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Abstract. We survey our recent works concerning applications to analytic number
theory of trace functions of `-adic sheaves over finite fields.

1. Motivation

We begin by describing one of the motivating problems for our paper [7]. This concerns
an equidistribution statement in the upper half-plane H of complex numbers with positive
imaginary parts, or more precisely in the domain

F = {z ∈ H | |Re(z)| 6 1/2, |z| > 1} ⊂ H.

This closed subset of H is well-known to be a fundamental domain for the action of
the modular group SL2(Z) by homographies on H, i.e., the restriction to SL2(R) of the
SL2(R)-action given by

(1.1)

(
a b
c d

)
· z =

az + b

cz + d

for any

(
a b
c d

)
∈ SL2(R) (see Figure 1.)

This means that, for any z ∈ H, there exists some element γ ∈ SL2(Z) such that
γ · z ∈ F , and in fact γ is usually unique (it is unique if γ · z is in the interior of F ).
Consider in particular a prime number p, and the p points

z0 =
i

p
, z1 =

1 + i

p
, . . . , zp−1 =

p− 1 + i

p
,

in H. There are corresponding points w0, . . . , wp−1 in F , each equivalent to the respective
point zj under the action of SL2(Z). Where are these points? Experiments quickly show
that, as p increases, the points tend to range all over F . Indeed, one can prove that they
become equidistributed as p→ +∞, with respect to the probability measure

dµ =
3

π

dxdy

y2

on F (one checks indeed that µ(F ) = 1), which is a natural measure here because it is
SL2(R)-invariant: µ(g−1(A)) = µ(A) for any g ∈ SL2(R) and any measurable set A ⊂ H.
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Figure 1. The leaning fundamental domain of Pisa

This equidistribution property means that

lim
p→+∞

1

p

p−1∑
j=0

ϕ
(j + w

p

)
=

∫
F

ϕ(z)dµ(z),

for any fixed w ∈ H (the case above being w = i) and for all continuous functions with
compact support ϕ on H which are SL2(Z)-invariant: ϕ(γ · z) = ϕ(z) for all z ∈ H.

In particular, in the spirit of Buffon’s original needle problem, the following game is
fair : for a large prime p, and a “random” integer 0 6 j 6 p− 1, Players A and B take a
bet as to whether the imaginary part of the corresponding wj is > 6/π or not. (Indeed,
the measure of the subset

F1 =
{
z ∈ F | Im(z) >

6

π

}
⊂ F

is easily computed to be 1/2; thus, more precisely, the game is only fair in the limit when
p→ +∞.)

One picturesque question which our work can address in this context, is the following:
can one player gain an edge in this game by selecting her bet according to some algebraic
property of j modulo p, for instance by determining if j is of the form f(n) modulo p for
some fixed polynomial f ∈ Z[X] and n ∈ Z/pZ, and selecting her bet based on this value?
As we will explain, this is not possible, at least asymptotically if p tends to infinity.

The key to solving this problem turns out to involve an intricate combination of meth-
ods of analytic number theory and concepts and results of algebraic geometry over finite
fields. More precisely, the crucial notion is that of trace functions over a finite field k,
which are certain complex-valued functions k −→ C which have very strong algebraic
features. Most importantly, and as the critical ingredient in most of our applications,
these functions satisfy a form of quasi-orthogonality, that follows from a very general form
of the Riemann Hypothesis for algebraic varieties over finite fields, due to Deligne [4].

In the motivating problem, these functions can be seen to arise naturally. Suppose
f ∈ Z[X] is a fixed non-constant polynomial, and we wish to show that there is no gain
in the game that may be derived by betting that the point wj is in F1 if and only if j
is a value of f , i.e., if and only if j = f(n) for some n ∈ Z/pZ. If we denote by ξp the
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function defined for 0 6 j 6 p − 1 as the characteristic function of the set f(Z/pZ) of
values of f , and by ϕ1 the characteristic function of F1, this fairness property amounts
to showing that

1

p

(p−1∑
j=0

ξp(j)ϕ1(wj) +

p−1∑
j=0

(1− ξp(j))(1− ϕ1(wj))
)
−→ 1

2

as p → +∞ (since the left-hand side is the proportion of success when betting that
wj ∈ F1 using the strategy we described). What we actually show is that if

δp =
1

p

p−1∑
j=0

ξp(j)

is the average value of ξp, then

1

p

p−1∑
j=0

(ξp(j)− δp)ϕ1(wj) −→ 0,

1

p

p−1∑
j=0

((1− ξp(j))− (1− δp))(1− ϕ1(wj)) −→ 0,

from which the limit of the sum above is

lim
p→+∞

1

p

p−1∑
j=0

ϕ1(wj),

which converges to 1/2 because the set F1 was chosen so that the original game is fair.
These ideas, and the techniques we developed, have many other applications than the

one we have described above, and we will survey, sometimes briefly, most of our main
results.

More generally, we prove (considering only the first limit above, the second being just
a variant) that

(1.2)
1

p

p−1∑
j=0

(ξp(j)− δp)ϕ
(j + i

p

)
−→ 0

for all continuous and compactly supported functions ϕ on H. A standard limiting pro-
cedure then extends the result to the characteristic function of F1. Now, according to the
well-known Weyl criterion, we may limit our attention to certain well-chosen functions.
There is a standard choice of such functions in our case, which consists of the square-
integrable eigenfunctions ϕ of the hyperbolic Laplace operator, together with certain other
functions which we will not discuss further (which arise due to the non-compactness of
F ). The eigenfunctions ϕ are analogues of the eigenfunctions of the standard Laplace
operator −d2/dx2 for periodic functions on R/Z, namely the exponentials x 7→ e(hx) for
h ∈ Z, where we denote e(z) = e2iπz. They have an expansion

ϕ(z) =
∑

m∈Z−{0}

λϕ(m)Wϕ(2π|m|y)e(mx),

where Wϕ is a certain Whittaker-Bessel function (depending only on the eigenvalue of
ϕ for the hyperbolic Laplace operator) and the Fourier coefficients λϕ(m) are complex
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numbers. Now observe that the left-hand side of (1.2) becomes

(1.3)
∑
m6=0

λϕ(m)Kp(m)Wϕ

(2π|m|
p

)
where

(1.4) Kp(m) =
1

p

p−1∑
j=0

(ξp(j)− δp)e
(mj
p

)
.

