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A famous result of Matthews, Vaserstein and Weisfeiler [MVW] states that, given an almost
simple simply-connected algebraic group G/Z (e.g., G = SL(n) or G = Sp(2g), the symplectic
group of size 2g) and a Zariski-dense subgroup Γ ⊂ G(Z), the induced reduction map

Γ→ G(Fp)

is onto for all sufficiently large primes p, the bound depending of course on Γ. This applies in
particular to G(Z) itself and to congruence subgroups (matrices congruent to identity modulo
some integer, for instance), and even this special case is not particularly easy to prove directly.

A natural question which is not answered by the proof of Matthews, Vaserstein and Weisfeiler
(which uses the classification of finite simple groups) nor by the alternate argument of Hrushovsky
and Pillay [HP] (based on ultrafilters and methods of model theory) is to quantify this result, i.e.,
to specify a p0(Γ) such that the reduction map is onto for all p > p0(Γ). This question seems quite
subtle: it is not even clear what “simpler” invariants of Γ could be used to express an hypothetical
bound for p0(Γ). (C. Hall has observed that p0(Γ) could probably be estimated using the related
bound p1(Γ) defined as the smallest prime for which Γ acts irreducibly or semisimply modulo p for
primes p > p1(Γ), after choosing a faithful irreducible representation G→ GL(V )).

In this simple note, we show that the sieve results developed in [K] together with results of
Kantor and Lubotzky easily give some results that suggest that p0(Γ) should be usually pretty
small.

More precisely, consider for simplicity the following setting: n > 2 is fixed, S is a fixed finite
symmetric generating set of SL(n,Z), and Xk (resp. Yk) is a random walk on SL(n,Z) defined
by X0 = 1, Xk+1 = Xkξk+1 (resp. Y0 = 1, Yk+1 = Ykξ

′
k+1), where the ξk and ξ′k are uniformly

distributed in S. Assume that the double vector (ξk, ξ′k)k>1 is jointly independent, so that (Xk) and
(Yk) are independent random walks. For each k > 1, we consider the subgroup Γk = 〈Xk, Yk〉 ⊂
SL(n,Z) generated by Xk and Yk. It is not necessarily the case that Γk is Zariski-dense, but failing
to do so should only increase the probability that the image of Γk by reduction modulo p is a proper
subgroup.

However, defining
p2(Γ) = min{p > 2 | Γ→ PSL(n,Fp) is onto}

for an arbitrary Γ ⊂ SL(n,Z), we prove:

Proposition 1. Let n, S and (Xk, Yk) be as above, and assume that 1 ∈ S in the case n = 2. For
an arbitrary increasing function ψ(k) defined for k > 1 such that

lim
k→+∞

ψ(k) = +∞,

we have
lim

k→+∞
P (p2(Γk) > ψ(k)) = 0.

Note that we obviously have

p0(Γ) > p2(Γ), p0(Γ) > p1(Γ).

On the other hand, the discrepancy between SL(n,Fp) and PSL(n,Fp) is not significant and
the latter is used merely to simplify the arguments.
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Proof. Let G = SL(n). We are going to apply the sieve for random walks in discrete groups
developed in [K] with the following data: the sieve setting is

(G×G, {primes}, G×G→ G(Fp)×G(Fp)),

the siftable set is the probability space Ω underlying (Xk, Yk) and the map F : Ω → G × G is
simply (Xk, Yk). It is easily checked that Property (τ) holds for the requisite subgroups of G×G
with the same (τ)-constant as for G itself: there exists ε > 0 such that for any finite-dimensional
unitary representation

G×G ρ−→ GL(V )
such that ρ is trivial on G(Z/qZ)2 for some integer q > 1, and ρ has no non-zero invariant vector,
we have

(1) max
(s,t)∈S×S

‖π(s, t)v − v‖ > ε‖v‖

for any non-zero v ∈ V (this in fact holds with maximum over the smaller generating set S(2) =
(S × {1}) ∪ ({1} × S) of G(Z)×G(Z)).

