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ETH Zürich

Mathematik

ETH-Zentrum

CH – 8092 Zürich
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0. Introduction

In the last years, Lévy processes have become very popular for modelling in finance. They

provide a lot of flexibility when fitting a model to observed asset prices and yet are very

tractable if one needs expressions for derivative prices. One drawback is that the resulting

model of a financial market is usually incomplete and thus has multiple martingale measures

(and hence non-unique option prices). A popular approach is then to fix one particular mar-

tingale measure Q∗ for the underlying assets S and to price derivatives by the Q∗-expectation

of their discounted payoff. But how should one choose Q∗? Very often, this is done via the

minimization of a functional over martingale measures, and the functional is in turn mo-

tivated by a dual formulation corresponding to a primal utility maximization problem; see

Kallsen (2002) for a list of references. Alternatively, Q∗ might be the natural pricing measure

arising from a criterion which emphasizes hedging rather than pricing aspects; this produces

for instance the minimal or the variance-optimal martingale measures.

In this paper, we consider the pricing-oriented approach and we take the relative entropy

of Q with respect to the original measure P as the functional to be minimized. Not only does

this allow us to do many computations explicitly; one general argument for that choice is

also that the resulting minimal entropy martingale measure is automatically equivalent to P .

This is not so for the variance-optimal or more generally the q-optimal martingale measures.

We show that if L is an IRd-valued Lévy process under P and if QE minimizes the relative

entropy over all Q under which L is a local martingale, then L is again a Lévy process under

QE . This extends a result by Fujiwara/Miyahara (2003) who simply write down QE for d = 1

and directly prove its optimality. But more important than the generalization to d > 1 is

that we also explain precisely how this preservation happens and why QE has the structure

obtained. Similarly to earlier papers by Foldes (1991a,b) on a different topic, the reasons are

very intuitive. But the actual proofs turn out to require quite a lot of work.

The paper is structured as follows. Section 1 formulates the basic problem more precisely,

states the two main results and presents the intuitive explanation mentioned above. Section

2 prepares the ground by providing a number of results from general semimartingale theory.

Section 3 contains the crucial idea. It shows how one can always reduce relative entropy while

preserving the martingale property by a suitable averaging procedure over certain parameters

β, Y that characterize Q. This reduces the problem from a minimization over probability

measures to a minimization over non-random functions. Section 4 produces a candidate

for the optimal function from the first order condition for optimality and proves that the

corresponding candidate measure has indeed minimal entropy. The main result from Section

3 is then proved in Section 5 which substantiates a merely plausible reasoning with a rigorous

argument. Finally, a number of proofs from Section 2 are collected in the Appendix.
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1. Setup and main results

In this section, we introduce some notation, formulate the basic problem and state the two

main results. Unexplained terminology used here is standard or explained in the next section.

Let (Ω,F , IF, P ) be a filtered probability space with IF = (Ft)t∈T satisfying the usual

conditions and either T = [0, T0] for some fixed T0 ∈ (0,∞) (finite horizon) or T = [0,∞)

(infinite horizon). For a probability measure Q
loc¿P , we denote by

It(Q|P ) := EQ

[
log dQ

dP

∣∣
Ft

]
∈ [0,+∞]

the relative entropy of Q with respect to P on Ft and call
(
It(Q|P )

)
t∈T the entropy process

of Q. For an IRd-valued IF -adapted process X = (Xt)t∈T and a fixed d × d-matrix U , we

introduce the following sets of probability measures on (Ω,F):

QUa (X) :=
{
Q

loc¿P
∣∣∣UX is a local Q-martingale

}
,

QUe (X) :=
{
Q

loc≈ P
∣∣∣UX is a local Q-martingale

}
⊆ QUa (X),

QUf (X) :=
{
Q ∈ QUa (X)

∣∣ It(Q|P ) <∞ for all t ∈ T
}
,

QU` (X) :=
{
Q ∈ QUa (X)

∣∣X is a Lévy process under Q
}
.

QU` (X) is mainly used if X is already a Lévy process under P . Note that Q ∈ QU` (X) means

that UX is a local Q-martingale, but X itself is a Q-Lévy process. If U is the identity matrix,

we omit the superscript U ; hence QUs (X) = Qs(UX) for s ∈ {a, e, f}, but not for s = `.

Elements of QUe (X) are called equivalent local martingale measures (ELMMs) for UX.

The minimal entropy martingale measure (MEMM) QE(UX) is defined by the property that

it minimizes the entropy process pointwise in t over all Q ∈ QUa (X), i.e., QE(UX) is inQUa (X)

and It
(
QE(UX)

∣∣P
)
≤ It(Q|P ) for all Q ∈ QUa (X) and t ∈ T . The minimal entropy Lévy

martingale measure QE` (UX) ∈ QU` (X) is similarly defined by the property that it minimizes

the entropy process pointwise in t over all Q ∈ QU` (X). We want to find QE(UL) when L is

a Lévy process under P in its own filtration IF = IFL.

Remark. In mathematical finance, the above problem naturally arises in the following way.

Suppose we have a financial market with d risky assets (“stocks”) and one riskless asset

(“bank account”, B). We express all prices in units of B; this is called discounting with

respect to B, and the resulting discounted asset prices are denoted by S. A frequently made

modelling assumption is then that Si = Si0 E(Li) for some IRd-valued Lévy process L, and

then S and L have the same ELMMs.

In economic terms, an ELMM can be interpreted as a pricing operator for financial prod-

ucts which is consistent with the a priori given asset prices S; see Harrison/Kreps (1979).
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It is also well known that the existence of some ELMM is essentially equivalent to the eco-

nomically plausible and desirable property that the financial market described by S does not

admit arbitrage opportunities (“money pumps”); see Delbaen/Schachermayer (1998) for a

precise formulation. Finally, as mentioned in the introduction, minimizing relative entropy is

one possible criterion for choosing an ELMM. This explains why we are interested in QE(L);

the extra U will give some room for more generality.

A result called numeraire invariance provides the (economically intuitive) statement that

discounting does not change anything; this is usually taken as justification for choosing B ≡ 1

and directly modelling discounted prices. However, this result assumes that the filtration IF

is given a priori. If we wanted to take as IF the filtration generated by asset prices, it

may well make a difference if these are discounted or not as soon as the bank account B is

stochastic. Although the use of the filtration generated by prices would be desirable and is

for instance advocated in Section 9.6 of Kallianpur/Karandikar (2000), we follow here the

standard approach in the literature to work with the filtration generated by the underlying

sources of randomness; see for instance the very first pages of Karatzas/Shreve (1998). This

explains our choice IF = IFL. ¦

As already stated, our goal in this paper is now to identify QE(UL) if L is a Lévy process

under P for its own filtration IF = IFL, and moreover to explain exactly why QE(UL) has

the particular structure we obtain. The two main results are

Theorem A. Let L be an IRd-valued P -Lévy process for IF = IFL, and U a fixed d × d-

matrix. Suppose that QUe (L) ∩ QUf (L) ∩ QU` (L) 6= ∅. If QE(UL) exists, then L is a Lévy

process under QE(UL).

This result explains the first part of the paper’s title since it says that the Lévy property

of L is preserved by passing from P to the minimal entropy martingale measure for UL.

