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1 Introduction

In mathematical finance, it has become standard to assume that asset price processes S are

semimartingales. This is mathematically important because gains from self-financing trading

strategies are modelled as stochastic integrals with respect to S. But one should also ask if

assuming the semimartingale property can be justified economically, and in particular if and

in which sense the financial concept of absence of arbitrage (AOA) implies such a property.

The usual approach in the existing literature is to start “without loss of generality” from

discounted asset prices where S is of the special form (1, X) for some Rd-valued adapted

RCLL process X. Then one defines AOA properties and analyses their characterisation

and consequences. In that spirit, Delbaen/Schachermayer [7, Theorem 7.2] show that the

NFLVR condition for simple predictable processes implies the semimartingale property of

X. A more recent paper by Kardaras/Platen [12] uses the weaker condition NA1 for simple

predictable processes to again conclude that X ≥ 0 is a semimartingale. In a similar vein,

Kardaras [13] shows that if an abstract set X of wealth processes satisfies NA1 and contains

at least one strictly positive semimartingale, then every X ∈ X is a semimartingale. An

alternative proof of the classic Bichteler–Dellacherie theorem using arbitrage arguments is

due to Beiglböck/Siorpaes [3] and Beiglböck/Schachermayer/Veliyev [2]; the latter paper also

contains an explicit strengthening of the results of [7]. Theorems of the above type typically

only hold for frictionless markets; non-semimartingale models with reasonable economic

properties in markets with frictions appear for example in Cheridito [5] (trading restrictions)

or Guasoni [9] and Czichowsky/Schachermayer [6] (transaction costs).

In economic terms, however, using a model of the form (1, X) is a nontrivial restriction.

For one thing, agents have access to a tradable numéraire with constant value and therefore

can directly transfer wealth over time without risk. More importantly, there is no definition

for absence of arbitrage for the original undiscounted prices, so that the above “without loss of

generality” becomes questionable. In fact, simple examples show that different discountings

of the same original market can lead to different and even contradictory absence-of-arbitrage

properties; see Bálint/Schweizer [1, Example 1.1]. (In a nutshell, one can take any model

with two assets where the ratio X := S2/S1 is a positive martingale converging to 0. Then

discounting by S1 leads to the model (1, X) which satisfies NFLVR becauseX is a martingale;

but discounting by S2 yields the model (1/X, 1) which even violates NUPBR because 1/X

explodes to +∞.) It is therefore economically important to study the general case where

no a priori discounting is given, and to define absence of arbitrage for the original prices.

This in turn needs an AOA concept which is discounting-invariant in the sense that for

any one-dimensional strictly positive (discounter) process D, the discounted price process

S/D satisfies AOA if and only if S satisfies AOA. As D need not be a semimartingale,

one cannot expect that such a discounting-invariant absence-of-arbitrage concept implies

the semimartingale property of S itself; indeed, this would mean that both S and S/D are

semimartingales even if D is not.
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Our analysis starts from a general RN -valued adapted RCLL process S ≥ 0. In economic

terms, this describes the prices of N traded assets, expressed in some abstract accounting

unit; one can think of the latter as a perishable consumption good so that wealth in gen-

eral cannot be transferred over time. Motivated by our earlier work [1], we introduce an

absence-of-arbitrage condition (weaker than NA1) for simple long-only trading strategies

and show that this implies that the relative price process S/V (ϑ, S) is a semimartingale for

any simple self-financing strategy ϑ whose wealth V (ϑ, S) always stays positive. Moreover,

we also provide a dual characterisation involving supermartingale discounters for the wealth

processes of simple strategies.

As one can see from the above description, our main contribution is on the conceptual

level of general economic modelling. In technical terms, our main results are mostly proved

by connecting our approach to the setup in Kardaras/Platen [12] and then exploiting their

results. This is fairly straightforward for the semimartingale result, whereas the details of

the dual characterisation are new and need extra arguments. In comparison to our earlier

work [1], the present paper starts from a more fundamental perspective by deriving, instead

of assuming, a semimartingale property. So while the key concept DSV appears in both

papers, we impose it here only for simple strategies, whereas [1] studies and characterises it

for general strategies under a semimartingale assumption on S.

The structure of the paper is as follows. Section 2 introduces notation and absence-of-

arbitrage concepts. Section 3 contains the two main results, first showing how a suitable

discounting-invariant AOA property implies a semimartingale property, and then giving a

dual characterisation of this AOA property. Section 4 contains the proofs and some addi-

tional results, and the final Section 5 gives a number of counterexamples and summarise the

relations between semimartingale properties and absence-of-arbitrage conditions.

2 Notations and concepts

2.1 Notation

We work on a filtered probability space (Ω,F ,F, P ) with the filtration F = (Ft)t≥0 satisfying

the usual conditions. We assume that F0 is trivial and set F∞ :=
∨
t≥0Ft. Every (in)equality

should be understood in the P -a.s. sense for random variables and as P -a.s. for all t for

stochastic processes. There are N ≥ 2 basic primary assets. Their nonnegative prices are

expressed in some unspecified, usually nontradable accounting unit, to be thought of as a

perishable consumption good, and are described by an RN
+ -valued adapted RCLL process

S = (St)t≥0. Note that we do not assume the existence of a (separate) risk-free bank account;

if there is one, it must be one component of S.

Importantly, we do not a priori assume any semimartingale property for S. Then classic

stochastic integrals for S need not be well defined (see the Bichteler–Dellacherie theorem

e.g. in [4]), and so we restrict our subsequent concepts to so-called simple strategies, to
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circumvent the need for general stochastic integrals when describing gains and wealth pro-

cesses.

Definition 2.1. A simple predictable process , ϑ ∈ E(RN) for short, is a process of the form

ϑ =
∑J+1

j=1 ϑjIKτj−1,τjK, where J ∈ N, 0 ≡ τ0 ≤ τ1 ≤ · · · ≤ τJ < τJ+1 ≡ ∞ are stopping times

and each ϑj is RN -valued and Fτj−1
-measurable. It is called long-only , ϑ ∈ E(RN

+ ), if ϑj ≥ 0

for each j. Finally, ϑ is called a simple strategy , ϑ ∈ E sf(RN) respectively ϑ ∈ E sf(RN
+ ), if

it satisfies in addition the self-financing condition that ϑj · Sτj = ϑj+1 · Sτj for each j. We

point out that E and sf are mnemonic for “elementary” and “self-financing”, respectively.

