H, it follows from the previous examples that Hϕ is the subspace
of functions of the type x 7→ f(g(x))ϕ(x) for f ∈ C(σ(T )), the spectrum being the
support of g∗(µ). If we select the special vector ϕ = 1, this is the space of functions
f(g(x)). This may or may not be dense; for instance, if X ⊂ R and g(x) = x, this space
is of course dense in H; if, say, X = [−1, 1], µ is Lebesgue measure and g(x) = x2, this is
the space of even functions in L2, which is not dense, so ϕ is not a cyclic vector in this
case.

Corollary 3.19 (Positivity). Let H be a separable Hilbert space and let T ∈ L(H)
be a self-adjoint operator. For f ∈ C(σ(T )), we have f(T ) > 0 if and only if f > 0.

Proof. Because of (3.3), we only need to check that f(T ) > 0 implies that f > 0.
But two unitarily equivalent operators are simultaneously either positive or not, so it
suffices to consider an operator T = Mg acting on L2(X,µ) for a finite measure space
(X,µ). But then we have f(Mg) = Mf◦g by Example 3.10, hence

〈f(Mg)ϕ, ϕ〉 =

∫
X

f(g(x))|ϕ(x)|2dµ(x)

for all vectors ϕ ∈ L2(X,µ).
The non-negativity of this for all ϕ implies that f > 0 everywhere, as desired: take

ϕ(x) = χ(g(x)),

where χ is the characteristic function of A = {y | f(y) < 0}, to get∫
σ(T )

f(y)χ(y)dν(y) =

∫
A

f(y)dν(y) > 0, ν = g∗(µ),

since σ(T ) is the support of the image measure. It follows that ν(A) = 0, so f is non-
negative almost everywhere on σ(T ), and since it is continuous (and the support of ν is
the whole spectrum), this means in fact that f > 0 everywhere. �

Example 3.20 (Compact operators). We illustrate further the use of the spectral
theorem by showing how to derive from it the spectral theorem for compact self-adjoint
operators (Theorem 2.5). Of course, the latter is more general and can be proved directly
more easily, but this is nevertheless a good indication of the fact that Theorem 3.17 can
be used as a black-box encapsulating the basic properties of self-adjoint operators.

Thus we assume given a separable Hilbert space H and a compact self-adjoint operator
T on H. We wish to show that, except for 0, the spectrum of T consists of eigenvalues
with finite multiplicity. After applying Theorem 3.17, we can assume that H = L2(X,µ)
and that T = Mg for some finite measure space (X,µ) and bounded real-valued function
g on X.

46



Let ε > 0 be given. We want to show that (up to sets of measure 0), g only takes
finitely many values with absolute value > ε. Let

Aε = {x | |g(x)| > ε} ⊂ X,

and let

Lε = {ϕ ∈ L2(X,µ) | ϕ = 0 almost everywhere outside Aε} ⊂ L2(X,µ).

We will first show that dimLε < +∞. First, the subspace Lε is a closed subspace of
L2(X,µ), since ϕ ∈ Lε if and only if∫

X−Aε
|ϕ(x)|2dµ(x) = 0.

Now let Cε be the ball centered at 0 with radius ε−2 in L2(X,µ). We claim that the
unit ball of Lε is contained in Mg(Cε). Indeed, if ϕ ∈ Lε has norm 6 1, defining hε to be
the function

hε(x) =

{
1/g(x) if x ∈ Aε,
0 otherwise.

,

we see that Mg(hεϕ) = ϕ, with

‖hεϕ‖2 =

∫
Aε

1

|g(x)|2
|ϕ(x)|2dµ(x) 6 ε−2.

By compactness, it follows that the unit ball of Lε is relatively compact, and therefore
that dimLε < +∞.

Now we wish to deduce from this that the intersection of the spectrum of Mg with
{y ∈ R | |y| > ε} is a finite set. Let σε be this intersection. We consider the measure
ν = g∗µ, so that the spectrum of Mg is the support of ν, and the restriction νε of ν to
σε. Let then

L̃ε =
{
ψ ∈ L2(σ(Mg), ν) |

∫
σ−σε
|ψ(x)|2dν(x) = 0

}
= L2(σε, νε).

Note that the linear map {
L̃ε −→ Lε
ψ 7→ g ◦ ψ

is well-defined and injective (it is isometric, by the integration formula for image mea-
sures), and therefore we also have dim L̃ε < +∞. Now we use the following easy lemma:

Lemma 3.21. Let B ⊂ R be a compact set, let ν be a Radon measure with support
equal to B. If dimL2(B, ν) is finite, then B is a finite set and ν({y}) > 0 for all y ∈ B.

Assuming this, it follows that there are finitely many elements

{y1, . . . , yn(ε)} ⊂ σε

such that µ(g−1(yi)) > 0 and such that g(x) ∈ {y1, . . . , yn(ε)} for µ-almost every x ∈ Aε.
Since the yi are isolated points of the spectrum, they are eigenvalues, and since the
corresponding eigenspaces are contained in Lε, they are finite-dimensional.

Letting ε → 0 along some sequence, we conclude that the non-zero spectrum of Mg

consists of (at most) countably many eigenvalues with finite multiplicity.
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Proof of the lemma. Since ν is a Radon measure, the space C(B) of continuous
functions on B is dense in L2(B, ν), and since the latter has finite dimension and the
support of ν is all of B, we have C(B) = L2(B, ν), and they are isomorphic as Banach
spaces. For x ∈ B, the linear map ψ 7→ ψ(x) is continuous on C(B), hence on L2(B, ν).
Since this linear form is non-zero (e.g., for the constant function 1), this implies that
ν({x}) > 0. Thus every x ∈ B has positive measure, and

L2(B, ν) = {ψ : B −→ C |
∑
x∈B

ν(x)|ψ(x)|2 < +∞}.

The condition dimL2(B, ν) < +∞ therefore clearly implies that |B| < +∞. �

3.4. Projection-valued measures

In this section, we describe another version of the Spectral Theorem 3.17, still for
self-adjoint operators, which is essentially equivalent but sometimes more convenient.
Moreover, it allows us to introduce some new concepts in a well-motivated way.

The idea is to generalize the following interpretation of the spectral theorem for a
compact self-adjoint operator T ∈ K(H): if we denote by Pλ the orthogonal projection
onto Ker(T − λ), for λ ∈ R, then we have the relations

v =
∑
λ∈R

Pλ(v), T (v) =
∑
λ∈R

λPλ(v),

valid for all v ∈ H, where the series are well-defined because Pλ = 0 for λ /∈ σ(T ). To
generalize this, it is natural to expect that one must replace the series with integrals. Thus
some form of integration for functions taking values in H or L(H) is needed. Moreover,
Ker(T − λ) may well be zero for all λ, and the projections must be generalized. We
consider these two questions abstractly first:

Definition 3.22 (Projection-valued measure). LetH be a Hilbert space and let P (H)
denote the set of orthogonal projections in L(H). A (finite) projection valued measure Π
on H is a map {

B(R)→ P (H)

A 7→ ΠA

from the σ-algebra of Borel subsets of R to the set of projections, such that the following
conditions hold:

– (1) Π∅ = 0, ΠR = Id;
– (2) For some constant R > 0, we have Π[−R,R] = Id;
– (3) If An, n > 1, is an arbitrary sequence of pairwise disjoint Borel subsets of R, let

A =
⋃
n>1

An ∈ B(R),

and then we have

(3.10) ΠA =
∑
n>1

ΠAn

where the series converges in the “strong operator topology” of H, which is by definition
the topology on L(H) described by the seminorms

pv

{
L(H)→ [0,+∞[

T 7→ ‖T (v)‖
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for v ∈ H.

Remark 3.23. Of course, if the sequence (An) is finite, say n 6 N , the equality

ΠA =
N∑
n=1

ΠAn

holds in L(H).
The following are easy properties of the strong operator topology: (i) it is Hausdorff;

(ii) if is weaker than the Banach-space topology given by the operator norm; (iii) a
sequence (Tn) converges to T in the strong operator topology if and only if Tn(v)→ T (v)
for all v. Thus (3.10) means that

ΠA(v) =
∑
n>1

ΠAn(v), for all v ∈ H.

If (en)n>1 is an orthonormal basis of a separable Hilbert space H, note that the
projection Pn onto C · en ⊂ H are such that, for any v ∈ H, we have

Pn(v) = 〈v, en〉en → 0

as n→ +∞ (since

‖v‖2 =
∑
n>1

|〈v, en〉|2,

the coefficients 〈v, en〉 converge to 0 as n→ +∞). Thus Pn converges strongly to 0, but
of course ‖Pn‖ = 1 for all n, so (Pn) does not converge in L(H) for the operator norm.

This definition resembles that of a (finite) Borel measure on R. The following ele-
mentary properties are therefore not surprising:

Lemma 3.24. Let H be a Hilbert space and Π a projection-valued measure on H.
Then:

(1) For A ⊂ B measurable, ΠA 6 ΠB and ΠAΠB = ΠBΠA = ΠA.
(2) For A, B measurable subsets of R, we have ΠA∩B = ΠAΠB = ΠBΠA. In particular,

all projections ΠA commute, and if A ∩B = ∅, we have ΠAΠB = 0.

Proof. (1) We have B = A ∪ (B − A), a disjoint union, hence by (3.10) we have

ΠB = ΠA + ΠB−A,

and since ΠB−A is an orthogonal projection, it is > 0 (since 〈P (v), v〉 = ‖P (v)‖2 for
any orthogonal projection P ). Moreover, we recall that whenever P1, P2 are orthogonal
projections on H1, H2, respectively, we have

P1 > P2 ⇒ H2 ⊂ H1 ⇒ P1P2 = P2P1 = P2

(indeed, since P1 > P2, we derive that H2 ∩H⊥1 = 0, since if v belongs to this subspace,
we have

0 = P1(v) = P2(v) + (P1 − P2)(v) = v + (P1 − P2)(v),

hence (by positivity of the second term)

‖v‖2 6 ‖v‖2 + 〈(P1 − P2)v, v〉 = 0,

so that v = 0; then H2 ∩H⊥1 = 0 implies H2 ⊂ H1; then from H2 ⊂ H1, we have directly
that P2(P1(v)) = P2(v) and P1(P2(v)) = P2(v) for all v ∈ H).

In our case, with P1 = ΠB, Π2 = ΠA, this gives

ΠAΠB = ΠBΠA = ΠA.
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(2) We start with the case A ∩B = ∅. Then we have

ΠA∪B = ΠA + ΠB,

and multiplying by ΠA, since A ⊂ A ∪B, the first part gives

ΠA = ΠAΠA∪B = Π2
A + ΠAΠB = ΠA + ΠAΠB,

so that ΠAΠB = 0. Similarly, of course, we have ΠBΠA = 0.
Next, for any A and B, notice that we have a disjoint intersection

A = (A−B) + (A ∩B),

hence

ΠA = ΠA−B + ΠA∩B,

and multiplying by ΠB this time gives

ΠBΠA = ΠBΠA−B + ΠBΠA∩B = ΠA∩B

because B ∩ (A − B) = ∅ (and we apply the special case just proved) and A ∩ B ⊂ B
(and we apply (1) again). Similarly, we get ΠAΠB = ΠA∩B. �

As expected, the point of projection-valued measures is that one can integrate with
respect to them, and construct operators in L(H) using this formalism.

Proposition 3.25. Let H be a Hilbert space and let Π be a projection-valued measure
on H. Then, for any bounded Borel function f : R→ C, there exists a unique operator
T ∈ L(H) such that

(3.11) 〈T (v), v〉 =

∫
R

f(λ)dµv(λ)

for all v ∈ H, where µv is the finite Borel measure given by

(3.12) µv(A) = 〈ΠA(v), v〉, for A ∈ B(R).

This operator is denoted

T =

∫
R

f(λ)dΠ(λ) =

∫
R

f(λ)dΠλ.

We have moreover

T ∗ =

∫
R

f(λ)dΠ(λ),

and the operator T is normal. It is self-adjoint if f is real-valued and positive if f is
non-negative.

If T is the self-adjoint operator associated to a projection valued measure Π, it is also
customary to write

(3.13) f(T ) =

∫
R

f(λ)dΠ(λ).

If f is continuous, this coincides with the functional calculus for T .

Proof. Let Π be a projection valued measure on H, and let v be any fixed vector. We
define µv on Borel subsets of R as indicated by (3.12), and we first check that it is indeed
a Borel measure. Since any orthogonal projection is positive, µv takes non-negative; we
also have

µv(∅) = 0, µv(R) = ‖v‖2
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by the first property defining projection-valued measures, and if An is a sequence of
disjoint Borel subsets and A their union, we have

µv(A) = 〈ΠA(v), v〉 =
∑
n

〈ΠAnv, v〉 =
∑
n

µv(An),

by (3.10) and the definition of strong convergence of sequences. So we do have a finite
measure. In particular, if f is a bounded measurable function on R, the integral∫

R

f(λ)dµv(λ)

exists for all v ∈ H. If there exists an operator T ∈ L(H) such that

〈T (v), v〉 =

∫
R

f(λ)dµv(λ),

for all v, we know that it is uniquely determined by those integrals, and this gives the
unicity part of the statement.

To show the existence, we simply parallel the construction of integration with respect
to a measure (one could be more direct by showing directly that the right-hand side of the
equality above is of the form 〈T (v), v〉 for some T ∈ L(H), but the longer construction is
instructive for other reasons anyway).

We start by defining ∫
R

χA(λ)dΠ(λ) = ΠA

for any Borel subset A ⊂ R, where χA is the characteristic function of A. The def-
inition (3.12) exactly means that this definition is compatible with our desired state-
ment (3.11) for f = χA, i.e., we have

(3.14) 〈
(∫

R

fdΠ
)
v, v〉 =

∫
R

f(λ)dµv(λ),

for all v ∈ H.
We then extend the definition by linearity for step functions

f =
∑

16i6N

αiχAi

where Ai ⊂ R are disjoint measurable sets, namely∫
R

fdΠ =
∑

16i6N

αiΠAi ;

again, linearity ensures that (3.14) holds for such f , and unicity ensures that the resulting
operator does not depend on the representation of f as a sum of characteristic functions.

Next, for f > 0, bounded and measurable, it is well-known that we can find step
functions sn > 0, n > 1, such that (sn) converges uniformly to f : indeed, if 0 6 f 6 B,
one can define

sn(x) =
iB

n
, where 0 6 i 6 n− 1 is such that f(x) ∈ [iB/n, (i+ 1)B/n[

(and sn(x) = B if f(x) = B), so that |f(x)− sn(x)| 6 B/n for all x.
We will show that

Tn =

∫
R

sndΠ
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converges in L(H) to an operator T such that (3.14) holds. Indeed, for any step function
s, we can write

s =
∑

16i6N

αiχAi , Ai disjoint, s2 =
∑

16i6N

α2
iχAi

and by definition we get

(3.15)
∥∥∥(∫

R

sdΠ
)
v
∥∥∥2

=
∑

16i6N

α2
i ‖ΠAi(v)‖2 6 max |αi|2‖v‖2, ,

for all v (using Lemma 3.24, (2)), so∥∥∥∫
R

sdΠ
∥∥∥
L(H)
6 ‖s‖L∞ .

Applied to s = sn − sm, this shows that the sequence (Tn) is a Cauchy sequence in
L(H), hence it does converge to some operator T ∈ L(H). We can then argue that, by
continuity, we have

〈T (v), v〉 = lim
n→+∞

〈Tn(v), v〉 = lim
n→+∞

∫
R

sndµv =

∫
R

fdµv

by the dominated convergence theorem (since 0 6 sn 6 f which is bounded, hence
integrable with respect to a finite measure). This means that T satisfies (3.14), as desired.

We are now essentially done: given a bounded complex-valued function f : R→ C,
we write

f = (Re(f)+ − Re(f)−) + i(Im(f)+ − Im(f)−),

where each of the four terms is > 0, and we define
∫
fdΠ by linearity from this expression.

Again, (3.14) holds trivially.
To conclude the proof of the proposition, we note first that

〈T ∗(v), v〉 = 〈T (v), v〉 =

∫
R

f(λ)dµv(λ) =

∫
R

f(λ)dµv(λ),

which shows that

T ∗ =

∫
R

f(λ)dΠ(λ).

Generalizing (3.15) one shows that, for all f , we have∥∥∥(∫
R

fdΠ
)
v
∥∥∥2

=

∫
R

|f |2dµv =
∥∥∥(∫

R

f̄dΠ
)
v
∥∥∥2

,

and since T is normal if and only if ‖T (v)‖2 = ‖T ∗(v)‖2 for all v, we deduce that any of
the operators of the type

∫
R
fdΠ is normal. Finally, the self-adjointness for f real-valued,

and the positivity for f > 0, are clear from the construction. �

Example 3.26. Let Π be a projection-valued measure. We then have

Id =

∫
R

dΠ(λ).

Corollary 3.27. Let H be a Hilbert space, Π a finite projection-valued measure on
H. Let (fn) be a sequence of bounded measurable functions R→ C such that

fn(x)→ f(x)
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with f measurable and bounded, for all x ∈ R and with ‖fn‖∞ bounded for n > 1. Then∫
R

fn(λ)dΠ(λ)→
∫
R

f(λ)dΠ(λ)

in the strong topology.

Proof. Let T be the self-adjoint operator defined by Π. The left and right-hand
sides are well-defined operators by Proposition 3.25, given by fn(T ) and f(T ) respectively
(using the notation 3.13), and it is enough to prove that, for any vector v ∈ H, we have

〈fn(T )v, v〉 → 〈f(T )v, v〉.
By definition, the left-hand side is∫

R

fn(λ)dµv(λ)

where the measure µv, as in (3.12), is uniquely determined by Π and v. But the assump-
tions imply that fn(λ) → f(λ) pointwise, and that |fn| 6 C where C is some constant
independent of n; since µv is a finite measure on R, this constant is µv-integrable and
therefore we can apply the dominated convergence theorem to conclude that∫

R

fn(λ)dµv(λ)→
∫
R

f(λ)dµv(λ) = 〈f(T )v, v〉,

as desired. �

Now we have a new version of the spectral theorem:

Theorem 3.28 (Spectral theorem in projection-valued measure form). Let H be a
separable Hilbert space and let T = T ∗ be a bounded self-adjoint operator on H. There
exists a unique projection-valued measure ΠT such that

T =

∫
R

λdΠT (λ),

where the integral is extended to the unbounded function λ by defining it as∫
R

λ dΠT (λ) =

∫
λχ dΠT ,

where χ is the characteristic function of some interval I = [−R,R] for which ΠT,I = Id.
Moreover, if f is any continuous function on σ(T ), we have

f(T ) =

∫
σ(T )

f(λ)dΠT (λ).

Proof. By the Spectral Theorem (Theorem 3.17), we can assume that T = Mg is
a multiplication operator acting on H = L2(X,µ) for some finite measure space (X,µ),
and g a real-valued function in L∞(X,µ). For A ⊂ R a Borel subset, we then define

ΠT,A = MχA◦g,

the multiplication operator by χA ◦ g ∈ L∞(X,µ). We now check that

A 7→ ΠT,A

is a projection-valued measure.
It is clear that

Π2
T,Aϕ = χA(g(x))2ϕ(x) = χA(g(x))ϕ = ΠT,Aϕ,
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for every ϕ ∈ L2(X,µ), so each ΠT,A is a projection operator, and since it is self-adjoint
(each χA ◦ g being real-valued), it is an orthogonal projection. The properties

ΠT,∅ = 0, ΠT,R = ΠT,[−R,R] = Id

are clear if |g| 6 R. If (An) is a sequence of pairwise disjoint Borel subsets of R, denoting
their union by A, we have

χA(y) =
∑
n>1

χAn(y)

for any y ∈ R, where the series contains at most a single non-zero term. Hence

ΠT,Aϕ(x) = χA(g(x))ϕ(x) =
∑
n>1

χAn(g(x))ϕ(x),

for any ϕ ∈ L2(X,µ), showing that

ΠT,A =
∑
n>1

ΠT,An ,

in the strong topology on L(H).
So we have constructed a projection-valued measure from T . Consider then the op-

erator

S =

∫
R

λχdΠ ∈ L(H),

where χ is as described in the statement of the theorem. We will check that S = T as
follows: let ϕ ∈ H be given; we then have by (3.11) that

〈S(ϕ), ϕ〉 =

∫
R

λχ(λ)dµϕ(λ)

where the measure µϕ is defined by

µϕ(A) = 〈ΠT,Aϕ, ϕ〉 =

∫
X

χA(g(x))|ϕ(x)|2dµ(x) =

∫
R

χA(y)dν(y),

where ν = g∗(|ϕ|2dµ) is the spectral measure associated to T and ϕ (see Example 3.13).
On the other hand, we have

〈T (ϕ), ϕ〉 =

∫
X

g(x)|ϕ(x)|2dµ(x) =

∫
R

λdν(λ).

Now, we know that the support of ν is the essential image of g, and hence by the
choice of I, we have

〈S(ϕ), ϕ〉 =

∫
R

λχ(λ)dν(λ) =

∫
R

λdν(λ) = 〈T (ϕ), ϕ〉

for all ϕ ∈ H. This means that S = T , as desired. �

Intuitively, and the proof illustrates this clearly, ΠT,A is the orthogonal projection on
the subspace of H which is the direct sum of those where T acts “by multiplication by
some λ ∈ A”.

The following lemma will be useful in the next section.

Lemma 3.29. Let H be a separable Hilbert space, and let T1, T2 be self-adjoint op-
erators in L(H) which commute, with associated projection valued measures Π1 and Π2.
Then, for bounded measurable functions f and g, the operators

S1 =

∫
R

fdΠ1, S2 =

∫
R

gdΠ2
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also commute.

Proof. It is enough to consider the case where g is the identity, so S2 = T2, because
if it holds, we get first that S1 commutes with T2, and then the same argument with
(T1, T2, f) replaced by (T2, S1, g) gives the desired conclusion.

Next, a simple limiting argument shows that it is enough to consider the case where
f is the characteristic function of a measurable set, so S1 = Π1,A is a projection, and we
must show that Π1,AT2 = T2Π1,A.

Now, we argue as follows: the assumption implies immediately, by induction, that

T n1 T2 = T2T
n
1 for all n > 0,

so T2 commutes with all polynomials p(T1). By continuity of multiplication in L(H), T2

commutes with all operators ϕ(T1), ϕ ∈ C(σ(T1)). We know there exists a sequence (ϕn)
of such continuous functions with

ϕn(x)→ χA(x)

for all x. By strong convergence (Corollary 3.27), it follows that

ϕn(T1) =

∫
R

ϕndΠ1 → ΠA

strongly. Then we get

T2(ΠA(v)) = lim
n→+∞

T2(ϕn(T1)v) = lim
n→+∞

ϕn(T1)(T2(v)) = ΠA(T2(v)).

�

3.5. The spectral theorem for normal operators

Using the following simple lemma, we are now in a position to extend the spectral
theorem and the continuous functional calculus to normal operators.

Lemma 3.30. Let H be a Hilbert space and T ∈ L(H) a normal bounded operator.
There exist two self-adjoint operators T1, T2 ∈ L(H) such that T = T1 + iT2, and T1T2 =
T2T1.

Proof. Write

T1 =
T + T ∗

2
, T2 =

T − T ∗

2i
,

so that T = T1 + iT2, and observe first that both are obviously self-adjoint, and then that

T1T2 = T2T1 =
T 2 − (T ∗)2

4i

because T is normal. �

We now have the basic result for normal operators.

Proposition 3.31. Let H be a separable Hilbert space and let T ∈ L(H) be a nor-
mal bounded operator. There exists a finite measure space (X,µ), a bounded measurable
function g ∈ L∞(X,µ) and a unitary isomorphism

U : H → L2(X,µ)

such that Mg ◦ U = U ◦ T .
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Sketch of the proof. Write T = T1 + iT2 with T1, T2 both self-adjoint bounded
operators which commute, as in the lemma. Let Π1 (resp. Π2) denote the projection
valued measure for T1 (resp. T2). The idea will be to first construct a suitable projection
valued measure associated with T , which must be defined on C since σ(T ) is not (in
general) a subset of R.

We first claim that all projections Π1,A and Π2,B commute; this is because T1 and T2

commute (see Lemma 3.29). This allows us to define

Π̃A×B = Π1,AΠ2,B = Π2,BΠ1,A,

which are orthogonal projections. By basic limiting procedures, one shows that the
mapping

A×B 7→ Π̃A×B

extends to a map
B(C)→ P (H)

which is a (finite) projection valued measure defined on the Borel subsets of C, the
definition of which is obvious. Repeating the previous section allows us to define normal
operators ∫

C

f(λ)dΠ̃(λ) ∈ L(H),

for f bounded and measurable defined on C. In particular, one finds again that

T =

∫
C

λdΠ̃(λ),

where the integral is again defined by truncating outside a sufficiently large compact set.
So we get the spectral theorem for T , expressed in the language of projection-valued

measures.
Next one gets, for f ∈ C(σ(T )) and v ∈ H, the fundamental relation∥∥∥(∫ fdΠ̃

)
v
∥∥∥2

=

∫
|f |2dµv,

where µv is the associated spectral measure. This allows, again, to show that when T has
a cyclic vector v (defined now as a vector for which the span of the vectors T nv, (T ∗)mv,
is dense), the unitary map

L2(σ(T ), µv)→ H

represents T as a multiplication operator Mz on L2(σ(T ), µv). And then Zorn’s lemma
allows us to get the general case. �
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CHAPTER 4

Unbounded operators on a Hilbert space

This chapter describes the basic formalism of unbounded operators defined on a dense
subspace of a Hilbert space, and uses this together with the spectral theorem for bounded
operators to prove a very similar spectral theorem for self-adjoint unbounded operators.