Theorem B. Let L be an IRd-valued P -Lévy process for IF = IFL with Lévy characteristics

(b, c,K), and U a fixed d× d-matrix. Suppose that there exists u∗ ∈ range (U>) such that

∫
IRd

∣∣xeu>∗ x − h(x)
∣∣K(dx) <∞,

U
(
b+ cu∗ +

∫
IRd

(
xeu

>
∗ x − h(x)

)
K(dx)

)
= 0.

Then QE(UL) exists and coincides with the Esscher martingale measure Qu∗ defined by
dQu∗

dP = const. exp
(
u>∗ Lt

)
on Ft for all t ∈ T .

This shows how the Lévy property of L is preserved, namely by using an Esscher trans-

form of P to construct a martingale measure for UL. The final third of the title, why this
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happens, will become clear from the proofs and constitutes a key insight contributed here.

In comparison to existing literature, perhaps the most characteristic feature of this paper

is its combination of intuitive insight with rigorous proofs. This is best understood if we

briefly explain how we obtain our results. By using Girsanov’s theorem, any Q
loc¿P can be

described by two parameters β, Y which are in general stochastic processes. The relative

entropy It(Q|P ) is then a convex functional of β and Y , and by Jensen’s inequality, it can

be reduced if we pass to deterministic time-independent parameters obtained by averaging

over ω and t. Moreover, the local martingale property of UL under Q is characterized by a

linear constraint between β and Y and so is preserved by this averaging. Hence the MEMM

for UL must have deterministic time-independent parameters, which means that L is a Lévy

process under it. This explains the intuition behind Theorem A; the rigorous proof, however,

must still circumvent integrability problems. We use the assumption that IF is generated by

a Lévy process to identify a measure via its density process by its parameters.

Due to Theorem A, finding QE(UL) reduces to a classical optimization problem over

deterministic time-independent quantities β, Y . The linear constraint from the local martin-

gale property even eliminates β so that only the non-random function Y needs to be varied.

Formally writing down the first order conditions for optimality then produces a candidate

Y∗, and Theorem B accomplishes the fairly straightforward task of proving that the corre-

sponding measure Qu∗ has indeed minimal entropy. This entire line of reasoning also makes

it very transparent why minimal entropy preserves the Lévy property.

Remark. Conceptually, our results are similar to Foldes (1991a,b) who considered an in-

vestment problem with market returns given by a process R with independent increments.

He proved that an optimal portfolio plan can be found in the class of deterministic strategies

(and is even time-independent if R has independent and stationary increments). Like here,

the main techniques used were computations based on semimartingale characteristics. ¦

From a formal point of view, Theorem B is slightly more general than Theorem 3.1 of

Fujiwara/Miyahara (2003) who proved essentially this result for a finite horizon and when

L is one-dimensional (U is then the identity matrix). Earlier work on the same problem

under additional assumptions is also reviewed in Fujiwara/Miyahara (2003). It seems not

quite straightforward to generalize their proof to the multidimensional case, and a number

of integrability issues is also not entirely clear from their presentation. We briefly indicate

below why including the matrix U is useful for applications. But the main difference to our

work is that Fujiwara/Miyahara (2003) simply define Qu∗ as in Theorem B and prove directly

that this is the MEMM; there is no hint to the reader where this measure comes from.

On the other end of the scale, the paper by Chan (1999) already contains the idea

of computing relative entropy as a functional of the parameters β, Y , even if his setting

is less general due to exponential moment conditions on L. The crucial difference here is
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that Chan (1999) argues only heuristically (“it is a little less clear”) that a minimization

over deterministic parameters is already enough. Making this intuitive idea rigorous in full

generality is achieved by our Theorem A and turns out to be more involved; see Section 5.

Two immediate applications that come to mind are the following.

Example 1. Exponential Lévy processes : Consider a model where discounted asset prices

are strictly positive and given by Si = Si0 E(Li), i = 1, . . . , d, for some IRd-valued Lévy

process L under P . Since dSi = Si− dL
i, S is a local Q-martingale if and only if L is, and so

QE(S) = QE(L). Hence the MEMM for S in IF = IFL is given by the Esscher measure Qu∗

from Theorem B, provided u∗ there exists (with U = identity). This generalizes Theorem 3.1

of Fujiwara/Miyahara (2003) to the case d > 1. (Actually, Fujiwara/Miyahara (2003) work

with S = S0 exp(L̃) for some Lévy process L̃, but this can be rewritten with L as above.) ¦

Example 2. Stochastic volatility models driven by Lévy processes : Let L be a two-dimen-

sional Lévy process under P for IF = IFL and model the one-dimensional discounted asset

price process S by

(1.1) dSt = σ(t, St−, L
2
t−) dL1

t ,

where σ : [0, T0] × (0,∞) × IR → IR is a measurable function such that (1.1) has a strictly

positive solution S with the property of being a local Q-martingale if and only if L1 is. This

is a Lévy version of the usual stochastic volatility models where (L1, L2) is a diffusion with

possibly correlated coordinates; note that L1 and L2 may well be dependent. The MEMM

QE(S) is given by QE(L1) = QE(UL), where U =

(
1 0
0 0

)
gives the projection on the first

coordinate, and QE(L1) can be explicitly constructed from Theorem B. See Section 4.4 of

Esche (2004) for a more detailed account. ¦

2. Auxiliary results

This section presents some auxiliary results from general semimartingale theory. To facilitate

reading, most proofs are relegated to the Appendix. Our basic reference is Jacod/Shiryaev

(1987), abbreviated JS. Without special mention, all processes take values in IRd.

2.1. Semimartingales, characteristics and Girsanov’s theorem

We first fix some notation. For a semimartingale X, we denote by µX the random measure

associated with the jumps of X and by νP the predictable P -compensator of µX . If W is a

real-valued optional function and µ a random measure, W ∗ µ is the integral process of W
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with respect to µ. Throughout the entire paper, h is a fixed but arbitrary truncation function.

Our results do not depend on the choice of h; more precisely, we could take a different h′ and

rewrite everything with h′ simply replacing h throughout.

If X is a semimartingale, we denote by (B,C, ν) the triplet of its P -characteristics

(relative to the truncation function h). As in Prop. II.2.9 of JS, we can and always do choose

a version of the form

(2.1) B =
∫
b dA, C =

∫
c dA, ν(ω; dt, dx) = dAt(ω)Kω,t(dx),

where A is a real-valued predictable increasing locally integrable process, b = (bit) an IRd-

valued predictable process, c = (cijt ) a predictable process with values in the set of symmetric

nonnegative definite d× d-matrices, and Kω,t(dx) a transition kernel from (Ω× IR+,P) into

(IRd,Bd) which satisfies Kω,t({0}) = 0 and
∫
IRd

(1 ∧ |x|2)Kω,t(dx) ≤ 1 for all t ∈ T . We

shall also need the characteristics of a linear transformation of a semimartingale. For a

Lévy process X, this is given by Prop. 11.10 of Sato (1999). The argument for the general

semimartingale case is routine and therefore omitted.