To emphasise for which price process the self-financing condition is imposed, we sometimes

write E sf(RN , S) or E sf(RN
+ , S).

The meaning of the self-financing condition is financially obvious: It simply says that at

any trading date τj of ϑ, the cost (ϑj+1 − ϑj) · Sτj of rebalancing the asset holdings from ϑj

to ϑj+1 is zero. For any simple strategy ϑ, it follows from the self-financing condition that

the value process of ϑ is for all t ≥ 0 given by

(2.1) Vt(ϑ, S) := ϑt · St = V0(ϑ, S) +
J+1∑
j=1

ϑj · (Sτj∧t − Sτj−1∧t) =: V0(ϑ, S) + (ϑ S)t.

The above sum is of course just the elementary stochastic integral of ϑ with respect to S.

For a more compact exposition, we denote by R the space of all adapted RCLL processes

Y = (Yt)t≥0. We set R+ := {Y ∈ R : Y ≥ 0} and R++ := {Y ∈ R : Y > 0 and Y− > 0}.
We define the set of wealth processes corresponding to long-only simple strategies as

(2.2) X+
s (S) :=

{
V ϑ =

(
Vt(ϑ, S)

)
t≥0 : ϑ ∈ E sf(RN

+ )
}

and note that each such V (ϑ, S) is in R+ because ϑ ≥ 0 and each Si is in R+. We also

need later X++
s (S) := X+

s (S)∩R++. If S is more generally RN -valued and ϑ ∈ E sf(RN), we

sometimes also consider the analogous set Xs(S) ⊆ R.

Note that the self-financing concept is discounting-invariant in the following sense: If we

take some abstract discounting process D ∈ R++ and define new prices S ′ := S/D, then

ϑ ∈ E(RN) is self-financing for S if and only if it is self-financing for S ′; more compactly,

E sf(RN , S) = E sf(RN , S ′). Moreover, we have the change-of-numéraire formula

(2.3) V0(ϑ, S/D) + ϑ (S/D) = V (ϑ, S/D) = V (ϑ, S)/D = V0(ϑ, S)/D0 + (ϑ S)/D

for ϑ ∈ E sf(RN). We note that this is not valid for general ϑ ∈ E(RN).

Definition 2.2. A simple reference strategy is a long-only simple strategy η ∈ E sf(RN
+ ) with

V (η, S) = η · S ∈ R++.

The interpretation of a reference strategy η is that this is a desirable strategy , because

its property V (η, S) ∈ R++ means that it keeps us forever from complete starvation. Note

that actually V (η, S) ∈ X++
s (S).
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Lemma 2.3. Assume that S ≥ 0. Then there exists a simple reference strategy η if and only

if the sum
∑N

i=1 S
i = 1 · S is in R++, where 1 := (1, . . . , 1) ∈ RN is the market portfolio of

holding one share of each asset.

Proof. The “if” direction is clear because 1 ∈ E sf(RN
+ ). Conversely, for any simple reference

strategy η, we have η ·S ≤ (maxi,j η
i
j)(1·S), where maxi,j η

i
j is a nonnegative random variable

as η is long-only. Thus η · S > 0 implies 1 · S > 0 and η · S− > 0 implies 1 · S− > 0.

In the sequel, we always assume that there exists a simple reference strategy. Lemma 2.3

shows that this is a very weak assumption for a nonnegative asset price process S.

2.2 Absence of arbitrage

The following two definitions are versions of the absence-of-arbitrage concept DSV introduced

in Bálint/Schweizer [1, Definition 2.7] when we consider long-only simple strategies only.

Definition 2.4. Fix a simple strategy η. We say that simple dynamic share viability (DSVs)

for η holds if there is no [0, 1]-valued adapted process ψ converging P -a.s. as t→∞ to some

ψ∞ ∈ L0
+(F∞)\{0} and such that for every ε > 0, there is a long-only simple strategy ϑ with

V0(ϑ, S) ≤ ε and lim inft→∞(ϑt−ψtηt) ≥ 0. We say that local simple dynamic share viability

(DSVloc
s ) for η holds if there is no T ∈ (0,∞) and then no [0, 1]-valued ψT ∈ L0

+(FT ) \ {0}
such that for every ε > 0, there is a long-only simple strategy ϑ with V0(ϑ, S) ≤ ε and

ϑT − ψTηT ≥ 0.

As already explained in [1], the interpretation of the DSV concept is economically very

natural: It says that the zero strategy of doing nothing at all cannot be improved by dynamic

trading in the financial market. This explains “dynamic” and “viability”. The (attempted

but impossible) improvement is measured not in terms of value, but in terms of shares — we

fix a strategy η and ask for a strategy ϑ which improves on 0 by a nontrivial multiple ψ of

η, until the given time horizon (∞ or T ) and with the allowed strategies (general for DSV,

simple for DSVs). Later, η is taken as a simple reference strategy so that the improvement

is significant as it is a multiple of a desirable investment.

Just like the original DSV, the concepts DSVs and DSVloc
s are for any fixed η clearly

discounting-invariant , meaning that DSVs (respectively DSVloc
s ) holds for S if and only if it

holds for S ′ = S/D, for any discounter D ∈ R++.

For a dual characterisation of DSVs, we need one more concept.

Definition 2.5. A supermartingale discounter for long-only simple strategies , SMD for

X+
s (S), is a D ∈ R++ with D0 = 1 and such that X/D is a supermartingale for each

X ∈ X+
s (S). For a simple reference strategy η, we say that D is an SMDη+ for X+

s (S) if it

satisfies in addition limt→∞(ηt · St)/Dt > 0.