It should be emphasized here that, although one can develop a fairly flexible for-
malism, unbounded operators remain somewhat “wild”, and that it is perfectly possible
to make important mistakes if one forgets the fairly subtle conditions that define, for
instance, a self-adjoint operator in this setting.

4.1. Basic definitions

Motivating examples of unbounded operators have already been described: these were
the Laplace operator in Example 1.6, and the operators defined as the “inverses” of T −λ
for a bounded operator T ∈ L(H) and λ ∈ σc(T ) (so that Im(T −λ), on which the inverse
is defined, is a dense subset of H): see Remark 2.3. The other class of basic examples is
that of multiplication operators by general (measurable) functions g on a space L2(X,µ),
where g is not necessarily bounded (see Example 4.6 below). In fact, the basic goal
of this chapter is to show that this last class represents all self-adjoint operators up to
unitary equivalence – in other words, we want an extension of Theorem 3.1 for unbounded
operators.

We now formalize the type of situation described by those examples.

Definition 4.1. Let H be a Hilbert space. A (densely) defined operator on H is
a pair (D(T ), T ) where D(T ) ⊂ H is a dense subspace of H, called the domain of the
operator, and

T : D(T )→ H

is a linear map. We denote by DD(H) the set of densely defined operators on H.1

Remark 4.2. The linear map T , defined on D(T ) is usually not continuous. Indeed,
if T happens to be in L(D(T ), H), the fact that D(T ) is dense ensures that T extends
in a unique way to a bounded operator T̃ ∈ L(H), and there is no gain of generality in
looking at dense domains.

One may wonder why one does not study, instead of densely defined operators which
are not continuous, those which are (still) not continuous but defined on the whole of H
– indeed, Zorn’s lemma easily shows that any densely defined operator (D(T ), T ) can be
seen as the restriction (in the sense explained below) of a linear map defined on H itself.
However, constructing these extensions must involve the Axiom of Choice if T was not
continuous on D(T ), and this means that it is basically impossible to say what T (v) is,
for any vector except those in D(T ).

It is of great importance to emphasize immediately that, although we will be tempted
to write things like “let T ∈ DD(H) be given”, this is a shorthand notation: the domain
D(T ) is part of the data. In particular, if (D1, T1) and (D2, T2) are such that D1 ⊂ D2

1 This notation is not standard, though it will be convenient.
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and T2 restricted to D1 is equal to T1, we do not identify them. This leads us to the next
definition.

Definition 4.3. Let H be a Hilbert space.
(1) If (D(T ), T ) is a densely defined linear operator on H, and D1 ⊂ D(T ) is a

subspace of D(T ) which is still dense in H, we call

(D1, T |D1)

the restriction of the operator to D1.
(2) An extension of a densely defined operator (D(T ), T ) is a (D1, T1) ∈ DD(H) such

that D(T ) ⊂ D1 and (D(T ), T ) is the restriction of (D1, T1) to D(T ).

Remark 4.4. In the shorthand notation commonly used, if (D1, T1) is the restriction
of (D2, T2) to D1, one may write

T1 = T2|D1, or T1 ⊂ T2,

the latter notation emphasizing the fact that there is an inclusion of domains underlying
this restriction. Note that T1 = T2 (meaning the domains coincide, and the operators are
the same on it) if and only T1 ⊂ T2 and T2 ⊂ T1.

Remark 4.5. The kernel of (D(T ), T ) is

Ker(T ) = {v ∈ D(T ) | Tv = 0},
and the image is

Im(T ) = {Tv | v ∈ D(T )}.
Note that both depend on the domain: if D(T ) is replaced by a smaller (dense) subset,

then the kernel may become smaller, and similarly for the image.

Example 4.6. (1) As in the case of bounded operators (Example 1.1), multiplication
operators give fundamental examples of densely-defined unbounded operators. Let (X,µ)
be a finite measure space.

For a measurable function g : X → C, the map

Mg : ϕ 7→ gϕ

is linear and well-defined on the space of measurable functions defined on X, but it is
not well-defined as a linear map acting on L2(X,µ), since gϕ may well fail to be square-
integrable.

For instance, if we take X = R with the Lebesgue measure and ϕ(x) = x, we have
x

1 + |x|
/∈ L2(R)

although 1/(1 + |x|) ∈ L2(R). However, we can define

D(Mg) = {ϕ ∈ L2(X,µ) | gϕ ∈ L2(X,µ)}
so that Mg is a well-defined linear map

D(Mg)→ L2(X,µ).

Here is a small warning: the definition of D(Mg) is not equivalent with gϕ ∈
L2(X,µ): the condition that ϕ itself be square integrable must not be forgotten; for
instance, the function

ϕ(x) =

{
1√
|x|

for |x| 6 1, x 6= 0

1
x2

for |x| > 1,
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is such that ∫
R

|xϕ(x)|2dx =

∫ 1

−1

|x|dx+ 2

∫ +∞

1

dx

x2
< +∞,

but ϕ /∈ L2(R), so ϕ is not in D(Mx) on L2(R).
We have the following simple but important fact:

Lemma 4.7. Any multiplication operator (D(Mg),Mg) acting on L2(X,µ), where
µ(X) < +∞, is densely defined.

Proof. Let ϕ ∈ L2(X,µ). To approximate it using elements of D(Mg), define

χR(x) =

{
1 if |g(x)| 6 R

0 if |g(x)| > R,

for R > 0. Note that ϕχR → ϕ in L2(X,µ) since

‖ϕχR − ϕ‖2 =

∫
|g(x)|>R

|ϕ(x)|2dµ(x)→ 0,

since ϕ ∈ L2(X,µ) and the sets |g(x)| > R “decrease” to ∅ (note that here we use the
fact that µ(X) < +∞). Now, since∫

X

|g|2|ϕχR|2dµ 6 R2‖ϕ‖2 < +∞,

we have ϕχR ∈ D(Mg) for all R, and we have the desired approximations. �

A particular example of multiplication operator is (D(Mx),Mx) on L2(R); this oper-
ator is called the position operator because of its interpretation in Quantum Mechanics,
as we will see in Chapter 6.

(2) Here is another important example, which is a prototype for many other similar
operators: let H = L2(R) again and consider

D(∂x) = C1
0(R),

the set of continuously differentiable functions with compact support. Note that D(∂x)
is dense in H (e.g., because the smaller space of smooth functions with compact support
is dense in L2(R), see Lemma 1.14). Then define

∂x :

{
D(∂x)→ H

f 7→ f ′.

Since f ′ is continuous with compact support, ∂x(f) does indeed belong to H for
f ∈ D(∂x). Thus (C1

0(R), ∂x) is in DD(L2(R)).

Because of the need to take the domain into account, many constructions which are
straightforward for bounded operators require some care if one wants to extend them to
densely-defined operators.

One which is easy is “transport through isomorphisms”: let H, H ′ be Hilbert spaces

A : H → H ′

an isomorphism (not necessarily isometric), and (D(T ), T ) in DD(H). Then

(A(D(T )), w 7→ A(T (A−1(w))))

is in DD(H ′), and is commonly denoted ATA−1. In particular, if A is a unitary isomor-
phism, we say at T and ATA−1 are unitarily equivalent.
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Another important remark is that if (D(T ), T ) ∈ DD(H) and S ∈ L(H), there is an
obvious definition of the sum T + S as (D(T ), T + S). This will be used to define the
spectrum of an unbounded operator.

Example 4.8. Let H = L2(R) and U : H → H the Fourier transform (see Exam-
ple 1.5): for f integrable on R, we have

Uf(x) =

∫
R

f(t)e−2iπxtdt.

If f is in the domain D(∂x) = C1
0(R) of the operator of derivation defined in the

previous example, we claim that U(f) ∈ D(M2iπx) = D(Mx), the domain of the operator
of multiplication by x. Indeed, writing

Uf(x) =

∫
R

f(t)e−2iπxtdt,

we get

(4.1) 2iπxUf(x) =

∫
R

(2iπx)f(t)e−2iπxtdt =

∫
R

f ′(t)e−2iπxtdt

by integration by parts, which is justified given that f is C1 with compact support.
Thus Mx(Uf ) is the Fourier transform of the function f ′, which is continuous of compact
support, hence in L2, proving our claim.

We see, furthermore, that for f ∈ D(∂x), we have

M2iπx(Uf) = U(∂x(f)),

but since U(D(∂x)) is not the whole of D(Mx) (e.g., because the function g : x 7→ e−πx
2

is in D(Mx), but Ug = g /∈ C1
c (R)) , we can not write

U−1M2iπxU = ∂x,

but only

∂x ⊂ U−1M2iπxU.

Note that, in this case, the domain of the multiplication operator seems much more
“natural” than the one for the derivation (since there are many other differentiable L2

functions than those in C1
c (R)); the Fourier transport allows us to define what is, in

a sense, the best domain as U−1(D(Mx)). This space, and other similar ones, can be
identified with Sobolev spaces.

Other operations on densely defined operators may be much more tricky. For instance,
note that it is perfectly possible to have dense subspaces H1, H2 ⊂ H, such that H1∩H2 =
0. If this is the case, and T1, T2 are defined on H1, H2, respectively, then it will clearly
be essentially impossible to define, for instance, the sum T1 + T2 in any sensible way. So
DD(H) is not a vector subspace in a reasonable sense.

4.2. The graph, closed and closable operators

Because of the frequent ambiguity in the choice of a domain for an unbounded opera-
tor, it is of importance to isolate a class of such operators where, in a natural way, there
is a somewhat natural domain defined for an extension of T which is canonical in some
way. This is naturally some type of closure operation.
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Definition 4.9. Let H be a Hilbert space and (D(T ), T ) ∈ DD(H). The graph Γ(T )
of (D(T ), T ) is the linear subspace

Γ(T ) = {(v, w) ∈ H ×H | v ∈ D(T ) and w = T (v)}
of H ×H.

The operator (D(T ), T ) ∈ DD(H) is said to be closed if Γ(T ) is closed in H × H
when the latter is seen as a Hilbert space with the inner product

〈(v1, w1), (v2, w2)〉H×H = 〈v1, v2〉H + 〈w1, w2〉H .
The operator is said to be closable if there exists a closed extension of T .

Note in passing that T ⊂ T1, for densely defined operators, can also be rephrased
equivalently as Γ(T ) ⊂ Γ(T1), where the inclusion is now the standard inclusion of sub-
spaces.

Remark 4.10. At this point it is useful to recall the Closed Graph Theorem (The-
orem 1.16): this shows again the link between T being unbounded and D(T ) being a
proper subset of H, since it shows that any closed operator with D(T ) = H is in fact
continuous.

Example 4.11. Let H be a Hilbert space and let S ∈ L(H) be a bounded operator
such that that 0 lies in the continuous spectrum of S, i.e., S is injective and Im(S) is
dense but distinct from H. Then, as already mentioned, we can construct the densely
defined operator inverse to S, namely

(D(T ), T ) = (Im(S), S−1).

Then this operator is closed: indeed, its graph Γ(T ) is simply given by Γ(T ) =
{(v, w) ∈ H ×H | (w, v) ∈ Γ(S)}. The graph of S is closed since S is continuous, and
obviously switching the coordinates is also a continuous operator, so Γ(T ) is closed.

Allowing some wiggle room, this construction is very general: if (D(T ), T ) is a closed
unbounded operators, one can find some λ ∈ C such that T − λ is the inverse of some
bounded operator, provided the resolvent set of T is not empty (see Section 4.5 below, but
note already that it is possible for the resolvent set to be empty, as shown in Example 4.37.

This example shows that a good way to prove spectral properties of unbounded op-
erators may be to reduce to bounded operators by this trick; this is indeed what will be
done in the proof of the spectral theorem for unbounded self-adjoint operators, where it
will be shown that the spectrum (unsurprisingly) is real, so any non-real complex number
lies in the resolvent set and can be used in the previous construction.

Remark 4.12. We see, concretely, that T is closed if and only if, for any sequence
(vn) of vectors in D(T ), if there exist vectors v0, w0 ∈ H such that

vn → v0, T (vn)→ w0,

then we have (v0, w0) ∈ Γ(T ), i.e., v0 ∈ D(T ) and w0 = T (v0). Note that since D(T )
is not closed (except in the case D(T ) = H, which corresponds to T bounded), the fact
that v0 ∈ D(T ) is itself non-trivial, and depends on the property that T (vn) converges.

If T is closable, we also see that D(T̄ ) can be described concretely as the space of
vectors v ∈ H which are limits of a sequence of vectors vn ∈ D(T ), with the condition
that T (vn) also converges (its limit being then T (v)).

The following lemma is simple but useful: it justifies that closable operators have a
natural extension, with a domain that may be hoped to be possibly simpler to handle.
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Lemma 4.13. Let H be a Hilbert space, (D(T ), T ) ∈ DD(H). Then T is closable if

and only if Γ(T ) ⊂ H × H is the graph of some operator (D(T̄ ), T̄ ) ∈ DD(H). This
operator is called the closure of T , and we have T̄ ⊂ S for any closed extension S of T ,
i.e., it is the smallest closed extension of T .

Proof. If S ⊃ T is closed then we have

Γ(S) = Γ(S) ⊃ Γ(T ),

from which it follows immediately that Γ(T ) is a graph (because it can not contain (v, w)
and (v, w′) with w 6= w′), and then that it is indeed the graph of a closed extension of T ,
which is also consequently the smallest possible. �

Example 4.14. The operator Mx of multiplication by x on L2(R) is closed, when
D(Mx) is as defined previously. Indeed, consider a sequence of functions (ϕn) in D(Mx),
such that

ϕn → ϕ0, xϕn → ψ0,

where ϕ0, ψ0 ∈ L2(R). We need to show that xϕ0 = ψ0, and the difficulty is (of
course) that multiplying by x is not continuous in the L2-norm (which is the whole
point...) To do this, recall that there exists a subsequence (ϕnk) such that the convergence
ϕnk(x) → ϕ0(x) holds almost everywhere on R. Then clearly xϕnk(x) converges almost
everywhere to xϕ0(x), on the one hand, and on the other hand this must be ψ0(x) by
unicity of the limit in L2. Hence, almost everywhere, we do have xϕ0(x) = ψ0(x), from
which it follows that ϕ0 ∈ D(Mx) and Mx(ϕ0) = ψ0.

Note that if we had considered the smaller operator (Cc(R), S : f 7→ xf), where
Cc(R) is the space of compactly supported continuous functions, we would get a non-
closed operator with S ⊂Mx, and S̄ = Mx. (This is left as an easy exercise).

Example 4.15. The following illustrates a simple example of a non-closable operator:
Γ(T ) is not a graph. It will be seen that the construction is somewhat artificial, and indeed
most operators we will encounter further on, especially for applications, are closable.

Let H = L2([0, 1]), and let en(x) = e2iπnx, for n ∈ Z, denote the classical orthonormal
basis, used in the theory of Fourier series. Fix any function ϕ0 ∈ H such that 〈ϕ0, en〉 6= 0
for infinitely many n (for instance, the function ϕ(x) = x will do).

Now let

D(T ) = {f = αϕ0 + P | α ∈ C, P =
∑
|n|6N

anen},

the sum of the line spanned by ϕ0 and the space of trigonometric polynomials (finite
combinations of the basis vectors). Note thatD(T ) is dense inH, because the polynomials
already are, and that the decomposition f = αϕ0 + P is unique (i.e., the coefficient α is
uniquely determined by f ; indeed, if |n| > N , we have

〈f, en〉 = α〈ϕ0, en〉

and if n is such that 〈ϕ0, en〉 6= 0, we can determine α from this identity).
Now let

T (f) = αϕ0 for f = αϕ0 + P ∈ D(T ).

By the previous remark, T is well-defined on D(T ), and it is obviously linear, so
(D(T ), T ) ∈ DD(H). We claim that this operator is not closable.
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Indeed, notice first that ϕ0 ∈ D(T ) with T (ϕ0) = ϕ0 gives (ϕ0, ϕ0) ∈ Γ(T ) ⊂ Γ(T ).
Next, let

ϕN =
∑
|n|6N

〈ϕ0, en〉en

which is a trigonometric polynomial, hence lies in D(T ), with T (ϕN) = 0. Since ϕN → ϕ0

in L2([0, 1]), we have

(ϕ0, 0) = lim
N→+∞

(ϕN , T (ϕN)) ∈ Γ(T ).

Thus (ϕ0, ϕ0) and (ϕ0, 0) both lie in Γ(T ), and this shows it is not a graph.

The following lemma is quite simple but will be important in defining the spectrum
of a closed operator.

Lemma 4.16. Let H be a Hilbert space, (D(T ), T ) ∈ DD(H) a closed operator. Then,
for any bounded operator S ∈ L(H), the operator (D(T ), S + T ) is closed, and

S + T : D(T )→ H

has a bounded inverse (S + T )−1 ∈ L(H) if and only if it is a bijection.

Proof. Consider any sequence (vn, wn) ∈ Γ(S + T ) with vn → v0, wn → w0 as
n → +∞. We have then wn = Svn + Tvn for all n, and since S is continuous and
vn → v0, we get that Svn converges to Sv0. Now consider the sequence (vn, wn − Svn).
It lies in Γ(T ), and we have vn → v0 and wn − Svn → w0 − Sv0. Since T is closed, it
follows that (v0, w0 − Sv0) ∈ Γ(T ), so that v0 ∈ D(T ) and Tv0 = w0 − Sv0, which means
that (v0, w0) ∈ Γ(S + T ), showing that S + T is closed.

Now if we assume that S + T is a (linear, of course) bijection from D(T ) to H, the
graph of its inverse (S + T )−1 is

Γ((S + T )−1) = {(v, w) ∈ H ×D(H) | v = (S + T )w},

so it is simply the graph of (D(T ), S + T ) “with coordinates switched”:

Γ((S + T )−1) = {(v, w) ∈ H ×H | (w, v) ∈ Γ(S + T )}.

This implies of course that (S + T )−1 has a closed graph, and hence it is continuous
by the Closed Graph Theorem. �

4.3. The adjoint

We now come to the definition of the adjoint for unbounded operators. Of course,
this can only be expected to exist (at best) itself as an unbounded operator, so we must
first consider the question of the domain. We want (of course) to have

(4.2) 〈Tv, w〉 = 〈v, T ∗w〉

whenever this makes sense, and this means in particular that

|〈Tv, w〉| 6 ‖T ∗w‖‖v‖,

which implies that v 7→ 〈Tv, w〉 would in fact be continuous on D(T ), and therefore would
extend by continuity to H (in a unique way, since D(T ) is dense). This is something that
may, or may not, be true, and it clearly defines a natural domain.
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Definition 4.17. Let H be a Hilbert space and (D(T ), T ) ∈ DD(H). The domain
of the adjoint D(T ∗) is defined to be the set of w ∈ H such that the linear map

λ∗w

{
D(T )→ C

v 7→ 〈Tv, w〉

is continuous, i.e., those w such that equivalently, λ∗w extends uniquely to a linear func-
tional λ∗w ∈ H ′, or there exists a constant C > 0 with

|〈Tv, w〉| 6 C‖v‖, for v ∈ D(T ).

The adjoint is the linear map{
D(T ∗)→ H

w 7→ the unique vector T ∗w such that λ∗w(v) = 〈v, T ∗w〉,

where the existence of the vector is given by the Riesz Representation Theorem for Hilbert
spaces.

From the definition, we see that the relation (4.2) holds for v ∈ D(T ), w ∈ D(T ∗),
as desired. Intuitively, the domain D(T ∗) is thus (spanned by) the set of “coordinates”
along which the operator T is in fact continuous. From this description, it is not clear
whether D(T ∗) is dense in H or not. If it is, we obtain a densely defined operator
(D(T ∗), T ∗) ∈ DD(H), which is of course called the adjoint of (D(T ), T ). But in fact, it
may be the case that D(T ∗) is not dense.

Example 4.18. Let H = L2(R), and consider the densely-defined operator

(D(T ), T ) =
(
L1(R) ∩ L2(R), ϕ 7→

(∫
R

ϕ(t)dt
)
ϕ0

)
,

for ϕ0 any element of H, for instance ϕ0(x) = e−πx
2
. Given ψ ∈ H, we have ψ ∈ D(T ∗)

if the linear map

λ∗ψ : ϕ 7→
∫
R

T (ϕ)ψ̄dt

is continuous on D(T ). But

λ∗ψ(ϕ) =
(∫

R

ϕ(t)dt
)
〈ϕ0, ψ〉,

and we see that this is continuous (in L2 norm) if and only if the inner product 〈ϕ0, ψ〉
vanishes, so that D(T ∗) = ϕ⊥0 is not dense in H.

It turns out, however, that the condition that D(T ∗) be dense is often satisfied. We
will denote by DD∗(H) the set of densely-defined operators on H for which D(T ∗) is
dense. As it turns out, this class has already been introduced implicitly:

Lemma 4.19. Let (D(T ), T ) be an unbounded densely-defined operator on a Hilbert
space H. Then T ∈ DD∗(H) if and only if T is closable.

This is Part (2) of the following proposition, which lists other easy properties of
adjoints and their domains.

Proposition 4.20. Let H be a Hilbert space and let (D(T ), T ) ∈ DD(H). Denote by
(D(T ∗), T ∗) the adjoint of T , which is defined on the not-necessarily dense subset D(T ∗).

(1) The graph Γ(T ∗) is closed in H ×H. In particular, if T ∗ is densely defined, it is
closed.
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(2) The subspace D(T ∗) is dense in H if and only if T is closable.
(3) If T is closable, then T ∗∗ = (T ∗)∗ is in DD(H) and T ∗∗ = T̄ is the closure of T ,

while T̄ ∗ = T ∗.
(4) If T1 and T2 are densely defined operators with T1 ⊂ T2, we have T ∗2 ⊂ T ∗1 .

Proof. (1) By definition Γ(T ∗) is the set of (v, w) ∈ H × H such that v ∈ D(T ∗)
and w = T ∗v. These two conditions mean exactly that, for all x ∈ D(T ), we have

(4.3) 〈Tx, v〉 = 〈x,w〉.

Indeed, this is the defining relation (4.2) if (v, w) ∈ Γ(T ∗), but also conversely: if (4.3)
holds for all x ∈ D(T ), the Cauchy-Schwarz inequality implies that

|〈Tx, v〉| 6 ‖w‖‖x‖

so that v ∈ D(T ∗), and from (4.3), w = T ∗v. Since the equations (4.3), parametrized by
x, are linear and continuous, the set of solutions Γ(T ∗) is closed. In fact, one can write
Γ(T ∗) = W⊥, where

(4.4) W = {(Tx,−x) ∈ H ×H | x ∈ D(T )}

is a subspace of H ×H.
(2) Assume first that D(T ∗) is dense in H. Then T ∗∗ = (T ∗)∗ is defined, and we claim

that T ⊂ T ∗∗. By (1), this implies that T ∗∗ is a closed extension of T , which is therefore
closable. To see this, observe that if v ∈ D(T ), the map

w 7→ 〈T ∗w, v〉

is the same as w 7→ 〈w, Tv〉, by definition (4.2). This map is continuous on D(T ∗) with
norm 6 ‖Tv‖, and this means exactly that v ∈ D(T ∗∗) with T ∗∗(v) = Tv. Since v is
arbitrary in D(T ), this shows indeed that T ⊂ T ∗∗.

Conversely, assume that T is closable. Let v0 ∈ D(T ∗)⊥ be a vector perpendicular to
the domain of T ∗; we must show v0 = 0 to prove that D(T ∗) is dense. This is a bit tricky:
we note first that (v0, 0) ∈ Γ(T ∗)⊥ in H×H, and then notice that, from the computation
in (1), we have

Γ(T ∗)⊥ = (W⊥)⊥ = W,

with W given by (4.4).
From this, it is clear that

(4.5) W = {(w,−v) | (v, w) ∈ Γ(T )},

hence we find that (0, v0) ∈ Γ(T ). Since Γ(T ) is a graph, we must have v0 = T̄ (0) = 0,
which concludes the proof.