This function K is naturally defined on Z/pZ, and its values on {0, . . . , p − 1} are
obtained by reduction modulo p. We consider it to be of algebraic nature because it is
a discrete Fourier transform modulo p of the function ξp − δp, which has an algebraic
definition in terms of the polynomial f . We have in fact proved in [7] that the limiting
formula

(1.5)
1

p

∑
m 6=0

λϕ(m)Kp(m)V (m) −→ 0

holds as p −→ +∞, for much more general cases of trace functions Kp and more general
“nice” weight functions V (m) than V (m) = Wϕ(2π|m|/p). This solves the fairness ques-
tion we used as a motivation, and in fact it is a much more general and widely applicable
result.

The outline of the remainder of this survey is the following. In the next section,
we define rigorously trace functions; there appears then a crucial definition for analytic
applications, that of the conductor of a trace function, which measures its complexity, in
such a way that uniformity with respect to p may be considered. These definitions are
illustrated in Section 3 with many examples. We next discuss the crucial, extremely deep
and extremely powerful quasi-orthogonality property, which follows from the Riemann
Hypothesis over finite fields, and how we use it in [7] and [8]. The last section discusses
another, very concrete, application to the distribution of certain arithmetic functions in
arithmetic progressions to large moduli, following [9].

We do not discuss some other papers, contenting ourselves with the following short
indications: (1) in [10], we show that trace functions are “Gowers-uniform to all order”,
unless they have a very special shape, providing in particular the first explicit examples
of functions on Z/pZ with Gowers norms as small as those of “random” functions; (2)
in [11], we use ideas of spherical codes to (roughly) bound from above the number of trace
functions modulo p with bounded conductor; (3) in [12], we introduce a new method to
estimate short exponential sums modulo primes, of length very close to

√
p, and obtain

improvements for trace functions of the classical Polyá-Vinogradov bound.

Acknowledgments. We warmly thank U. Zannier for inviting one of us to present
these results as a de Giorgi Colloquium at the Scuola Normale Superiore di Pisa and
giving us the opportunity to present a written account of our work. We also thank F.
Jouve and R. Cluckers for comments on this text.

1.1. Notation. We recall here some basic notation.
– The letters p will always refer to a prime number; for a prime p, we write Fp for the
finite field Z/pZ. For a set X, |X| is its cardinality, a non-negative integer or +∞.
– The Landau and Vinogradov notation f = O(g) and f � g are synonymous, and
f(x) = O(g(x)) for all x ∈ D means that there exists an “implied” constant C > 0
(which may be a function of other parameters) such that |f(x)| 6 Cg(x) for all x ∈ D.
This definition differs from that of N. Bourbaki [2, Chap. V] since the latter is of
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topological nature. We write f � g if f � g and g � f . On the other hand, the notation
f(x) ∼ g(x) and f = o(g) are used with the asymptotic meaning of loc. cit.

2. Trace functions: definition

We present in this section the definition of trace functions over a finite field Fp, and of
the invariant which measures their complexity. This definition can, in fact, be presented
from three different points of view: using automorphic forms (over Fp(T )), using Galois
representations (of the Galois group of Fp(T )), or using étale sheaf theory. We use here
the second because it is the most elementary, but the last is in fact the most convenient
in many respects because it leads to the most flexible formalism, as we will describe. In
order to be consistent with the terminology of our papers, we will use the language of
sheaves after this section.

It is at least equally important to know the most common examples of trace functions,
and for many applications to analytic number theory, one can in fact view trace functions
as a kind of black box, building on the known very concrete examples and on the formalism
these functions satisfy, especially the deep quasi-orthogonality property that encapsulates
the Riemann Hypothesis over finite fields, as discussed in Section 4. In particular, readers
who find the following definitions rather too abstract can just go through them very
quickly, and concentrate their attention on the examples in the next section.

Let p be a fixed prime. We must first fix a different prime ` 6= p, which plays an
auxiliary role, and fix an isomorphism (of fields)

ι : Q̄` −→ C

between a given algebraic closure of the field of `-adic numbers and the field of complex
numbers. In fact, we will mostly view this isomorphism as an algebraic identification, so
that the reader may view Q̄` as just another name for C; the main difference between
the two, which is very important for the theory, is their different topological nature.

Let K = Fp(T ) be the field of rational functions with coefficients in Fp, and let K̄
denote a separable closure of K (in which an algebraic closure F̄p of Fp is contained);
elements of K̄ can therefore be interpreted as “algebraic functions” on the projective line
P1(F̄p), such as

√
f(X) where f ∈ Fp[X] is a polynomial.

We let Π denote the Galois group of K̄ over K. This groups contains a normal subgroup
Πg defined as the Galois group of K̄ over the subfield K̃ = F̄p(T ), and the quotient Π/Πg is
naturally isomorphic to the Galois group of F̄p over Fp, which is (topologically) generated
by the arithmetic Frobenius automorphism x 7→ xp, or by its inverse, which is called the
geometric Frobenius automorphism.

Definition 2.1 (`-adic representation). An `-adic Galois representation % over Fp is a
continuous group homomorphism

% : Π −→ GL(V ),

for some finite-dimensional Q̄`-vector space V , such that, for all but finitely many x ∈
P1(F̄p), the inertia group Ix at x is contained in the kernel of %.

The dimension of V is called the rank of %, and the set of x ∈ P1(F̄p) where Ix does
not act trivially is called the set of singularities, or the set of ramification points, of %,
and is denoted Sing(%). One also says that % is lisse at x ∈ P1(F̄p) if Ix acts trivially on
V .

We also say that % is a middle-extension `-adic sheaf modulo p, or sometimes just
`-adic sheaf. When using this language, we usually use curly letters, such as F, instead
of %.
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In this definition, as in classical algebraic number theory, the inertia group Ix is defined
as the normal subgroup of the decomposition group

Dx = {γ ∈ Π | γ(f(x)) = 0 for all f ∈ K̄ such that f(x) = 0}

characterized by the condition

Ix = {γ ∈ Dx | γ(f(x)) = f(x) for all f ∈ K̄}.

These definitions make sense, because we can view an algebraic function f ∈ K̄ as a
“multi-valued function” on P1(F̄p): although f(x) is not uniquely defined, all possible
values are conjugates under the Galois group of F̄p/Fp, and the conditions defining Dx

and Ix are invariant under this action (we also use the fact that γ also acts on F̄p ⊂ K̄).
It is immediately clear that this definition gives a relatively flexible formalism: we can

form direct sums %1 ⊕ %2, tensor products %1 ⊗ %2, dual D(%), of Galois representations,
and we can define subrepresentations, quotient representations, and morphisms of repre-
sentations (and therefore we can speak of isomorphic representations, or equivalently of
isomorphic middle-extension sheaves).