Remark 2.6. As S ≥ 0, every X ∈ X+
s (S) from (2.2) is nonnegative so that the super-

martingale X/D in Definition 2.5 converges P -a.s. as t→∞. In particular, limt→∞(ηt·St)/Dt

always exists in [0,∞) P -a.s., and the only extra requirement above is that the limit is > 0.
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3 Main results

We are now ready for our main results. The first one says that if the original prices S satisfy

the discounting-invariant absence-of-arbitrage property DSVs for a simple reference strategy

η, then relative prices must be semimartingales. More precisely:

Theorem 3.1. Assume that S ≥ 0 and there exists a simple reference strategy η. If S

satisfies DSVs for η, then S/V (ϑ, S) is a semimartingale for any simple strategy ϑ ∈ E sf(RN)

such that V (ϑ, S) ∈ R++. In particular, S/Y is a semimartingale for any Y ∈ X++
s (S).

The proof of Theorem 3.1 is given in Section 4. However, we state here a number of

immediate consequences.

Corollary 3.2. Assume that S ≥ 0, there exists a simple reference strategy η and S satisfies

DSVs for η. Then:

1) The process S/(1 · S) = S/
∑N

i=1 S
i of “market capitalisations” is a semimartingale.

2) If there is an i0 ∈ {1, . . . , N} such that Si0 ∈ R++, then S/Si0 is a semimartingale.

3) If there is an i0 ∈ {1, . . . , N} with Si0 ≡ 1, then S itself is a semimartingale.

Proof. All results follow from Theorem 3.1. Indeed, 1) is obtained by taking ϑ ≡ 1 and

recalling Lemma 2.3, and 2) and 3) use ϑ ≡ ei0 (the i0-th unit vector in RN).

Remark 3.3. 1) Without the existence of an asset price process Si0 ≡ 1, S need not be a

semimartingale. Indeed, take any RN−1
+ -valued semimartingale X such that (1, X) satisfies

DSVs for η ≡ 1. For any D ∈ R++, S := D(1, X) = (D,DX) then also satisfies DSVs for η

by discounting-invariance. But if D is not a semimartingale, neither is S.

To formulate this more pointedly, take Xt = eσWt− 1
2
σ2t, t ≥ 0, for a Brownian motion W

and σ > 0. Then (1, X) is the risk-neutral discounted Black–Scholes model. This satisfies

NFLVR, hence NUPBR and thus DSV for 1 by [1, Proposition 5.6], and a fortiori DSVs. If we

multiply both 1 and X by a geometric fractional Brownian motion D (with Hurst parameter

H 6= 1
2
), we are only rescaling prices and therefore not changing the fundamental economic

properties of the model. But the rescaled price processes are no longer semimartingales.

2) As discussed in the introduction, our absence-of-arbitrage property DSVs is formulated

for the original, undiscounted prices S, and in such a way that it remains invariant under

discounting with arbitrary D ∈ R++. In contrast, the classic literature defines absence of

arbitrage only for Si0-discounted prices S/Si0 . Our approach is not only more general, but

also brings extra conceptual clarity, because it makes it evident that only relative prices

S/V (ϑ, S) can be expected to be semimartingales. (This is of course no contradiction to the

classic results because there S/Si0 are already relative prices.)

3) Once we have as in Theorem 3.1 a semimartingale property for some discounted prices

S/D, we can without loss of generality assume for further arbitrage analysis that S itself

is a semimartingale. Indeed, as our absence-of-arbitrage condition DSV is designed to be

discounting-invariant, we can equivalently impose it on S/D or on S. Moreover, to define
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stochastic integrals of self-financing strategies with respect to S, we can use the change-of-

numéraire formula (2.3).

Another consequence of Theorem 3.1 is the following result about wealth processes from

long-only simple strategies.

Proposition 3.4. Assume that S ≥ 0, there exists a simple reference strategy η and S

satisfies DSVs for η. Then:

1) For any Y ∈ X++
s (S) 6= ∅, the ratio V/Y is a semimartingale for each V ∈ X+

s (S).

2) If there is a Y ∈ X++
s (S) which is in addition a semimartingale, then each V ∈ X+

s (S)

is a semimartingale.

Proof. 2) follows from 1) by writing V = V
Y
Y because products of semimartingales are

semimartingales. For 1), note that S̃ := S/Y is a semimartingale by Theorem 3.1. For any

V ∈ X+
s (S), there is a long-only simple strategy ϑ ∈ E sf(RN

+ ) such that V = V (ϑ, S). Then

Ṽ := ϑ0 · S̃0 + ϑ S̃ is a semimartingale like S̃, and by (2.3) and (2.1),

V/Y = V (ϑ, S)/Y = V (ϑ, S/Y ) = V (ϑ, S̃) = Ṽ

because ϑ is self-financing. So V/Y = Ṽ is a semimartingale as claimed.

Remark 3.5. In Kardaras [13], one can find similar results in a slightly different framework.

There one considers an abstract set X of wealth processes which must contain a positive

element which is in addition a semimartingale. The set X+
s (S) defined in (2.2) is almost

an example of such an X ; it contains a process in R++ (hence in X++
s (S)) if there exists a

simple reference strategy, but it need not contain a semimartingale in general. The first main

result in [13, Theorem 1.3] is then an abstract version of 2) in Proposition 3.4. However, 1)

in Proposition 3.4 is more general — it shows again as in Remark 3.3 that relative quantities

(here, ratios V/Y of wealth processes) will be semimartingales, but absolute quantities (here,

wealth processes) need not be.

Our second main result is a dual characterisation of DSVs. To the best of our knowledge,

there is no comparable result in the literature because there is not even any classic analogue

of DSVs so far; see Remark 4.6 below for a more detailed discussion.

Theorem 3.6. Assume that S ≥ 0 and there exists a simple reference strategy η. Then S

satisfies DSVs for η if and only if there exists an SMDη+ for X+
s (S).

The proof is given in Section 4.

4 Proofs and ramifications

This section mostly provides the proofs of our main results, but also adds some complements.

The key idea and technique is to reduce things to a situation where we can exploit the
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results from Kardaras/Platen [12]. While this is enough to prove Theorem 3.1, the proof of

Theorem 3.6 needs additional arguments.