Proposition 1. Let X be a semimartingale with characteristics (B,C, ν) and U a d × d-

matrix. Then the semimartingale X̃ = UX has the following characteristics (B̃, C̃, ν̃):

B̃t = UBt −
(
Uh(x)− h(Ux)

)
∗ νt,

C̃t = UCtU
>,

ν̃(A1 ×A2) = ν
(
A1 × U−1(A2 \ {0})

)
for A1 ∈ B(T ), A2 ∈ Bd.

We recall Girsanov’s theorem from JS, Theorem III.3.24 to introduce some terminology.

Proposition 2. Let X be a semimartingale with P -characteristics (BP , CP , νP ) and denote

by c, A the processes from (2.1). For any probability measure Q
loc¿P , there exist a predictable

function Y ≥ 0 and a predictable IRd-valued process β satisfying

|(Y − 1)h| ∗ νPt +
t∫

0

|csβs| dAs +
t∫

0

β>s csβs dAs <∞ Q-a.s. for all t ∈ T

and such that the Q-characteristics (BQ, CQ, νQ) of X are given by

BQt = BPt +
t∫

0

csβs dAs+
(
(Y −1)h

)
∗νPt , CQt = CPt , νQ(dt, dx) = Y (t, x) νP (dt, dx).

We call β and Y the Girsanov parameters of Q (with respect to P relative to X).

Remark NV. Intuitively, Y describes how the jump distributions of X change when we pass

from P to Q, and β together with Y determines the change in drift. CP describes the P -

quadratic variation of the continuous part of X and is therefore invariant under an absolutely
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continuous change of measure. Note that the Girsanov parameters are not unique: From the

uniqueness of νP and νQ we only get uniqueness of Y (ω; · , ·) on the support of νP (ω), and

with this and the uniqueness of BP and BQ we only get uniqueness of cβ for fixed c and A.

However, we can choose the following nice versions of Y and β.

First we take Y such that Y (ω; s, x) = 1 identically for (s, x) 6∈ supp νP (ω). Since νP

does not charge {0}× IRd, this implies Y (ω; s, 0) = 1 identically. Next, βs is unique only if cs

is regular. If cs is possibly degenerate, we choose βs in the following way (and for simplicity,

we only consider the case where c is deterministic and time-independent).

Let rank (c) = r ≤ d and let λj be the eigenvalues of c, numbered such that λj = 0

exactly for j > r. Since c is nonnegative definite, there exist a diagonal matrix c̃ with

c̃jj = λj and an orthogonal matrix S such that c = Sc̃S>. If β is any Girsanov parameter,

then cβ = Sc̃S>β and since c̃ is diagonal with c̃jj = 0 for j > r, we can set (S>β)j = 0 for

j > r without changing cβ. So if we set γj = (S>β)j for j ≤ r and γj = 0 for j > r and then

define β̃ = Sγ, we get a new predictable process β̃ with cβ̃ = cβ and (S>β̃)j = 0 for j > r.

Moreover, β̃ with these properties is unique. In fact, cβ̃ = cβ̃′ implies Sc̃S>β̃ = Sc̃S>β̃′ and

thus c̃S>β̃ = c̃S>β̃′ which yields (S>β̃)j = (S>β̃′)j for j ≤ r by the properties of c̃. Finally,

since (S>β̃)j = 0 = (S>β̃′)j for j > r by assumption, we get S>β̃ = S>β̃′ and thus β̃ = β̃′.

To simplify arguments, we assume throughout that Y and β are chosen as above. Our

main results do not depend on this choice. ¦

2.2. Lévy processes

Let R be a probability measure on (Ω,F) and X a stochastic process null at 0 with RCLL

paths and adapted to a filtration IF satisfying the usual conditions under R. Then X is

called an (R, IF )-Lévy process if for all s ≤ t, the random variable Xt − Xs is independent

of Fs under R and has a distribution under R which depends only on t − s. (This is called

a PIIS by JS in Section II.4.) If there is only a process X with independent and stationary

increments under R, we call X an R-Lévy process , take as IF the R-augmentation of the

filtration generated by X and denote this by IFX ; this satisfies the usual conditions since a

Lévy process is a Feller process. For R = P , we even sometimes drop the mention of P .

Every IF -Lévy process is an IF -semimartingale (JS, Cor. II.4.19), and an IF -martingale

if and only if it is a local IF -martingale
(
He/Wang/Yan (1992), Theorem 11.46

)
. X is an

(R, IFX)-Lévy process if and only if ER
[
exp

(
iu>(Xt −Xs)

) ∣∣FXs
]

= ER
[
exp

(
iu>Xt−s

)]
for

all u ∈ IRd and s ≤ t. According to JS, Theorem II.4.15 and Cor. II.4.19, a semimartingale

X null at 0 is a Lévy process if and only if its characteristics are deterministic and linear

in time, i.e., Bt = bt, Ct = ct and ν(dt, dx) = K(dx) dt, where b ∈ IRd, c is a symmetric

nonnegative definite d× d-matrix and K is a σ-finite measure on (IRd,Bd) with K({0}) = 0

and
∫
IRd

(1 ∧ |x|2)K(dx) < ∞.
(
Note that K is σ-finite because ϕ(x) =

√
1 ∧ |x|2 is > 0 K-
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a.e. and in L2(K). We need σ-finiteness later to use Fubini’s theorem.
)

The constant triplet

(b, c,K) coincides with the Lévy characteristics from the Lévy-Khinchine representation of the

infinitely divisible distribution of X1, and we see that for a Lévy process X, the compensator

νP of the jump measure µX satisfies νP ({t} × IRd) = 0 P -a.s. for all t ∈ T .

2.3. A converse of Girsanov’s theorem for Lévy processes

Proposition 2 generally describes a measure Q
loc¿P via parameters β, Y , and we want to ex-

press the density process ZQ explicitly in terms of β, Y . This works ifX has the weak property

of predictable representation (as in He/Wang/Yan (1992), Definition 13.13; in Section III.4 of

JS, this is called “all local martingales have the representation property relative to X”). As

usual, we denote by E(Y ) the stochastic exponential of a semimartingale Y . Putting together

Section II.6, Theorem III.4.34, Theorem III.5.19, Cor. III.5.22 and Prop. III.5.10 from JS and

using νP (ω; {t} × IR) = 0 for all t ∈ T leads to

Proposition 3. Let L be a P -Lévy process for IF = IFL. If Q
loc≈ P with Girsanov parameters

β, Y , the density process of Q with respect to P is given by ZQ = E(NQ) with

(2.2) NQ
t =

t∫
0

βs dL
c
s + (Y − 1) ∗ (µL − νP )t for t ∈ T .

While Proposition 2 gives a description of measures Q
loc¿P in terms of Girsanov param-

eters β, Y , we also need to go the other way round. We want to start with given quantities

β, Y and find a measure Q
loc¿P which has β, Y as Girsanov parameters. In the setting of

Lévy processes, Proposition 3 makes this look almost straightforward because if we define

NQ from β, Y as in (2.2), the natural candidate for Q should have Z := E(NQ) as density

process. However, two problems remain: We must verify that the local P -martingale Z is

a true P -martingale, and then we need to prove the existence of a probability measure Q

with the given martingale Z as density process. The first point needs conditions on β, Y .