For us, the point of this definition is that to each `-adic representation % is naturally
attached a function Fp −→ C, which is called its trace function. From the representation
theory point of view, it is just the restriction of the character Tr % of the representation
to special (conjugacy classes of) elements in Π.

Definition 2.2 (Trace function). Let % be an `-adic Galois representation over Fp. The
trace function of % is the function

t% : Fp −→ C

defined by

t%(x) = ι
(

Tr(%(σx | V Ix))
)
,

for x ∈ Fp, where σx denotes the conjugacy class of the geometric Frobenius automor-
phism at x, which generates topologically the quotient Dx/Ix ' Gal(F̄p/Fp) and V Ix

denotes the subspace of V invariant under the action of Ix, on which Dx/Ix acts natu-
rally, while Tr(g | W ) denotes the trace of an endomorphism g acting on a vector space
W .

We have

t%1⊕%2 = t%1 + t%2

and

t%1⊗%2(x) = t%1(x)t%2(x)

for all x such that Ix acts trivially on %1 and %2 (at least).
In particular, the set of trace functions of `-adic representations modulo p is closed

under addition, and “almost” closed under products.
This set is infinite, and although not every function is of this form, it is dense for the

uniform norm on functions modulo p. This implies that very few interesting analytic
statements can be expected to hold for all trace functions. However, in applications, the
trace functions that arise have two extra properties which rigidify the situation. Together,
they explain the versatility and power of trace functions in analytic number theory.

The first condition is a restriction on the eigenvalues of the action of the Frobenius
automorphisms on V .

6



Definition 2.3 (Weight 0 representation). An `-adic representation % modulo p, acting
on V , is pointwise of weight 0 if and only if the following condition holds:

For all finite extensions k/Fp and all x ∈ P1(k) such that Ix acts trivially on V , the
eigenvalues of %(σx) are algebraic numbers α such that all Galois conjugates of α have
modulus 1.

In fact, it follows from non-trivial results of Deligne that one need only check the
condition for x in the complement U of a finite set of points of P1(F̄p) such that % is lisse
at every point in U , and also that if % is not lisse at x ∈ P1(k) for some finite extension
k/Fp, it nevertheless satisfies the condition that there exists an integer w 6 0 such that
the eigenvalues of %(σx) are algebraic numbers α such that all Galois conjugates of α have
modulus qw (in particular, have modulus 6 1).

Note that if %, %1 and %2 are of weight 0, then so are %1 ⊕ %2 and %1 ⊗ %2, and the
dual of %, as well as any subrepresentation or quotient representation of %. Furthermore,
one can show that the trace function of the dual of a weight zero representation % is the
complex conjugate of the trace function of % (which is easy at all unramified points, and
the point is that it is also true for the possible ramified points, by a result of Gabber.)

A simple and immediate consequence of the definition is that the trace function of a
representation of weight 0 satisfies

|t%(x)| 6 dim(V )

for all x ∈ Fp. This is a first indication of how one can control the complexity of the
trace function of an `-adic representation.

Definition 2.4 (Trace function modulo p). Let p be a prime number. A trace function
modulo p is a function t : Fp −→ C such that t = tF for some `-adic middle-extension
sheaf F of weight 0.

Note that (as we will clearly see below) the sheaf F is not unique. However, it is unique
if one restricts one’s attention to representations with small complexity, in the sense that
the conductor, which we now define, is small enough compared with p. This definition is
absolutely essential for all analytic applications.

Definition 2.5 (Conductor). Let % : Π −→ GL(V ) be an `-adic representation modulo
p of weight 0. The conductor of % is

c(%) = dim(V ) + | Sing(%)|+
∑

x∈Sing(%)

Swanx(%),

where for a ramified point x ∈ P1(F̄p), we denote by Swanx(%) the Swan conductor of %
at x.

The precise definition of the Swan conductor, which measures fine properties of the
representation % at a ramified point, can be found for instance in [19, Ch. 1]. It is a
rather subtle invariant, and we will mostly attempt to illustrate its meaning and properties
with examples. For the moment, we will only mention that Swanx(%) is a non-negative
integer. When Swanx(%) = 0, one says that % is tamely ramified at x. In a number of
important cases, % is tamely ramified at all x ∈ Sing(%), in which case one says that %
itself is tamely ramified.

Finally, we remark that this definition of trace functions is not sufficient for certain
constructions and applications, where slightly more general objects (constructible `-adic
sheaves) appear more naturally (see for instance [13]).
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3. Trace functions: examples

The examples in this section are not only concrete examples of functions modulo p
which are trace functions, but also examples of operations which may be performed on
trace functions and lead to other trace functions. In all cases, it is very important to
understand at least an upper-bound for the conductor of the associated `-adic sheaves
(or representations).

3.1. Characters. The simplest examples of trace functions are character values, involv-
ing either additive or multiplicative characters, or a product of them. Specifically, let p
be a prime, and let

ψ : Fp −→ C×

be a non-trivial additive character (for instance, ψ(x) = e(x/p) for x ∈ Fp). Fix a rational
function f ∈ Fp(X), which has no pole of order divisible by p, and define

t(x) =

e
(
f(x)

p

)
if x is not a pole of f

0 otherwise.

Then one can show that there exists an `-adic middle-extension sheaf modulo p, denoted
Lψ(f), such that t is the trace function of Lψ(f). Indeed, in contrast with most other
examples we will discuss, this construction is elementary (see, e.g., [18, §11.11] for a
discussion). A sheaf of the form Lψ(f) is called an Artin-Schreier sheaf.

This sheaf is of rank 1 and ramified precisely at the poles of f (this applies also to
the possible ramification at∞, and uses the assumption that no pole is of order divisible
by p). It has weight 0 (the image under ι of the only eigenvalue of Frobenius at any
unramified x ∈ P1(Fp) is ψ(f(x))). As for the Swan conductors, if x ∈ P1(F̄p) is a pole
of f , then one shows that Swanx(Lψ(f)) is at most equal to the order of the pole at x,
and that there is equality at least if the pole is of order < p. Hence, if f2 ∈ Fp[X] is the
denominator of f , we have

c(Lψ(f)) 6 1 + 2 deg(f2).

In particular, suppose we take now a rational function f ∈ Q(X), and we write f = f1/f2

with fi ∈ Z[X]. For all primes p large enough, we may reduce f modulo p to consider
f1/f2 ∈ Fp(X). For each such p, we can form the corresponding sheaf Lψ(f) modulo p,
and what is essential is that the conductor of these sheaves is bounded by a constant
depending only on f , and not on the prime p.