Because being a semimartingale is a local property, it should be no surprise that already

a local form of an absence-of-arbitrage condition will be sufficient. So the following first step

is natural.

Lemma 4.1. Assume that S ≥ 0 and there exists a simple reference strategy η. Then DSVs

for η implies DSVloc
s for η.

Proof. If DSVloc
s for η does not hold, take T ∈ (0,∞) and a [0, 1]-valued ψT ∈ L0

+(FT ) \ {0}
such that for any ε > 0, there exists a ϑ ∈ E sf(RN

+ ) with V0(ϑ, S) ≤ ε and ϑT − ψTηT ≥ 0.

Then ϑ̃ := ϑIJ0,T K + VT (ϑ, S/(η · S))ηIKT,∞J is well defined because η is a (simple) reference

strategy, and ϑ̃j = ϑj for j = 1, . . . , J + 1. Now we add one more time step by setting

J̃ := J + 1, τ̃j := τj for j = 0, 1, . . . , J , τ̃J̃ := T and τ̃J̃+1 :=∞ as in Definition 2.1. Then we

see that ϑ̃ is in E(RN
+ ) with ϑ̃J̃+1 := VT (ϑ, S/(η · S))ηT . Moreover,

ϑ̃J̃ · SτJ̃ = VT (ϑ, S) = VT
(
ϑ, S/(η · S)

)
ηT · ST = ϑ̃J̃+1 · SτJ̃

shows that ϑ̃ is even in E sf(RN
+ ). The process ψ = (ψt)t≥0 defined by ψt := E[ψT | Ft] is

[0, 1]-valued, adapted and P -a.s. convergent to ψ∞ = ψT ∈ L0
+(FT ) \ {0}. Finally, ϑ̃ satisfies

V0(ϑ̃, S) = V0(ϑ, S) ≤ ε and

lim inf
t→∞

(ϑ̃t − ψtηt) = lim inf
t→∞

(
VT
(
ϑ, S/(η · S)

)
ηt − ψTηt

)
= lim inf

t→∞

(
VT
(
ϑ, S/(η · S)

)
− ψT

)
ηt

= lim inf
t→∞

(
(ϑT − ψTηT ) · ST/(ηT · ST )

)
ηt ≥ 0.

So DSVs for η does not hold and this proves our claim.

The converse of Lemma 4.1 is not true; a counterexample is given in Example 5.2.

To make the connection to Kardaras/Platen [12], we next recall their condition of “no

opportunities for arbitrage of the first kind with simple, no-short-sales trading”.

Definition 4.2. For the special case where S = (1, X) for some (N−1)-dimensional adapted

RCLL process X ≥ 0, define

Xs,1(1, X) :=

{
V x,ϕ := x+

J+1∑
j=1

ϕj · (Xτj∧· −Xτj−1∧·) = x+ ϕ X :

x ∈ R+, ϕ ∈ E(RN−1
+ ) with ϕj ·Xτj−1

≤ V x,ϕ
τj−1

for all j = 1, . . . , J + 1

}
.

We say that S = (1, X) satisfies NA1loc
s,1 if there is no T ∈ (0,∞) and then no ξ ∈ L0

+(FT )\{0}
such that for any ε > 0, there exists V ∈ Xs,1(1, X) with V0 ≤ ε and VT ≥ ξ.
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The above definition calls for some comments:

1) We do not call the condition NA1s as in [12], but use the more explicit notation NA1loc
s,1

to emphasise that NA1s is like DSVloc
s a local property. The subscript 1 in s,1 serves to remind

that we consider a model containing one asset with constant price 1.

2) Any pair (x, ϕ) ∈ R×E(RN−1) corresponds bijectively to a ϑ = (ϑ0, ϕ) ∈ E sf(RN); this

is classic and shown explicitly in the proof of Lemma 4.4. The condition ϕj ·Xτj−1
≤ V x,ϕ

τj−1

is needed to ensure that ϑ0 is nonnegative if ϕ is RN−1
+ -valued.

In contrast to [12], we do not assume the existence of an asset with constant price 1.

Therefore we need to generalise the condition NA1loc
s,1 to our setting. Recall from (2.2) the

set X+
s (X) of wealth processes corresponding to long-only simple strategies.

Definition 4.3. For S ≥ 0, we say that no arbitrage of the first kind for simple strategies

(NA1loc
s ) holds if there is no T ∈ (0,∞) and then no ξ ∈ L0

+(FT ) \ {0} such that for any

ε > 0, there exists V ∈ X+
s (S) with V0 ≤ ε and VT ≥ ξ.

The next simple but important lemma collects some useful results.

Lemma 4.4. Suppose S is RN -valued and X is RN−1-valued, both adapted and RCLL. Then:

1) Xs,1(1, X) = X+
s (1, X).

2) NA1loc
s,1 for (1, X) and NA1loc

s for (1, X) are equivalent.

3) If ϑ̄ ∈ E sf(RN) and S ′ := (S, ϑ̄ · S), then Xs(S) = Xs(S
′). If in addition ϑ̄ ≥ 0, then

also X+
s (S) = X+

s (S ′).

4) If η is a simple reference strategy for S and S̃ := S/(η · S), then X+
s (S̃) = Xs,1(1, S̃).

Proof. 1) This proof is essentially standard, but we give the details for completeness. For

“⊇”, take ϑ ∈ E sf(RN) for (1, X). Then ϕ := (ϑ2, . . . , ϑN) is in E(RN−1), and setting

x := V0(ϑ, S) yields V x,ϕ = V ϑ due to the self-financing condition (2.1) for S = (1, X).