The second is easily solved for a finite time horizon T0 ∈ (0,∞) by setting dQ = ZT0
dP ,

no matter what the underlying space Ω is. For an infinite time horizon, existence of Q still

follows if we work on the canonical path space Ω := ID
(
[0,∞), IRd

)
=: IDd with F := B(IDd)

and appeal to Lemma 18.18 of Kallenberg (2002).

We start this program with a technical result. Its proof is purely analytic and therefore

omitted; see Section 2.3 of Esche (2004).

Lemma 4. The functions f, g : [0,∞) → IR defined by f(y) := y log y − (y − 1) (with

0 log 0 := 0) and g(y) := (1−√y)2 are convex and satisfy 0 ≤ g(y) ≤ f(y) for all y ≥ 0.
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Proposition 5. Let L be a P -Lévy process for IF = IFL with Lévy characteristics (b, c,K).

If β̄ is a predictable process and Ȳ > 0 a predictable function such that

(2.3) EP

[
exp

(
t∫

0

(
1
2 β̄
>
s c β̄s +

∫
IRd

f
(
Ȳ (s, x)

)
K(dx)

)
ds

)]
<∞ for all t ∈ T ,

then Ȳ − 1 is integrable with respect to µL − νP , and Z̄ := E(N̄) with

(2.4) N̄t :=
t∫

0

β̄s dL
c
s + (Ȳ − 1) ∗ (µL − νP )t, t ∈ T

is a strictly positive P -martingale on T .

Proof. See Appendix.

If β̄ and Ȳ are deterministic and time-independent, we obtain from Proposition 5

Corollary 6. Let L be a P -Lévy process for IF = IFL with Lévy characteristics (b, c,K). If

β̄ ∈ IRd and Ȳ : IRd → (0,∞) is a measurable function with

(2.5)
∫
IRd

f
(
Ȳ (x)

)
K(dx) <∞,

then Z̄ := E
(
β̄>Lc + (Ȳ − 1) ∗ (µL − νP )

)
is a strictly positive P -martingale on T .

The next result now starts with given quantities β̄, Ȳ and identifies these as Girsanov

parameters of a measure Q̄. As pointed out above, there is only one candidate for Q̄, whose

existence is ensured as soon as E(N̄) is a true P -martingale and we either have a finite time

horizon or work on the path space IDd.

Proposition 7. Let L be a P -Lévy process for IF = IFL with P -Lévy characteristics (b, c,K).

Let β̄ be a predictable process and Ȳ > 0 a predictable function such that Ȳ −1 is integrable

with respect to µL − νP , and define N̄ =
∫
β̄s dL

c
s + (Ȳ − 1) ∗ (µL − νP ). If there is a

probability measure Q̄
loc≈ P with density process ZQ̄ = Z̄ := E(N̄), then β̄ and Ȳ are the

Girsanov parameters of Q̄.

Proof. See Appendix.

For future reference, we explicitly state the following result.
(
If we are only interested in

constructing the Lévy measure Q̄, an alternative proof could use a combination of Sato (1999),

Theorem 8.1 and Cor. 11.6, with JS, Theorem IV.4.39, but would not be much shorter.
)
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Corollary 8. Let P be a probability measure on Ω = IDd with F = B(IDd), coordinate pro-

cess L and IF = IFL. Suppose that L is a P -Lévy process with P -Lévy characteristics (b, c,K).

For any β̄ ∈ IRd and any measurable function Ȳ : IRd → (0,∞) with
∫
IRd

f
(
Ȳ (x)

)
K(dx) <∞,

there exists a probability measure Q̄
loc≈ P on (Ω,F) with Girsanov parameters β̄, Ȳ and such

that L is a Q̄-Lévy process with Q̄-Lévy characteristics

bQ̄ = b+ c β̄ +
∫
IRd

h(x)
(
Ȳ (x)− 1

)
K(dx), cQ̄ = c, KQ̄(dx) = Ȳ (x)K(dx).

For T = [0, T0] with T0 ∈ (0,∞), this holds for any probability space (Ω,F , P ) and any

P -Lévy process L if IF = IFL and F = FT0
.

Proof. Combining Corollary 6 and Lemma 18.18 of Kallenberg (2002) gives a measure Q̄
loc≈ P

with Girsanov parameters β̄, Ȳ by Proposition 7. The Q̄-characteristics of L are then given

by Proposition 2, and since they are deterministic and linear in time, L is a Q̄-Lévy process.

q.e.d.

2.4. Martingale measures for Lévy processes

As seen above, a measure Q
loc¿P can be described via two quantities β, Y that determine

the characteristics of X under Q from those under P . By JS, Prop. II.2.29, X is a local

Q-martingale if and only if BQ + (x − h(x)) ∗ µX is. Since this gives a relation between β

and Y , a martingale measure Q for X should be determined by a single quantity Y , and for

a Q-Lévy process, this should further reduce to a deterministic time-independent function.

To make these ideas more precise, let L be a P -Lévy process and U a fixed d×d-matrix.

For a given measure Q
loc¿P with Girsanov parameters β, Y , we want to give conditions on β, Y

for UL to be a local Q-martingale. We denote by νP (dt, dx) = K(dx) dt the P -compensator of

the jump measure µL of L. For technical reasons, we need to characterize the Q-integrability

of large jumps of UL in a different manner, and this is achieved by the following result.

Lemma 9. Let L be a P -Lévy process, U a fixed d × d-matrix and Q
loc¿P with Girsanov

parameters β, Y . If EQ[f(Y ) ∗ νPt ] <∞ for all t ∈ T , we have for all t ∈ T
|Ux− h(Ux)| ∗ νQt <∞ Q-a.s. if and only if |U(xY − h)| ∗ νPt <∞ Q-a.s.,(2.6)

|Ux− h(Ux)| ∗ νQt ∈ L1(Q) if and only if |U(xY − h)| ∗ νPt ∈ L1(Q).(2.7)

Proof. See Appendix.

Remarks. 1) We shall see in Lemma 12 that EQ[f(Y ) ∗ νPt ] < ∞ for all t ∈ T holds in

particular if Q
loc≈ P has a finite entropy process.
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2) By JS, Prop. II.1.28, |Ux−h(Ux)|∗νQ is Q-integrable if and only if |Ux−h(Ux)|∗µL =

|x − h(x)| ∗ µUL is, and the latter means that the large jumps of UL are Q-integrable.

For Q
loc≈ P with finite entropy process, this is by Lemma 9 equivalent to Q-integrability of

|U(xY − h)| ∗ νP which turns out to be a technically more convenient condition. ¦

Proposition 10. Let L be a P -Lévy process for IF = IFL with P -Lévy characteristics

(b, c,K), and U a fixed d × d-matrix. Let Q
loc¿P with Girsanov parameters β, Y and such

that EQ[f(Y ) ∗ νPt ] < ∞ for all t ∈ T . Then UL is a local Q-martingale if and only if we

have Q-a.s. for all t ∈ T both |U(xY − h)| ∗ νPt <∞ and

(2.8) U
(
b+ cβt +

∫
IRd

(
xY (t, x)− h(x)

)
K(dx)

)
= 0.

Condition (2.8) is called the martingale condition for UL.

Proof. See Appendix.