(3) If T is closable, T ∗ is densely defined and at the beginning of (2), we checked
that T ∗∗ is densely defined and is a closed extension of T , so T̄ ⊂ T ∗∗. In fact, there
is equality, because we can use the computation in (1), applied to T ∗ instead of T , to
determine the graph of T ∗∗: Γ(T ∗∗) = V ⊥ where

V = {(T ∗x,−x) ∈ H ×H | x ∈ D(T ∗)} ⊂ H ×H.

This V is obtained from the graph of T ∗ as A(Γ(T ∗)), where A is the linear isometry
(v, w) 7→ (w,−v). In (2) we saw that Γ(T ∗)⊥ = W , and we see by (4.5) that A(W ) =

Γ(T ), so this gives

Γ(T ∗∗) = (A(Γ(T ∗)))⊥ = A(Γ(T ∗)⊥) = A(W ) = Γ(T ).
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Finally, for T closable, we have

T̄ ∗ = (T ∗∗)∗ = (T ∗)∗∗ = T ∗ = T ∗

since T ∗ is closed.
(4) This is clear from the defining relation (4.2) and the assumption D(T1) ⊂ D(T2),

with T2 acting like T1 on D(T1). �

We can now make the following important definition:

Definition 4.21. Let H be a Hilbert space and (D(T ), T ) ∈ DD(H) a closable
operator.

(1) The operator (D(T ), T ) is symmetric or Hermitian if it is closable and T ⊂ T ∗,
i.e., equivalently, if

〈Tv, w〉 = 〈v, Tw〉
for all v, w ∈ D(T ).2

(2) The operator (D(T ), T ) is self-adjoint if it is closable and T = T ∗, i.e., if it is
symmetric and in addition D(T ∗) = D(T ).

(3) A self-adjoint extension of (D(T ), T ) is a self-adjoint operator T1 such that T ⊂ T1.
(4) An essentially self-adjoint operator (D(T ), T ) is a symmetric operator such that

T̄ is self-adjoint.

Remark 4.22. (1) The point of the last part of the definition is that, in general,
there may exist more than one self-adjoint extension of a symmetric operator (or even
none at all) – concrete examples will arise in Example 5.8 of Chapter 5. If (D(T ), T ) is
essentially self-adjoint, however, T̄ is the unique self-adjoint extension of T : indeed, for
any such S, we have T̄ ⊂ S since S is a closed extension of T , and conversely, using (4)
of Proposition 4.20, since T ∗∗ ⊂ S, we have S∗ ⊂ (T ∗∗)∗ so S ⊂ T̄ ∗ = T̄ .

(2) If T is symmetric, we have

T ⊂ T ∗∗ ⊂ T ∗

since T ∗ is then a closed extension of T . It may happen that T is closed and symmetric,
but not self-adjoint, in which case T = T ∗∗ ⊂ T ∗. This means in particular that if T is
symmetric and closed, then T ∗ is self-adjoint if and only if T ∗ is symmetric.

Remark 4.23. Issues of domains concerning symmetric operators are emphasized by
the Hellinger-Toeplitz Theorem: if (D(T ), T ) is a symmetric operator with D(T ) = H,
then T is automatically bounded.

Example 4.24. (1) Let H = L2(R) and (D(T ), T ) = (D(Mx),Mx) the operator of
multiplication by x. Then we claim that T is self-adjoint. Indeed, we first determine
D(T ∗) as follows: we have

λ∗ψ(ϕ) = 〈T (ϕ), ψ〉 =

∫
R

xϕ(x)ψ(x)dx

for ϕ ∈ D(Mx), ψ ∈ H. It is clear that if ψ ∈ D(Mx), the integral can be expressed as

〈ϕ, T (ψ)〉,
so it is obvious at least that T is symmetric.

Now suppose ψ ∈ D(T ∗), so there exists C such that

|〈T (ϕ), ψ〉|2 6 C‖ϕ‖2

2 Indeed, if this identity holds, it follows that D(T ) ⊂ D(T ∗), so T ∈ DD∗(H) is closable, and T ∗

coincides with T on D(T ).
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for all ϕ ∈ D(Mx). We take ϕ to be xψχR, where χR is the characteristic function of
[−R,R]. This is in L2(R) since |xψ(x)iχR(x)|2 6 R2|ψ(x)|2, and the inequality becomes(∫

R

x2|ψ(x)|2χR(x)dx
)2

6 C

∫
R

x2|ψ(x)|2χR(x)dx,

so ∫
R

x2|ψ(x)|2χR(x)dx 6 C

for all R > 0. As R → +∞, the monotone convergence theorem implies that these
integrals converge to ∫

R

x2|ψ(x)|2dx,

so we obtain xψ ∈ L2(R), i.e., ψ ∈ D(Mx). Hence, we have D(T ∗) = D(T ), which
finishes the proof that T is self-adjoint.

In fact, any multiplication operator (D(Mg),Mg) on a finite measure space (X,µ) is
self-adjoint if g is real-valued; this may be checked by a similar computation, or using
the self-adjointness criterion discussed below, as we will see in Example 4.31.

(2) Consider the operator (D(T ), T ) = (C1
c (R), i∂x) of (i times) differentiation on

L2(R). We claim this operator is symmetric, but not self-adjoint. The symmetry, as
before, reduces to a formal computation: let ϕ, ψ ∈ C1

c (R), then by integration by parts
we get

〈i∂xϕ, ψ〉 = i

∫
R

ϕ′(x)ψ(x)dx

=
[
iϕψ

]+∞

−∞
+

∫
R

ϕ(x)iψ(x)dx = 〈ϕ, i∂xψ〉,

as desired. However, we can see for instance that ϕ0(x) = e−πx
2

is in D(T ∗) = D((i∂x)
∗):

we have

λ∗ϕ0
(ϕ) =

∫
R

iϕ′(x)e−πx
2

dx =

∫
R

ϕ(x)(−2πix)e−πx
2

dx

by integration by parts (again), and this is continuous on C1
c (R) since x 7→ xe−πx

2
is still

in L2(R).
It is important to notice, however, that the same computation shows that T ∗ϕ0 =

iϕ′0, i.e., the adjoint of this differentiation operator acts on ϕ0 “as the same differential
operator”.

Remark 4.25. We do not define normal operators here, because this is a tricky issue.
The difficulty is that if T is closable, so T ∗ is densely defined, it is not clear what the
intersection D(T ) ∩ D(T ∗) is, and this is the only obvious space on which T (T ∗v) or
T ∗(Tv) make sense in order to be compared...

However, note that one of the motivation to study normal operators was to have a
spectral theorem for unitary operators, and unitary operators are always bounded, so we
do not need to enlarge our setting to accommodate them with unbounded operators.

The following lemma is again very simple, but worth pointing out as it is used con-
stantly.

Lemma 4.26. Let H be a Hilbert space and let (D(T ), T ) ∈ DD∗(H) be a closable
operator. For any S ∈ L(H), (D(T ), S+T ) is closable and its adjoint is (D(T ∗), S∗+T ∗).
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Proof. For w ∈ H, the linear functional we need to consider is

〈Tv, w〉+ 〈Sv, w〉
and since the second one is continuous on H for all w, it follows that D(T ∗) ⊂ D((S +
T )∗), and moreover it is clear that (S + T )∗w = S∗w + T ∗w (by unicity in the Riesz
Representation Theorem). �

4.4. Criterion for self-adjointness and for essential self-adjointness

The self-adjointness of an unbounded operator is very sensitive to the choice of the
domain, and it may well be difficult to determine which is the right one (as shown by
the case of differential operators). This sensitivity, as we will see, persists when spectral
theory is concerned: for instance, a symmetric operator which is not self-adjoint operator
will have a spectrum which is not a subset of R. So it is very important to have a
convenient way to decide if a symmetric operator is self-adjoint (or, more ambitiously, if
it has self-adjoint extensions, in which case a classification of these is also useful).

It turns out there is a very simple such criterion, which one can understand spectrall
(although it doesn’t refer explicitly to the spectrum in the formulation we give here):

Proposition 4.27 (Self-adjointness criterion). Let H be a Hilbert space and let
(D(T ), T ) ∈ DD∗(H) be a densely defined operator. Assume T is symmetric. Then
the following properties are equivalent:

(1) The operator T is self-adjoint.
(2) The operator is closed and Ker(T ∗ + i) = Ker(T ∗ − i) = 0, where the kernels are

of course subspaces of D(T ∗).
(3) We have Im(T + i) = Im(T − i) = H, where the image refers of course to the

image of the subspace D(T ).

The point is that (2) is more or less obviously necessary since we expect a self-adjoint
operator to not have any non-real eigenvalue; the fact that it is also sufficient may be
surprising, however.

Either (2) or (3) are used in practice. For instance, (2) is sometimes very convenient to
show that an operator is not self-adjoint: it is enough to exhibit an element v ∈ H which
is in D(T ∗), and for which T ∗v = iv or −iv (see for instance Example 5.8 in Chapter 5).
On the other hand, if we can solve the equations Tv ± iv = w for arbitrary w ∈ H, with
a solution in D(T ), then T is self-adjoint (assuming it is known to be symmetric); this
can be useful because this condition does not refer explicitly to the nature of T ∗ at all.
For an example, see the proof of Lemma 5.4.

The proof will use the following facts, which are useful enough to be stated separately:

Lemma 4.28. Let H be a Hilbert space and (D(T ), T ) ∈ DD∗(H) a closed symmetric
operator. Then:

(1) The subspaces Im(T + i) and Im(T − i) are closed in H;
(2) We have

Ker(T ∗ + i) = Im(T − i)⊥, Ker(T ∗ − i) = Im(T + i)⊥.

Proof. (1) We prove that Im(T − i) is closed, the other case being of course similar.
For v ∈ D(T ), we note first that

‖(T − i)v‖2 = 〈Tv − iv, Tv − iv〉
= ‖Tv‖2 + ‖v‖2 − i〈v, Tv〉+ i〈Tv, v〉 = ‖Tv‖2 + ‖v‖2(4.6)
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by symmetry of T . Now if wn = (T − i)vn is a sequence in Im(T − i) which converges
to w0 ∈ H, this formula applied to vn − vm shows that the sequences (vn) and (Tvn) are
both Cauchy sequences in H, hence (vn, T vn) converges to some (v0, v

′
0). Because T is

supposed to be closed, we have in fact v0 ∈ D(T ) and v′0 = Tv0, and hence

wn = Tvn − ivn → v′0 − iv0 = (T − i)v0,

showing that the limit w0 belongs to Im(T − i), as desired.
(2) We have (T − i)∗ = T ∗+ i, defined on D(T ∗) (by Lemma 4.26). The basic relation

(4.7) 〈(T − i)v, w〉 = 〈v, (T ∗ + i)w〉, v ∈ D(T ), w ∈ D(T ∗),

gives Ker(T ∗ + i) ⊂ Im(T − i)⊥ immediately. The converse inequality holds since D(T )
is dense, so that (for a given w ∈ D(T ∗)) the vanishing of the left-hand side of (4.7) for
all v ∈ D(T ) implies that (T ∗ + i)w = 0. �

Proof of Proposition 4.27. We first prove that (1) implies (2) (this is similar
to Proposition 4.38 below). First, if T is self-adjoint, it is closed, and moreover if v ∈
D(T ∗) = D(T ) satisfies T ∗(v) = iv, we get Tv = iv by self-adjointness, and

i‖v‖2 = 〈Tv, v〉 = 〈v, Tv〉 = −i‖v‖2

so that v = 0. The same is true if T ∗v = −iv, by similar computations.
Next assume that (2) is true. Then we know first by the previous lemma that Im(T−i)

is closed. The second part also shows that

0 = Ker(T ∗ + i) = Im(T − i)⊥,
which means Im(T − i) = H. Again, the surjectivity of T + i is proved similarly.

Thus there remains to prove that (3) implies (1), which is the crucial part. By the
symmetry of T , we know T ⊂ T ∗, so we must show that D(T ∗) = D(T ). Let w ∈ D(T ∗)
be given. The assumption (3) allows us to write

(T + i)w = (T + i)v

for some v ∈ D(T ). Since T ⊂ T ∗, this gives (T ∗+ i)(w− v) = 0. By (4.7) again, we find
that v − w ∈ Im(T − i)⊥ = 0, so w = v ∈ D(T ), which concludes the proof. �

Remark 4.29. The proof clearly shows that there is nothing particularly special in
using T ± i: there similar statements with ±i replaced by λ, λ̄, for any fixed λ ∈ C which
is not real, are also valid.

Similarly, we obtain:

Proposition 4.30. Let H be a Hilbert space and (D(T ), T ) ∈ DD∗(H) a symmetric
operator. Then the following properties are equivalent:

(1) The operator T is essentially self-adjoint.
(2) We have Ker(T ∗+ i) = Ker(T ∗− i) = 0, where the kernels are of course subspaces

of D(T ∗).
(3) The subspaces Im(T + i) and Im(T − i) are dense in H.

Proof. (1) implies (2): if T̄ is self-adjoint, we have T̄ ∗ = T ∗ = T̄ , so the previous
proposition gives Ker(T ∗ ± i) = Ker(T̄ ∗ ± i) = 0.

(2) implies (3): apply again the second part of Lemma 4.28.
(3) implies (1): the assumption shows that Im(T̄ ± i) is dense in H, and Lemma 4.28,

(1), implies that Im(T̄ ± i) is closed, so we can apply the corresponding result of Propo-
sition 4.27 for T̄ . �
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Example 4.31. Here is the probably simplest application of this criterion:

Lemma 4.32. Let (X,µ) be a finite measure space, and (D(Mg),Mg) be a multiplica-
tion operator on L2(X,µ), for some real-valued measurable function g : X → R.

Proof. It is obvious, for g real-valued, that Mg is symmetric. Now we will use Part
(3) of Proposition 4.27 to show it is self-adjoint. Consider the operators Mg ± i, which
are just Mh for h = g ± i. If ϕ ∈ L2(X,µ) is arbitrary, we have

ϕ = hϕ1,

with ϕ1(x) = ϕ(x)/h(x): this function is well-defined since h has no zero (because g is
real-valued). We now claim that ϕ1 ∈ D(Mh) = D(Mg), which then gives ϕ = Mhϕ1 ∈
Im(Mh), showing the surjectivity required.

This claim is very easy to check: since∣∣∣ 1

h(x)

∣∣∣ =
1

1 + |g(x)|2
6 1,

we have ϕ1 ∈ L2(X,µ); in addition, we have hϕ1 = ϕ ∈ L2(X,µ) so ϕ1 ∈ D(Mh) =
D(Mg). �

Remark 4.33. As already mentioned, there are more general results which classify (in
some way) all self-adjoint extensions of a given symmetric operator (D(T ), T ) ∈ DD∗(H).
The result is the following: let

H+ = Ker(T ∗ − i), H− = Ker(T ∗ + i)

be the so-called deficiency subspaces of T , which already occur in Proposition 4.27. Then
one shows first that T has self-adjoint extensions if and only if dimH+ = dimH− (includ-
ing the possibility that both be infinite, in which case they must be equal in the sense of
infinite cardinals, i.e., for instance, countable dimension is strictly less than uncountable
dimension), and if that is the case then there is a one-to-one correspondance between
self-adjoint extensions (D(S), S) of T and unitary maps U : H+ → H−. This correspon-
dance is given by the following construction (see [RS2, ] for details): for a given U , we
let

D = {v ∈ H | v = v0 + w + Uw, where v0 ∈ D(T ), w ∈ H+},
and we define S on D, in terms of expressions v = v0 + w + Uw, by

S(v0 + w + Uw) = T (v0) + iw − iUw.

4.5. Basic spectral theory for unbounded operators

We have already observed that bounded operators can lead to unbounded ones if one
considers the resolvent (T − λ)−1 for λ in the continuous spectrum. This connection
can be reversed, and it explains why the following definitions make sense. They are the
same as for bounded operators (with the necessary subtlety that one must remember that
“injective” means “injective on D(T )”).

Definition 4.34. Let H be a Hilbert space, (D(T ), T ) ∈ DD(H) a closed operator,
and let λ ∈ C.

(1) The point λ is in the resolvent set ρ(T ) = ρ((D(T ), T )) of T if λ−T is a bijection3

D(T )→ H

3 There is no difficulty in speaking of λ− T since the identity is continuous.
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with bounded inverse, i.e., λ− T is surjective and for some constant c > 0, we have

λv − Tv = w ⇒ ‖v‖ 6 c‖w‖.
(2) The complement of the resolvent set of (D(T ), T ) is the spectrum σ((D(T ), T ))

of T . The point spectrum σp(T ) is the set of λ for which λ− T is not injective on D(T );
the residual spectrum σr(T ) is the set of those λ for which λ−T is injective on D(T ) but
has non-dense image; the continuous spectrum σc(T ) is the remainder of the spectrum.

Note the restriction to closed operators in the definition. One relaxes the definition
to T ∈ DD∗(H), a closable operator, by defining the spectrum (and its subsets) and the
resolvent set to be those of the closure T̄ .

The closedness is useful because it implies that, for λ ∈ C, the operator

λ− T : D(T )→ H

is invertible if and only if it is bijective, by Lemma 4.16 (with S = λId). This, in turn,
shows that the spectrum is indeed partitioned into its point, continuous and residual
parts as defined above.

Proposition 4.35. Let H be a Hilbert space and (D(T ), T ) ∈ DD(H) a closed oper-
ator.

(1) The resolvent set is open in C and λ 7→ Rλ(T ) = (λ− T )−1 is an analytic L(H)-
valued function defined on ρ(T ).

(2) All resolvent operators Rλ(T ) for λ ∈ ρ(T ) commute, and satisfy

Rλ(T )−Rµ(T ) = (µ− λ)Rµ(T )Rλ(T ).

Remark 4.36. Note (and we will give examples below) that the spectrum may be
empty and that it may also be equal to C (in which case the resolvent set is empty), or
other unbounded subsets of C. So the spectrum behaves differently than in the case of
bounded operators. However, for self-adjoint operators, it will be seen that the spectrum
is still rich enough to give a classification of unbounded self-adjoint operators.

Proof. One can check that the usual proof for bounded operators goes through
without difficulty, but we give (some) details for completeness. Thus let λ0 ∈ ρ(T ) be
given, and let S = (λ0 − T )−1 be its (bounded) inverse. For any λ ∈ C, we write

λ− T = (λ− λ0) + (λ0 − T )

= (λ− λ0)S(λ0 − T ) + (λ0 − T ) = (Id + (λ− λ0)S)(λ0 − T ),

where all these steps make sense as operators defined on D(T ).
For λ such that |λ− λ0| < ‖S‖−1, we know the familiar geometric series expansion

(Id + (λ− λ0)S)−1 =
∑
k>0

(−1)k(λ− λ0)kSk ∈ L(H),

which shows that Id + (λ − λ0)S is invertible in L(H). It follows that λ − T is a linear
bijection with inverse

S
∑
k>0

(−1)k(λ− λ0)kSk

so λ ∈ ρ(T ), which proves that the resolvent set is an open set. Moreover, since this
series is a convergent power-series expansion in λ, this also means that the resolvent on
ρ(T ) is indeed an analytic function.

The commutativity of the resolvents and the resolvent formulas are proved just as
usual, and left as exercises. �
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Example 4.37. We give examples where the spectrum is either empty, or the whole
complex plane.

(1) Let H = L2(C), the square-integrable functions on C for the 2-dimensional
Lebesgue measure. Consider the operator in T ∈ DD(H) given by

(D,Mz),

where D = {ϕ ∈ H | z 7→ zϕ(z) ∈ H}, and Mzϕ = zϕ. Just like for multiplication by
x on L2(R), this is a closed operator. But we claim its spectrum is C. Indeed, let λ0 be
arbitrary in C; consider the function f which is the characteristic function of a disc of
radius 1 around λ0. Then f ∈ H, but we claim that f is not in the image of Mz − λ0, so
that λ0 ∈ σ(T ), as claimed. To see this, note that (λ0 −Mz)ϕ = f implies that

ϕ(z) =
1

λ0 − z
for almost all z in the disc of radius 1 around λ0. But the right-hand side is not square
integrable on this disc, so of course ϕ can not exist.

(2) Here is an example with σ(T ) = ∅. Consider H = L2([0, 1]), and the subspace
D = Im(V ), where V (often called the Volterra operator) is the bounded linear map such
that

V ϕ(x) =

∫ x

0

ϕ(t)dt.

It is clear that D is dense in H, since for instance it clearly contains all C1 functions
with compact support in ]0, 1[ and L2(]0, 1[) = L2([0, 1]). Moreover, V is injective (e.g.,
because it is easily checked that V ϕ is differentiable almost everywhere with (V ϕ)′(x) =
ϕ(x) for almost all x), so 0 is in the continuous spectrum of V , and we can define (D,T )
as the inverse of V , as in Example 4.11: Tϕ = ψ, for ϕ ∈ D, if and only if V ψ = ϕ
(intuitively, T is just the derivative operator, defined on the space D).

As in Example 4.11, (D,T ) is closed. Now, let λ0 ∈ C be given. We claim that λ0−T
is invertible, so that λ0 /∈ σ(T ). Note that this is by construction for λ0 = 0. In general,
we can guess a formula for the inverse of λ0 − T by remarking that – at least formally –
it is a matter of solving the differential equation

−y′ + λ0y = ϕ

for a given ϕ ∈ H. This is a linear, non-homogeneous, first order Ordinary Differential
Equation (with constant coefficients), the solution of which is well-known. The homoge-
neous equation y′ − λ0y = 0 has solutions

y(x) = Ceλ0x, C ∈ C,

and if we use the method of variation of constants to look for solutions of the non-
homogeneous equation, this leads to

y(x) = C(x)eλ0x, y′(x) = C ′(x)eλ0x + λ0y(x),

so that we need C ′ = e−λ0xϕ to solve the equation. So, in other words, we just construct
the inverse (λ0 − T )−1 by

Sλ0(ϕ)(x) = −eλ0x
∫ x

0

ϕ(t)e−λ0tdt.

It is clear that Sλ0 thus defined is a bounded linear operator on H. Differentiating
under the integral sign, we obtain

Sλ0(ϕ)′(x) = λ0Sλ0(ϕ)(x)− ϕ(x),
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in L2([0, 1]), which confirms that Sλ0 is inverse to λ0−T . Moreover, a simple integration
by parts shows that

V (λ0Sλ0ϕ− ϕ) = Sλ0(ϕ)

so that Sλ0 maps H to D, and satisfies

TSλ0ϕ = λ0Sλ0ϕ− ϕ,

as desired.

The next fact does not look surprising, but Proposition 4.27 and the example following
the statement shows it is not a formality. It will be important to permit the construction
of Example 4.11 to be applied to relate unbounded self-adjoint operators to bounded
operators.

Proposition 4.38. Let H be a Hilbert space and let (D(T ), T ) ∈ DD∗(H) be a
self-adjoint operator. Then σ(T ) ⊂ R.

Proof. Let λ0 = x0 + iy0 ∈ C − R, so that y0 6= 0. First, note that the operator
(D(T ), (T − x0)/y0) is also self-adjoint by Lemma 4.26. Then Proposition 4.27 applied
to it shows that Im((T − x0)/y0 − i) = H, and consequently, Im(T − λ0) = H. Applied
to −λ̄0, this also gives that Im(T + λ̄0) = H. Next, if v ∈ Ker(T − λ0), we get from the
relation

0 = 〈(T − λ0)v, w〉 = 〈v, (T ∗ − λ̄0)w〉 = 〈v, (T − λ̄0)w〉
for all w ∈ D(T ) that v ∈ Im(T + λ̄0)⊥ = 0, so T − λ0 is injective on D(T ). So it is
indeed bijective from D(T ) to H, and λ0 /∈ σ(T ). �

Example 4.39. Let (X,µ) be a finite measure space, g a real-valued measurable
function on X, and let (D(Mg),Mg) be the corresponding multiplication operator acting
on L2(X,µ) (Example 4.6). Then, as in the bounded case, we have

σ(Mg) = supp g∗(µ),

i.e., the spectrum of Mg is the support of the image measure g∗µ (or equivalently the
essential range of g in R). Indeed, the argument found in Example 3.10 did not use the
boundedness of the function g (boundedness was only necessary for 1/(g − λ), to obtain
bounded inverses, which is exactly what we need here again), and so it applies verbatim
here.

Remark 4.40. If (D(T ), T ) is symmetric, and not self-adjoint, one can show that only
the three following possibilities exist for σ(T ): either σ(T ) = C, σ(T ) = H or σ(T ) = H̄,
where

H = {z ∈ C | Im(z) > 0}
is the upper-half plane in C (see, e.g., [RS2, X]).

We conclude with a lemma which seems obvious, but where (again) the unboundedness
requires some care. (This lemma also explains in part why spectral theory really makes
sense only for closable operators).