Moreover, it is clear that ϑ ≥ 0 implies ϕ ≥ 0. For “⊆”, fix x > 0 and let ϕ be in

E(RN−1) with corresponding stopping times (τj)j=0,...,J+1. Define ϑ1
1 := x − ϕ1 · X0 and

ϑ1
j := ϑ1

j−1 + ϕj−1 · Xτj−1
− ϕj · Xτj−1

for j = 2, . . . , J + 1, then ϑj := (ϑ1
j , ϕ

1
j , . . . , ϕ

N−1
j )

and ϑ :=
∑J+1

j=1 ϑjIKτj−1,τjK. It is straightforward to verify that ϑ := (ϑ1, ϕ1, . . . , ϕN−1) is in

E sf(RN) for (1, X) and satisfies V ϑ = V x,ϕ. If also ϕj ·Xτj−1
≤ V x,ϕ

τj−1
for j = 1, . . . , J + 1 as

in Definition 4.2, then ϑ1
j ≥ 0 for each j = 1, . . . , J + 1 from the construction. So for both

directions, ϑ is long-only if and only if ϕ is long-only.

2) This follows immediately from 1).

3) The inclusion “⊆” is clear because ϑ′ := (ϑ, 0) ∈ E sf(RN+1, S ′) for any ϑ ∈ E sf(RN , S).

For the converse, take ϑ′ ∈ E sf(RN+1, S ′) and write ϑ′ = (ϑ,H) where H is the last coordinate

of ϑ′. Then ϑ ∈ E(RN) and H ∈ E(R), and clearly

V (ϑ′, S ′) = ϑ′ · (S, ϑ̄ · S) = (ϑ+Hϑ̄) · S = V (ϑ+Hϑ̄, S),
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where ϑ+Hϑ̄ is again in E(RN). But we also have that ϑ′ is self-financing for S ′ and therefore

V (ϑ+Hϑ̄, S) = V (ϑ′, S ′)

= V0(ϑ
′, S ′) + ϑ′ S ′

= V0(ϑ+Hϑ̄, S) + ϑ S +H (ϑ̄ S)

= V0(ϑ+Hϑ̄, S) + (ϑ+Hϑ̄) S,

which shows that ϑ + Hϑ̄ ∈ E sf(RN , S). This yields “⊇”. Finally, note that if ϑ ≥ 0, then

ϑ′ is long-only if ϑ is respectively only if ϑ+Hϑ̄ is.

4) Because η ∈ E sf(RN
+ , S̃) and η · S̃ ≡ 1, using 3) and then 1) yields

X+
s (S̃) = X+

s (S̃, 1) = X+
s (1, S̃) = Xs,1(1, S̃).

We next connect our approach to the classic framework.

Lemma 4.5. Assume that S ≥ 0 and there exists a simple reference strategy η. Then S

satisfies NA1loc
s if and only if S satisfies DSVloc

s for η.

Proof. If S does not satisfy DSVloc
s for η, take T ∈ (0,∞) and ψT ∈ L0

+(FT ) \ {0} such

that for every ε > 0, there is a ϑ ∈ E sf(RN
+ ) with V0(ϑ, S) ≤ ε and ϑT − ψTηT ≥ 0. Then

due to S ≥ 0, also VT (ϑ, S) = ϑT · ST ≥ ψTηT · ST , and hence ηT · ST > 0 implies that

ξ := ψTηT · ST ∈ L0
+(FT ) \ {0}. Therefore S does not satisfy NA1loc

s .

If S does not satisfy NA1loc
s , take T ∈ (0,∞) and ξ ∈ L0

+(FT ) \ {0} such that for

every ε > 0, there is a V ∈ X+
s (S) with V0 ≤ ε and VT ≥ ξ. Using that V ∈ X+

s (S),

take ϑ ∈ E sf(RN
+ ) with V ϑ = V and define ϑ̃ := ϑIJ0,T K + (VT/(ηT · ST ))ηIKT,∞J. As in

the proof of Lemma 4.1, ϑ̃ is well defined and in E sf(RN
+ ), and V0(ϑ̃, S) = V0 ≤ ε and

ϑ̃T+1 = (VT/(ηT · ST )) ηT+1 ≥ ξ/(ηT · ST )ηT+1. Then ψ := (ξ/(ηT · ST )) ∧ 1 ∈ L0
+(FT ) \ {0}

is [0, 1]-valued, and it follows that S does not satisfy DSVloc
s for η.

Remark 4.6. The global analogue on [0,∞) of DSVloc
s is obviously DSVs. A global analogue

of NA1loc
s,1 for (1, X) has not appeared in the literature so far, and in consequence, there is no

classic analogue to Theorem 3.6, the dual characterisation of DSVs. If S or (1, X) is already

a semimartingale, the global properties DSV and NA1 have been defined for general instead

of simple strategies, and NA1 is then better known as NUPBR. Even for the classic model

S = (1, X), there is no equivalence between NUPBR and DSV (for η ≡ 1), but only the

implication NUPBR ⇒ DSV; see [1, Proposition 5.6 and Example 6.8]. In the same way

and with an analogous counterexample, one could also show that NA1glob
s,1 (suitably defined)

implies DSVs and that the converse does not hold.

Two very useful consequences of Lemma 4.5 are collected in the next result.
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Corollary 4.7. Assume that S ≥ 0 and there exists a simple reference strategy η.

1) If η′ is any simple reference strategy, then DSVloc
s for η and for η′ are equivalent.

2) NA1loc
s is discounting-invariant in the sense that NA1loc

s holds for S if and only if it

holds for S/D, for any discounter D ∈ R++.

Proof. Both statements follow directly from Lemma 4.5 — 1) because NA1loc
s does not involve

any reference strategy, and 2) because DSVloc
s for η is discounting-invariant.

Now we are ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. If S ≥ 0 and S satisfies DSVs for η, then S̃ := S/(η · S) satisfies

NA1loc
s by Lemmas 4.1 and 4.5 and Corollary 4.7, 2). From part 4) of Lemma 4.4, we

have X+
s (S̃) = Xs,1(1, S̃), and therefore S̃ satisfies NA1loc

s if and only if (1, S̃) satisfies

NA1loc
s,1 . Further, as η · S = V (η, S) is in R++ because η is a simple reference strategy,

(1, S̃) is adapted RCLL like S. Hence the conditions of [12, Theorem 1.3] are satisfied

for (1, S̃) and it follows that S̃ is a semimartingale. Now take any ϑ ∈ E sf(RN) with

ϑ ·S = V (ϑ, S) ∈ R++. By refining the partitions of η and ϑ if necessary, we can assume that

ϑ =
∑J+1

j=1 ϑjIKτj−1,τjK and η =
∑J+1

j=1 ηjIKτj−1,τjK with the same stopping times τ0, τ1, . . . , τJ+1.