Remarks. 1) The martingale condition is independent of the choice of the truncation

function. In fact, if we replace h by some h′, then b is replaced by b′ = b −
∫
IRd

(
h(x) −

h′(x)
)
K(dx) (see JS, Prop. II.2.24) and (2.8) holds with (b′, c,K) relative to h′.

2) If U is regular, (2.8) is equivalent to

(2.9) b+ c βt +
∫
IRd

(
xY (t, x)− h(x)

)
K(dx) = 0 Q-a.s. for all t ∈ T .

This is the martingale condition as it appears in Bühlmann/Delbaen/Embrechts/Shiryaev

(1996), Chan (1999), Fujiwara/Miyahara (2003) or Section VII.3 of Shiryaev (1999), among

others. Note that (2.9) requires that the appearing integral is well-defined; this needs

∫
IRd
|xY (t, x)− h(x)|K(dx) <∞ Q-a.s. for t ∈ T

which is equivalent to |U(xY − h)| ∗ νPt < ∞ Q-a.s. for t ∈ T . Actually, not all authors are

equally careful or explicit about verifying this condition. However, this does matter; see the

comment following “Pseudo-Proposition 14” below. ¦

3. Reducing relative entropy

In this section, we show how the entropy process of any Q
loc≈ P in a Lévy filtration can be

reduced by averaging Girsanov parameters. Since this preserves the linear constraint imposed
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by the local martingale property, the MEMM, if it exists, must preserve the Lévy property.

For reasons of integrability, this is not exactly true, but it does give the correct intuition.

To minimize repetitions, we assume throughout this section that L is a P -Lévy process

for IF = IFL with P -Lévy characteristics (b, c,K), and U is a fixed d × d-matrix . We start

by computing the entropy process of a given Q in terms of its Girsanov parameters.

Lemma 11. Fix a probability measure Q
loc≈ P with Girsanov parameters β, Y and finite

entropy process
(
It(Q|P )

)
t∈T , and denote by Z = ZQ = E(N) its density process with respect

to P . The canonical decomposition of the P -submartingale Z logZ is Z logZ = M +A with

M =
∫
Z−(1 + logZ−) dN +

(
Z−f(Y )

)
∗ (µL − νP ),

A = 1
2

∫
Z− d〈N c〉+

(
Z−f(Y )

)
∗ νP =: A′ +A′′.

Moreover, A′t and A′′t are P -integrable for all t ∈ T .

Proof. It is straightforward to check that Z logZ is a P -submartingale because the entropy

process of Q is finite-valued. By the product rule, we have

(3.1) d(Z logZ) = Z− d(logZ) + (logZ−) dZ + d[Z, logZ]

and the explicit expression for Z = E(N) yields

(3.2) logZt = Nt − 1
2 〈N c〉t +

∑
s≤t

(
log(1 + ∆Ns)−∆Ns

)
=: Nt − 1

2 〈N c〉t +Dt,

where the sum is absolutely convergent for all t ∈ T . In fact, |∆Ns| > 1
2 only for finitely

many s ≤ t, and for |x|2 ≤ 1
2 we have | log(1 + x)− x| ≤ const. |x|2 so that

∑
s≤t
| log(1 + ∆Ns)−∆Ns|I{|∆Ns|≤ 1

2} ≤ const.
∑
s≤t
|∆Ns|2 ≤ const. [N ]t <∞.

To compute the d[Z, logZ]-term in (3.1), we use dZ = Z− dN and (3.2) to get

(3.3) d[Z, logZ] = Z− d[N, logZ] = Z−
(
d[N ]− 1

2 d[N, 〈N c〉] + d[N,D]
)
.

Since 〈N c〉 is continuous, [N, 〈N c〉] vanishes, and since D is of finite variation, we have

(3.4) [N,D]t =
∑
s≤t

∆Ns∆Ds =
∑
s≤t

∆Ns
(

log(1 + ∆Ns)−∆Ns
)
.

This sum is absolutely convergent since
∑
s≤t
|∆Ns∆Ds| =

t∫
0

∣∣d[N,D]s
∣∣ ≤ ([N ]t)

1
2 ([D]t)

1
2 by

the Kunita-Watanabe inequality, and since
∑
s≤t

(∆Ns)
2 ≤ [N ]t converges as well, we may

decompose the sum in (3.4) and get

[N,D] =
∑
s

∆Ns log(1 + ∆Ns)−
∑
s

(∆Ns)
2.
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This yields

[N, logZ] = [N ]−∑
s

(∆Ns)
2 +

∑
s

∆Ns log(1 + ∆Ns) = 〈N c〉+
∑
s

∆Ns log(1 + ∆Ns),

or in terms of (3.3)

[Z, logZ] =
∫
Z− d〈N c〉+

∑
s
Zs−∆Ns log(1 + ∆Ns).

Putting all this together and using dZ = Z− dN , we finally get a decomposition

Z logZ =
∫
Z−(1 + logZ−) dN + 1

2

∫
Z− d〈N c〉+

∑
s
Zs−

(
∆Ds + ∆Ns log(1 + ∆Ns)

)

=
∫
Z−(1 + logZ−) dN + 1

2

∫
Z− d〈N c〉+

∑
s
Zs−f(1 + ∆Ns)(3.5)

=: M ′ +A′ + V,

where M ′ is a local P -martingale, A′ is continuous and increasing, and V is increasing since

∆Ns > −1 and f ≥ 0. However, V is not predictable so that (3.5) is not yet the canonical

decomposition. But V = Z logZ −M ′ − A′ is locally P -integrable since all terms on the

right-hand side are. Moreover, ∆Ns =
(
Y (s,∆Ls) − 1

)
I{∆Ls 6=0} and Y (s, 0) = 1 yields

f(1 + ∆Ns) = f
(
Y (s,∆Ls)

)
I{∆Ls 6=0} and therefore

V =
(
Z−f(Y )

)
∗ µL = |Z−f(Y )| ∗ µL,

since Z−f(Y ) ≥ 0. Because V is locally P -integrable, we obtain from JS, Prop. II.1.28 that

(
Z−f(Y )

)
∗ µL =

(
Z−f(Y )

)
∗ (µL − νP ) +

(
Z−f(Y )

)
∗ νP ,

so
(
Z−f(Y )

)
∗ νP is the P -compensator of V and we end up with

Z logZ =
(
M ′ +

(
Z−f(Y )

)
∗ (µL − νP )

)
+
(
A′ +

(
Z−f(Y )

)
∗ νP

)
.

This is now in fact the canonical decomposition since the first term is a local P -martingale

and the second is predictable and of finite variation.

As A′ and A′′ are both nonnegative, the final assertion follows if we prove that At is

P -integrable for each t ∈ T . But Z logZ is a P -submartingale with Zt logZt ∈ L1(P ) since

It(Q|P ) <∞, and so the family {Zτ logZτ | τ ≤ t is a stopping time} is uniformly integrable

because −e−1 ≤ Zτ logZτ ≤ EP [Zt logZt|Fτ ]. Thus (Z logZ)t is a P -submartingale of class

(D) and so the increasing process in its unique Doob-Meyer decomposition is P -integrable.

By uniqueness, (Z logZ)t = M t +At and therefore EP [At] = EP [At∞] <∞. q.e.d.