Similarly, let χ : F×p −→ C× be a non-trivial multiplicative character, which can be
seen as a Dirichlet character modulo p. Let d > 2 be the order of χ. Fix a rational
function f ∈ Fp(X) such that f has no pole or zero of order divisible by d, and define

t(x) =

{
χ(f(x)) if x is not a zero or pole of f

0 otherwise.

Then one can show (again, elementarily) that there exists an `-adic middle-extension
sheaf modulo p, denoted Lχ(f), such that t is equal to the trace function of Lχ(f) (through
ι). Such sheaves are called Kummer sheaves.

This representation is of rank 1 and ramified precisely at the zeros and poles of f (in
P1(F̄p)). It has weight 0, the only (image under ι of an) eigenvalue of Frobenius at any
unramified x ∈ P1(Fp) being equal to χ(f(x)). Furthermore, it is tamely ramified. Thus

c(Lχ(f)) 6 1 + deg(f1) + deg(f2)
8



if f = f1/f2 with fi ∈ Fp[X] coprime. As before, if we obtain f by reduction modulo p
from a fixed rational function with rational coefficients, this family of sheaves indexed by
p has conductor bounded independently of p.

One can combine these examples by tensor product, which amounts to multiplying
the trace functions: if χ1, . . . , χr are finitely many distinct non-trivial multiplicative
characters, and f1, . . . , fr+1 are rational functions in Fp(X), the middle-extension sheaf

% = Lχ1(f1) ⊗ · · · ⊗ Lχr(fr) ⊗ Lψ(fr+1)

has rank 1, weight 0, and it is unramified1 at least outside of the union of the poles of
fr+1 and the zeros and poles of f1, . . . , fr, it has trace function

t%(x) = χ1(f1) · · ·χr(fr)e
(fr+1(x)

p

)
for all unramified x ∈ Fp, and has conductor

c(%) 6 1 +
r∑
i=1

(deg(gi) + deg(hi)) + deg(hr+1),

where fi = gi/hi with gi, hi ∈ Fp[X] coprime.

Example 3.1. If we take f(X) = Xp − X ∈ Fp[X], the trace function associated to
Lχ(f), for χ non-trivial, satisfies

tLχ(f)
(x) = χ(xp − x) = 0

for all x ∈ Fp. Thus, for any trace function t associated to a sheaf F, we also have

t = tF⊕Lχ(f)
,

illustrating the non-uniqueness of F. Note however that this second sheaf has huge
conductor in terms of p:

c(F ⊕ Lχ(f)) > p.

3.2. Point-counting functions. The second class of examples is also relatively elemen-
tary. We consider a non-constant squarefree polynomial f ∈ Fp[X], and for x ∈ Fp, we
denote

nf (x) = |{y ∈ Fp | f(y) = x}|,
the number of pre-images of x in the field Fp. In particular, nf (x) = 0 if x is not of
the form x = f(y) for some y ∈ Fp. One can then construct an `-adic middle-extension
sheaf Ff such that tFf (x) = nf (x) for all x ∈ Fp. (Indeed, if K = Fp(f(X)), we
have a Galois extension Fp(X)/Fp(f(X)), and since Fp(f(X)) is isomorphic to Fp(X),
this gives a homomorphism Gal(K̄/K) −→ Gal(K̄/K) with image Πf of finite index in
Π = Gal(K̄/K); then the representation %f which “is” Ff can be defined as the induced
representation IndΠ

Πf
(Q̄`).)

Because the induced representation always contains a copy 1 of the trivial representa-
tion, it is often convenient to consider F′f = Ff/1, which has trace function

n0
f (x) = tF′f (x) = nf (x)− 1.

The point (for applications) is that 1 is the average value of nf (x), so we have∑
x∈Fp

n0
f (x) =

∑
x∈Fp

nf (x)− p =
∑
x∈Fp

∑
y∈Fp
f(y)=x

1− p =
∑
y∈Fp

1− p = 0.

1 Depending on the χi and fi, it might be unramified at some extra points.
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The representation F′f has rank deg(f) − 1. It has weight 0, and it is unramified at

all x ∈ P1(F̄p) such that the pre-image f−1(x) ⊂ P1(F̄p) (with coefficients in F̄p now)
consists of deg(f) different points, or in other words, at all regular values of f (where a
regular value is one which is not a critical value, and a critical value is the image of a
critical point y ∈ F̄p, i.e., of a root of f ′).

If p > deg(f), it is known that Ff and F′f are tamely ramified. In particular, for
deg(f) > 2 (so that F′f is non-zero), we have

c(F′f ) 6 deg(f)− 1 + deg(f)− 1 = 2 deg(f)− 2.

The trace function of Ff counts the number of solutions in Fp of the equation f(y) = x,
and therefore it is supported on the subset f(Fp) ⊂ Fp. In our motivating problem in
Section 1, on the other hand, we considered the function ξp which is the characteristic
function of this set. This is also related to trace functions of `-adic sheaves, although it is
not quite one. Rather, one shows (the construction is again elementary, see [8, Prop. 6.7])
that if deg(f) > p, there exist middle-extension sheaves Ff,i, 1 6 i 6 m 6 deg(f), all
geometrically non-trivial, pointwise pure of weight 0 and tamely ramified, and algebraic
numbers c0, ci for 1 6 i 6 m, such that

(3.1) ξp(x) = c0 +
m∑
i=1

citFf,i(x)

for all x ∈ Fp − S, where S ⊂ Fp is a finite set of cardinality 6 deg(f). Moreover, the
parameters m, |ci|, c(Ff,i) which measure the complexity of this decomposition are all
bounded in terms of deg(f), and

c0 =
|f(Fp)|
p

+O(p−1/2),

where the implied constant depends only on deg(f).

Remark 3.2. If f = X2 + a, then (for all odd primes p) the trace functions nf (x) and
n0
f (x) are given by

nf (x) = 1 +
(x− a

p

)
, n0

f (x) =
(x− a

p

)
,

where
(
·
p

)
is the Legendre symbol, while ξp is given by

ξp(x) =
1

2

(
1 +

(x− a
p

))
,

for x 6= a, and ξp(a) = 1. Thus we have

Ff = 1⊕ L(X−a
p

), F′f = L(X−a
p

).
The general decomposition is therefore a (non-obvious) generalization of this fact.