But then we have on each interval Kτj−1, τjK that ϑ · S = ϑj · S and η · S = ηj · S as well as

ϑ · S̃ = ϑj · S̃ = ϑj · (S/(η ·S)) = (ϑj ·S)/(ηj ·S) and therefore also S/(ϑ ·S) = S̃/(ϑ · S̃). This

also holds at t = 0 and hence on J0,∞K, and ϑ · S̃ = (ϑ ·S)/(η ·S) is in R++. Because ϑ is in

E sf(RN), ϑ · S̃ = ϑ0 · S̃0 +ϑ S̃ is a semimartingale like S̃, and then so is S/(ϑ ·S) = S̃/(ϑ · S̃)

because fractions of semimartingales with denominators in R++ are semimartingales.

A closer look at the proof of Theorem 3.1 shows that already the local version DSVloc
s of

DSVs is sufficient to imply the same semimartingale property. As mentioned before, this is

not surprising, because being a semimartingale is itself a local property.

As an extra result, we next show that the converse of Theorem 3.1 holds under an

additional assumption. This result is analogous to “(iv) ⇒ (i)” in Kardaras/Platen [12,

Theorem 1.3]. We call a process X an exponential semimartingale if for each coordinate i,

we have X i = X i
0 +
∫
X i
− dR

i for some semimartingale Ri with Ri
0 = 0. (We could write this

as X i = X i
0 E(Ri), where E denotes the stochastic exponential operator, but we do not use

this notation to avoid confusion with the space E of elementary predictable processes.)

Proposition 4.8. Assume that S ≥ 0 and there exists a simple reference strategy η. Let

ϑ ∈ E sf(RN) be a simple strategy with V (ϑ, S) ∈ R++. If S/V (ϑ, S) is an exponential

semimartingale, then S satisfies DSVloc
s for η.

Proof. Due to Lemma 2.3, 1 is a simple reference strategy and hence 1 · S ∈ R++. By

Corollary 4.7, 1), it suffices to show that S satisfies DSVloc
s for 1. Because S/V (ϑ, S) is a

semimartingale, so is Y := (1 · S)/V (ϑ, S), and Y is in R++ like both 1 · S and V (ϑ, S).

But then Y ′ := 1/Y = V (ϑ, S)/(1 · S) is also a semimartingale and in R++, and hence an

exponential semimartingale by Jacod [10, Proposition 6.5 and Exercise 6.1] (see also [12,
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Theorem 1.3, (2)]). By Yor’s formula, S̃ := S/(1 · S) = Y ′S/V (ϑ, S) is then an exponential

semimartingale as well. Applying now [12, Theorem 1.3] for (1, S̃) implies that (1, S̃) satisfies

NA1loc
s,1 . But X+

s (S̃) = Xs,1(1, S̃) by Lemma 4.4, 4), and thus S̃ satisfies NA1loc
s . Corollary 4.7,

2) implies in turn that S satisfies NA1loc
s , and hence also DSVloc

s for 1 by Lemma 4.5.

The converse of Proposition 4.8 is not true; a counterexample is given in Example 5.1.

Before we can prove our second main result, we need the following proposition. Its

proof follows Kardaras/Platen [12, Theorem 1.3]. Note that the appearing supermartingale

discounter has no particular property at ∞.

Proposition 4.9. Assume that S ≥ 0 and there exists a simple reference strategy η. Then

S satisfies DSVloc
s for η if and only if there exists an SMD for X+

s (S).

Proof. Due to Lemma 4.5 and Corollary 4.7, 2), S satisfies DSVloc
s for η if and only if

S̃ := S/(η · S) satisfies NA1loc
s . Because X+

s (S̃) = Xs,1(1, S̃) by Lemma 4.4, 4), this is

further equivalent to (1, S̃) satisfying NA1loc
s,1 . But now (1, S̃) satisfies the conditions in [12,

Theorem 1.3], and so (1, S̃) satisfies NA1loc
s,1 if and only if there exists a process Y ∈ R+ with

Y > 0, Y0 = 1 and such that Z̃Y is a supermartingale for all Z̃ ∈ Xs,1(1, S̃) = X+
s (S̃). As

Z̃ ≡ 1 is in Xs,1(1, S̃), Y itself is also a supermartingale, and because Y > 0, it is even inR++

by the minimum principle for supermartingales; see Dellacherie/Meyer [8, Theorem VI.17].

For the “if” direction, suppose D is an SMD for X+
s (S). By the above reasoning, it

suffices to show that there exists a Y as above. Define Y := (η · S)/(Dη0 · S0); then Y is in

R++ like η · S with Y0 = 1/D0 = 1. Fix any Z̃ ∈ X+
s (S̃) so that Z̃ = ϑ · S̃ = (ϑ · S)/(η · S)

for a ϑ ∈ E sf(RN
+ ) and observe that Z := Z̃(η · S) = ϑ · S is then in X+

s (S) by the change-

of-numéraire formula (2.3). Therefore we have Z̃Y = (Z̃η · S)/(Dη0 · S0) = (Z/D)/(η0 · S0),

which is a supermartingale because D is an SMD for X+
s (S).

For the “only if” direction, we can assume by the above reasoning that there exists a Y

as above. We claim that D := (η · S)/(Y η0 · S0) is then an SMD for X+
s (S). Clearly D is in

R++ like η · S and Y , and D0 = 1/Y0 = 1. Now fix any Z ∈ X+
s (S) so that Z = ϑ · S for a

ϑ ∈ E sf(RN
+ ) and observe that Z̃ := Z/(η · S) = ϑ · (S/(η · S)) = ϑ · S̃ is then in X+

s (S̃) by

the change-of-numéraire formula (2.3). So we have Z/D = (ZY η0 ·S0)/(η ·S) = Z̃Y (η0 ·S0),

which is a supermartingale by the properties of Y . This concludes the proof.