The next result provides us with a number of important integrability properties.
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Lemma 12. For Q
loc≈ P with finite entropy process and Girsanov parameters β, Y , the fol-

lowing random variables are Q-integrable for all t ∈ T :

a)
t∫

0

β>s c βs ds; b)
t∫

0

|βs| ds; c) f(Y ) ∗ νPt ; d)
t∫

0

Y (s, x) ds for x ∈ supp K.

Moreover, the entropy process of Q with respect to P is explicitly given by

(3.6) It(Q|P ) = 1
2EQ

[ t∫
0

(βs)
>c βs ds

]
+ EQ

[
f(Y ) ∗ νPt

]
.

Proof. a) The quadratic variation 〈N c〉t =
t∫

0

β>s c βs ds is the same under P and Q. Hence

Lemma I.3.12 of JS and Lemma 11 give

EQ [〈N c〉t] = EP [Zt〈N c〉t] = EP

[ t∫
0

Zs− d〈N c〉s
]

= 2EP [A′t] <∞.

b) Let r = rank (c) and λj be the eigenvalues of c, numbered such that λj = 0 exactly

for j > r. Choose β as in Remark NV so that βs = Sγs with γjs = 0 for j > r. Then

β>s c βs = γ>s c̃ γs =
r∑
j=1

λj |γjs |2 and βis =
r∑
j=1

Sijγjs so that
t∫

0

|βis| ds ≤
r∑
j=1

∣∣Sij
∣∣ t∫

0

|γjs | ds.

Hence it suffices to show that
t∫

0

|γjs | ds is Q-integrable, and this follows from part a) since

(
EQ

[
1
t

t∫
0

|γjs | ds
])2

≤ EQ
[

1
t

t∫
0

|γjs |2 ds
]

≤ const. EQ

[ t∫
0

r∑
j=1

λj |γjs |2 ds
]

= const. EQ

[ t∫
0

β>s c βs ds
]
.

c) As in part a), Lemma I.3.12 of JS and Lemma 11 yield

EQ
[
f(Y ) ∗ νPt

]
= EP

[
Zt

t∫
0

∫
IRd

f
(
Y (s, x)

)
K(dx) ds

]

= EP

[
t∫

0

Zs−
∫
IRd

f
(
Y (s, x)

)
K(dx) ds

]

= EP
[(
Z−f(Y )

)
∗ νPt

]

= 2EP [A′′t ] <∞.

d) Since EQ

[ ∫
IRd×[0,t]

f(Y )K(dx) ds

]
= EQ

[
f(Y ) ∗ νPt

]
< ∞ by part c), we obtain

EQ

[ t∫
0

f
(
Y (s, x)

)
ds
]
< ∞ for x ∈ supp K by Fubini’s theorem. Because f is convex,
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Jensen’s inequality yields

f
(
EQ

[
1
t

t∫
0

Y (s, x) ds
])
≤ EQ

[
1
t

t∫
0

f
(
Y (s, x)

)
ds
]
<∞ for x ∈ supp K,

and as f(y) <∞ implies y <∞, the assertion follows.

To obtain (3.6), note that Z logZ = M+A andM t is a uniformly integrable P -martingale

by the last argument in the proof of Lemma 11. So parts a) and c) give

It(Q|P ) = EP [Zt logZt] = EP [At] = 1
2EQ

[ t∫
0

(βs)
>c βs ds

]
+ EQ

[
f(Y ) ∗ νPt

]
.

q.e.d.

Now we can prove that relative entropy is reduced by averaging Girsanov parameters.

Theorem 13. Suppose that Q
loc≈ P with IT (Q|P ) <∞ for some T ∈ (0,∞), and define

β` = 1
T EQ

[ T∫
0

βQs ds
]
,

Y `(x) = 1
T EQ

[ T∫
0

Y Q(s, x) ds
]

for x ∈ supp K.

a) There exists a probability measure Q` ≈ P on FT0
with Girsanov parameters β` and Y `,

which satisfies IT0(Q`|P ) ≤ IT0(Q|P ), and such that the restriction of L to the interval

[0, T0] is a Q`-Lévy process.

b) Let Ω = IDd with F = B(IDd), coordinate process L and IF = IFL. Then there exists

a probability measure Q`
loc≈ P on (Ω,F) with Girsanov parameters β` and Y `, which

satisfies IT (Q`|P ) ≤ IT (Q|P ), and such that L is a Q`-Lévy process on [0,∞).

c) For Q` constructed as above, IT (Q`|P ) = IT (Q|P ) if and only if both βQ. = β` P ⊗ λ-

a.e. on Ω× [0, T ] and Y Q(·, x) = Y `(x) P ⊗ λ-a.e. on Ω× [0, T ], for all x ∈ supp K, i.e.,

if and only if L is a Q-Lévy process on [0, T ].

Proof. By Lemma 12, β` and Y ` are well-defined, and Corollary 8 yields the existence of

Q` with Girsanov parameters β`, Y ` and the Q`-Lévy property for L because

(3.7)
∫
IRd

f
(
Y `(x)

)
K(dx) ≤

∫

IRd

EQ

[
1
T

T∫
0

f
(
Y Q(s, x)

)
ds
]
K(dx) = 1

T EQ
[
f(Y Q) ∗ νPT

]
<∞

by the definition of Y `, Jensen’s inequality, Fubini’s theorem for nonnegative functions and

part c) of Lemma 12. Moreover, (3.6) gives

IT (R|P ) = 1
2ER

[ T∫
0

(βRs )>c βRs ds
]

+ ER
[
f(Y R) ∗ νPT

]
for R ∈ {Q,Q`},
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and we claim that

EQ

[ T∫
0

(βQs )>c βQs ds
]
≥ EQ`

[ T∫
0

(β`)>c β` ds
]

= T (β`)>c β`,(3.8)

EQ
[
f(Y Q) ∗ νPT

]
≥ EQ`

[
f(Y `) ∗ νPT

]
= T

∫
IRd

f
(
Y `(x)

)
K(dx),(3.9)

with equality if and only if βQ. = β` P ⊗ λ-a.e. on Ω× [0, T ] and Y Q(·, x) = Y `(·, x) P ⊗ λ-

a.e. on Ω× [0, T ], for all x ∈ supp K. For brevity, we omit to say “on Ω× [0, T ]” below.

Now (3.9) is simply (3.7); since f is strictly convex, equality holds if and only if we have

Y Q(·, x) = Y `(·, x) P ⊗λ-a.e., for all x ∈ supp K. For the proof of (3.8), we use the notation

of Remark NV and define γ̃s =
√
c̃ S>βQs so that (βQs )>c βQs = |γ̃s|2. Jensen’s inequality then

gives 1
T

T∫
0

|γ̃s|2 ds ≥
∣∣∣ 1
T

T∫
0

γ̃s ds
∣∣∣
2

and therefore

EQ

[
1
T

T∫
0

(βQs )>c βQs ds
]
≥ EQ

[∣∣∣ 1
T

T∫
0

γ̃s ds
∣∣∣
2
]
≥
∣∣∣∣ 1
T EQ

[ T∫
0

γ̃s ds
]∣∣∣∣

2

;

equality holds if and only if γ̃ (or, equivalently, βQ) is constant P ⊗ λ-a.e. But

1
T EQ

[ T∫
0

γ̃s ds
]

=
√
c̃ S> 1

T EQ

[ T∫
0

βQs ds
]

=
√
c̃ S>β`

by the definitions of γ̃ and β` and therefore EQ

[ T∫
0

(βQs )>c βQs ds
]
≥ T (β`)>c β`, with equality

if and only if βQ. = β` P ⊗ λ-a.e. This proves b) and c). To obtain a), we argue with T = T0

if IT0(Q`|P ) <∞; otherwise, we use (3.6) to get IT0(Q`|P ) = T0

T IT (Q`|P ) <∞ . q.e.d.