3.3. Exponential sums. Our next example may seem very specialized, but it plays a
critical role in many deep results in analytic number theory. Let ψ be the non-trivial
additive character ψ modulo p given by ψ(x) = e(x/p) (note that this depends on p).
For an integer n > 1, we consider the (normalized) hyper-Kloosterman sums Kln(x; p)
defined by

Kln(x; p) =
(−1)n−1

p(n−1)/2

∑
· · ·
∑

y1,...,yn∈F×p
y1···yn=x

ψ(y1 + · · ·+ yn)

10



for x ∈ F×p . For instance we have Kl1(x; p) = e(x/p)

Kl2(x; p) = − 1
√
p

∑
y∈F×p

e
(xy + ȳ

p

)
,

which is the classical Kloosterman sum with parameter x. It is now a highly non-trivial
fact that there exists an `-adic middle-extension sheaf K`n modulo p, called a Kloosterman
sheaf such that

tK`n(x) = Kln(x; p)

for x ∈ F×p . In fact, as far as we are aware, there is no proof of the existence of this
representation directly in the framework of Galois representations: one must construct it
as an `-adic sheaf (a construction due to Deligne, and extensively studied by Katz [19],
which was recently generalized by Heinloth, Ngô and Yun [17]).

Among the results of Deligne and Katz concerning Kloosterman sheaves are the fol-
lowing: K`n is geometrically irreducible, it is of rank n, pointwise pure of weight 0,
ramified only at 0 (if n > 2) and ∞ in P1(F̄p), and the ramification is tame at 0 (i.e.,
Swan0(K`n) = 0) and wild at ∞ with Swan∞(K`n) = 1. Thus, for every prime p and
n > 2, we have

c(K`n) = n+ 2 + 1 = n+ 3,

and it is again crucial that the conductor is bounded independently of p.
To see how deep such results are, note that since K`n is of weight 0 and unramified at

x ∈ F×p , it follows that

|Kln(x; p)| 6 n

for all primes p and all x ∈ F×p , for instance∣∣∣∑
y∈F×p

e
(xy + ȳ

p

)∣∣∣ 6 2
√
p

for x ∈ F×p . This bound is the well-known Weil bound for Kloosterman sums, and it
has countless applications in analytic number theory (due particularly to the presence of
Kloosterman sums in the theory of automorphic forms, see e.g. [21] for a survey).

3.4. Operating on trace functions. It is a fundamental aspect of `-adic sheaves and
their trace functions that a flexible formalism is available in their study, and for appli-
cations. Besides the standard operations mentioned above (direct sums, tensor product,
dual), we will illustrate this point here with one particular operation that is very relevant
for our papers, in particular in [7, 8, 9]: the Fourier transform.

For a prime number p, a non-trivial additive character ψ and a function ϕ : Fp −→ C,
we define here the Fourier transform FTψ(ϕ) : Fp −→ C by the formula

FTψ(ϕ)(t) = − 1
√
p

∑
x∈Fp

ϕ(x)ψ(xt)

for t ∈ Fp. If ϕ is a trace function as we defined them, the Fourier transform can
not always be one, because the Fourier transform of a constant, for instance, is a delta
function, which does not fit our framework well. However, exploiting the deep fact (due to
Deligne [4, (3.4.1)]) that a middle-extension sheaf modulo p of weight 0 is, geometrically
(i.e., over F̄p) a direct sum of irreducible sheaves over F̄p, one can define a Fourier sheaf
modulo p to be one where no such geometrically irreducible component is isomorphic to

11



an Artin-Schreier sheaf Lψ(aX) for some a ∈ F̄p. Then Deligne showed that there exists
an operation

F 7→ FTψ(F)

at the level of Fourier `-adic sheaves with the property that

tFTψ(F) = FT(tF),

i.e., the trace function of the Fourier transform of a sheaf F is equal to the Fourier
transform of the trace function of F. This operation was studied in depth by Laumon [22],
Brylinski and Katz [19, 20], and shown to satisfy the following properties (many of which
are, intuitively, analogues of classical properties of the Fourier transform):

(1) If a Fourier sheaf F is pointwise of weight 0, then so is FTψ(F): this fact is extremely
deep, as it relies on a refined application of the Riemann Hypothesis over finite fields.

(2) If F is geometrically irreducible, then so is FTψ(F) (as we will see in Section 4, this
is to some extent an analogue of the unitarity property

‖FT(ϕ))‖2 = ‖ϕ‖2

of the Fourier transform of a function ϕ : Fp −→ C, where

‖ϕ‖2 =
1

p

∑
x∈Fp

|ϕ(x)|2

is the standard L2-norm.)
(3) Laumon [22] developed in particular a theory of “local Fourier transforms” which

is an analogue of the stationary phase method in classical analysis, and which leads to
very detailed information concerning the ramification properties of FTψ(F). Using this,
we proved in [7] that the Fourier transform of sheaves has the important property that
the conductor of FTψ(F) can be estimated solely in terms of the conductor of F, and
more precisely we showed:

c(FTψ(F)) 6 10 c(F)2.

This estimate is essential in analytic applications, since it implies that if p varies but
F has bounded conductor, so do the Fourier transforms. In [13], we have extended such
estimates to other linear transformations ϕ 7→ Tϕ of the type

(Tϕ)(x) = − 1
√
p

∑
y∈Fp

ϕ(y)ψ(f(x, y))

for arbitrary rational functions f .

Example 3.3. (1) As a first example, note that the function Kp defined by (1.4) for a
fixed polynomial f ∈ Z[X] and ξp the characteristic function of f(Fp) ⊂ Fp is (up to a
factor p1/2) the Fourier transform of ξp − δp. By (3.1) and the remarks following, we see
that we have (essentially)

(3.2) Kp =
1
√
p

m∑
i=1

citFT(Ff,i),

i.e.,
√
pKp is, if not a trace function, then at least a “short” linear combination of trace

functions with bounded complexity in terms of deg(f). This is a crucial step in the proof
of the results we mentioned in this first section.

12



(2) Consider the Artin-Schreier sheaf Lψ(X−1) as in Section 3.1. Then we see that the
Fourier transform F = FT(Lψ(X−1)) has trace function

tF(x) = − 1
√
p

∑
y∈Fp

ψ(y−1)ψ(xy) = Kl2(x; p).

In fact, this sheaf F is the same as the Kloosterman sheaf K`2 discussed in Section 3.3,
and one can deduce all the basic properties of the latter from the general theory of the
Fourier transform. The other Kloosterman sheaves K`n, for n > 3, can be constructed
similarly using the operation of multiplicative convolution on trace functions.

4. Quasi-orthogonality of trace functions

The most important analytic property of trace functions lies in the quasi-orthogonality
of trace functions of geometrically irreducible sheaves of weight 0, which is a very im-
portant and general form of the Riemann Hypothesis over finite fields as proved by
Deligne [4].

Theorem 4.1 (Deligne). Let p be a prime number, ` 6= p a prime distinct from p and let
F1, F2 be geometrically irreducible `-adic sheaves modulo p which are pointwise of weight
0.