Finally, we prove the dual characterisation of DSVs in Theorem 3.6. In addition to Propo-

sition 4.9, this uses upcrossing arguments similarly as in Bálint/Schweizer [1, Theorem 2.11].

Proof of Theorem 3.6. For the “if” direction, suppose by way of contradiction that there is

a [0, 1]-valued adapted process ψ converging P -a.s. as t → ∞ to some ψ∞ ∈ L0
+(F∞) \ {0}

and such that for every ε > 0, there is a ϑε ∈ E sf(RN
+ ) with V0(ϑ

ε, S) ≤ ε and

(4.1) lim inf
t→∞

(ϑεt − ψtηt) ≥ 0.
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Let D be an SMDη+ for X+
s (S). Note that S ′ := S/D is then also a supermartingale because

for all i, the i-th unit vector ei is in E sf(RN
+ ). Then we have for each ε > 0 that

E
[
lim inf
t→∞

(ϑεt · S ′t)
]
≥ E

[(
lim inf
t→∞

ϑεt

)
·
(

lim inf
t→∞

S ′t

)]
≥ E

[(
lim inf
t→∞

ψtηt

)
·
(

lim inf
t→∞

S ′t

)]
= E

[
ψ∞ lim

t→∞
(ηt · S ′t)

]
=: c > 0,

where the first inequality is due to [1, Lemma A.1], the second to (4.1) and superadditivity

of the lim inf, the equality holds because ψ, the simple strategy η and the nonnegative

supermartingale S ′ all converge, and the final (strict) inequality uses ψ∞ ∈ L0
+(F∞) \ {0}

and limt→∞(ηt ·St)/Dt > 0; see Remark 2.6. On the other hand, ϑε ·S is in X+
s (S); therefore

ϑε ·S ′ = (ϑε ·S)/D is a supermartingale and so E[lim inft→∞(ϑεt ·S ′t)] ≤ E[V0(ϑ
ε, S)/D0] ≤ ε,

which is a contradiction because c > 0 above does not depend on ε.

For the “only” if direction, assume that S satisfies DSVs for η and define S̃ := S/(η · S).

We first show via upcrossing arguments that S̃∞ := limt→∞ S̃t exists and is finite, P -a.s.

Suppose to the contrary that some S̃i does not converge. Following the exact steps of the

proof in Delbaen/Schachermayer [7, Theorem 3.3] by considering (1, S̃) instead of S there,

the (i + 1)-th unit vector ei+1 instead of H and hence
∫

ei+1 d(1, S̃) = S̃i instead of
∫
H dS

there, we obtain for each n ∈ N an Ln ∈ E sf(RN+1
+ ) for (1, S̃) with P [

∫∞
0
Ln d(1, S̃) > nb] > a

for some constants a, b > 0. Because Lemma 4.4, 4) gives Xs,1(1, S̃) = X+
s (S̃), this yields

a sequence (ϑn)n∈N in E sf(RN
+ ) for S̃ with P [

∫∞
0
ϑn dS̃ > nb] > a for all n. It follows by

[1, Lemma A.2] that X+
s (S̃) is not bounded in L0; so S̃ does not satisfy NA1loc

s (see [12,

Proposition 1.1]), and hence S̃ does not satisfy DSVs either, by Lemmas 4.5 and 4.1. By

discounting-invariance, also S then does not satisfy DSVs, which is a contradiction. This

shows that S̃∞ := limt→∞ S̃t is well defined and finite.

Consider now the time-transformed process Ŝ defined by Ŝu := S̃u/(1−u) for u ∈ [0, 1) and

Ŝu := S̃∞ for u ∈ [1,∞), and similarly η̂u := ηu/(1−u) for u ∈ [0, 1) and η̂u := limt→∞ ηt = ηJ+1

for u ∈ [1,∞). The filtration F̂ is defined analogously from F. Note that η̂ · Ŝ ≡ 1 on [0, 1)

due to η ·S̃ ≡ 1 on [0,∞). Because S and hence also S̃ satisfy DSVs for η, so does Ŝ for η̂ and

we can apply Proposition 4.9 via Lemma 4.1 to obtain an SMD D̂ for X+
s (Ŝ). In particular,

limu↗1(η̂u · Ŝu)/D̂u = limu↗1 1/D̂u > 0, because D̂ > 0 and D̂ does not explode to∞ as it is

RCLL on [0,∞). Transforming back shows that D̃t := D̂t/(1+t) for t ∈ [0,∞) is well defined

and an SMD for X+
s (S̃). Moreover, limt→∞(ηt · S̃t)/D̃t = limt→∞ 1/D̃t = limu↗1 1/D̂u > 0

and hence D̃ is even an SMDη+ for X+
s (S̃). Using the change-of-numéraire formula (2.3), it

is straightforward to verify that D := D̃(η · S) is then an SMDη+ for X+
s (S).

5 Overview and counterexamples

This last section gives an overview of the relations between different kinds of semimartingale

properties and discounting-invariant absence-of-arbitrage conditions, and links all this to the

special case where S = (1, X). We start by presenting a number of counterexamples.
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Example 5.1. The converse of Proposition 4.8 does not hold in general. We give an ex-

ample for an S which is a semimartingale satisfying DSV for 1 as in Bálint/Schweizer [1,

Definition 2.7] and hence DSVloc
s for η ≡ 1, but which is not an exponential semimartingale.

This is similar to the example in Kardaras/Platen [12, Section 2.5] and can be regarded as

a (rescaled) special case of [1, Example 1.1]. Let Yt := exp(Wt − t/2) for a one-dimensional

Brownian motion W on a probability space (Ω,F , P ) and set Xt := Yt/(1−t) for t ∈ [0, 1),

Xt := 0 for t ∈ [1,∞) and S := (1, X). Define the filtration F to be the augmentation of the

natural filtration of X. Because limt→∞ Yt = 0, X is a nonnegative continuous martingale,

but not an exponential semimartingale as X1 = 0. On the other hand, being a martingale

like X, S satisfies NFLVR and a fortiori NUPBR = NA1; see [11, Proposition 1]. It then

follows from [1, Proposition 5.6] that S satisfies DSV for 1.