Lemma 4.41. Let (D(T ), T ) ∈ DD(H) be a closed densely-defined operator on a
Hilbert space H. Then for every λ ∈ C, the λ-eigenspace

Ker(λ− T ) = {v ∈ D(T ) | Tv = λv}

is closed in H.
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Proof. Of course, the point is that one can not simply say that this subspace is the
inverse image of the closed set {0} by a continuous map. However, we can write

Ker(λ− T ) = π−1(Γ(T ) ∩ Γλ)

where π : H ×H → H is the first projection and Γλ is the graph of the multiplication
by λ (i.e., (v, w) ∈ Γλ if and only if w = λv). Since Γ(T ) and Γλ are both closed and π
is continuous, it follows that the eigenspace is also closed. �

4.6. The spectral theorem

We now state the spectral theorem for unbounded self-adjoint operators, in the form
similar to Theorem 3.1.

Theorem 4.42 (Spectral theorem for unbounded operators). Let H be a separable
Hilbert space and let (D(T ), T ) ∈ DD∗(H) be a self-adjoint operator on H. Then there
exists a finite measure space (X,µ), a measurable real-valued function g : X → R, and
a unitary map U : L2(X,µ)→ H such that U−1TU = Mg, the operator of multiplicative
by g, i.e., such that

U−1(D(T )) = D(Mg) = {ϕ ∈ L2(X,µ) | gϕ ∈ L2(X,µ)},
and

(4.8) U(gϕ) = T (U(ϕ))

for ϕ ∈ D(Mg).
Moreover, we have

σ(T ) = σ(Mg) = supp g∗(µ),

which is the essential range of g.

The only difference with the bounded case is therefore that the spectrum, and the
function g, are not necessarily bounded anymore.

Proof. The basic idea is to represent T as the (unbounded) inverse of a suitable
normal bounded operator S ∈ L(H), and to apply the spectral theorem for the latter.4

The auxiliary bounded operator can be chosen in many ways. We select a fairly
standard one, namely the inverse of T + i. Indeed, since T is self-adjoint, we know that
−i is in the resolvent set ρ(T ) (by Proposition 4.38) so that S = (T + i)−1 is continuous.

We next check that S is normal; this is intuitively clear, since we should have S∗ =
(T − i)−1 (which is also a bounded operator by the same reasoning), and Proposition 4.35
shows that the resolvents (T + i)−1 and (T − i)−1 commute. To confirm this, we simply
write

〈Sv, w〉 = 〈v1, (T − i)w1〉 = 〈(T + i)v1, w1〉 = 〈v, (T − i)−1w〉
for v = (T + i)v1 with v1 = Sv and w = (T − i)w1 with w1 ∈ D(T ), where we used the
self-adjointness of T at the second step.

Having done so, we deduce from Theorem 3.1 (for normal operators) that there exists
a finite measure space (X,µ), U : L2(X,µ)→ H a unitary isomorphism, and a bounded
function h ∈ L∞(X,µ) such that

(4.9) S = UMhU
−1

in terms of the multiplication by h (note h is not real-valued here since h is merely
normal).

4 Intuitively, one may think of this as an extension of the functional calculus to some unbounded
functions on the spectrum.
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It is now intuitively clear that we should have

T = UMgU
−1, where g(x) =

1

h(x)
− i

(so that, of course, we have (h+ i)−1 = g).
To make sense of (and prove) this, we observe first that h(x) 6= 0 µ-almost everywhere,

allowing us to defined g (indeed, the characteristic function χ of the set {x | h(x) = 0}
is in the kernel of Mh, so that Uχ ∈ Ker(S) = 0, hence χ is zero almost-everywhere since
U is unitary).

We thus have the densely-defined multiplication operator (D(Mg),Mg) defined as in
Example 4.6. We claim next that

U−1(D(T )) = D(Mg),

which means simply that U , restricted to D(Mg), is an isomorphism D(Mg) ' D(T ).
Indeed, we have first

(4.10) D(Mg) = Im(Mh),

because

(ϕ ∈ L2, gϕ ∈ L2)⇔ (ϕ ∈ L2, (1/h− i)ϕ ∈ L2)⇔ (ϕ ∈ L2, h−1ϕ ∈ L2),

and hence ϕ = Mh(h
−1ϕ) ∈ Im(Mh) for any ϕ ∈ D(Mg), with the converse equally clear

since ghϕ = ϕ − ihϕ ∈ L2 for any ϕ ∈ L2. Next, the unitary equivalence of S and Mh

means in particular that

U−1(D(T )) = U−1(Im(S)) = Im(Mh) = D(Mg),

as desired.
Now the unitary equivalence (4.8) is easy to check: it suffices to note that Mg+i is

defined on D(Mg) and is a bijection Mg+i : D(Mg)→ L2(X,µ) with inverse

M−1
g+i = Mh,

so that we have a square

L2(X,µ)
U−→ H

Mh ↓ ↓ S

D(Mg)
U−→ D(T )

where all maps are linear and bijective, and the square commutes; purely set-theoretically,
the reciprocal square

L2(X,µ)
U−→ H

Mg+i ↑ ↑ T + i

D(Mg)
U−→ D(T )

also commutes, which means that UMg+i = (T + i)U as operators defined on D(Mg), and
by subtracting iId, we get the conclusion.

The final formula for the spectrum of Mg is just a reminder of Example 4.39. Finally,
because the spectrum of T is a subset of R, so must be the spectrum of Mg, and this
implies that g is real-valued µ-almost everywhere (by definition of the support). �

Using the spectral theorem, we now define explicitly the functional calculus for un-
bounded self-adjoint operators; indeed, we define the functional calculus for all bounded
functions on R (something we did not do explicitly for bounded operators in the previous
chapter).
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Corollary 4.43. Let H be a Hilbert space and (D(T ), T ) a self-adjoint operator on
H. There exists a unique map {

L∞(R)→ L(H)

f 7→ f(T )

continuous with norm 6 1, with the following properties:
(i) This is a ring homomorphism;
(ii) We have f(T )∗ = f̄(T ) for all f ;
(iii) We have f(T ) > 0 if f > 0;
(iv) If fn converges pointwise to f ∈ L∞(R) and ‖fn‖∞ is bounded, then fn(T ) →

f(T ) strongly;
(v) If fn ∈ L∞ converge pointwise to the identity function x 7→ x, and |fn(x)| 6 |x|,

we have
fn(T )v → Tv

for all v ∈ D(T ).

Proof. The existence is easy: using the Spectral Theorem, one finds a unitary equiv-
alence

UMgU
−1 = T

for some multiplication operator Mg on L2(X,µ), (X,µ) being a finite measure space.
Then we define

f(T ) = UMf◦gU
−1,

where the multiplication operator, being associated to the bounded function f ◦ g, is
bounded, so that f(T ) ∈ L(H).

With this definition, Properties (i) to (v) are easily checked to hold. For instance,
consider (iv): for any vector v ∈ H first, let ϕ = U−1v; then we have by definition

fn(Mg)ϕ = (fn ◦ g) · ϕ,
and the assumption gives

|fn(g(x))ϕ(x)− f(g(x))ϕ(x)|2 → 0, x ∈ X,
and (with C such that ‖fn‖∞ 6 C for all n) the domination relation

|fn(g(x))ϕ(x)− f(g(x))ϕ(x)|2 6 2(C + ‖f‖∞)‖ϕ(x)‖2 ∈ L1(X,µ),

so that the dominated convergence theorem leads to

fn(Mg)ϕ→ f(Mg)ϕ,

and after applying U , we get fn(T )v → f(T )v.
The unicity of this functional calculus is not entirely obvious because (contrary to

the case of the functional calculus for bounded operators) the conditions (i) to (v) do
not supply us with f(T ) for any f except f = 1, and (asymptotically) for sequences of
bounded function converging to the identity function x 7→ x.

Let φ be any map f 7→ φ(f) = f(T ) with the properties above. Using the fact that
φ is a ring homomorphism, we will first prove that φ(f) is the resolvent Rλ(T ) when
f(x) = 1/(λ− x), where λ /∈ R is any non-real number; note that f is then bounded on
R.

To show this property, consider the functions χn which are the characteristic functions
of [−n, n], and denote the identity function by X : x 7→ x. For every n, we have the
relation

f(λ−X)χn = χn
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(a relations as functions on R). Since (λ−X)χn is bounded, we obtain

φ(f)(λIn −Xn) = In, In = φ(χn), Xn = φ(Xχn)

in L(H) after applying φ.
Since χn(x)→ 1 for all x and ‖χn‖ 6 1 for all n, and since moreover xχn(x)→ x and

|xχn(x)| 6 |x| for all x, properties (iv) and (v) of the map φ show that for any vector
v ∈ D(T ), we have

In(v)→ v, Xn(v)→ Tv,

so that (since φ(f) ∈ L(H) is continuous) we have φ(f)(λv−Tv) = v, i.e., φ(f)(λ−T ) = 1
on D(T ). Since λ− T is invertible, it follows that φ(f) = Rλ(T ), as claimed.

Now we recall (Corollary 1.12) that the closure, in the L∞ norm, of the span of
functions of the type

x 7→ 1

λ− x
, λ /∈ R,

is the space C0(R) of continuous functions on R which tend to 0 at ±∞. So any two
maps f 7→ φ(f) of the type described must coincide on C0(R). But then condition (iv)
implies that they coincide on all functions which can be obtained as a pointwise limit of
continuous functions fn ∈ C0(R) with bounded L∞ norms. This space is known to be
L∞(R): indeed, first any characteristic function of a bounded measurable set lies in it
by the regularity properties of the Lebesgue measure, then simple functions (which take
only finitely many values) also, and these are dense in L∞(R) for pointwise bounded
convergence. �

We can also define the spectral measures; it is important to note that they also exist
for any vector, including those not in D(T ).

Proposition 4.44. Let H be a Hilbert space, (D(T ), T ) a self-adjoint operator on H
and v ∈ H. There exists a unique Borel measure µv,T on R, called the spectral measure
of v with respect to T , such that

〈f(T )v, v〉 =

∫
R

f(x)dµv,T (x)

for all f bounded and continuous on R. In particular, µv,T is a finite measure with
µv,T (R) = ‖v‖2.

Moreover, if v ∈ D(T ), we have∫
R

|x|2dµv,T (x) < +∞,
∫
R

|x|2dµv,T (x) < +∞,

and in that case we have ∫
R

xdµv,T (x) = 〈Tv, v〉.

Proof. By the functional calculus the map

f 7→ 〈f(T )v, v〉
is a well-defined positive linear map on the space of bounded continuous functions on R,
and thus is given by integration of f with respect to some Borel measure µv,T , by the
Riesz-Markov Theorem (Theorem 1.15).

To prove the last property, we represent T as a multiplication operator Mg. Then we
have

〈f(Mg)ϕ, ϕ〉 =

∫
X

f(g(x))|ϕ(x)|2dµ(x),
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and it follows that µϕ,Mg is – as in the bounded case – given by g∗(|ϕ|2dµ).
Now if ϕ ∈ D(Mg), we have∫

R

x2dµϕ,Mg(x) =

∫
R

|g(x)|2|ϕ(x)|2dµ(x) < +∞.

By Cauchy-Schwarz, since µϕ,Mg is a finite measure, we deduce that∫
R

|x|dµϕ,Mg < +∞.

The last formula is then immediate by the dominated convergence theorem and Prop-
erty (v) of Corollary 4.43. �

Note that, by induction, one can check the following: if v is such that v ∈ D(T ),
Tv ∈ D(T ),. . . , T n−1v ∈ D(T ), then∫

R

|x|ndµv,T (x) < +∞,

and

〈T jv, v〉 =

∫
R

xjdµv,T (x)

for all 0 6 j 6 n.
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CHAPTER 5

Applications, I: the Laplace operator

In this first chapter describing applications of spectral theory, we highlight one of
the most important unbounded (differential) operators, the Laplace operator. Although
there are many generalizations beyond the setting we will use, we restrict our attention
to the Laplace operator on open subsets in euclidean space Rd.

5.1. Definition and self-adjointess issues

Let U ⊂ Rd be an open subset, assumed to be non-empty, and let H = L2(U), the
space of square integrable functions on U , with respect to Lebesgue measure. We will
consider the Laplace operator (D(∆),∆), defined as follows:
– The domain is D(∆) = C∞c (U), the space of smooth and compactly supported functions
on U ; this is known to be dense in H for the L2 norm.
– For ϕ ∈ D(∆), we put

∆ϕ = −
n∑
j=1

∂2ϕ

∂x2
j

.

This is again a smooth, compactly supported function, and therefore it is bounded
and lies in L2(U).

From previous examples of differential operators, we can not expect that, on such a
small domain, ∆ will be self-adjoint. However, we will now proceed to show that, at
least, there are self-adjoint extensions.

Proposition 5.1. Let U ⊂ Rd be a non-empty open subset, and let (D(∆),∆) be the
Laplace operator defined above.

(1) The Laplace operator is symmetric on D(∆), i.e., we have

〈∆ϕ, ψ〉 = 〈ϕ,∆ψ〉
for all ϕ, ψ ∈ C∞c (U).

(2) The Laplace operator is positive on D(∆), i.e., we have

〈∆ϕ, ϕ〉 > 0

for all ϕ ∈ C∞c (U).

Proof. Using integration by parts twice and the fact that the functions in the domain
are compactly supported with respect to any fixed coordinate, we obtain

〈∆ϕ, ψ〉 =
n∑
j=1

∫
U

−∂2
xj
ϕ(x)ψ(x)dx

=
n∑
j=1

∫
U

∂xjϕ(x)∂xjψ(x)dx

= 〈ϕ,∆ψ〉
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for ϕ, ψ ∈ D, so that ∆ is symmetric. Moreover, the intermediate step leads to

〈∆ϕ, ϕ〉 =
m∑
j=1

∫
U

|∂xjϕ(x)|2dx =

∫
U

‖∇ϕ‖2dx > 0

for all ϕ ∈ D, so that the operator is positive (note that if the minus sign was omitted
from the definition, the operator would be negative). Here we used the gradient ∇ϕ,
which is the (densely defined) operator defined on D, with values in Hn, by

∇ϕ = (∂xjϕ)j.

�

Then we will now deduce:

Corollary 5.2. Let U ⊂ Rd be a non-empty open subset. Then the Laplace operator
admits at least one self-adjoint extension.

As we will see, it is not the case that ∆ is essentially self-adjoint in general, so we
can not use the self-adjointness criterion of Proposition 4.30. However, we first sketch a
non-constructive proof, using the results stated in Remark 4.33:

Although this proves Corollary 5.2, this is not necessarily a good proof since it does not
provide a good description of any self-adjoint extension of ∆. So in the next section, we
give another proof by constructing a specific self-adjoint extension, called the Friedrichs
extension.

5.2. Positive operators and the Friedrichs extension

Corollary 5.2 is true for all positive operators on a Hilbert space.

Theorem 5.3 (Friedrichs). Let H be a Hilbert space, (D(T ), T ) ∈ DD∗(H) a sym-
metric operator which is positive, i.e., such that

〈T (v), v〉 > 0,

for all v ∈ D(T ). Then T admits at least one self-adjoint extension (D(S), S), called the
Friedrichs extension, such that

〈S(v), v〉 > 0 for all v ∈ D(S).

It should be noted that it is not the case that all self-adjoint extensions of a positive
symmetric operator are positive.

Lemma 5.4. Let H1, H2 be Hilbert spaces, and let J : H1 → H2 be in L(H1, H2),
injective, with Im(J) dense in H2. Then the map

JJ∗ : H2 → H2

is injective, its image is dense in H2 and (D(S), S) = (Im(JJ∗), (JJ∗)−1) is self-adjoint
in DD∗(H2).

Proof. Since Im(J) is dense in H2, Ker(J∗) = Im(J)⊥ = 0, so J∗ is injective, and
hence so is JJ∗. Moreover, JJ∗ ∈ L(H2) is self-adjoint, so Im(JJ∗)⊥ = Ker(JJ∗) = 0,
so JJ∗ has dense image, as stated. This means the operator (D(S), S) is well-defined
in DD(H2). Because it is the inverse of a bounded operator, its graph is closed, so
S ∈ DD∗(H2) is closed.

We now show that S is symmetric: indeed, starting with

〈JJ∗v, w〉H2 = 〈v, JJ∗w〉H2 ,
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for v, w ∈ H2, we see that v1 = JJ∗v ranges over all D(S), so

〈v1, w〉H2 = 〈Sv1, JJ
∗w〉H2

for v1 ∈ D(S), w ∈ H2. Now writing w1 = JJ∗w ∈ D(S), we get the desired formula

〈v1, Sw1〉H2 = 〈Sv1, w1〉H2

for v1, w1 ∈ D(S).
To conclude that S is in fact self-adjoint, we apply Proposition 4.27, (3). Thus let

w ∈ H be given, and we try to solve the equation

Sv + iv = w,

with v ∈ D(S) = Im(JJ∗). To guess how to proceed, apply JJ∗ to both sides: this leads
to the necessary condition

v + iJJ∗v = w1, where w1 = JJ∗w ∈ D(S).

Now since we know that JJ∗ is self-adjoint, the same criterion (or the simpler fact
that −i /∈ σ(JJ∗), since JJ∗ ∈ L(H2) is bounded) shows there exists v ∈ H solving this
second equation. In particular, we then have

v = w1 − iJJ∗v = JJ∗(w − iv) ∈ D(S),

so we can apply S to both sides of the equation to get Sv + iv = w with v ∈ D(S),
as desired. Of course, a similar argument applies to show that Im(S − i) = H, and we
conclude that S is self-adjoint as claimed. �

Proof of Theorem 5.3. Consider the operator (D, T̃ ) = (D(T ), T + Id). It is
clearly symmetric and satisfies

(5.1) 〈T̃ v, v〉 = 〈Tv, v〉+ ‖v‖2 > ‖v‖2.

We will show that T̃ has a self-adjoint extension, say (D(S), S), and it will then
follow immediately that (D(S), S − Id) is a self-adjoint extension of T , as desired (see
Lemma 4.26). Moreover, we will show that

(5.2) 〈S(v), v〉 > ‖v‖2

still holds for v ∈ D(S), which gives the positivity of S − Id.
To construct the self-adjoint extension, we construct first a new Hilbert space: the

map {
D(T )×D(T )→ C

(v, w)→ 〈T̃ v, w〉
is a positive definite inner product on D(T ). Of course, D(T ) may not be complete
with respect to this inner product, but we can define the completion, which we denote
by H1, with its inner product which we also denote 〈·, ·〉1. Thus, by definition, we have
D(T ) ⊂ H1 and D(T ) is dense in H1, and moreover

〈v, w〉1 = 〈T̃ v, w〉 = 〈Tv, w〉+ 〈v, w〉,
if v, w ∈ D(T ).

From this perspective, the inequality (5.1) can be interpreted as stating that the
(linear) inclusion map

J

{
D(T )→ H

v 7→ v
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is in L(D(T ), H) with norm 6 1. Consequently, there is a unique continuous extension,
still denoted J , in L(H1, H), which satisfies

(5.3) ‖Jv‖2 6 ‖v‖2
1

for v ∈ H1.
We are going to apply Lemma 5.4 to J , so we must check that J is injective and

has dense image. The latter is clear, since Im(J) contains D(T ). For the injectivity, we
rewrite the definition of the inner product

〈v, w〉1 = 〈T̃ v, Jw〉
for v, w ∈ D(T ). This extends by continuity to the same formula for v ∈ D(T ), w ∈ H1,
and it follows that Ker(J) ⊂ D(T )⊥1 = 0 (orthogonal for the inner product on H1).

Thus we can indeed apply Lemma 5.4, and deduce that the densely defined operator

(D(S), S) = (Im(JJ∗), (JJ∗)−1)

is self-adjoint in DD∗(H). We now claim that this self-adjoint operator is an extension
of T̃ .

Indeed, we use again the above formula to get

〈v, w〉1 = 〈T̃ v, Jw〉 = 〈J∗T̃ v, w〉1
for v ∈ D(T ), w ∈ H1, and therefore v = J∗T̃ v for v ∈ D(T ) ⊂ H1. Since J is the
identity on D(T ) ⊂ H1, this even leads to

v = Jv = JJ∗T̃ v ∈ Im(JJ∗) = D(S),

so that D(T̃ ) ⊂ D(S), and also T̃ v = Sv for v ∈ D(T ). So S is indeed an extension of T̃ .
The last thing to check is (5.2): let v in D(S), then by definition we get

〈Sv, v〉 = 〈w, JJ∗w〉,
where w = (JJ∗)−1v. Further, we obtain

〈Sv, v〉 = ‖J∗w‖2
1 > ‖JJ∗w‖2 = ‖v‖2,

(applying (5.3) to J∗w) which is the desired inequality. �

Remark 5.5. The construction of the Friedrichs extension is explicit and unambigu-
ous: if the operator has more than one self-adjoint extension, the Friedrichs extension
is a particular, specific, one, and there is no choice involved that might lead to differ-
ent extensions. However, the domain of the Friedrichs extension is somewhat abstractly
defined, so it is not necessarily easy to describe it more explicitly, and in particular to
identify it among all self-adjoint extensions. In Proposition 5.14, we will do so in one
particular case.

5.3. Two basic examples

In this section, we give two examples of the Laplace operator, acting on the whole
space Rn and on the “cube” ]0, 1[n, and we discuss their spectral properties by finding
explicit representations of self-adjoint extensions of ∆ as multiplication operators. The
two examples diverge in two respects: (1) on Rn, ∆ is essentially self-adjoint (which, we
recall, means that its closure is self-adjoint and is the unique self-adjoint extension of
∆), and its spectrum is purely continuous and as large as it can be (given that ∆ is also
positive): σ(∆) = [0,+∞[ for ∆ acting on Rn; (2) on ]0, 1[n, ∆ has distinct self-adjoint
extensions, and we discuss two of them in particular: the Dirichlet and the Neumann
extensions, which are distinguished by specific boundary conditions. On the other hand,
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on this relatively compact open set, ∆ turns out to have purely point spectrum (and these
eigenvalues can be computed fairly explicitly – although there remain some mysteries
about them).

Example 5.6. Let first U = Rn. Then the explicit representation of (∆, D(∆)) on
U is given by the following:

Proposition 5.7. The closure of the Laplace operator on Rn is unitarily equivalent
with the multiplication operator (D,T ) acting on L2(Rn), where

D = {ϕ ∈ L2(Rn) | (x 7→ ‖x‖2ϕ(x)) ∈ L2(Rn)}
Tϕ(x) = (2π)2‖x‖2ϕ(x),

where ‖x‖ is the Euclidean norm (x2
1 + · · ·+ x2

n)1/2 on Rn.
In particular, ∆ is essentially self-adjoint on Rn, its spectrum is equal to [0,+∞[ and

it is entirely continuous spectrum.

Proof. The main tool in this argument is the Fourier transform (as it was in the
earlier Example 4.8 with the operator of differentiation). In our setting of Rn, this is the
unitary operator

U : L2(Rn)→ L2(Rn)

such that

(5.4) Uϕ(x) =

∫
Rn

ϕ(t)e−2iπ〈x,t〉dt

for f ∈ L2(Rn) ∩ L1(Rn), where 〈x, t〉 is the standard (Euclidean) inner product on Rn.
The basic fact is the relation

U(∂xjϕ)(x) = 2iπxjUϕ(x)

valid for any j, 1 6 j 6 n, and any ϕ ∈ D(∆). Indeed, this is an easy integration by
parts, similar to (4.1); from this, we derive that

U(∆ϕ)(x) = (2π)2‖x‖2U(ϕ)(x)

for ϕ ∈ D(∆).
We will first prove that ∆ is essentially self-adjoint, using the last criterion from

Proposition 4.30. Let z = i or −i; we show that Im(∆+z) is dense in L2(Rn) by showing
its orthogonal complement is zero. Thus let ϕ ∈ L2(Rn) be such that

〈ϕ, (∆ + z)ψ〉 = 0 for all ψ ∈ D(∆) = C∞c (Rn).

Using the unitarity of the Fourier transform, we derive

0 = 〈ϕ, (∆ + z)ψ〉 = 〈Uϕ,U((∆ + z)ψ〉 = 〈Uϕ, (4π2‖x‖2 + z)Uψ〉,
for all ψ ∈ D(∆). Writing this down as an integral, this means that

0 = 〈(4π2‖x‖2 + z̄)Uϕ,Uψ〉
for all ψ ∈ D(∆). However, since D(∆) is dense in L2(Rn), so is UD(∆), and we deduce
that

(4π2‖x‖2 + z̄)Uϕ = 0,

hence Uϕ = 0 and thus ϕ = 0.
This provides our proof of essential self-adjointness. Next the formula above shows

that (D(∆),∆) is unitarily equivalent with the multiplication operator

M4π2‖·‖2 : ϕ 7→ 4π2‖x‖2ϕ,
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defined on UD(∆). The latter is therefore essentially self-adjoint (this is actually what
we checked!). But the multiplication operator can be defined on

D = {ϕ ∈ L2(Rn) | ‖x‖2ϕ ∈ L2(Rn)},
and indeed (D,M4π2‖x‖2) is self-adjoint, and so is the closure of (UD(∆),M4π2‖x‖2). Using
the inverse Fourier transform again, it follows that the closure of ∆ is unitarily equivalent
with (D,M4π2‖x‖2).