Using the description of the local Q-martingale property of UL in Proposition 10 yields

“Pseudo-Proposition 14”. Suppose Q` is constructed from Q as in Theorem 13. If UL is

a local martingale under Q, it is still a local martingale under Q`.

“Pseudo-Proof”. By construction, the Girsanov parameters of Q` are obtained by aver-

aging those of Q. But the local martingale property of UL is characterized by the linear

constraint (2.8) between Girsanov parameters, and this is preserved by averaging. “q.e.d.”

We have put “Pseudo-Proposition 14” and its “pseudo-proof” in quotation marks because

they are not necessarily true as they stand. More precisely, we need Fubini’s theorem to prove

that (2.8) is preserved by averaging, and this requires the additional assumption (on Q) that

EQ
[
|U(xY − h)| ∗ νPT

]
<∞. Hence the subsequent “pseudo-proof” of the next result is also
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flawed. Nevertheless, Theorem A itself is true, and we shall provide a proper proof in Section

5. The current presentation has been chosen to highlight the key idea behind the argument.

Theorem A. Let L be a P -Lévy process for IF = IFL, and U a fixed d× d-matrix. Suppose

thatQUe (L)∩QUf (L)∩QU` (L) 6= ∅. If QE(UL) exists, then L is a Lévy process under QE(UL).

“Pseudo-Proof”. For brevity, write QE for QE(UL). If the assertion were not true, we

could use Theorem 13 to construct (QE)` which would be a local martingale measure for UL

by “Pseudo-Proposition 14” and satisfy IT
(
(QE)`

∣∣P
)
< IT (QE |P ) for some T ∈ (0,∞) by

part c) of Theorem 13, in contradiction to the optimality of QE . “q.e.d.”

4. Identifying the minimal entropy martingale measure

In this section, we give a very explicit representation for the MEMM QE(UL), and one

important point is to make transparent where this comes from. We have seen in Theorem A

that QE(UL), if it exists, preserves the Lévy property of L. Instead of minimizing relative

entropy over all ELMMs for UL, it should thus be sufficient to minimize only over those which

in addition preserve the Lévy property of L. (That this is indeed enough is proved in Corollary

20 in Section 5.) We use this intuition to derive by partly formal arguments a candidate for

QE(UL), and then we prove that this candidate gives indeed the optimal measure. For

simplicity, we give the derivation for the case L = UL where U is the identity matrix, and

for brevity, we often write QE for QE(UL) and QUs for QUs (L), where s ∈ {a, e, f, `}.
To find a candidate for QE , we start with any Q in QUe ∩QUf ∩QU` because this is where

QE should lie. Since Q is in QU` , it has deterministic time-independent Girsanov parameters

β ∈ IRd and Y : IRd → (0,∞). As Q ∈ QUf , (3.6) gives an explicit expression for It(Q|P ) in

terms of β, Y , and as Q ∈ QUe , the martingale condition (2.8) or (2.9) relates β and Y by

(4.1) cβ = −b−
∫
IRd

(
xY (x)− h(x)

)
K(dx) =: −b− k(Y ).

If we take c regular for simplicity, we can solve (4.1) for β and plug into (3.6) to get

(4.2) It(Q|P ) =
(

1
2

(
b+ k(Y )

)>
c−1
(
b+ k(Y )

)
+
∫
IRd

f
(
Y (x)

)
K(dx)

)
t =: Ī(Y ) t.

As explained intuitively in Subsection 2.4, we have now parametrized Q by a function Y and

want to minimize the functional Ī(Y ). If Y∗ is optimal, we obtain for any Y and all ε > 0

0 ≤ Ī
(
Y∗ + ε(Y − Y∗)

)
− Ī(Y∗)

=
∫ (

f
(
Y∗ + ε(Y − Y∗)

)
− f(Y∗)

)
dK + ε

( ∫
x(Y − Y∗) dK

)>
c−1
(
b+

∫
(xY∗ − h) dK

)

+ 1
2ε

2
( ∫

x(Y − Y∗) dK
)>
c−1
( ∫

x(Y − Y∗) dK
)
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by using (4.2) and the expression for k(Y ). Now divide by ε and let ε tend to 0 to get

0 ≤
∫
f ′(Y∗)(Y − Y∗) dK +

( ∫
x(Y − Y∗) dK

)>
c−1
(
b+

∫
(xY∗ − h) dK

)
for all Y .

The particular choice Y := (1± δ)Y∗ with δ > 0 leads to

0 = (
∫
xY∗ dK)>c−1

(
b+

∫
(xY∗ − h) dK

)
+
∫
f ′(Y∗)Y∗ dK =

∫
(−β>∗ x+ log Y∗)Y∗ dK,

where β∗ = β∗(Y∗) = −c−1
(
b+
∫

(xY∗−h) dK
)

is the optimal β from the martingale condition

(4.1) and we have used f ′(y) = log y. As Y∗ > 0, we thus should have log Y∗(x)− β>∗ x = 0 or

Y∗(x) = eβ
>
∗ x (at least on the support of K).

Hence the optimal measure Q∗ should have Girsanov parameters β∗ = u∗ and Y∗(x) = eu
>
∗ x

for some u∗ ∈ IRd which must be determined from the martingale condition

b+ cu∗ +
∫
IRd

(
xeu

>
∗ x − h(x)

)
K(dx) = 0.

This recipe gives our candidate for QE . To make it even more explicit, we define as in

Corollary 6 Z∗ := E
(
u>∗ L

c + (Y∗ − 1) ∗ (µL − νP )
)

and find by formal calculations that

Z∗t = exp
(
u>∗ L

c
t +(u>∗ x)∗µLt −const. t

)
which suggests that the density process of QE should

be of the form ZQ
E

t = const.(t) eu
>
∗ Lt . Hence we expect QE to be a so-called Esscher measure.

To explain this more carefully, we start with a P -Lévy process L with P -Lévy charac-

teristics (b, c,K) and fix a d× d-matrix U . We define

A :=
{
u ∈ IRd

∣∣EP
[
eu
>L1
]
<∞

}

and recall from Theorem 25.17 of Sato (1999) that

Ψ(u) := b>u+ 1
2u
>c u+

∫
IRd

(
eu
>x − 1− (u>x)I{|x|≤1}

)
K(dx)

is well-defined on A and that EP
[
eu
>Lt
]

= etΨ(u) for u ∈ A. Due to the Lévy structure of L

under P , it is easy to see that Zut := exp
(
u>Lt − tΨ(u)

)
is a strictly positive P -martingale

and therefore the density process of a measure Qu
loc≈ P on

(
IDd,B(IDd)

)
by Lemma 18.18 of

Kallenberg (2002). Any such Qu is called Esscher measure (for L with parameter u). If Qu

is in addition a martingale measure for UL, we call Qu Esscher martingale measure for UL.