(1) If F1 is not geometrically isomorphic to F2, then we have

(4.1)
∣∣∣∑
x∈Fp

tF1(x)tF2(x)
∣∣∣ 6 3 c(F1)2 c(F2)2p1/2.

(2) If F1 is geometrically isomorphic to F2, then there exists a complex number α with
modulus 1 such that

tF1(x) = αtF2(x)

for all x ∈ Fp, and

(4.2)
∣∣∣∑
x∈Fp

tF1(x)tF2(x)− αp
∣∣∣ 6 3 c(F1)2 c(F2)2p1/2.

Note that, in that case, we have c(F1) = c(F2).

To be precise, it follows from the Grothendieck-Lefschetz trace formula (see, e.g., [3,
Rapport, Th. 3.2]) and the Riemann Hypothesis [4, Th. 3.3.1] that both inequalities
hold with right-hand side replaced by

(dimH1
c (A1 × F̄p,F1 ⊗D(F2)))p1/2,

where we recall that D(F2) denotes the dual of F2, and from the Grothendieck-Ogg-
Shafarevich formula for the Euler-Poincaré characteristic of a sheaf (see, e.g., [19, 2.3.1]),
one obtains relatively easily a bound

dimH1
c (A1 × F̄p,F1 ⊗D(F2)) 6 3 c(F1)2 c(F2)2

(see, e.g., [11, Lemma 3.3]).

Remark 4.2. One useful interpretation of this result is as an approximate version of
the orthogonality relations of characters of representations of finite (or compact) groups,
which algebraically is related to Schur’s Lemma. In particular, note that it implies that if
c(F1) and c(F2) are small enough (roughty� p1/8 in this version), the condition tF1 = tF2

of equality of the trace functions suffices to imply that F1 and F2 are geometrically
isomorphic. In [11], we use this fact, as well as bounds on the number of quasi-orthogonal
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unit vectors in a finite-dimensional Hilbert space to bound from above the number of
geometrically irreducible `-adic sheaves with bounded complexity.

In order to illustrate how this theorem is used, we will state precisely a version of the
main theorem of [7] and explain which sums of trace functions arise in the proof.

A holomorphic cusp form of integral weight2 k > 2 and level N > 1 is a holomorphic
function

f : H −→ C

such that

f
(az + b

cz + d

)
= (cz + d)kf(z)

for all elements in the subgroup Γ0(N) of elements γ =

(
a b
c d

)
∈ SL2(Z) such that N

divides c, and furthermore

(4.3)

∫
FN

|f(z)|2yk dxdy
y2

< +∞,

where

FN =
⋃

γ∈Γ0(N)\ SL2(Z)

γ · F

in terms of the fundamental domain F as in Section 1. It follows that f(z + 1) = f(z)
and therefore f has a Fourier expansion, which holomorphy and the growth condition
force to be

f(z) =
∑
n>1

n(k−1)/2%f (n)e(nz)

for some coefficients %f (n) ∈ C (the normalizing factor n(k−1)/2 has the effect of ensuring
that %f (n) is bounded in mean-square average).

Theorem 4.3 ([7]). Let f be a fixed cusp form as above. For any prime p and for any
function K : Z → C such that K(n) = tF(n (mod p)) for some `-adic representation F

modulo p of weight 0, we have∑
n6X

%f (n)K(n)� c(F)9X
(

1 +
p

X

)1/2

p−1/16+ε

for X > 1 and any ε > 0, where the implied constant depends only on f and on ε > 0.

The trivial bound for the sum is∣∣∣∑
n6X

%f (n)K(n)
∣∣∣ 6 (∑

n6X

|%f (n)|2
)1/2(∑

n6X

|K(n)|2
)1/2

� c(F)X

by the well-known Rankin-Selberg estimate∑
n6X

|%f (n)|2 ∼ cfX

for some cf > 0 as X → ∞. Thus, assuming that the conductor is bounded by a fixed
constant B, our theorem is non-trivial provided X is of size between p (or a bit smaller)
and pA for some fixed A. For the critical case X = p, we get a saving of size p−1/16+ε over
the trivial bound.

2 This notion of weight is not directly related in general to that of weight 0 sheaves.
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In particular, if we have an integer B > 1, and for each prime p a trace function Kp

in such a way that the associated representations satisfy c(Fp) 6 B, then it follows that
for p large, there is no correlation between the phases of %f (n) and those of Kp(n).

Slightly more general versions of this theorem apply to the sums (1.3) which arose in
Section 1, and combined with the decomposition (3.2) of the functions (1.4), this leads
to the proof of the limit relations (1.5) discussed in the motivating problem.

A striking feature of Theorem 4.3 is the universality of the exponent 1/16 (which can
be improved to 1/8 for “smooth” sums). This is a direct effect of Theorem 4.1 and the
universality of the exponent 1/2 in the right-hand side of (4.1).

We outline the basic strategy of the proof, to indicate where the Riemann Hypothesis
comes into play. First, by elementary decompositions, we may assume that the `-adic
sheaf F with trace function K is geometrically irreducible, and by dealing directly with
Artin-Schreier sheaves Lψ(aX), we may assume that F is a Fourier sheaf. Applying deep
results from the theory of automorphic forms (especially the Kuznetsov formula, Hecke
theory, and the amplification method) one reduces estimates for the sums in Theorem 4.3
to the study of certain sums of the type

(4.4)
∑
α∈X

c(α)C(K; γ(α))

where X is a certain finite set of parameters, c(α) are complex numbers, γ(α) is an
element of the finite group PGL2(Fp), and the correlation sums C(K; γ(α)) are defined
by

C(ϕ; γ) =
∑
x∈Fp
γ·x 6=∞

FT(ϕ)(x) FT(ϕ)(γ · x)

for any function ϕ : Fp −→ C and γ ∈ PGL2(Fp), which we view as acting on P1(Fp) =
Fp ∪ {∞} by the usual action (the same formula as in (1.1)).

From the theory of the Fourier transform, as explained in Section 3.4, we know that
FT(K) is a trace function associated to a geometrically irreducible Fourier sheaf of weight
0 with conductor 6 10 c(F)2. Furthermore, for any `-adic sheaf modulo p and γ ∈
PGL2(Fp), we have an elementary definition of an `-adic sheaf γ∗F with trace function
given by x 7→ tF(γ · x), and with the same conductor as F. Thus the factor FT(K)(γ · x)
is also the trace function of an `-adic sheaf (geometrically irreducible, weight 0) with
conductor 6 10 c(F)2.