Now let L > 2 fix any choice of proper subsets Ω` ⊂ G(F`)×G(F`) for primes ` 6 L; define

H =
∑
`6L

|Ω`|
|G(F`)|2 − |Ω`|

,

the sum over ` ranging over primes. The outcome of the group sieve procedure of [K, 3.2] in this
context, with the sieve support consisting of primes ` 6 L, is that

P ((Xk, Yk) (mod `) /∈ Ω`, for ` 6 L) 6 (1 + L2n2
exp(−ck))H−1

for any L > 2 for some constant c > 0 depending essentially on n and the constant ε in (1) (see
the proofs of [K, Th. 7.4] and [K, Prop. 7.2]). 1 Note that for n = 2, the condition 1 ∈ S is used
to avoid parity problems (see [K, Prop. 7.8]).

We select Ω` to be the set of those (x, y) ∈ G(F`)2 such that the images of x and y in PSL(n,F`)
generate PSL(n,F`). Clearly, the condition p2(Γk) > L is equivalent with (Xk, Yk) (mod `) not
lying in Ω` for all ` 6 L, and hence

P (p2(Γk) > L) 6 ∆H−1

with H computed for those Ω`.
Now a result of Kantor and Lubotzky [KL, Rem. at end of §2] shows that

|Ω`|
|G(F`)|2

> 1− C(log `)2

`n−1
,

for all ` > 2, where the constant C > 0 depends on n. Hence we have

∆ >
∑
`6L

`n−1

C(log `)2
(

1− C(log `)2

`n−1

)
� Ln

(logL)3

for L > 2, the implied constant depending only on n.
Next we observe that the conclusion of the proposition is stronger when ψ is smaller, so we may

replace ψ(k) with min(ψ(k), exp( c2kn
−2)) and prove the result for this smaller function, which is

still increasing and unbounded. We then take L = ψ(k) in the sieve estimate and derive

P (p2(Γk) > ψ(k)) 6 2H−1 � (logψ(k))3ψ(k)−n,

and the result follows. �

1 The exponent of L is weaker than what can be done, but chosen for simplicity.
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Remark 2. Note that Kantor and Lubotzky use the classification of finite simple groups (see [KL,
p. 69]); it is necessary in particular to know that there are few simple groups of a given order (the
classification implies there are at most 2, and [LS, Window 2, §7] gives more information about
what is known independently of the classification). Moreover, their paper extends the result to
classical groups over finite fields, and further work has generalized this to all finite groups of Lie
type. With Clozel’s solution of Conjecture (τ), this means Proposition 1 should extend to all almost
simple groups at least, possibly by assuming 1 ∈ S to avoid periodicity issues.

Remark 3. What we have here, in effect, is a “very large” sieve, in the classical terminology: the
number of excluded residue classes is extremely large. When sieving integers, there is a clever
and fairly simple sieve due to Gallagher (the “larger sieve”) which leads to very strong bounds in
such setting. However, it seems difficult to adapt it to more general contexts, and moreover when
such extensions are possible, it turns out that it is the number of excluded classes, rather than the
density, which matters, and the complements of our Ω`, though their densitty is very small, are not
that small in terms of cardinality.

Remark 4. The overall structure is vaguely reminiscent of Duke’s result that states that for most
elliptic curves E/Q, the Galois action on torsion points is onto GL(2,F`) for all primes `. There,
apart from the sieve, a crucial ingredient is a strong result of Masser and Wüstholz that can be
used to show that a prime where the action is not as large as possible is bounded polynomially in
terms of the discriminant of the curve – in other words, the analogue of p0 is already bounded.

Remark 5. One can do some numerics about this, for instance using Magma, which can compute
the subgroup of GL(n,F`) generated by a list of elements. The two natural numerical experiments
are (1) to fix k and sample many random walks of length k, checking then for each one which
reductions modulo primes in a given list are onto; (2) to go along one random walk, and at each
step, to find the first p for which the reduction is onto. The results are quite boring: in all but
incredibly few cases, there is surjection!
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