Finally, since the range (or the essential range) of the multiplier

x 7→ 4π2‖x‖2

is [0,+∞[, it follows that σ(∆) = [0,+∞[. The spectrum is purely continuous spectrum,
since it is clear that there is no eigenvalue of the multiplication operator. �

Intuitively, the “generalized eigenfunctions” are the complex exponentials

et(x) = e2iπ〈x,t〉

for t ∈ Rn, since (∆ being seen as a differential operator, see also the next example) we
have

∆et = 4π2‖t‖2et.

However et /∈ L2(Rn), so these are not eigenfunctions of ∆. However, note that –
formally – the Fourier inversion formula

(5.5) f(x) =

∫
Rn

Uf(t)et(x)dx

looks very much like an integral form of decomposition in this “orthonormal basis” pa-
rameterized by t, with “coefficients”

Uf(t) =

∫
Rn

f(x)et(x)dx “=” 〈f, et〉

(but these are really only formal expressions; their rigorous versions are given by the
spectral decomposition of ∆, which is obtained by the Fourier transform).

Example 5.8. We now look at U =]0, 1[n. Here the Fourier transform can be replaced
by Fourier expansions, which (in contrast with (5.5)) corresponds to expanding functions
ϕ ∈ L2(Rn) in terms of a true orthonormal basis of L2(U), namely that formed by
complex exponentials

ek : x 7→ e2iπ〈x,k〉

for k = (k1, . . . , kn) ∈ Zn. Those indeed belong to L2(U), and it is not difficult to show
that they form an orthonormal basis of this space (e.g., using the case n = 1, one shows
that the closure of the subspace they span contains all functions of the type

x 7→ ϕ1(x1) · · ·ϕn(xn)

and this type of functions is dense in L2(U), by the Stone-Weierstrass theorem for in-
stance, since the continuous functions are dense in C(Ū) which is dense in L2(Ū) =
L2(U)).

Note that em ∈ C∞(U); moreover, if we see ∆ simply as a differential operator, using
the product “separation of variables”

ek(x1, . . . , xn) = e2iπk1x1 · e2iπk2x2 · e2iπknxn ,

and the relation
y′′ = α2y for y(x) = eαx
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we see that

∆ek = (2π)2‖k‖2ek.

However, note that ek does not have compact support in U , so these L2 eigenfunctions
do not belong to the domain of the Laplace operator as we defined it. In fact, there are
many more formal eigenfunctions of the Laplace operator: for any α = (α1, . . . , αn) ∈ Cn,
we also have

∆fα = (α2
1 + · · ·+ α2

n)fα

for

fα(x) = eα1x1+···αnxn .

Using this, we can at least quickly confirm that (D(∆),∆) is not essentially self-
adjoint, using Proposition 4.30, (2). Namely, for any complex vector α with α2

1+· · ·+α2
n =

±i (for instance α = (eiπ/4, 0, . . . , 0) will do for i), the function fα is (formally) an
eigenfunction of ∆ with eigenvalue ±i. We now check that this function is in the domain
D(∆∗) of the adjoint of (D(∆),∆), and further satisfies

∆∗fα = ±ifα.

Indeed, we have

〈∆ϕ, fα〉 =

∫
U

∆ϕ(x)e〈α,x〉dx

for ϕ ∈ D(∆), and the same integration by parts that shows that ∆ is symmetric on
D(∆) shows that this is

〈ϕ,∆fα〉

because the fact that ϕ has compact support (despite the fact that this is not so for fα)
is sufficient to ensure that the boundary terms vanish. By definition, this formula shows
the desired properties of fα, and prove that (D(∆),∆) is not self-adjoint.

The computation itself does not provide us with examples of different self-adjoint
extensions of (D(∆),∆). However, it suggests that those should have something to do
with the behavior of the boundary terms if we write integration by parts for more general
functions than those with compact support. And this is indeed the case: the idea is to
allow for more general functions than those with compact support, but in such a way
that the boundary behavior on ∂Ū not only still force the integration by parts to “come
out right” (to get symmetric operators), but in a way which can only be satisfied by the
functions with the same boundary conditions (to get self-adjointness).

It is simpler to describe extensions of (D(∆),∆) which are essentially self-adjoint –
the actual self-adjoint extensions are their closures, the domains of which may be more
delicate to describe.

It is also simpler to understand the situation first in the case n = 1, as one can guess
by the fact that the space of solutions to the differential equation

−y′′ = ±iy

on ]0, 1[ is two-dimensional in this case, and infinite dimensional for n > 2. Then one can
(in many natural ways) extend the descriptions to all n.

For n = 1, we define three subspaces of L2([0, 1]) containing D(∆) = C∞c (]0, 1[)
as follows: first, define D̃ to be the space of function ϕ ∈ C∞(]0, 1[) for which every

85



derivative ϕ(j), j > 0, extends to a continuous function on [0, 1], where we denote by
ϕ(j)(0) and ϕ(j)(1) the corresponding values at the boundary points. Then let

D1 = {ϕ ∈ D̃ | ϕ(0) = ϕ(1), ϕ′(0) = ϕ′(1), . . .},
D2 = {ϕ ∈ D̃ | ϕ(0) = ϕ(1) = 0},
D3 = {ϕ ∈ D̃ | ϕ′(0) = ϕ′(1) = 0}.

Another interpretation of the first space is that it is really the space of smooth func-
tions on R/Z, seen as smooth 1-periodic functions on R: ϕ ∈ D1 means that the function
defined for x real by

ϕ̃(x) = ϕ(x− n) if n 6 x < n+ 1, with n ∈ Z,

is in C∞(R). Because the values of derivatives at 0 and 1 may not match, D2 is not a
subspace of D1, so the three subspaces are distinct and we have corresponding Laplace
operators (Di,∆), each extending (D(∆),∆). (The basis functions ek(x) = e2iπkx, for
k ∈ Z, are all in D1, but not in D2 or D3, though ek − 1 ∈ D2 for all k).

The same integration by parts used to prove the symmetry of ∆ on D(∆) applies here
to show that these extensions of (D(∆),∆) are symmetric: we have

〈∆ϕ, ψ〉 =
[
−ϕ′ψ̄

]1
0

+

∫ 1

0

ϕ′ψ′dt

= ϕ′(0)ψ(0)− ϕ′(1)ψ(1) +

∫ 1

0

ϕ′ψ′dt =

∫ 1

0

ϕ′ψ′dt,

the boundary terms vanishing in all three cases if ϕ, ψ ∈ Dj. This is a symmetric
expression of ϕ and ψ, so ∆j is symmetric.

The common terminology is that D1 is the Laplace operator with periodic boundary
conditions, D2 is the one with Dirichlet boundary conditions, and D3 is the one with
Neumann boundary conditions.

Proposition 5.9. The three operators (Dj,∆), 1 6 j 6 3, are essentially self-adjoint
extensions of the Laplace operator defined on D(∆). Moreover, all three σ(∆j) = σp(∆j)
– pure point spectrum – and the eigenvalues are given by the following:

σ(D1) = {0, 4π2, 16π2, . . . , 4π2k2, . . .},
σ(D2) = {π2, 4π2, . . . , k2π2, . . .},
σ(D3) = {0, π2, 4π2, . . . , k2π2, . . .}.

The spectrum is simple, i.e., the eigenspaces have dimension 1, for D2 and D3. For
D1, we have

dim Ker(D1) = 1, dim Ker(D1 − (2πk)2) = 2, for k > 1.

It will be clear from the proof that those three examples by no means exhaust the list
of self-adjoint extensions of ∆.

Proof. Formally, this result is quite intuitive, because we will check that the bound-
ary conditions, once they have been imposed, imply that none of the (non-zero) eigen-
functions for ±i belong to Dj. Indeed, for the eigenvalue i, those are the functions

ϕ(x) = aeαx + be−αx, with ϕ′(x) = α(aeαx − be−αx),
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where α2 = i. If we consider for instance D3, we have the conditions{
aα− bα = 0

aαeα − bαe−α = 0

for ϕ to be in D3. These clearly imply a = b = 0, as claimed, and the other two cases are
similar.

Computing the eigenfunctions and eigenvalues is similarly intuitive: again, for any α ∈
C, the functions written above are the formal eigenfunctions of the Laplace differential
operator with eigenvalue α2 ∈ C, and the same computations can easily determine for
which α, a and b, the boundary conditions of the operators Dj are satisfied. Consider
now for instance D2: the linear system becomes{

a+ b = 0

aeα + be−α = 0,

which has a non-zero solution if and only if e2α = 1, so α = ikπ with k ∈ Z. The solution
is then given by

ϕ(x) = 2ia sin(kπx),

which leads to a one-dimensional eigenspace with eigenvalue π2k2 > 0 for k > 1 (note
that the value k = 0 gives the zero function, k and −k give the same solutions). Since
those eigenfunctions are in the domain of D2, they give elements of the point spectrum.
(And similarly for D1 and D3 with eigenfunctions

ϕ(x) = ae2iπkx + be−2iπkx, ϕ(x) = a cos(kπx)

with k ∈ Z and k > 0, respectively, the eigenvalues being 4π2k2 and π2k2).
To finish, we apply the useful Lemma 5.10 below, since we have already observed that,

among the eigenfunctions of D1 that we have found, we can find an orthonormal basis of
L2(U) (namely x 7→ e2iπkx for k ∈ Z), and since the corresponding statement is not hard
to check for the others.

Indeed, for D2 and D3, we can pick the functions

sk : x 7→
√

2 sin(kπx), k > 1, c0 = 1, ck : x 7→
√

2 cos(kπx), k > 1,

respectively. It is first clear that those functions are orthonormal in L2(U), and we
next check that in fact they are orthonormal bases. Then, note that (by rescaling) the
functions

fk :

{
]− 1, 1[→ C

x 7→ eiπkx

for k ∈ Z form an orthonormal basis of H1 = L2(]− 1, 1[) for the inner product

〈ϕ, ψ〉1 =
1

2

∫ 1

−1

ϕ(t)ψ(t)dt.

Decomposing ϕ ∈ H1 in even and odd parts, we obtain an orthogonal direct sum

H1 = H+
1 ⊕⊥ H−1 ,

with

H±1 = {ϕ ∈ H1 | ϕ(−x) = ±ϕ(x) for almost all x},
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and with orthogonal projections{
H1 → H±1
ϕ 7→ 1

2
(ϕ(x)± ϕ(−x)).

By restriction, we obtain unitary isomorphisms{
H±1 → L2([0, 1])

ϕ 7→ ϕ restricted to [0, 1],

with inverse given by extending a function to be even or odd, as needed.
Now if we start with ϕ ∈ L2([0, 1]) and extend it to the function ϕ̃ on [−1, 1] which

is even (say), we can therefore write

(5.6) ϕ̃ =
∑
k∈Z

〈ϕ̃, fk〉1fk,

with

〈ϕ̃, fk〉1 =
1

2

∫ 1

−1

ϕ̃(t)e−ikπtdt =
1

2

∫ 1

0

ϕ(t)e−ikπtdt+
1

2

∫ 1

0

ϕ(t)eikπtdt

=

{
〈ϕ, 1√

2
ck〉, if k 6= 0,

〈ϕ, c0〉, if k = 0.

Hence, restricting (5.6) to [0, 1] gives

ϕ(x) =
∑
k∈Z

〈ϕ̃, fk〉1fk = 〈ϕ, c0〉+ 2
∑
k>1

1√
2
〈ϕ, ck〉ck

which proves that the (ck) generate L2(U) in the Hilbert sense, and similarly for the
sk. �

Lemma 5.10. Let H be a separable Hilbert space and (D(T ), T ) a positive symmetric
unbounded operator on H. Assume that there exists an orthonormal basis (ej) of H such
that ej ∈ D(T ) for all j and which are eigenfunctions of T , i.e., Tej = λjej for some
λj > 0 for all j > 1.

Then T is essentially self-adjoint and its closure is unitarily equivalent with the mul-
tiplication operator (D,M) on `2(N) given by

D = {(xj) ∈ `2(N) |
∑
j>1

λ2
j |xj|2 < +∞}, M((xj)) = (λjxj).

In particular, the spectrum of (D(T ), T ) is the closure of the set of eigenvalues {λj}.

Note that if the sequence (λj) has an accumulation point λ, the spectrum is not the
same as the set of eigenvalues (this already occurred for compact operators, where 0 may
belong to the spectrum even if the kernel is trivial).

Proof. We already know that the multiplication operator is self-adjoint and has the
spectrum which is described. So it is enough to show that the closure of (D(T ), T ) is
unitarily equivalent with (D,M), and of course the requisite unitary isomorphism is given
by the Hilbert basis (ej):

U(xj) =
∑
j>1

xjej ∈ H.
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To see that T̄ = UMU−1, start with (v, w) ∈ Γ(T ). Then for any j, the symmetry of
the operator (in particular D(T ) ⊂ D(T ∗)) gives

〈w, ej〉 = 〈Tv, ej〉 = 〈v, Tej〉 = λj〈v, ej〉,

and since (ej) is an orthonormal basis, we have

w =
∑
j

〈w, ej〉ej =
∑
j

λj〈v, ej〉ej

and in particular ∑
j

λ2
j |〈v, ej〉|2 = ‖w‖2 < +∞,

so U−1D(T ) ⊂ D(M), and UMU−1v = w = Tv for v ∈ D(T ), or in other words
T ⊂ UMU−1.

To conclude we must show that Γ(T ) is dense in Γ(UMU−1). For this, let (v, w) ∈
Γ(UMU−1); in the basis (ej) we have

v =
∑
j

〈v, ej〉ej, w =
∑
j

λj〈v, ej〉ej

and we now define

vn =
∑

16j6n

〈v, ej〉ej, wn = Tvn =
∑

16j6n

〈v, ej〉ej

(which is permitted because ej ∈ D(T ), the sum is finite and T linear). Now, in the norm
of H ×H, we have

‖(v, w)− (vn, wn)‖2 = ‖v − vn‖2 + ‖w − wn‖2,

and both terms tend to zero as n→ +∞ (the second because of the definition of D(M),
of course). This proves the desired conclusion. �

Going back to the case of general n, we can extend the boundary conditions in many
ways. The two most obvious ones are the extensions of the periodic and Dirichlet bound-
ary conditions (D1 and D3), but one could use different conditions in the various direc-
tions.

Arguing as above one gets:

Corollary 5.11. Let U =]0, 1[n with n > 1. Consider the operators ∆p = (Dp,∆)
and ∆d = (Dd,∆) extending (D(∆),∆) with domains given, respectively, by Dp which
is the space of restrictions of C∞ functions on R which are Zn-periodic, and Dd which
is the space of function ϕ ∈ C∞(U) for which every partial derivative of any order ∂αϕ
extends to a continuous function on Ū , and moreover such that ϕ(x) = 0 for x ∈ ∂U ,
where we use the same notation ϕ for the function and its extension to Ū .

Then ∆p and ∆d are essentially self-adjoint. Their closures have pure point spectra,
given by the real numbers of the form

λ = 4π2(k2
1 + · · ·+ k2

n), ki ∈ Z,

with the condition ki > 1 for Dd. The multiplicity of a given λ is the number of
(k1, . . . , kn) ∈ Zn with

λ = 4π2(k2
1 + · · ·+ k2

n)

for ∆p, and is 2−n times that number for ∆d.
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Remark 5.12. Although these open sets ]0, 1[n are particularly simple from the point
of view of the Laplace operator, the result should not be considered “trivial”. For instance,
for n > 2, the description of the spectrum is not very explicit as a set of real numbers,
and to obtain a more precise one requires fairly delicate tools related to number theory
(properties of sums of squares of integers). One can show the following facts:

• If n = 2, a real number λ = 4π2m, m > 1, occurs in the spectrum of ∆p (i.e., m
is of the form m = k2

1 + k2
2 with k1, k2 > 0) if and only if, after factoring

m = pν11 · · · pνss
in terms of prime powers with pi 6= pj if i 6= j and νj > 1, all exponents
corresponding to primes pi such that pi ≡ 3 (mod 4) are even. (This is due
essentially to Fermat and Euler). In that case, the multiplicity, up to changes of
signs of k1 or k2, is 2t, with t the number of primes pi with pi ≡ 1 (mod 4). For
instance

4π2 · 17 = 4π2(12 + 42) = 4π2(42 + 12)

and the corresponding eigenfunctions are

e2iπx1+4iπx2 , e8iπx1+2iπx2 .

The number N(X) of λ 6 X which are eigenvalues, not counting multiplicity, is
asymptotically given by

N(X) ∼ c
X√

logX

for some constant c > 0 (which can be written down); this is due to Landau
(early 20th Century).
• For n = 3, a real number λ = 4π2m, m > 1, occurs in the spectrum of ∆p if and

only if m is not of the form m = 4a(8b ± 7) with a > 0, b > 0; this is due to
Gauss and is very delicate.
• For n > 4, every real number λ = 4π2m, m > 1 is an eigenvalue of ∆p: this

amounts to proving that every positive integer is the square of (at most) four
squares of positive integers, which is a result of Lagrange. The multiplicities can
then also be estimated, and are quite large. For instance, Jacobi proved that the
number of representations

m = k2
1 + · · ·+ k2

4

is given by four times the sum of odd (positive) divisors of m.

On the other hand, in all cases, we obtain a nice asymptotic for the total number of
eigenvalues, counted with multiplicity:

Proposition 5.13 (“Weyl law”). Let n > 1 be an integer and let

M(X) =
∑
λ6X

dim(λ−∆p)

be the counting function for the number of eigenvalues of the periodic Laplace operator,
counted with multiplicity. Then we have

M(X) ∼ cn
Xn/2

(2π)n
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as X → +∞, where cn is the volume of the ball of dimension n and radius 1 in Rn,
namely

cn =
πn/2

Γ(1 + n
2
)

where Γ(z) is the Gamma function.

Recall that the Gamma function can be defined by

Γ(z) =

∫ +∞

0

e−ttz−1dt

for z > 0, and it satisfies the following properties

Γ(z + 1) = zΓ(z) for z > 0,

Γ(n+ 1) = n! for n > 0 integer,

Γ(1/2) =
√
π,

which show that Γ(1+n/2) can be computed easily by induction, and is always a rational
number for n even, and

√
π times a rational for n odd.

Proof. According to the corollary above, we get

M(X) =
∑

k1,...,kn∈Zn
4π2(k21+···+k2n)6X

1

which is the number of points k ∈ Zn inside the ball Sr of radius r = (2π)−1
√
X in Rn.

Then the idea is to show that this number is approximately the volume of this sphere,
because, seen from far away, this discrete set seems to fill up the ball quite well. To
confirm this, a trick of Gauss is used.

Namely, for each point k ∈ Zn, consider the associated “hyper-cube”

Ck = {k + x | x ∈]0, 1[n} ⊂ Rn,

and note that Ck ∩Cl = ∅ if k and l are in Zn and distinct, and that (of course) each Ck
has volume 1 with respect to Lebesgue measure on Rn (which we denote here by Vol(·)).
Thus we have

M(X) =
∑

k∈Zn∩Sr

1 =
∑

k∈Zn∩Sr

Vol(Ck) = Vol
( ⋃
k∈Zn∩Sr

Ck

)
Next, note that if k ∈ Sr, we have Cr ⊂ Sr+√n, since

‖k + x‖ 6 ‖k‖+ ‖x‖ 6 ‖k‖+
√
n

for x ∈]0, 1[n. So we get the upper bound

M(X) 6 Vol(Sr+√n).

Conversely, for every point y ∈ Sr, there is a unique k ∈ Zn for which y ∈ Ck
(generalizing the “integral part” of a real number, and computed componentwise in this
way). If ‖y‖ 6 r−

√
n, then ‖k‖ 6 r since k = y− x with ‖x‖ 6

√
n. Thus the union of

the Ck with k ∈ Zn ∩ Sr contains (at least) the whole ball of radius r−
√
n – up to some

parts of the boundaries of the Ck, which are of measure 0 –, and we get the upper bound

M(X) > Vol(Sr−√n).
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Finally, putting things together and using the homogeneity of the volume, we get the
successive encadrements

cn(r −
√
n)n = Vol(Sr−√n) 6M(X) 6 Vol(Sr+√n) = cn(r +

√
n)n

and since

cn(r ±
√
n)n = cnr

n
(

1±
√
n

r

)n
∼ cnr

n, as X → +∞,

recalling that r = (2π)−1
√
X, we obtain the conclusion. �

It is quite remarkable (and surprising at first!) that this result (usually called “Weyl
law”) actually extends to much more general operators than this specific case, even though
one can not compute the spectrum explicitly in general.

We conclude this example by identifying the Friedrichs extension:

Proposition 5.14. Let n > 1 and U =]0, 1[n. Then the Friedrichs extension of
(D(∆),∆) on U is the Laplace operator with Dirichlet boundary, i.e., the closure of
(Dd,∆d) as defined above.

Proof. We prove this only for n = 1. Intuitively, this is because the domain of the
Friedrichs extension is obtained from the norm defined on the space of C1-functions (and
in particular on D(∆)) by

‖ϕ‖2
1 = 〈∆ϕ, ϕ〉+ ‖ϕ‖2 = ‖ϕ′‖2 + ‖ϕ‖2,

and the domain of the Friedrichs extension is closed in this norm, while the closure of
D(∆) for it is contained in a space of continuous functions; hence the boundary conditions
ϕ(0) = ϕ(1) = 0 which are valid for ϕ ∈ D(∆) remain so for the Friedrichs extension.

For the details, let (DF ,∆F ) be the Friedrichs extension of ∆. It is in fact enough to
show that ∆d ⊂ ∆F , since it will follow that ∆∗F = ∆F ⊂ ∆∗d = ∆d, so ∆F = ∆d as both
are closed.

We recall from the proof of Theorem 5.3 that the domain DF is given by

DF = JJ∗(H1)

where (H1, ‖ · ‖1) is the completion of D(∆) for the norm

‖ϕ‖2
1 = 〈∆ϕ, ϕ〉+ 〈ϕ, ϕ〉 = ‖ϕ′‖2 + ‖ϕ‖2,

and J : H1 → L2(U) is the continuous extension of the inclusion map D(T )
J−→ H. We

first notice that Im(JJ∗) = Im(J) because J∗ is surjective: indeed, this follows from the
fact that J is injective and Im(J∗)⊥ = Ker(J) = 0.

Now consider ϕ ∈ Dd; we claim there exists a sequence (ϕn) ∈ D(∆) such that

(5.7) ‖ϕn − ϕ‖1 → 0.

From this, we deduce that J(ϕn) ∈ H1 converges to some ϕ̃ ∈ H1. But we also deduce
that ϕn converges to ϕ in L2(U) (since ‖ϕn − ϕ‖ 6 ‖ϕn − ϕ‖1). By unicity, it follows
that

ϕ = J(ϕ̃) ∈ DF ,

so we get the first inclusion Dd ⊂ DF . To check our claim is quite easy: consider any
sequence ψn in D(∆) such that

0 6 ψn 6 1, ψn(x) = 1 for
1

n
6 x 6 1− 1

n
,

92



and with ‖ψ′n‖∞ 6 Cn for some constant C > 0. Then define

ϕn(x) = ϕ(x)ψn(x),

for which the claim (5.7) is a simple computation (the fact that ϕ ∈ Dd enters in showing
that

lim
n→+∞

n2

∫ 1/n

0

|ϕ(x)|2dx = 0,

using a Taylor expansion ϕ(x) = ϕ′(0)x+O(x2) for x close to 0).
Now, to show that ∆F extends ∆d on Dd, we look at an eigenfunction

c(x) = sin kπx, k > 1,

of ∆d, and we claim that ∆F c, which is well-defined since Dd ⊂ DF , is also given by
∆F c = π2k2c. From this, Lemma 5.10 allows us to deduce that ∆F does extend ∆d. To
check this, let ψ ∈ D(∆) be arbitrary; we then have

〈∆F c, ψ〉 = 〈c,∆Fψ〉
= 〈c,∆ψ〉
= 〈c,∆dψ〉
= 〈∆dc, ψ〉

where we used the fact that both ∆F and ∆d extend ∆ on D(∆) and are symmetric.
From the density of D(∆) in H, we conclude that

∆F c = ∆dc = k2π2c,

as desired. �

5.4. Survey of more general cases

The previous section has shown that the Laplace operator may exhibit different fea-
tures depending on the open set U which is considered. It turns out that the qualitative
results obtained in the very special cases that were considered are fairly representative
of more general situations. However, the arguments must usually be different, because
there is, in general, no explicit diagonalizing operator (like the Fourier transform) and
the spectrum is not explicitly known (as was the case for U =]0, 1[) to apply Lemma 5.10.

However, if one can check that there are no smooth eigenfunctions for the differential
operator ∆ corresponding to the eigenvalues ±i, the following powerful technique is often
very successful in checking rigorously that the (±i)-eigenspaces for the actual adjoint of
∆j (which is defined on the bigger space D(∆∗j)) are still trivial.