It turns out that the reduction procedure implies that good estimates for the original
sum follow if we can use in (4.4) a square-root cancellation estimate

(4.5) |C(K; γ(α))| 6 Cp1/2

for all α ∈ X. On the other hand, Theorem 4.1 easily implies that if C is large enough
in terms of the conductor of F, we have an inclusion

{γ ∈ PGL2(Fp) | |C(K; γ)| > Cp1/2} ⊂ {γ ∈ PGL2(Fp) | γ∗ FTψ(F) ' FTψ(F)}

(where ' denotes geometric isomorphism; we use here the reduction to geometrically
irreducible F).

The crucial point is that the right-hand side is a group, which we denote GFTψ(F) ⊂
PGL2(Fp) and call the “Möbius group of FTψ(F)”. This group may well be non-trivial,
or relatively large, so that (4.5) cannot in general be expected to hold in all cases.

Using the classification of subgroups of PGL2(Fp), we can nevertheless conclude using
the following proposition:
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Proposition 4.4. Let p be a prime number and let G be a geometrically irreducible `-adic
Fourier sheaf of weight 0 modulo p. Then, if p is large enough compared to the conductor
of G, one of the following properties holds:

(1) The Möbius group GG contains an element of order p; in this case G ' γ∗Lψ(aX) for
some a ∈ F̄p and some element γ ∈ PGL2(Fp), and GF is then conjugate in PGL2(Fp)
to the subgroup

U =
{(

1 t
0 1

)
| t ∈ Fp

}
.

(2) The Möbius group GG has order coprime to p, and in this case it is contained in
the union of at most 60 subgroups, each of which is either a conjugate of the normalizer
in PGL2(Fp) of the diagonal torus

T =
{(

x 0
0 y

)
| x, y ∈ F×p

}
or a conjugate of the normalizer in PGL2(Fp) of a non-split torus

T1 =
{(

a b
εb a

)
| a2 − εb2 6= 0

}
,

where ε ∈ F×p is a non-square.

We can then exploit the fact that the elements of the form γ(α) are explicit, and
from their origin in the analytic steps, they have no particular algebraic structure. In
particular, they are seen to not be conjugate to elements of the subgroup U in this
proposition (for p large enough compared with the conductor), so that in the first case of
the proposition (applied to G = FTψ(F)), we have the estimates (4.5) for all γ(α). If the
second case of the proposition applies, on the other hand, we exploit a repulsion argument
for each of the finitely many possible conjugates N of the normalizer of a torus to show,
roughly, that if one γ(α) is in N (which may happen) then there can only be extremely
few other α′ with γ(α′) ∈ GFTψ(F). Such a small set of exceptions to the estimate (4.5)
can then be handled.

Example 4.5. (1) Let

K(n) = e
( n̄
p

)
,

the trace function of the Artin-Schreier sheaf Lψ(X−1). Then−FT(K) is the trace function
of the Kloosterman sheaf K`2 modulo p, and hence

C(K; γ) =
∑
x∈Fp
cx+d6=0

Kl2(x; p) Kl2

(ax+ b

cx+ d
; p
)

for γ =

(
a b
c d

)
(since Kloosterman sums Kl2(x; p) are real numbers). One can show that

GK`2 = 1 is the trivial group, and hence there exists a constant C > 1 such that∣∣∣ ∑
x∈Fp
cx+d 6=0

Kl2(x; p) Kl2

(ax+ b

cx+ d
; p
)∣∣∣ 6 Cp1/2

for all p prime and γ 6= 1. We will see in the next section some other applications of
special cases of this estimate.

(2) For p prime and n ∈ Fp, define

K(n) = Kl2(n2; p)− 1.
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This is the trace function of an `-adic sheaf modulo p, the symmetric square F of the
pull-back of the Kloosterman sheaf K`2 under the map x 7→ x2, and this description also
shows that the conductor of F is bounded independently of p. It is a non-trivial fact that
GFTψ(F), in that case, is the subgroup of PGL2(Fp) stabilizing the subset {∞, 0, 4,−4} of
P1(Fp), which is a dihedral group of order 8. (More precisely, the inclusion of GFTψ(F) in
this group is elementary, because F is ramified exactly at these points, and the converse
can be checked in different ways, none of which is elementary – maybe the most elegant
is to use a result of Deligne and Flicker [5, Cor. 7.7].)

Prior to [7], the only instances of Theorem 4.3 that were considered in the literature
(to our knowledge) where K(n) = e(an/p), an additive character, or K(n) = χ(n), where
χ is a non-trivial Dirichlet character modulo p. In the first case, there is an even stronger
bound ∑

n6X

%f (n)e
(an
p

)
� X1/2(logX)

due to Wilton, valid uniformly for all a modulo p (and in fact we use this estimate directly
for K(n) = e(an/p), or equivalently for Artin-Schreier sheaves Lψ(aX).) The case of a
multiplicative character is related to the subconvexity problem for the twisted special
values of L-functions L(f ⊗ χ, 1/2) (see for instance [23, Lecture 4] for a survey), and
non-trivial estimates were first found by Duke, Friedlander and Iwaniec [6]. The bound
in Theorem 4.3 recovers the best known result in terms of the modulus, due to Blomer
and Harcos [1] (although the latter deals more generally with characters to all moduli
q > 1, and not only primes). In this case, one sees that FTψ(Lχ) ' Lχ̄ and that GLχ̄

is either the diagonal torus T of Proposition 4.4 (2), or its normalizer in PGL2(Fp) (this
last case occurring if and only if χ is a real character).

5. Distribution of arithmetic functions in arithmetic progressions

The result of Theorem 4.3 is not only interesting as a statement concerning modular
forms. Generalizing the result to encompass Eisenstein series and not only cusp forms,
and applying further methods from the analytic study of prime numbers, as well as more
general properties of trace functions, we obtained in [8] a striking application to sums
over primes (or against the Möbius function).

Theorem 5.1 ([8]). Let p be a prime number and let K = tF be the trace function of
an `-adic middle-extension F of weight 0 modulo p such that no geometrically irreducible
component of F is geometrically isomorphic to a tensor product

Lψ ⊗ Lχ

where ψ is a possibly trivial additive character and χ a possibly trivial multiplicative
character. There exists an absolute constant B > 0 such that∑

n6X

Λ(n)K(n)� c(F)BX
(

1 +
p

X

)1/12

p−1/48+ε,

∑
n6X

µ(n)K(n)� c(F)BX
(

1 +
p

X

)1/12

p−1/48+ε

for any ε > 0, where the implied constant depends only on ε > 0. Here Λ denotes the von
Mangoldt function and µ the Möbius function.
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We remark that the restriction on F is, with current techniques, necessary: an estimate
of this quality for K(n) = χ(n) would imply a non-trivial zero-free strip in the critical
strip for the Dirichlet L-function L(s, χ). This assumption holds however in many cases,
for instance whenever F is geometrically irreducible with rank at least 2, or if F is ramified
at some point x ∈ P1(F̄p) − {0,∞}, or if F = Lχ(f) with χ non-trivial and f ∈ Fp(X)
not a monomial, or if F = Lψ(f) with ψ non-trivial and f ∈ Fp(X) not a polynomial of
degree 6 1.