Example 5.2. The converse of Lemma 4.1 does not hold in general. We give a simple

example for an exponential semimartingale S which satisfies DSVloc
s for 1, but not DSVs for

1. Let Xt := 1+2t−b2tc and S := (1, X). Then S is strictly positive, of finite variation and

deterministic, hence an exponential semimartingale, and taking ϑ ≡ e1 in Proposition 4.8,

we conclude that S satisfies DSVloc
s for 1. On the other hand, fix n ∈ N and consider

ϑn :=
n∑
j=0

(
I(j,j+1/2](0, Vj(ϑ

n, S)) + I(j+1/2,j+1](Vj+1/2(ϑ
n, S), 0)

)
+ I](n+1,∞[(Vn+1(ϑ

n, S)/2)1

with ϑn0 := (0, 1/n) so that V0(ϑ
n, S) = 1/n. In words, ϑn starts by buying 1/n units of

the second (risky) asset and subsequently, after every time step of length 1/2, shifts all its

wealth from one asset to the other and back. These reallocations continue until time n+ 1;

then ϑn moves all its wealth in equal parts to the market portfolio 1 and keeps this constant

position. It is straightforward to verify that ϑn is in E sf(R2
+). Moreover, for any n ∈ N,

V0(ϑ
n, S) = 1/n and lim inft→∞ ϑ

n
t ≥ (2n/(2n))1. Hence S does not satisfy DSVs for 1.

The next example illustrates that DSVs is a very weak assumption; in particular, it

does not pick up fairly obvious arbitrage opportunities due to its long-only restriction. So

Theorem 3.1 is really quite a strong conclusion.

Example 5.3. DSVs for 1 (as in Definition 2.4) does not imply DSV for 1 (as in [1,

Definition 2.7]) for simple (but not necessarily long-only) strategies. Let X := IJ0,1J +2IJ1,∞K

and S := (1, X). Note that every ϑ ∈ E sf(R2
+) has V0(ϑ, S) = ϑ1

1 + ϑ2
1. Because ϑ ≥ 0

and S2 is constant except for ∆S2
1 = 1, it follows that Vt(ϑ, S) ≤ V0(ϑ, S) + ϑ2

1 ≤ 2V0(ϑ, S)

for any t > 0. Moreover, as 1 · S ≥ 2, any ϑ ∈ E sf(R2
+) with V0(ϑ, S) ≤ ε cannot satisfy

ϑt − ψ∞1 ≥ 0 for any t ≥ 0 and any ψ∞ ∈ L1
+(F∞) with E[ψ∞] > ε > 0, because otherwise

Vt(ϑ, S) = ϑt · St ≥ ψ∞1 · St ≥ 2ψ∞ would lead to a contradiction. This shows that DSVs

for 1 is satisfied. On the other hand, ϑ′ := (−1, 1)IJ0,1K + (1/3, 1/3)IK1,∞K is in E sf(R2) and

satisfies V0(ϑ
′, S) = 0, V (ϑ′, S) ≥ 0 and ϑ′2 = (1/3)1, so that DSV for 1 for simple strategies

is violated. Note that ϑ′ exploits the arbitrage in S by going short in the first asset.
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Remark 5.4. Example 5.3 suggests that any absence-of-arbitrage condition implied by

some semimartingale property should restrict itself to long-only strategies. In particular,

Proposition 4.8 cannot be strengthened in general by allowing simple (but not necessarily

long-only) strategies in the definition of DSVloc
s for 1.

We summarise our results and counterexamples in the following diagram.

DSV for η
6 ⇒ ⇓ 6⇑

S/V (ϑ, S) is exponential
semimartingale 6⇒ DSVs for η

⇒ ⇓ 6⇑
DSVloc

s for η ⇒
6⇐

S/V (ϑ, S) is
semimartingale

Figure 1: Overview of relations between semimartingale properties and absence-of-arbitrage

conditions for a general adapted RCLL S. DSV for η is as in [1, Definition 2.7], η is any

simple reference strategy, and ϑ is any strategy in E sf(RN) with V (ϑ, S) ∈ R++.

In Figure 1, the arrow “ 6 ⇒” is due to Example 5.1, both “⇓” are trivial, the upper “6⇑”

is due to Example 5.3, “ 6⇒” and the lower “ 6⇑” are due to Example 5.2, “⇒ ” is Proposi-

tion 4.8, “⇒” is from (the proof of) Theorem 3.1, and “ 6⇐” is due to the counterexample in

Kardaras/Platen [12, Section 2.5] and Lemmas 4.5 and 4.4, 2).

One can translate the above results for the special case S = (1, X) and formulate them

in classic terms. This yields the following diagram.

S/V (ϑ, S) is exponential
semimartingale

⇒
6⇐ NA1loc

s,1 = NA1s
⇒
6⇐

S/V (ϑ, S) is
semimartingale

Figure 2: Overview of relations between semimartingale properties and absence-of-arbitrage

conditions for S = (1, X), where X ≥ 0 is adapted and RCLL, and ϑ is any strategy in

E sf(RN) with V (ϑ, S) ∈ R++.

The implications in Figure 2 follow from those in Figure 1 by noting that by Lemma 4.5,

NA1loc
s is equivalent to DSVloc

s for any simple reference strategy η. To connect things to

Kardaras/Platen [12], note that the two arrows “⇒” constitute a slight generalisation of the

statement of [12, Theorem 1.3, (1)], whereas the second “6⇐” recovers the counterexample

in [12, Section 2.5].

Acknowledgements

We gratefully acknowledge financial support by the ETH Foundation via the Stochastic

Finance Group (SFG) at ETH Zurich and by the Swiss Finance Institute (SFI). The first

author thanks Matteo Burzoni for discussions, questions and general support. We also thank

two anonymous referees and an Associate Editor for critical comments that led us to rewrite

our paper and explain our contribution more clearly.

15



References
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