The point is that the condition

∆∗jϕ = ±iϕ
is sufficient to imply that ϕ is a weak solution to

∆ϕ = ±iϕ,
on U in the sense of distribution theory, i.e., that∫

U

ϕ(∆ψ ∓ iψ)dx = 0

for all ψ ∈ C∞c (U). Then one can apply the following statement, often known as Weyl’s
Lemma:
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Lemma 5.15. Let λ ∈ C, let U be an open set of Rn and let ϕ ∈ L2(U) – in fact, ϕ
could just be a distribution – be such that (∆+λ)ϕ, computed in the sense of distribution,
is a C∞ function on U . Then ϕ is in fact also C∞.

Concretely, this means the following: if there exists ϕ0 ∈ C∞(U) such that∫
U

ϕ(∆ψ ∓ iψ)dx =

∫
U

ϕ0ψdx

for all ψ ∈ C∞c (U), then the function ϕ coincides almost everywhere with a smooth
function. This fact, applied to the C∞ function ϕ0 = 0, implies that the hypothetical
eigenfunctions ϕ are smooth.

If U ⊂ Rn is a bounded open set, the example of ]0, 1[n suggests that (D(∆),∆)
will not be essentially self-adjoint, and that the description of self-adjoint extensions will
involve imposing various boundary conditions on the functions in the domain. These
boundary conditions may well be complicated by the regularity (or lack of regularity)
of the boundary of U : for instance, the Neumann boundary condition take the form of
asking that the directional derivative of the functions vanish in the direction normal to
the boundary, and this only makes sense (at least in an obvious way) if there exists a
tangent space at all points of the boundary. However, this may not be true. For instance,
consider a continuous function

f : [0, 1]→ R

which is continuous, > 0, but nowhere differentiable. Then the open set

U = {(x, y) ∈ R2 | 0 < x < 1, −f(x) < y < f(x)}
will have an extremely wild boundary!

There is however a good theory when the boundary ∂U is assumed to be smooth
enough (e.g., for n = 2, if it is the image of a parameterization γ : [0, 1]→ R2 where γ is
C1). But to simplify the discussion, we discuss only the simplest self-adjoint extension,
namely the Dirichlet boundary condition (which is also the Friedrichs extension, though
we won’t prove this in full generality).

Definition 5.16. Let n > 1 and let U ⊂ Rn be a bounded open set with boundary
∂U . The Dirichlet laplacian on U , or Laplace operator with Dirichlet boundary condition,
is the extension (Dd,∆d) of (D(∆),∆) defined by ϕ ∈ Dd if and only if ϕ ∈ C∞(U) is
such that all partial derivatives of all order of ϕ, say ∂α(ϕ), are the restrictions to U of
functions ϕα continuous on Ū , and if moreover we have ϕ0(x) = 0 for x ∈ ∂U , where ϕ0 is
the continuous extension of ϕ itself to Ū . The operator ∆d acts like the usual differential
operator.

One can then prove the following statement, which generalizes Corollary 5.11:

Theorem 5.17. Let n > 1 and let U ⊂ Rn be a bounded open set, with (Dd,∆d)
the Laplace operator with Dirichlet boundary conditions on U . Then ∆d is essentially
self-adjoint, and has only point spectrum, in fact there is an orthonormal basis (ϕn)n>1

of L2(U) such that
∆dϕn = λnϕn, λn > 0,

with λn → +∞.

An equivalent way of phrasing the last conclusion is that ∆d has compact resolvent,
which by definition means that the resolvents Rλ(∆d) = (λ − ∆d)

−1 for λ ∈ ρ(∆d) are
compact operators. In fact, the resolvent identity

Rλ(∆d)−Rλ0(∆d) = (λ0 − λ)Rλ0(∆d)Rλ(∆d),
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and the fact that the space K(H) of compact operators is an ideal of L(H) implies that
it is enough that one resolvent Rλ0(∆d) be compact.

Note that having compact resolvent involves a bit more than simply having only point
spectrum: all eigenspaces must also be finite-dimensional.

We take for granted that ∆d is self-adjoint (if one does not wish to do so, redefine ∆d

to be the Friedrichs extension; the arguments below will remain valid, but the domain
Dd is then possibly changed), and we show the remaining part. The idea is to exploit
the knowledge of the special case U =]0, 1[n, some comparison results between spectra,
and a characterization of eigenvalues which generalizes the min-max characterizations
of eigenvalues of positive compact operators (Proposition 2.14). Indeed, we have the
following theorem:

Theorem 5.18. Let H be a Hilbert space and let (D(T ), T ) ∈ DD∗(H) be a positive
symmetric operator on H. For k > 1, define

(5.8) λk = inf
dimV=k

sup
v∈V−{0}

〈T (v), v〉
‖v‖2

,

where V runs over all subspaces V ⊂ D(T ) with dimV = k.
(1) If T is essentially self-adjoint, then the operator T has compact resolvent if and

only if the increasing sequence

λ1 6 λ2 6 · · · 6 λn 6 · · ·
is unbounded. In that case, the (λn) are the eigenvalues of T , repeated with multiplicity
dim(T − λn).

(2) Let (DF , TF ) be the Friedrichs extension of (D(T ), T ), and let µk be defined by

(5.9) µk = inf
dimV=k
V⊂DF

sup
v∈V−{0}

〈T (v), v〉
‖v‖2

.

Then we have µk = λk, and in particular DF has compact resolvent if and only if (λk)
is unbounded.

To apply part (2) of this theorem in the situation of Theorem 5.17, we fix R > 0 large
enough so that

U ⊂ U0 =]−R,R[n.

Let (D(∆0),∆0) be the Laplace operator for U0. Observing that the map

j

{
D(∆)→ D(∆0)

ϕ 7→ ϕχU

(where χU ∈ L2(V ) is the characteristic function of U) is isometric and satisfies

∆0(j(ϕ)) = j(∆(ϕ)),

we see that V 7→ j(V ) is a map sending k-dimensional subspaces V of D(∆) to k-
dimensional subspaces of D(∆0) in such a way that

sup
ϕ∈j(V )−{0}

〈∆0(ϕ), ϕ〉
‖ϕ‖2

= sup
ϕ∈V−{0}

〈∆(ϕ), ϕ〉
‖ϕ‖2

.

From this and (5.8), we get that λk(∆) > λk(∆0) for all k > 1. But the λk(∆0), by the
last part of Theorem 5.18, are the eigenvalues of the Friedrichs extension of (D(∆0),∆0),
and from Corollary 5.11, we have λk(∆0) → +∞ as k → +∞. Hence we also have
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λk(∆)→ +∞, and from Theorem 5.18 again, we deduce that ∆d, the Friedrichs extension
of ∆, has compact resolvent.

Proof of Theorem 5.18. (1) Let us assume first that T is self-adjoint. Using the
Spectral Theorem 4.42, we may assume that (D(T ), T ) = (D(M),M) is a multiplication
operator

ϕ 7→ gϕ, ϕ ∈ D(M) = {ϕ ∈ L2(X,µ) | gϕ ∈ L2(X,µ)},
on L2(X,µ), where (X,µ) is a finite measure space and g > 0 is a real-valued (measurable)
function on X.

We first show that if the sequence (λk) is unbounded, the operator must have compact
resolvent. For this, we first observe the following: let c > 0 be given, and let

Yc = g−1([0, c]) ⊂ X.

Let now Wc be the subspace of L2(X,µ) of functions ϕ with ϕ(x) = 0 if x /∈ Yc (up
to subsets of measure zero). For ϕ ∈ Wc, we have

〈M(ϕ), ϕ〉 =

∫
X

g(x)|ϕ(x)|2dµ(x) =

∫
Yc

g(x)|ϕ(x)|2dµ(x) 6 c‖ϕ‖2,

and so

max
ϕ∈Wc

〈Mϕ,ϕ〉
‖ϕ‖2

6 c.

Now, if, for some value of c, the space Wc is infinite-dimensional, it follows that for
any k we can find a subspace V ⊂ Wc of dimension k, and thus by definition we get
that λk 6 c for all k. By contraposition, the assumption that (λk) be unbounded implies
dimWc < +∞ for all c > 0.

From this, we now deduce that the spectrum of M is a countable discrete subset of
[0,+∞[, and is unbounded (unless g is itself bounded). Let again c > 0 be given, and fix
any finite subset {x1, . . . , xm} ⊂ σ(M)∩ [0, c]. There exists ε > 0 such that the intervals
Ii =]xi − ε, xi + ε[ are disjoint; since σ(M) = supp g∗(µ), the definition of the support
implies that µ(g−1(Ii)) > 0; then the characteristic functions fi = χg−1(Ii) are in Wc, and
are linearly independent (because of the disjointess). Hence we get m 6 dimWc, which
is finite; since the finite set was arbitrary, this means that σ(M) ∩ [0, c] itself must be
finite, of cardinality 6 dimWc. So σ(M) is a discrete unbounded set.

Now let λ ∈ σ(M) be given; since λ is isolated, the set Zλ = g−1({λ}) satisfies
µ(Zλ) > 0. Then

Ker(M − λ) = {ϕ ∈ D(M) | ϕ(x) = 0 if x /∈ Zλ)
and this is non-zero since the characteristic function of Zλ belongs to it. Hence, we find
that λ ∈ σp(M).

Moreover, with the previous notation, we have Ker(M−λ) ⊂ Wλ, so the λ-eigenspace
must also be finite-dimensional. This means finally that M has a spectrum which can be
ordered in a sequence

0 6 µ1 6 µ2 6 . . . 6 µk 6 · · · ,→ +∞
with finite-dimensional eigenspaces. This precisely says that M has compact resolvent,
since the functional calculus implies that the bounded operator (M + 1)−1 = R−1(M),
for instance, is unitarily equivalent to the diagonal operator on `2(N)with eigenvalues
1/(µk + 1)→ 0, which is compact (e.g., by Proposition 2.7).

This preliminary argument has the consequence that the theorem will be entirely
proved in the case of (D(T ), T ) self-adjoint once it is shown that, for T having compact
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resolvent, the numbers λk are indeed the eigenvalues, repeated with multiplicity. This is
exactly parallel to the proof of the max-min principle (2.11) for compact operators (in
fact, it can be deduced from that statement for the compact resolvent (M − i)−1), and
we leave the details to the reader.

Now we come back to the case where (D(T ), T ) is only essentially self-adjoint; let T̄
be its self-adjoint closure. Since the spectrum of a closable operator is defined as that of
its closure, the only thing to prove is that

λk(T̄ ) = λk(T ),

for k > 1, the only subtlety being that λk(T ) is defined as an infimum over a smaller set
of subspaces than λk(T̄ ), so that we might have λk(T̄ ) < λk(T ). Let ε > 0 be given, and
let V ⊂ D(T̄ ) be a subspace of dimension k with

λk(T̄ ) 6 max
v∈V−{0}

〈T̄ v, v〉
‖v‖2

6 λk(T̄ ) + ε.

The map

QV

{
V → [0,+,∞[

v 7→ 〈T̄ v, v〉
is a positive quadratic form on this finite dimensional space, and there exists a vector
v1 ∈ V with norm 1 such that

QV (v1) = max
v∈V−{0}

〈T̄ v, v〉
‖v‖2

∈ [λk(T̄ ), λk(T̄ ) + ε].

Complete v1 to an orthonormal basis (v1, . . . , vk) of V . By definition of the closure,
there exist sequences (vj,n) in D(T ) such that

(vj,n, T vj,n)→ (vj, T̄ vj), in H ×H,
for 1 6 j 6 k. We have by continuity

〈vi,n, vj,n〉 → 〈vi, vj〉 = δ(i, j),

and
〈Tvj,n, vj,n〉
‖vj,n‖2

→ 〈T̄ vj, vj〉
‖vj‖2

,

so that if we denote by Vn ⊂ D(T ) the space generated by the (vj,n), we see first that
dimVn = k for n large enough (the required determinant converging to that of the basis
(vj) of V , which is non-zero), and then that

max
v∈Vn−{0}

〈Tv, v〉
‖v‖2

→ 〈Tv1,n, v1,n〉
‖v1,n‖2

= QV (v1),

so that for n large enough we obtain a subspace of D(T ) of dimension k with

λk(T ) 6 max
v∈Vn−{0}

〈Tv, v〉
‖v‖2

6 λk(T̄ ) + 2ε.

Taking ε→ 0, it follows that λk(T ) 6 λk(T̄ ), and this is the desired conclusion which
finishes the proof of part (1) of the theorem.

(2) Now, we abandon the assumption that T is essentially self-adjoint, and consider the
Friedrichs extension (DF , TF ). Again, since D(T ) ⊂ DF , we have a priori the inequality

µk = λk(TF ) 6 λk(T ),
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and must show it is an equality. But we can proceed exactly as in the last approximation
argument using now the fact that for any vector v ∈ DF , one can find a sequence (vn) in
D(T ) for which

vn → v, 〈Tvn, vn〉 → 〈TFv, v〉,
a fact which is a consequence of the definition of DF and TF . �

Finally, we state the analogue of the Weyl Law of Proposition 5.13:

Proposition 5.19. Let U ⊂ Rn be a bounded open set and (Dd,∆d) the Laplace
operator on U with Dirichlet boundary conditions. Let

0 6 λ1 6 λ2 6 . . . 6 λn 6 . . .

be the eigenvalues of ∆d repeated with multiplicity. Then we have∑
λn6X

1 ∼ cnV
Xn/2

(2π)n

as X → +∞, where V is the Lebesgue measure of U .

Sketch of proof. �
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CHAPTER 6

Applications, II: Quantum Mechanics

In this chapter, we survey some elementary and important features of the use of
operators on Hilbert spaces as a foundation for Quantum Mechanics. It should be said
immediately (and it will clear in what follows) that the author is not an expert in this
field.

6.1. Postulates and foundations

Quantum Mechanics is a refinement of classical mechanics, as it was developped in
particular by Newton, Euler, Lagrange, Hamilton. To indicate the parallel and striking
differences, we quickly explain a bit what classical mechanical systems “look like”. As
we will only discuss, later on, very simple cases, we take a very simple-minded approach.

In the Newtonian description, the position x(t) ∈ R3 at time t of a punctual particle
P with mass m is dictated by the second-order differential equation

mx′′(t) = sum of forces acting on P .

The trajectory x(t), t > 0, can therefore be found (in principle) if the forces are
known. If there are more than a single particle, each of the trajectories satisfies the
Newton equations, but of course the forces acting on the different particles will change;
in fact, there will usually be interactions between the particles that make the whole
system of equations rather complicated.

One remark that follows from the fact that the equation is of second order is that
(at least intuitively!) the position x(t) and the velocity x′(t) at a fixed time t0 are
enough to determine the whole trajectory (and velocity) for t > t0. Instead of using
coordinates (x(t), x′(t)), it is customary to use (x(t), p(t)) where p(t) = mx′(t) is the
momentum. Thus the particle’s state at t is determined by the pair (x(t), p(t)) ∈ R6,
and any observed quantity will be a well-defined function f(x, p) of (x, p) ∈ R6.

Here are three fundamental examples:

Example 6.1 (Free particle). A “free” particle is one on which no force is exerted;
thus Newton’s equations are simply mx′′(t) = 0, i.e., the movement follows a straight line
in R3, and the velocity x′(t) is constant.

Example 6.2 (Attraction). If the particle is only submitted to the influence of grav-
itation from a body of mass 1 situated at the origin (and if x(t) 6= 0), the force is given
by

−γ x(t)

‖x(t)‖3
,

where γ > 0 is the gravitational constant (and ‖ · ‖ is the Euclidean distance in R3).
Thus the equation of motion becomes

mx′′(t) +
γx(t)

‖x(t)‖3
= 0.
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Example 6.3 (Harmonic oscillator). If the particle is attached with a spring to the
origin and forced to move on a one-dimensional axis x(t) ∈ [0,+∞[, the spring exerts a
force of the type

−kx(t)

for some constant k > 0, and the equation of motion becomes

mx′′(t) + kx(t) = 0,

which is of course a very simple ordinary differential equation.

Classical mechanics is much richer than the simple imposition of Newton’s equations
as a deus ex machina. The Lagrangian formalism and the Hamiltonian formalism give a
more fundamental a priori derivation of those equations from principles like the “principle
of least action”. We refer to the first chapter of [T] for a description of this, in particular
of the wealth of mathematical concepts which arise (e.g., symplectic manifolds).

Quantum Mechanics builds on a very different formalism, which was definitely “pass-
ing strange” when it was first introduced. As we present it, we can hide the physics behind
an axiomatic mathematical description that can be studied, like any set of axioms, in a
type of vacuum (as far as applications or relevance to the natural world is concerned).
Not surprisingly, this abstract mathematical theory is quite interesting. However, since
it is a physical theory, one must not only make contact with the natural world, but also
make a connection between classical mechanics and quantum mechanics. This leads to
further mathematical questions of great interest.

Lacking again time and competence to discuss the origins of Quantum Mechanics, we
describe the mathematical framework (basically due to J. von Neumann in 1927–1928,
concluding the earlier crucial work of Heisenberg, Schrödinger, Jordan and Born) for the
case of a single system P , e.g., a single electron:

• The state of P is described by a vector ψ ∈ V , where V is a (separable) Hilbert
space, typically ψ ∈ L2(R3), such that ‖ψ‖ = 1;
• An observable (relative to the quantum system described by H) is a self-adjoint

operator T on V , often unbounded;
• The dynamical evolution of the system, given that it is initially in the state ψ0

and then evolves with time to be in state ψt, t > 0, is given by the Schrödinger
equation

(6.1) i
h

2π

d

dt
ψt = Hψt

where H is a self-adjoint operator (the Hamiltonian) on V describing the inter-
actions and forces acting on the particle, and h is a physical constant, the Planck
constant (in standard units, namely Joule (energy)-second (time), it is currently
known to be equal to 6.62606896(33)×10−34 J s). One commonly writes ~ = h

2π
.

• Given the state ψ of the system and an observable T , one can not produce a (or
speak of the) “value” of T at ψ (similar to the well-defined position or momentum
of a classical particle); however, one can describe the distribution of “values” of T
for the state ψ, i.e., describe a Borel probability measure µT,ψ such that µT,ψ(E)
is interpreted as the “probability that the value of the observable lies in E in
the state ψ”. This measure is the spectral measure for T and ψ, namely it is the
probability measure defined by∫

R

f(x)dµT,ψ(x) = 〈f(T )ψ, ψ〉
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for f continuous and bounded, f(T ) given by the functional calculus of Corol-
lary 4.43; more directly, if T is unitarily equivalent to multiplication by g on
L2(X,µ), with ψ corresponding to a function ϕ ∈ L2(X,µ), we have

(6.2) µT,ψ(E) =

∫
E

g∗(|ϕ|2dµ),

as in Example 3.13. (Note that even though T is not everywhere defined,
the spectral measure is well-defined for all ψ because f(T ) is bounded if f is
bounded).
• The last item is relevant to the physical interpretation and is not necessary for

a purely mathematical description: one further expects that repeated, identical,
experiments measuring the observable T will lead to values in R distributed
according to the spectral measure of the previous item. Note an important
consequence, since the support of the spectral measure µv,T is contained in the
spectrum of T : the result of any measurement is an element of the spectrum of
the relevant observable.

Notice that self-adjoint operators play two roles here: one as observables, and one as
Hamiltonians in the Schrödinger equation.

6.2. Stone’s theorem

Mathematically, one can take the prescriptions above as describing some questions
worth studying. A first reasonable question is to understand the meaning and the solu-
tions of Schrödinger’s equation for various choices of Hamiltonian. The following impor-
tant theorem makes rigorous the formal solution

ψt = e−
i
~ tH(ψ0)

of (6.1) – which is almost immediately justified for a finite-dimensional Hilbert space –,
and highlights once more how natural the condition of self-adjointness is.

Theorem 6.4 (Stone’s Theorem). Let H be a separable Hilbert space.
(1) If (D(T ), T ) is a self-adjoint operator on T , define

U(t) = eitT , t ∈ R,

for t ∈ R, using the functional calculus. Then U(t) is bounded on D(T ) and extends by
continuity to a unitary operator on H. We have

U(t+ s) = U(t)U(s), for all s, t ∈ R,

and U is strongly continuous: for any v ∈ H and t0 ∈ R, we have

(6.3) lim
t→t0

U(t)v = U(t0)v.

Moreover, we have

(6.4) D(T ) = {v ∈ H | t−1(U(t)v − v) has a limit as t→ 0},

and t 7→ U(t)v is a solution of the normalized Schrödinger equation, in the sense that for
any v ∈ D(T ) and t ∈ R, we get

d

dt
U(t)v = lim

s→t

U(s)v − U(t)v

s− t
= iT (U(t)v).
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In particular, for v ∈ D(T ), we have

(6.5) Tv =
1

i
lim
t→0

U(t)v − v
t

.

(2) Conversely, suppose given a map

U : R→ L(H)

such that U(t+ s) = U(t)U(s) for all t and s, that U(t) is unitary for all t, and such that
U is strongly continuous. Define

D = {v ∈ H | t−1(U(t)v − v) has a limit as t→ 0},(6.6)

Tv =
1

i
lim
t→0

U(t)v − v
t

, v ∈ D(T ).(6.7)

Then D is dense in H, (D,T ) is a self-adjoint operator on H, and we have U(t) = eitT

for all t ∈ R.

Note that the definition of the maps U in part (2) corresponds exactly to saying that
U is a unitary representation of the topological group (R,+) on the Hilbert space H, as
defined in Example 1.8 of Chapter 1. As in that example, we will also use the standard
terminology and say that U is a one-parameter group of unitary operators.

Stone’s Theorem shows that the theory of unbounded self-adjoint operators is, in some
sense, “forced” on us even if only bounded (in fact, unitary) operators were of principal
interest. In fact, in part (2), the condition of strong continuity can be weakened:

Proposition 6.5 (Von Neumann). Let H be a separable Hilbert space and

U : R→ L(H)

such that U(t + s) = U(t)U(s) for all t and s and U(t) is unitary for all t. Then U is
strongly continuous if and only if the maps{

R→ C

t 7→ 〈U(t)v, w〉

are measurable for all v, w ∈ H.

Proof of Theorem 6.4. The first part is, formally, quite easy: first, having defined
U(t) = eitT by the functional calculus (Corollary 4.43) as ft(T ) where ft(s) = eits for
s ∈ R, the multiplicative relations

ft1ft2 = ft1+t2 , f−1
t = f−t = ft,

lead by functional calculus to

U(t1)U(t2) = U(t1 + t2), U(t)−1 = U(−t) = U(t),

which show that each U(t) is unitary and that the group-homomorphism property holds.
To show the strong continuity (6.3), we can apply (iv) in the definition of the func-

tional calculus (Corollary 4.43): for any sequence tn converging to t0, we have ftn → ft0
pointwise, and of course ‖ftn‖∞ = 1 for all n, so we get U(tn) → U(t0) strongly, and
because this is true for all sequences, we get more generally that U(t) → U(t0) in the
strong topology, as t→ t0.

We next observe the following fact: let tn be any sequence of real numbers converging
to 0. Consider the functions

gn(x) =
1

itn
(eitnx − 1), x ∈ R.
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The sequence (gn) is a sequence of bounded functions on R, and gn(x)→ x pointwise
as n → +∞; moreover |gn(x)| 6 |x| for all n and x, as is easily checked, so that (v) in
Corollary 4.43 shows that

lim
n→+∞

gn(T )v = Tv

for all v ∈ D(T ). This translates to the existence and value of the limit

lim
t→0

U(t)v − v
t

= iTv.

This proves

D(T ) ⊂ D1 =
{
v | the limit lim

t→0

U(t)v − v
t

exists
}
,

and also shows that the limit formula (6.5) holds for v ∈ D(T ). Moreover, a simple
computation (like the one below for the proof of Part (2)) implies that (D1, T1) defined
by (6.6), (6.7) is a symmetric extension of (D(T ), T ). Since T is self-adjoint, this im-
plies that in fact (D1, T1) = (D(T ), T ). The unitarity of U(t) immediately implies that
U(t)D(T ) = U(t)D1 ⊂ D1 = D(T ) and that

T (U(t)v) = U(t)(T (v)), v ∈ D(T ), t ∈ R.