The interest of this theorem is when X is close to p (for X much larger, one can use
periodicity instead). Prior to [8], only the following cases had been studied in this range:

(1) When K(n) = χ(f(n)), where f is a polynomial of degree 6 2 which is not a
monomial (Vinogradov, Karatsuba);

(2) When K(n) = e(f(n)/p) for certain rational functions f ∈ Q(X) (Vinogradov,
Fouvry–Michel [14], ...)

The new ingredient concerning trace functions in the proof of this theorem is the
following general estimate:

Theorem 5.2 ([8]). Let p be a prime and let K = tF be the trace function of an `-
adic middle-extension sheaf F of weight 0 modulo p such that no geometrically irreducible
component of F is geometrically isomorphic to a tensor product

Lψ ⊗ Lχ

where ψ is a possibly trivial additive character and χ a possibly trivial multiplicative
character. Let α = (α(m)) and β = (β(n)) be sequences of complex numbers supported
on M/2 6 m 6 M and N/2 6 n 6 N respectively for some M , N > 1. There exists an
absolute constant B > 0 such that we have∑

m

∑
n

α(m)β(n)K(mn)� c(F)B‖α‖‖β‖(MN)1/2
( 1

p1/4
+

1

M1/2
+
p1/4(log p)1/2

N1/2

)
,

where the implied constant is absolute.

The basic idea of the proof is classical in analytic number theory: one reduces quickly
using the Cauchy-Schwarz inequality to proving that∣∣∣∑

x∈Fp

K(x)K(ax)e
(bx
p

)∣∣∣� c(F)Bp1/2

for all (a, b) ∈ F×p ×Fp, with at most c(F)B exceptions, where B and the implied constant
are absolute.

But the Plancherel formula gives

(5.1)
∑
x∈Fp

K(x)K(ax)e
(bx
p

)
=
∑
t∈Fp

FT(K)(t)FT(K)(−at+ b) = C(K;

(
−a b
0 1

))
so that the sums in this theorem are special cases of the correlation sums C(K; γ) of
the previous section, for γ restricted to the subgroup Bp of upper-triangular matrices
in PGL2(Fp) (interestingly, one of the properties of the decomposition (4.4) used in the
proof of Theorem 4.3 is that γ(α) is not upper-triangular in that case!) We then only
need to check that, under the assumptions of Theorem 5.2, the intersection of the group
GFTψ(F) with Bp has size bounded by c(F)B for some absolute constant B. This is done
using some analysis of the group GF (in particular, the non-obvious fact that it is the
group of Fp-rational points of an algebraic subgroup of GF.)
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The general estimate of Theorem 5.2 has further applications. One which is dear to
our heart is found in [9]: combining it with versions of the Voronoi summation formula
and with other tools from [8], we improve significantly the exponent of distribution for
the ternary divisor function d3 in arithmetic progression. We recall that

d3(n) =
∑
abc=n

1,

so that the Dirichlet generating series of d3 is∑
n>1

d3(n)n−s = ζ(s)3

for Re(s) > 1.

Theorem 5.3 ([9]). Let p be a prime number, and let a be an integer coprime to p. Let
ε > 0 be a positive number. For all X such that p 6 X1/2+1/46−ε, we have∣∣∣ ∑

n6X
n≡a (mod p)

d3(n)− 1

p− 1

∑
n6X

d3(n)
∣∣∣� X

p

1

(logX)A

for any A > 1, where the implied constant depends on ε and A.

The essential qualitative point is that the exponent 1/2 + 1/46 is beyond 1/2, which
is the limit where a result like this would almost trivially follow from the Generalized
Riemann Hypothesis for Dirichlet characters. Going beyond 1/2 in this problem was first
achieved by Friedlander and Iwaniec [15], whose result was improved by Heath-Brown [16].
Our own result, although slightly less general (in that we only consider prime moduli p
instead of all q > 1), is another significant improvement, and most importantly in our
mind, the proof is rather straightforward in principle when using the results of [8]. In
fact, the only specific trace functions modulo p that we use in the proof are given by

K(n) = Kl3(an; p)

for some a ∈ F×p . In particular, we make use of the following estimate, which was already
used (implicitly) by Friedlander-Iwaniec and Heath-Brown:

Theorem 5.4 (Correlation of hyper-Kloosterman sums). Let p be a prime and (a, b) ∈
F×p × Fp. There exists a constant C > 1, independent of p and a, such that∣∣∣∑

x∈F×p

Kl3(x; p)Kl3(ax; p)e
(bx
p

)∣∣∣ 6 C
√
p

for (a, b) 6= (1, 0).

We see from (5.1) that this can be derived from the existence of (and conductor bound
for) Kloosterman sheaves and the fact that the group GFTψ(K`3) ⊂ PGL2(Fp) is trivial.

Previously, this exponential sum was handled by Friedlander and Iwaniec (and by
Heath-Brown) by writing∑

x∈F×p

Kl3(x; p)Kl3(ax; p)e
(bx
p

)
=
∑
t6=0,−b

Kl2

(1

t
; p
)

Kl2

( a

t+ b
; p
)
− 1

p2

(by a simple computation), and using a bound for the sum on the right-hand side, which
was itself proved by Bombieri and Birch in the Appendix to [15].
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One may observe that the sum on the right-hand side also arises as a correlation sum.
Indeed, for K(n) = e(n̄/p) as in Example 4.5 (1), if we take

γ =

(
a 0
b 1

)
for (a, b, c) ∈ Fp × F×p × F×p , then a simple change of variable in the definition leads to
the identity

C(K; γ) =
∑
t∈Fp
x 6=−b

Kl2

(1

t
; p
)

Kl2

( a

t+ b
; p
)
.

Thus Theorem 5.4 follows also from the fact that the group GFTψ(K`2) is trivial, which
is not very difficult to prove. Interestingly, other correlations sums attached to the same
sheaf appeared in other papers in the literature: we are aware of its occurrence in works
of Pitt [25] and Munshi [24].
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[9] É. Fouvry, E. Kowalski, Ph. Michel: On the exponent of distribution of the ternary divisor function,
to appear in Mathematika; arXiv:1304.3199.
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