Thus we get

d

dt
U(t)v = lim

h→0

U(t+ h)v − U(t)v

h
= iT1(U(t)v) = iT (U(t)v),

which is the normalized version of Schrödinger’s equation.
We must now prove part (2) for an arbitrary map t 7→ U(t) satisfying the group-

homomorphism property and the strong continuity. We first assume that D is dense in
H, and we will check this property at the end. From it, it is clear that the operator T
defined on D by (6.7) is a densely defined linear operator on H. We first check that it is
symmetric (and hence closable): for any v, w ∈ D, and t ∈ R, we have

〈U(t)v − v
it

, w〉 = 〈v, U(−t)w − w
−it

〉

by unitarity: U(t)∗ = U(t)−1 = U(−t). As t→ 0, since −t→ 0 also, we obtain

〈Tv, w〉 = 〈v, Tw〉,
as desired. We also observe that the definition of D and the property U(t)U(t0) =
U(t+ t0) = U(t0)U(t) gives

U(t)U(t0)v − U(t0)v

t
= U(t0)

(U(t)v − v
t

)
and therefore it follows that D is stable under U(t0) for any t0 ∈ R, and moreover that

(6.8) T (U(t0)v) = U(t0)Tv, v ∈ D.
Now, we use the criterion of Proposition 4.30 to show that (D,T ) is essentially self-

adjoint. Let w ∈ H be such that T ∗w = iw; we look at the functions

ψv(t) = 〈U(t)v, w〉
defined for v ∈ D and t ∈ R. We claim that ψv is differentiable on R, and satisfies
ψ′v = ψv. Indeed, continuity of ψv is immediate, and for any t0 ∈ R and h 6= 0, we have

ψv(t0 + h)− ψv(t0)

h
= 〈U(t0)

(U(h)v − v
h

)
, w〉
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and therefore, by definition of D, the limit as h→ 0 exists, and is equal to

ψ′v(t0) = 〈iU(t0)(Tv), w〉
= 〈iT (U(t0)v), w〉 by (6.8)

= 〈iU(t0)v, T ∗w〉 = 〈iU(t0)v, iw〉 = ψv(t0)

using T ∗w = w. It follows from this computation and the solution of the ODE y′ = y
that for t ∈ R we have

〈U(t)v, w〉 = ψv(t) = ψv(0)et = 〈v, w〉et.
But by unitarity we also have |ψv(t)| 6 ‖v‖‖w‖, so ψv is bounded, and the formula

above is only compatible with this property if 〈v, w〉 = 0. As this holds then for all v ∈ D,
which is dense in H, we have w = 0. A similar reasoning shows that there is no solution
to T ∗w = −iw, and we conclude that (D,T ) is essentially self-adjoint. Let (D̄, T̄ ) be the
closure of (D,T ), which is self-adjoint. We will check that eitT̄ = U(t) for t ∈ R; from
this, the formula (6.6) of Part (1), applied to (D̄, T̄ ), will imply that D̄ = D.

Define V (t) = eitT̄ ; this is (by Part (1)) a strongly continuous group of unitary
operators on H. Let v ∈ D be any vector; we consider the continuous map

gv(t) = ‖v(t)‖2, v(t) = U(t)v − V (t)v, t ∈ R

and we proceed to prove that gv(t) is constant; since gv(0) = 0, it will follow that
U(t) = V (t) since they coincide on the dense subspace D.

For any t0 ∈ R, we have

U(t)v − U(t0)v

t− t0
→ U(t0)(iTv) = iT (U(t0)v), as t→ t0,

V (t)v − V (t0)v

t− t0
→ V (t0)(iTv) = iT (V (t0)v), as t→ t0,

by (6.8) and Part (1) (noting that T̄ v = Tv since v ∈ D). Thus we get

v(t)− v(t0)

t
→ iT (U(t0)v − V (t0)v) = iT (v(t0)),

(and all vectors for which T is applied belong to D). From this, writing

gv(t) = 〈v(t), v(t)〉,
the standard differentiation trick for products gives the existence of g′v(t) with

g′v(t) = 〈v(t), iT (v(t))〉+ 〈iT (v(t)), v(t)〉 = i(−〈v(t), T (v(t))〉+ 〈T (v(t)), v(t)〉 = 0

by symmetry of T on D.
All this being done, we see that it only remains to check that the subspace D is indeed

dense in H. This is not at all obvious, and this is where the strong continuity will be
used most crucially.

The idea is to construct elements of D by smooth averages of vectors U(t)v. For
this, we use the integral of Hilbert-space valued functions described in Section 1.4.3 (the
reader does not necessarily need to read this before continuing; it may be helpful to first
convince oneself that the expected formal properties of such an integral suffice to finish
the proof).

Precisely, consider a function ϕ ∈ C∞c (R) and v ∈ H, and define the vector

vϕ =

∫
R

ϕ(t)(U(t)v)dt ∈ H
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as in Proposition 1.17: this is well-defined, since the integrand ϕ(t)U(t)v is compactly
supported, bounded by |ϕ(t)|‖v‖, and satisfies the measurability assumption of the propo-
sition). We are going to show that the space D1 spanned by such vectors (as ϕ and v
vary) is dense in H, and then that D1 ⊂ D, which will finish the proof.

First of all, the density of D1 is easy: if w ∈ H is orthogonal to D1, we have

0 = 〈vϕ, w〉 =

∫
R

ϕ(t)〈U(t)v, w〉dt

for all ϕ ∈ C∞c (R), by (1.11). Since C∞c (R) is dense in L2(R), this implies that
〈U(t)v, w〉 = 0 for all t ∈ R and v ∈ H, and hence that w = 0.

Now we can finally check that D1 ⊂ D. We fix v and ϕ. First, we have

U(t0)vϕ =

∫
R

ϕ(t)U(t0 + t)dt =

∫
R

ϕ(t− t0)U(t)vdt

by (1.12) and (1.13). Thus, by linearity, we derive

U(t0)vϕ − vϕ
t

=

∫
R

ϕ(t− t0)− ϕ(t)

t
U(t)vdt

As t0 → 0, with (say) |t0| 6 1, the integrands

t 7→ ϕ(t− t0)− ϕ(t)

t
U(t)v

converge pointwise to

−ϕ′(t)U(t)v,

and they have a common compact support, say K ⊂ R, and are bounded uniformly by∥∥∥ϕ(t− t0)− ϕ(t)

t
U(t)v

∥∥∥ 6 ‖v‖ sup
s∈K
|ϕ′(s)|.

Thus we can apply the limit result (1.14) for H-valued integrals (adapted to a con-
tinuous limit), getting

lim
t0→0

∫
R

ϕ(t− t0)− ϕ(t)

t
U(t)vdt = −

∫
R

ϕ′(t)U(t)vdt = v−ϕ′ .

This means that vϕ is indeed in D, and we are done. �

Example 6.6. (1) [Baby example] The theorem is interesting even in the simple case
where H is finite-dimensional, say H = C. Then it states that any continuous group
homomorphism

χ : R −→ U(C×) = {z ∈ C× | |z| = 1}
is of the form

χ(t) = eiat

for some a ∈ R (in that case T is the self-adjoint operator z 7→ az on C). This result
can also be proved more directly, but nevertheless, it is not “obvious”.

(2) [The position operator] Consider the self-adjoint operatorQ = Mx acting of L2(R).
By construction, the associated unitary group is given by

U(t)ϕ(x) = eitxϕ(x),

for all ϕ ∈ L2(R) (in particular it is completely transparent how this is defined on the
whole space, and not just on D(Mx)).
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(3) [The momentum operator] Now consider the self-adjoint operator P = i−1∂x of
differentiation with respect to x on L2(R), precisely (see Example 4.8), we consider either
the closure of the essentially self-adjoint operator

(C∞c (R),
1

i
∂x),

or we define it directly by

D = {ϕ ∈ L2(R) |
∫
R

|x|2|ϕ̂(x)|2dx < +∞},

where ϕ̂ = Uϕ is the Fourier transform and

Pϕ = U−1M2iπxUϕ.

We can of course compute the unitary group using this explicit multiplication repre-
sentation:

eitP = U−1Me2iπxtU,

and since U−1ϕ(x) = ϕ̂(−x) by the inverse Fourier transform, we get (at leat for ϕ smooth
enough to justify the integration definition) that

eitPϕ(x) =

∫
R

e2iπstϕ̂(s)e2iπsxds =

∫
R

ϕ̂(s)e2iπ(x+t)sds = ϕ(x+ t).

By continuity, this shows that eitP is simply the translation operator mapping ϕ to
x 7→ ϕ(x+ t). Indeed, this illustrates clearly Stone’s Theorem, because it is not difficult
to check a priori that

U(t)ϕ(x) = ϕ(x+ t)

does define a one-parameter unitary group which is strongly continuous (indeed, the
condition of von Neumann is quite obvious since

〈U(t)ϕ, ψ〉 =

∫
R

ϕ(x+ t)ψ(x)dx,

which is a simple convolution operation), and it is quite natural to recover that

1

i
lim
t→0

U(t)ϕ− ϕ
t

=
1

i
lim
t→0

ϕ(·+ t)− ϕ(·)
t

=
1

i
∂xϕ.

Here is yet another intuitive argument to obtain this, which also illustrates the subtlety
of the functional calculus: if one tries to apply formally the power series

eitx =
∑
n>0

(itx)n

n!
,

one is led to the formal computation:

eitPϕ(x) =
∑
n>0

(it)nP nϕ(x)

n!

=
∑
n>0

(it)n

n!

(1

i

)n
(∂xϕ)n(x)

=
∑
n>0

tn

n!
ϕ(n)(x) = ϕ(x+ t)

by an (unjustified) application of a Taylor expansion formula!

106



Of course this can not be justified, except for the very special vectors ϕ ∈ L2(R) which

represent analytic functions (such as functions x 7→ f(x)e−x
2
, where f is a polynomial).

Physically, the correct normalization of the momentum observable is to take the op-
erator i~∂x.

Let (D,T ) be a self-adjoint operator on H and ψ ∈ D a “state” (i.e., a normalized
vector, ‖ψ‖ = 1) which is an eigenfunction (one also says simply that ψ is an eigenstate),
with Tψ = λψ. Then the time evolution (associated with Hamiltonian T ) with initial
condition ψ is particularly simple: the solution to

i~
d

dt
ψt = Tψt, ψ0 = ψ

is given by

ψt = e−iλt/~ψ0

(indeed, it is clear from the functional calculus that, for any continuous bounded function
f , f(T )ψ0 = f(λ)ψ0).

In particular, the spectral measure µt associated with ψt is identical with the measure
µ0 associated with ψ0: indeed, we have∫

R

f(x)dµt(x) = 〈f(T )ψt, ψt〉 = 〈f(T )ψ0, ψ0〉 =

∫
R

f(x)dµ0(x).

This property explains why such vectors are called stationary states. If the Hamilton-
ian T has only eigenvalues (with finite multiplicities), we can find an orthonormal basis
(ψj) of H consisting of stationary states; if we then write

ψ0 =
∑
j>1

〈ψ, ψj〉ψj

the solution to the Schrödinger equation with initial condition ψ0 is given (by linearity
and continuity) by

ψt =
∑
j>1

〈ψ, ψj〉e−iλjt/~ψj.

There is a kind of converse to these assertions:

Proposition 6.7. Let (D,T ) be a self-adjoint operator on H, and let ψ0 ∈ H with
‖ψ0‖ = 1 be such that eitTψ0 = ψt are proportional for all t. Then ψ0 is in D and is an
eigenvector for T .

Proof. It follows from the assumption that there exists eigenvalues λt of U(t) = eitT

such that

ψt = λtψ0.

Since λt = 〈U(t)ψ0, ψ0〉, the strong continuity and the Schödinger equation imply that

λ

{
R −→ C×

t 7→ λt

is a continuous homomorphism, such that |λt| = 1 for all t. By the “baby case” of Stone’s
Theorem, there exists a ∈ R such that λt = eiat for all t ∈ R. But then from ψt = eiatψ0,
we deduce both that ψ0 ∈ D and that Tψ0 = aψ0 by Stone’s Theorem. �
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6.3. The free particle

We now discuss the quantum analogues of the classical examples described in the
first section, starting with the “free particle” of Example 6.1. For a particle in R3 with
mass m > 0 and no interactions, the dynamics in quantum mechanics is given by the
Hamiltonian operator (D,H) where D is the domain of the Laplace operator ∆ on L2(R3)
(described in the previous chapter: precisely, it is the closure of the essentially self-adjoint
operator (C∞0 (R3),∆) described in Example 5.6) and

Hϕ =
~2

2m
∆ϕ.

Because we proved the self-adjointness by finding an explicit spectral representation
as a multiplication operator, through the Fourier transform, we can fairly easily derive an
explicit representation of the corresponding unitary group U(t) = e−it∆/~. More generally,
in Rn, after normalization, we get:

Proposition 6.8. Let n > 1 be an integer, and let (D,∆) be the closure of the
Laplace operator (C∞c (Rn),∆). For any function ϕ ∈ L1(Rn) ∩ L2(Rn), we have

e−it∆ϕ(x) = (4it)−n/2
∫
Rn

ei‖x−y‖
2/4tϕ(y)dy,

where
√
i is given by eiπ/4 if n is odd.

Proof. Formally, this is easy: if U is the Fourier transform L2(Rn)→ L2(Rn) given
by (5.4), we have seen in the proof of Proposition 5.7 that

∆ = U−1M4π2‖x‖2U,

and hence

e−it∆ = U−1MtU,

where Mt is the unitary multiplication operator by

gt(x) = e−4iπ2t‖x‖2 .

But it is well-known that the Fourier transform (and the inverse Fourier transform)
exchange multiplication and convolution, in the sense that (under suitable conditions of
existence) we have

U−1(fg)(x) =

∫
Rn

(U−1f)(x− y)(U−1g)(y)dy.

So we can expect that

e−it∆ϕ(x) = U−1(gt(Uϕ))(x) =

∫
Rn

(U−1gt)(x− y)ϕ(y)dy.

The functions gt are not in L2(Rn), so a priori U−1gt does not make sense. However,
it is well-known that if we consider

ht(x) = e−4π2t‖x‖2 .

for some t ∈ C with Re(t) > 0, we have (obviously) ht ∈ L1 ∩ L2 and

U−1ht(x) =

∫
Rn

e−4π2t‖y‖2e2iπ〈x,y〉dy =
n∏
j=1

∫
R

e−4π2ty2e2iπxjydy.
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By differentiating and then integrating by parts we see that

f(x) =

∫
R

e−4π2ty2e2iπxydy

satisfies f ′(x) = −x(2t)−1f(x), and so∫
R

e−4π2ty2e2iπxydy =
(∫

R

e−4π2ty2dy
)
e−x

2/(4t) = (4πt)−1/2e−x
2/(4t).

Formally, gt = hit, and this leads to

e−it∆ϕ(x) =

∫
Rn

(U−1gt)(x− y)ϕ(y)dy = (4πit)−n/2
∫
Rn

ei‖x−y‖
2/(4t)ϕ(y)dy.

To justify this rigorously, the first thing to notice is that the formula certainly makes
sense (i.e., is well-defined) for ϕ ∈ L1(Rn)∩L2(Rn), and that the above reasoning proves
that

e−z∆ϕ = (4πz)−n/2
∫
Rn

e−‖x−y‖
2/(4z)ϕ(y)dy

for Re(z) > 0. Using the strong convergence in the functional calculus, we know that if
zn → it with Re(zn) > 0, we have

e−zn∆ϕ→ e−it∆ϕ

in L2(Rn). Passing to a subsequence, it follows that for almost all x, we have

e−zn∆ϕ(x) = (4πzn)−n/2
∫
Rn

e−‖x−y‖
2/(4zn)ϕ(y)dy → e−it∆ϕ(x).

Then using the dominated convergence theorem, we get the formula as stated. �

One may now ask in which way this formula reflects the physics of a classical particle
following a uniform motion in space (i.e., following a line with constant velocity)? Some
answers are given by the following examples.

Example 6.9. One can first try to “see” concretely the evolution for particularly
simple initial states ψ0. Consider n = 1 to simplify and an initial state for a particle of
mass m > 0 where the spectral measure of the position observable is given by a centered
Gaussian probability distribution

µ0 = |ψ0|2dx =
1√

2πσ2
0

e
− x2

2σ0 dx,

for some σ0 > 0 (so that the variance is σ2
0). One can take for instance

ψ0(x) =
1

(2πσ2
0)1/4

exp(− x2

4σ0
+ ip0x)

where p0 ∈ R is arbitrary. (Such states are called Gaussian wave-packets).
The Schrödinger equation (with ~ = 1 for simplicity) can be solved explicitly, either

by following the steps above and using the fact the the Fourier transform of a gaussian
is a gaussian with explicit parameters in terms of the original one (see (1.10)). A more
clever trick1 is to represent the initial state as

ψ0(x) =

√
σ0

(2π)1/4
exp(−σ2

0p
2
0)f(σ2

0, x− 2iσ2
0p0)

1 Found by S. Blinder.
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where, for z > 0, we put

f(z, y) = z−1/2 exp
(
−y

2

4z

)
.

The point of this substitution is that a direct computation reveals the identity

∂2f

∂y2
=
∂f

∂z

Thus, the analyticity of f with respect to y and z makes permissible the formal
computation

e−it/(2m) ∆f(z, y) =
∑
n>0

(−it)n

(2m)nn!
(−∂2

yf)n(z, y)

=
∑
n>0

(−it)n

(2m)nn!
(−∂zf)n(z, y)

= f
(
z +

it

2m
, y
)

and hence

ψt(x) =

√
σ0

(2π)1/4
exp(−σ2

0p
2
0)f
(
σ2

0 +
it

2m
,x− 2iσ2

0p0)

=

√
σ0

(2π)1/4
√
σ2

0 + i(t)/(2m)
exp(−σ2

0p
2
0) exp

(
− (x− 2iσ2

0p0)2

4(σ2
0 + it/(2m))

)
.

If we now put

σt = σ0

√
1 +

t2

4m2σ4
0

,

we find after some painful computation that the probability density for (the x observable
for) ψt is another Gaussian with density now given by

|ψt(x)|2 =
1√

2πσ2
t

exp
(
−(x− p0t/m)2

2σ2
t

)
.

The center of this gaussian has changed: it is now x(t) = p0t/m. To interpret this,
we can compute the average value of the momentum observable P = i−1∂x for ψ0. For
this, we observe that the spectral measure of a state ψ for P is given by

dµψ,P = |ψ̂(t/2π)|2

and one can compute that its average is equal to p0. Thus x(t) describes the classical
trajectory of a particle with mass m and initial momentum p0.

With this classical analogy at hand, we can discuss another new feature of Quantum
Mechanics: namely, although the “centers” of the Gaussians follow the classical trajectory,
their variance evolves; in fact, for |ψt|2, we have the variance

σt ∼
t

σ0

, t→ +∞

which is growing. This means intuitively that the quantum particle’s position becomes
increasingly hard to determine accurately.
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6.4. The uncertainty principle

Consider again a free particle in one dimension. The state vector lies in L2(R), and
the position and momentum are “given” by the operators P and Q of multiplication by
x and derivation. Note that both act on the same function, and their actions are related
through Fourier transform. So the probability densities for position and momentum are
not entirely free; in fact, one essentially determines the other, and although the precise
relationship is not completely straightforward, the following consequence can be deduced
as a striking phenomenon of quantum mechanics:

Proposition 6.10 (Uncertainty relation for position and momentum). Let ψ ∈
L2(R) be such that ψ ∈ D(P ) ∩ D(Q), and Pψ, Qψ ∈ D(P ) ∩ D(Q), for instance
ψ ∈ C∞c (R). Let µP , µQ be the spectral measures for ψ with respect to P and Q. Let

σ2
P =

∫
R

(x− p0)2dµP (x), σ2
Q =

∫
R

(x− q0)2dµQ(x),

where p0, q0 are the average of µP , and µQ. Then we have

σ2
Pσ

2
Q >

1

4
.

This is the result when ~ = 1; the actual physical result is

(6.9) σ2
Pσ

2
Q >

~2

4
.

Intuitively, σP measures the possible precision of a measurement of the momentum
of the particle, and σQ the same for the measurement of the position. Thus the result is
that it is impossible to measure arbitrarily accurately both position and momentum. On
the other hand, the inequality is optimal: see (6.13) for examples where equality holds.

A more general form of the uncertainty principle applies to any pair of observables
which do not commute.

Theorem 6.11 (Heisengerg uncertainty principle). Let H be a Hilbert space, and let
(D(T ), T ) and (D(S), S) be self-adjoint operators on H. Let v ∈ D(T ) ∩ D(S) be such
that Tv, Sv ∈ D(T ) ∩D(S) also. Let µT , µS be the spectral measures for v with respect
to T and S. Let

σ2
T =

∫
R

(x− t0)2dµT (x), σ2
S =

∫
R

(x− s0)2dµS(x),

where t0, s0 are the average of µT , and µS. Then we have

σ2
Tσ

2
S >

1

4
(〈iw, v〉)2.

where w = TSv − STv = [T, S]v.

Proof. From the fact that Tv ∈ D(T ), one can check first that∫
R

x2dµT (x) = 〈T 2v, v〉 = ‖Tv‖2 < +∞,

and from the fact that v ∈ D(T ), that

t0 =

∫
R

xµT (x) = 〈Tv, v〉

(see Proposition 4.44 and the remark afterwards).
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Thus one gets the expression

σ2
T =

∫
R

x2µT (x)−
(∫

R

xdµT (x)
)2

= ‖Tv‖2 − 〈Tv, v〉2,

and a similar expression for σ2
S.

Moreover, observe that if we replace T by T − t0, S by S − s0, the values of σT , σS
do not change, the assumptions remain valid for v and these two operators, and w is also
unaltered (because [T − t0, S − s0] = [T, S]). This means we may assume t0 = s0 = 0.

From this we can use the classical Cauchy-Schwarz technique: for any t, s ∈ C, we
have

‖(tT + sS)v‖2 > 0,

which translates to

t2‖Tv‖2 + s2‖Sv‖2 + ts̄〈Tv, Sv〉+ t̄s〈Sv, Tv > 0,

i.e., to

|t|2‖Tv‖2 + |s|2‖Sv‖2 + ts̄〈Tv, Sv〉+ t̄s〈Sv, Tv > 0,

for all s, t ∈ C. If we take for instance t = 1, s = iα with α ∈ R, it follows that

α2‖Sv‖2 + ‖Tv‖2 + α〈iw, v〉 > 0

for all v, and taking the discriminant gives the result. �

Since, for ϕ in D(P ) ∩D(Q) with Pϕ, Qϕ ∈ D(P ) ∩D(Q), we have

P (Qϕ) =
1

i
(xϕ)′ =

1

i
xϕ′ +

1

i
ϕ,

and

Q(Pϕ) =
1

i
Qϕ′,

we have in the case of the position and momentum operator that

i[P,Q]ϕ = ϕ,

showing that the general case indeed specializes to Proposition 6.10. (For the physical
case, P = i~∂x, we have instead [P,Q] = i−1~).

6.5. The harmonic oscillator

We now come to another example, the quantum-mechanical analogue of the harmonic
oscillator of Example 6.3. Just as the classical case is based on imposing an extra force
to a free particle on a line, the corresponding hamiltonian for quantum mechanics takes
the form

H = ∆ +MV ,

where MV is the multiplication operator by a potential V , which is a real-valued function
on R. Or at least, this is the case formally, and indeed many other classical systems
are “quantized” in this manner, which various potentials V representing diverse physical
situations. Intuitively, this should make sense from the point of view of our desired
formalism, since ∆ and MV are both self-adjoint on their respective domains. However,
because those domains are not usually identical (or even comparable in the sense of
inclusion), it is not clear in general how to even define a sum of two self-adjoint operators
as an unbounded operator, and then how to check that (or if) it is self-adjoint or essentially
so, on a suitable domain.
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Here, we may of course check that C∞c (R) ⊂ D(∆) ∩D(MV ) if MV is locally in L2,
and then of course (C∞(R),∆ +MV ) is at least symmetric. However, it is not essentially
self-adjoint in general.

Example 6.12. This example concerns L2(]0,+∞[) instead of L2(R), but it is of
course still illustrative. Take

V (x) =
c

x2
, x > 0.

Then one can show (see, e.g., [RS2, Th. X.10]) that ∆+MV is essentially self-adjoint
on C∞c ([0,+∞[) if and only if c > 3/4.

For the harmonic oscillator with a particle of mass m > 0, one takes the hamiltonian

~
2m

∆ +MV , V (x) =
mω2x2

2
.

The situation is then very well understood.

Theorem 6.13. Let (D,T ) be the operator 1
2
∆ + MV , where V (x) = ω2x2/2, acting

on D = S(R), where the Schwartz space S(R) is defined in Section 1.4.
Then T is essentially self-adjoint and has compact resolvent. Its eigenvalues are given

by

λn = (n+ 1/2)ω, n > 0,

and the eigenspaces are 1-dimensional.
More precisely, let Hn for n > 0 be the polynomial such that

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Then, the function

ψn(x) = (2nn!)−1/2(ω/π)1/4Hn(
√
ωx) exp(−1

2
ωx2)

is of norm 1 and spans the eigenspace with eigenvalue λn, and (ψn)n>0 is an orthonormal
basis of L2(R).

Note that the use of the Schwartz space S(R) as domain is just for convenience: ψn
is in S(R), but is not compactly supported.

Remark 6.14. The first few Hermite polynomials Hn are:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12,

and they satisfy the recursion relation

Hn+1(x) = 2xHn(x)−H ′n(x)

so that it is clear that Hn is of degree n and that the leading term is 2nxn. Moreover, it
is also clear from the definition that Hn is even if n is even, odd if n is odd.

The shapes of the graphs of ψn for n = 0 (grey), 1 (blue), 2 (red), 3 (green) and 7
(black) are displayed in Figure 1 (they correspond roughly to ω = 1, up to the factor
π−1/4 which is omitted).

Proof. We give a direct but not entirely enlightening proof, and will sketch after-
wards a more conceptual one which explains very well the specific shape of the construc-
tion of eigenfunctions.
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Figure 6.1. First stationary states

The operator T is positive on D. Given that ψn ∈ D, and given our claim about the
ψn, we see that we will be done (by Lemma 5.10) if we can show that ψn, n > 0, is an
eigenfunction of T , and if moreover (ψn) is an orthonormal basis of L2(R).

We start with the second part: first of all, we can assume ω = 1 by rescaling. Define
for the moment

ϕn(x) = Hn(x)e−x
2/2.

Then we observe that the recurrence relation for Hn+1 translates to

ϕ′n+1(x) = xϕn(x)− ϕ′n(x) = Tϕn

where T is the operator Mx − ∂x, densely defined on S(R). The adjoint of T is also
defined on S(R), and satisfies T ∗ = Mx + ∂x on S(R). Let then n, m > 0 be given, first
with n > m. We write

〈ϕn, ϕm〉 = 〈T nϕ0, ϕm〉 = 〈ϕ0, (T
∗)nϕm〉.

But we also have the relation

T ∗(p(x)e−x
2/2) = (xp(x) + p′(x)− xp(x))e−x

2/2 = p′(x)e−x
/2

for any polynomial p, from which it follows that

(T ∗)n(ϕm) = H(n)
m (x)e−x

2/2 = 0

because n > m and Hm is a polynomial of degree m.
Having thus checked that (ϕn) is an orthogonal system (and it is also clear that

‖ϕn‖2 > 0), we proceed to the proof that the (Hilbert space) span is L2(R). For this, we
notice that by Taylor expansion, we have

(6.10)
∑
n>0

Hn(x)

n!
an = exp(−x2 + 2ax)

for all a ∈ R, where the convergence is uniform over compact subsets of R. Then if
ϕ ∈ L2(R) is orthogonal to all ψn, we obtain∫

R

ϕ(x)e−x
2/2
∑
n>0

Hn(x)

n!
andx = 0

for all a ∈ R, and after completing the square, we get in particular that∫
R

ϕ(x)e−(a−x)2/2dx = 0
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for all a ∈ R. Taking the Fourier transform of this convolution identity, we derive that

ϕ̂ψ̂ = 0

where ψ(x) = e−x
2/2. But ψ̂, which is also a Gaussian, has no zero on R, and thus ϕ = 0.

We can now check that the ψn are eigenfunctions of the harmonic oscillator by fairly
simple computations. First, for any polynomial p(x), we let

f(x) = p(x)e−
1
2
x2 ,

and we get

f ′(x) = p′(x)e−
1
2
x2 − xp(x)e−

1
2
x2 ,

f ′′(x) = e−
1
2
x2
{
p′′(x)− 2xp′(x)− p(x) + x2p(x)

}
so that the eigenvalue equation Tf = λf becomes

p+ 2xp′ − p′′ = 2λp.

Thus our claim that ψn is an eigenvalue with λ = λn becomes the fact that the
Hermite polynomial Hn satisfies the second order differential equation

(6.11) y′′ − 2xy′ + 2ny = 0.

We check this as follows (this is a standard argument about orthogonal polynomials):
first, we claim that the Hn satisfy the second-order recurrence relation

(6.12) Hn − 2xHn−1 = −2(n− 1)Hn−2, n > 2.

Taking this for granted, the differential relation Hn−1 = 2xHn−2 − H ′n−2 and its
derivative can be inserted to eliminate the Hn and Hn−1 in terms of Hn−2 and its first
and second derivatives: it leads to (6.11) for Hn−2.

To prove (6.12), we observe that Hn−2xHn−1 is a polynomial of degree at most n−1,
since the leading terms cancel. In fact, it is of degree 6 n − 2 because Hn is even and
Hn−1 is odd, so xHn−1 has no term of degree n − 1. Since the Hn are of degree n, any
polynomial p is a combination of those Hn with degree 6 deg(p), and hence we can write

Hn(x)− 2xHn−1(x) =
∑

06ν6n−2

c(ν)Hν .

But now multiply by ϕje
−x2/2, for j < n− 2, and integrate: by orthogonality, we get

c(j)‖ϕj‖2 =

∫
R

(Hn(x)− 2xHn−1(x))Hj(x)e−x
2

dx

= 〈ϕn, ϕj〉 − 2〈ϕn−1, ϕ̃〉
where

ϕ̃(x) = xHj(x)e−x
2/2.

But xHj(x)e−x
2/2, for j < n−2, is itself a linear combination of ψν(x) with ν < n−1.

So, by orthogonality, 〈ϕn−1, ϕ̃〉 = 0, and we get

Hn(x)− 2xHn−1(x) = c(n− 2)Hn−2,

which is (6.12), up to the determination of the constant c(n − 2). For this, we assume
first n to be even; then evaluating at 0 with the help of (6.10) leads to

c(n− 2) =
Hn(0)

Hn−2(0)
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with

Hn(0) = (−1)n/2
n!

(n/2)!

so c(n − 2) = −2(n − 1), as desired. For n odd, we compute the derivative at 0, which
satisfies the two relations

H ′n(0) = −Hn+1(0),

H ′n+2(0)− 2Hn+1(0) = c(n)H ′n(0),

which lead to c(n) = 2 +Hn+3(0)/Hn+1(0) = −2(n+ 1), again as claimed.
Finally, we can use this to check the stated normalization: indeed, for n > 2, multiply

the recurrence relation by Hn−2(x)e−x
2

and integrate over R: we get

〈ϕn, ϕn−1〉 −
∫
R

2xHn−1(x)Hn−2(x)e−x
2

dx+ 2(n− 1)‖ϕn−2‖2 = 0.

By orthogonality, the first term is zero. Moreover, as already observed, 2xHn−2 =
Hn−1 + p where p is of degree < n− 1; so, again by orthogonality, we have∫

R

2xHn−1(x)Hn−2(x)e−x
2

dx = ‖ϕn−1‖2,

and we finally obtain the relation

‖ϕn−1‖2 = 2(n− 1)‖ϕn−2‖2,

which leads to

‖ϕn‖2 = 2nn!‖ϕ0‖2 = 2nn!

∫
R

e−x
2

dx =
√
π|2nn!.

This means that ψn = ϕn/‖ϕn‖, which confirms the orthonormality of this system. �

Classically, for a particle of mass m > 0, the solution of

mx′′(t) + kx(t) = 0

with initial conditions x(0) = x0, mx′(0) = p0, is typically expressed in the form

x(t) = A cos(ωt+ ϕ)

where ω =
√
k/m and A, ϕ are constants determined by the initial conditions:{

x0 = A cosϕ

p0 = −A
√
km sinϕ.

One may note a few features of this solution: (1) the amplitude |x(t)| is bounded,
indeed |x(t)| 6 A (with equality achieved for t = (νπ − ϕ)/ω, ν ∈ Z); (2) the energy
E(t) = 1

2
kx(t)2/2 + 1

2
mx′(t)2 is constant : indeed, we have

E ′(t) = kx(t)x′(t) +mx′(t)x′′(t) = x′(t)(mx′′(t) + kx(t)) = 0.

Its value is therefore given by

E(t) = E = 1
2
kx2

0 + 1
2
m(p0/m)2 = 1

2
(kA2 cos2 ϕ+m−1A2km sin2 ϕ) = 1

2
kA2

(it follows that the maximal amplitude can be expressed as
√

2E/k).
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For the quantum analogue, we first renormalize the solution of the theorem to incor-
porate the mass of the particle and the Planck constant ~. Then, for a particle of mass
m, the stationary states are given by

ψn(x) = (2nn!)−1/2
(mω
π~

)1/4

Hn

(√mω

~
x
)

exp
(
−mωx

2

2~

)
for n > 0, which are eigenfunctions with eigenvalue (n+ 1/2)~ω.

One can now see some striking differences between the classical and quantum oscilla-
tors, where the two cases are compared after fixing the same mass and parameter k > 0.
The correspondance is then well-determined if we understand the quantum analogue of
the energy. This is simply given by the observable which “is” the Hamiltonian – and this
is natural from its expression compared with the definition of E. We can then compare
a classical oscillator with energy E and a quantum one where the state ψ satisfies∫ +∞

0

xdµψ,H(x) = E.

The simplest states are those corresponding to ψn; they are indeed particularly rel-
evant physically, and we have the first striking feature that, if we observe those states,
then the energy E does not take arbitrary positive values ; the only possibilities are
E = ω~(n + 1/2) with n > 0 integers. This appearance of “discrete” energy levels,
differing by integral multiples of the “quantum” ω~, is one of the historical reasons for
the name “quantum mechanics”.

Moreover, the energy has the further feature that it can not be arbitrarily small: it
must always be at least equal to the lowest eigenvalue ~ω/2. So a quantum oscillator,
even at rest, carries some energy (furthermore, the state ψ0, which is called the ground
state, is the only state with minimal energy).

Another striking feature of the quantum particle is that it is not restricted to lie
in the classical domain |x(t)| 6

√
2E/k. This reflects the fact that the eigenfunctions

ψn are not compactly supported: indeed, in terms of the position operator Q, which is
multiplication by x as usual, the spectral measure associated to a state ψn is the measure

µn = |ψn(x)|2dx =
1

2nn!

(mω
π~

)1/2

Hn

(√mω

~
x
)2

exp
(
−mωx

2

~

)
,

in particular µ0 (for the ground state) is the standard Gaussian with mean 0 and variance

σ2
P =

∫
R

x2µ0(x) = ~
2mω

.

In that case, we can compute the probability density that the particle lies outside of
the classical area: we have

2E

k
=

~
mω

so this is given by ∫
|x|>
√

~(mω)−1

dµ0(x) =
1√
π

∫
|x|>1

e−x
2

dx = 0.157...

(for the ground state).
What about the momentum observable? As already observed in the case of the

free particle, the spectral measure for the oscillator in the state ψn with respect to the
momentum observable P is obtained from the Fourier transform of ψn (after suitable
normalization). Here we have the following lemma:
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Figure 6.2. Densities of the first stationary states

Lemma 6.15. Let n > 0 be an integer. Let

ϕn(x) = Hn(x)e−x
2/2, ϕ̃n(y) =

1√
2π

∫
R

ϕn(x)e−ixydx.

Then we have

ϕ̃n(y) = inϕn(y).

Proof. We proceed by induction on n; for n = 0, ϕ0(x) = e−x
2/2 and we have

ϕ̃0(y) =
1√
2π

∫
R

e−x
2/2−ixydx = e−y

2/2,

by the classical Fourier transform formula for a Gaussian.
Now, we have

Tϕn = ϕn+1, T ∗ϕn = ϕn−1

with T = Mx − ∂x, T ∗ = Mx + ∂x, as already observed during the previous proof, and
hence

Uϕn+1 = U(T (ϕn)),

with U designating the variant of the Fourier transform in the current lemma: ϕ̃n = Uϕn.
This transform satisfies the commutation relations

UMx = i∂yU, U∂x = −iMyU,

on S(R), with y denoting the “Fourier” variable. Hence we get

UT = (i∂y + iMy)U = iT ∗U,

and therefore

Uϕn+1 = iT ∗Uϕn,

so that if we assume by induction that Uϕn = inϕn, we get

ϕ̃n+1 = in+1T ∗ϕn = in+1ϕn+1,

which concludes the proof. �

Taking into account the physical scaling, we obtain

νn = µψn,P =
1

2nn!

( 1

π~mω

)1/2

Hn

(√ 1

~mω
x
)2

exp
(
− x2

~mω

)
dx
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For n = 0, we find here that

σ2
P =

mω~
2

.

Thus, in particular, we have

(6.13) σ2
Pσ

2
Q =

~2

4
,

which is an extremal case for the Heisenberg uncertainty principle (6.9).

6.6. The interpretation of quantum mechanics

Quantum Mechanics, as we have (only partially) described it from the mathematical
viewpoint leads to well-defined problems and questions about operators, spectra, and so
on. We can try to solve these mathematically using Spectral Theory or other tools, as
was done in the previous section for the quantum harmonic oscillator. In this respect,
the situation is comparable to classical mechanics when expressed in any of the existing
formalisms for it (Newtonian, Lagrangian or Hamiltonian).

However, this mathematical approach can not hide the fact that Classical and Quan-
tum Mechanics are also supposed to be physical theories that can explain and predict
natural phenomena in their respective domains of validity. For classical mechanics, there
is little difficulty with this because the mathematical model coincide almost perfectly
with the physical quantities of interest as they are intuitively grasped (e.g., for a single
particle evolving in space, seen as point (q, p) ∈ R6 in phase space).

In the case of Quantum Mechanics, things are much more delicate. Observable quan-
tities being identified with self-adjoint operators, and the state of a system with a vector
in a Hilbert space from which only probability distributions about the results of experi-
ments can be extracted, seemingly paradoxal conclusions can be reached when trying to
interpret the results of Quantum Mechanical computations in terms of actual testable
phenomena.

These difficulties have led to many controversies among the discoverers and users
of Quantum Mechanics ever since M. Born gave the standard description (6.2) of the
spectral measure associated with a state vector and an observable. One problem can be
stated as follows: to check the validity of Quantum Mechanics, and to ascertain that it
is not merely a mathematical game with arbitrary physical terminology, one must make
experiments; the results of those experiments can only be some numbers (known with
some finite precision, moreover), not a full-fledged Hilbert space with an operator and a
state vector.

If we measure, say, the x-position of a particle, the theory says we will get a number,
and – from the theory described in this chapter – the only thing we can predict is some
distribution of values, which would reveal itself more fully if “identical” measurements
were to be performed many times (this is a form of the “Law of Large Numbers”). One
problem is that, if – almost immediately afterwards – another position measurement is
made, we intuitively expect that the particle should be very close to the “random” position
first measured, independently of the first result. Indeed, experiments do confirm this. But
this must mean that after (or because of) the first measurement, the state vector has been
altered to be, e.g., a wave packet with the spectral measure of the position observable
very close to a Dirac mass located at this random position. To obtain a more complete
theory, it seems necessary then to have a description of the effect of this measurement
process on the state vector. This is somewhat awkward, because there might be many
ways to measure a given observable, and the measuring apparatus is usually much larger
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(i.e., made of a gigantic number of atoms) than the particles being observed, and thus
almost impossible to describe precisely in purely Quantum Mechanical terms.

Another puzzling problem of Quantum Mechanics is that of “entanglement”. This
problem, in a nutshell, is a consequence of the fact that for a system involving more than
one particle, say two of them, denoted P1 and P2, the state vector may be one for which
there is no way to isolate what constitutes the first and the second particle. Consider for
instance systems made of two (otherwise identical) particles on a line; the natural Hilbert
space in the position representation is H = L2(R2) (with Lebesgue measure) with

Q1ψ(x, y) = xψ(x, y), resp. Q2ψ(x, y) = yψ(x, y)

being the observable “position of P1” (resp. “position of P2”).2 If the state vector is of
the type

ψ(x, y) = ψ1(x)ψ2(y),

with ψ1, ψ2 ∈ L2(R), each of norm 1, then the system can easily be interpreted as being
two independent particles. The spectral measure corresponding to Q1 will be the one
corresponding to the position of P1, and that of Q2 will correspond to the position of P2.

But there are many vectors of norm one in H which are not of this simple form, for
instance something like

ψ(x, y) =
1√
2

(ψ1(x)ψ2(y) + ψ̃1(x)ψ̃2(y)),

where ψ1, ψ̃1 are different vectors of norm 1. In such a case, one can not isolate a “state”
of P1 and one of P2 so that the global system (described by ψ) results from putting both
independently together: the two particles are intrinsically entangled.

Such states are very paradoxical from a classical point of view. For instance, the
“position of P1” (as revealed by the spectral measure relative to the observable Q1) might
be like a wave packet located very far from the “position of P2”; but any measurement
which we seem to perform at this position really acts on the whole system of two particles.
Since we have mentioned that some measurements seem to alter the whole state vector,
it follows that in that case some physical operation at one position has some “effect” very
far away...

This type of issues were raised most notably by A. Einstein in the 1930’s and later,
and expressed in forms leading him and his collaborators to the opinion that Quantum
Mechanics (and in particular the insistance on the probabilistic interpretation of M. Born)
is incomplete: a finer theory should exist where position and momentum are well-defined,
but their usual measurements are done by averaging some type of “hidden variables”,
resulting in the distribution of values corresponding to the spectral measure. Einstein’s
playful words in a letter to M. Born in 1926 capture the idea quite well:

“Die Quantenmechanik ist sehr Achtung gebietend. Aber eine innere
Stimme sagt mir, dass das noch nicht der wahre Jakob ist. Die Theorie
liefert viel, aber dem Geheimnis des Alten bringt sie uns kaum näher.
Jedenfalls bin ich überzeugt, dass der Alte nicht würfelt.”

which translates (rather literally) to

“Quantum mechanics is very imposing. But an inner voice tells me, that
this is not yet the real McCoy. The theory provides a lot, but it brings

2 More abstractly, we would interpret H as the “tensor product” of the Hilbert spaces corresponding
to the two particles.
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us little closer to the secrets of the Old Man. At least I am certain, that
the Old Man doesn’t play dice.”

This hypothesis of hidden variables has had varying fortunes since that time – but
all indications available today seem to show they do not exist. There are various mathe-
matical arguments (the first one going back to von Neumann; we will describe one such
below) that indicate that, within the usual framework of Quantum Mechanics, hidden
variables can not exist. But for physicists, of course, this is not sufficient since after all if
a deeper theory were to exist, there is no reason it should be possible to describe it in this
standard framework. However, J. Bell observed in the 1960’s that intuitive assumptions
on the existence of hidden variables lead in some situations to different predictions than
does standard Quantum Mechanics. This led to experimental tests; and all such tests (as
of today) have given results which are consistent with the probabilistic interpretation of
the standard form of Quantum Mechanics.

The author has no competence to go further in describing these impressive facts, and
after all this is a course on spectral theory. But to conclude, we will describe a nice and
simple argument of S. Kochen and E.P. Specker [KS] that shows that hidden variables
can not exist for a certain type of physical observable.

More precisely, they consider the (quantum analogue of) the “angular momentum” of
certain systems; these are intuitively somewhat analogue of the usual angular momentum
of rotating classical bodies, but have the peculiar property that the possible “values”
take only finitely many values. This corresponds to the fact that the corresponding self-
adjoint operators have only finitely many eigenvalues (since the result of any concrete
measurement is an element of the spectrum of the observable, and isolated points in the
spectrum are eigenvalues).

For the Kochen-Specker argument, one of the simplest cases is considered: systems
where the angular momentum can take only the values −1, 0 and 1. However, the angular
momentum can be considered with respect to any direction; for each such direction, the
value may differ, but still it should be in {0,±1}.

Now, crucially, Kochen and Specker consider further systems where it is possible
to measure simultaneously the angular momentum for any choice of three orthogonal
directions x, y, z; in spectral terms, this means that the three corresponding observables
Ax, Ay, Az commute. They do discuss a particuler physical system where this holds (a
certain state of Helium; see bottom of [KS, p. 73]), but from the mathematical point of
view, the consistency of these assumptions is ensured by writing down the following very
simple self-adjoint operators acting on C3:

Ax =
1√
2

1 0 0
0 0 0
0 0 −1

 , Ay =
1√
2

0 1 0
1 0 1
0 1 0


Az =

1√
2

0 −i 0
i 0 −i
0 i 0


One checks easily the commutation relations as well as the fact that the three matrices

have characteristic polynomial T (T 2−1). Moreover, in this case as well as in the physical
case, the “total angular momentum” (which is the observable A = A2

x+A2
y+A2

z) is always
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equal to 2; indeed, one checks the matrix identity

A2
x + A2

y + A2
z =

1 0 0
0 1 0
0 0 1

 .

What this means physically is that, whenever the three angular momenta are mea-
sured simultaneously for a system of this type, leading to three values ax, ay, az in {0,±1},
we must have

a2
x + a2

y + a2
z = 2,

or in other words, the angular momentum must be 1 for two directions, and 0 for the
other.

Here is now the Kochen-Specker argument: if there existed hidden variables hδ de-
scribed a concrete value of all the angular momenta in all directions δ (each being in
{0,±1}), such that the result of any experiment measuring the angular momentum in
the direction δ has as result the corresponding value of hδ, then there must exist a map

KS

{
S2 → {0, 1}
x 7→ h2

x

from the sphere S2 ⊂ R3 (identified with the set of directions in R3, up to identification of
a point and its opposite) to integers 0 or 1, with the property that whenever (x, y, z) ∈ S2

are pairwise orthogonal, two of the components of (KS(x), KS(y), KS(z)) are 1 and one
is zero, for all choices of (x, y, z). But we have the following elegant result:

Proposition 6.16 (Kochen-Specker). There is no map S2 f−→ {0, 1} with the prop-
erty that (f(x), f(y), f(z)) always has two components equal to 1 and one equal to 0 for
any triplet (x, y, z) of pairwise orthogonal vectors.

Proof. One can, in fact, already show that there are finite subsets S of S2 for which
no map f : S → {0, 1} satisfies the required condition. Kochen and Specker do this for
a (somewhat complicated) set of 117 (explicit) directions. A. Peres found a much simpler
and more symmetric set of 33 directions (see [CK, Figure 1]). Although such a proof
is in fact much better as far as the physical interpretation is concerned (being indeed
susceptible to a complete test), we give a proof due to R. Friedberg (see [J, p. 324])
which is more conceptual but involves potentially infinitely many tests.

The idea of the proof is of course to use contradiction, so we assume f to have the
stated property. We will exploit the following fact: if we can show that there exists
θ > 0 such that, whenever two directions x, y ∈ S2 form an angle θ, we have h(y) = 0 if
h(x) = 0, then it would follow that h(x) = 0 for all x, a contradiction. Indeed, the point
is that for any fixed direction x0, chosen so that h(x0) = 0, and any other direction y, we
can find finitely many directions

x0, x1, . . . , xm = y

where the angle between xi and xi+1 is always equal to θ; thus h(xi) = 0 by induction
from h(x0) = 0, leading to h(y) = 0.

So the goal is to construct the required θ. First consider a triplet (x, y, z) of pairwise
orthogonal directions; observe that

(
1√
2

(x+ y),
1√
2

(x− y), z)
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are also pairwise orthogonal, and so are

(
1√
2

(x+ z),
1√
2

(x− z), y).

From the properties of f , we deduce that it is not possible that

h(w) = 1 for w =
1√
2

(x± y), w =
1√
2

(x± z);

indeed, if that were so, the two triples would allow us to conclude that h(y) = h(z) = 0,
contradicting the pairwise orthogonality of (x, y, z).

Now we look again at the four directions

1√
2

(x± y),
1√
2

(x± z);

each of them is orthogonal to one of

w1 =
1√
3

(x+ y + z), w2 =
1√
3

(−x+ y + z);

this implies that one of h(w1) and h(w2) is equal to 1, since otherwise we would obtain
that the four directions w have h(w) = 1, which we already disproved.

Because the choice of (x, y, z) was arbitrary, it follows immediately that the angle θ1

between the two directions w1 and w2 has the property that for any two directions d1, d2

with angle θ1, it is not possible that h(d1) = h(d2) = 0.
Now we are almost done; let θ = π/2− θ1, and fix x and y with angle equal to θ, and

with h(x) = 0. Let z be such that z is perpendicular to the plane spanned by x and y.
We can moreover find w in this plane, perpendicular to y, such that the angle between
w and x is θ1. Since h(x) = 0, we have h(z) = 1 (using a third vector to complete
the perpendicular vectors (x, z)). Because of the angle between w and x, we also have
h(w) = 1. Thus the triple (w, y, z) implies that h(y) = 0.

w

y

x

z

ϑ

ϑ1

Figure 6.3. The last draw
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This shows the existence of the angle θ claimed at the beginning of the proof, and
concludes it... �

Since experimental evidence is entirely on the side of the measurements of angular mo-
mentum satisfying the condition predicted by Quantum Mechanics, the Kochen-Specker
argument leaves little room for the possibility of a purely deterministic refinement of it.
Recently, Conway and Kochen have combined this construction with the entanglement
(thought) experiments suggested by Einstein, Podolsky and Rosen to obtain a result they
call the “Free Will theorem” which they interpret as saying that the behavior of particles
obeying the conditions of the Kochen-Specker argument can not be predicted at all from
earlier information about the state of the Universe (see [CK]). They even suggest that
this “Free Will” property may, ultimately, play a role in the Free Will of human beings...
Such a remarkable conclusion seems the best time to end this course!3

3 Except for a footnote: J. Conway describes the Free Will theorem and its consequences and inter-
pretations in a series of lectures available on video at http://www.princeton.edu/WebMedia/flash/

lectures/2009_03_04_conway_free_will.shtml.
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