The next result collects some simple properties of Esscher measures.

Lemma 15. Fix u ∈ A and let Qu be an Esscher measure with parameter u. Then:
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a) L is a Lévy process under Qu.

b) The Girsanov parameters of Qu are given by βu = u, Y u(x) = eu
>x.

c) If Qu is in addition an Esscher martingale measure for UL and u ∈ range (U>), the

entropy process of Qu is finite-valued and given by It(Q
u|P ) = −tΨ(u) for all t ∈ T .

Proof. a) See Shiryaev (1999), Theorem VII.3c.1.

b) If β, Y are the Girsanov parameters of Qu, part a) implies that β is a constant and

Y = Y (x) is a deterministic function. Proposition 3 yields

Zut = E(Nu)t = E
(
β>Lc + (Y − 1) ∗ (µL − νP )

)
t

and the explicit formula for the stochastic exponential gives

logZut = β>Lct − 1
2β
>c β t+ (Y − 1) ∗ (µL − νP )t +

∑
s≤t

(
log(1 + ∆Nu

s )−∆Nu
s

)

= u>Lt − tΨ(u)

by the definition of Zu. Comparing the continuous local martingale parts of the two rep-

resentations yields β = u, and since ∆Nu
t = Y (∆Lt) − 1, comparing the jumps implies

u>∆Lt = log Y (∆Lt) so that we get Y (x) = eu
>x on the support of K.

c) Write u = U>ũ. By part a) and Proposition 1, UL is both a Lévy process and a local

martingale under Qu and hence a true Qu-martingale. Because u ∈ A, this gives

It(Q
u|P ) = EQu

[
logZut

]
= EQu

[
ũ>ULt − tΨ(u)

]
= −tΨ(u) <∞.

q.e.d.

To prove that our candidate is indeed optimal, we use the following Lévy version of

Prop. 3.2 in Grandits/Rheinländer (2002). It tells us that the Esscher martingale measure

for UL is optimal in QU` if it exists. Note that we do not assume that QE exists.

Lemma 16. Let L be a P -Lévy process. If there exists an Esscher martingale measure Qu

for UL with u ∈ range (U>), then It(Q
u|P ) ≤ It(R|P ) for all R ∈ QU` and for all t ∈ T , or

in other words, Qu = QE` (UL).

Proof. From part c) of Lemma 15, we know that It(Q
u|P ) = −tΨ(u) <∞. Write u = U>ũ

and fix R ∈ QU` . Then UL is under R a Lévy process and a local martingale, hence a true

martingale, and because relative entropy is nonnegative, we get as in the proof of Lemma 15

It(R|P ) = It(R|Qu) + ER
[

logZut
]

= It(R|Qu)− tΨ(u) ≥ −tΨ(u) = It(Q
u|P ).

q.e.d.

19



            

Now we can prove that the heuristically derived recipe for our candidate produces indeed

the minimal entropy martingale measure QE(UL).

Theorem B. Let L be a P -Lévy process for IF = IFL with Lévy characteristics (b, c,K),

and U a fixed d× d-matrix. Suppose that there exists u∗ ∈ range (U>) such that
∫
IRd

∣∣xeu>∗ x − h(x)
∣∣K(dx) <∞,(4.3)

U
(
b+ cu∗ +

∫
IRd

(
xeu

>
∗ x − h(x)

)
K(dx)

)
= 0.(4.4)

Then both the Esscher measure Qu∗ and the minimal entropy martingale measure QE(UL)

exist and coincide.

Proof. Existence of Qu∗ follows if we show that u∗ ∈ A, and by Theorem 25.17 of Sato

(1999), this holds if and only if
∫

{|x|>1}
eu
>
∗ xK(dx) < ∞. But with h0(x) := |x|I{|x|≤1}, we

easily get |h0(x)− h(x)| ≤ const. (1 ∧ |x|2) and therefore

∫
{|x|>1}

eu
>
∗ xK(dx) ≤

∫
{|x|>1}

|x|eu>∗ xK(dx) +
∫

{|x|≤1}

∣∣x
(
eu
>
∗ x − 1

)∣∣K(dx)

=
∫
IRd

∣∣xeu>∗ x − h0(x)
∣∣K(dx)

≤
∫
IRd

∣∣xeu>∗ x − h(x)
∣∣K(dx) +

∫
IRd
|h0(x)− h(x)|K(dx) <∞

by (4.3) and the properties of K. By part b) of Lemma 15, the Girsanov parameters of Qu∗

are β∗ = u∗ and Y∗(x) = eu
>
∗ x. Hence (4.3) and (4.4) are the conditions from Proposition

10 for UL to be a local Qu∗ -martingale so that Qu∗ ∈ QUe ∩ QUf ∩ QU` by part c) of Lemma

15. Lemma 16 implies that Qu∗ has minimal entropy among all Q ∈ QUe ∩ QUf ∩ QU` so that

QE` (UL) exists and coincides with Qu∗ . But then Corollary 20 below implies that QE(UL)

exists as well and QE(UL) = QE` (UL) = Qu∗ . q.e.d.

Remark. The derivation of our candidate for QE(UL) suggests in particular that finding

the MEMM for a Lévy process can be reduced to a deterministic optimization problem. In

fact, consider for β ∈ IR and measurable functions Y : IRd → (0,∞) the functional

Î(β, Y ) := 1
2β
>c β +

∫
IRd

f
(
Y (x)

)
K(dx)

which by (3.6) equals I1(Q|P ) for the measure Q
loc≈ P with Girsanov parameters β, Y . Denote

by H the class of all pairs (β, Y ) satisfying
∫
IRd

f
(
Y (x)

)
K(dx) <∞,(4.5)
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∫
IRd
|xY (x)− h(x)|K(dx) <∞,(4.6)

U
(
b+ cβ +

∫
IRd

(
xY (x)− h(x)

)
K(dx)

)
= 0.(4.7)

By Corollary 8, (4.5) is the condition for the existence of Q with I1(Q|P ) <∞, whereas (4.6)

and (4.7) come from the martingale condition in Proposition 10. If we set Y u(x) := eu
>x

for u ∈ IRd, purely analytic arguments show that if there is some u∗ ∈ range (U>) with

(u∗, Y u∗) ∈ H, then Î(u∗, Y u∗) ≤ Î(β, Y ) for all (β, Y ) ∈ H. The crucial point is to prove

0 ≤ 1
2 (β − u∗)>c (β − u∗) +

∫
IRd

Y u∗(x)f
(

Y (x)
Y u∗ (x)

)
K(dx)

= 1
2β
>c β +

∫
IRd

f
(
Y (x)

)
K(dx)−

(
1
2u
>
∗ c u∗ +

∫
IRd

f
(
Y u∗(x)

)
K(dx)

)
,

where the first inequality is obvious and the second corresponds to the probabilistic argument

in the proof of Lemma 16. For details, we refer to Section 4.3 of Esche (2004). ¦

5. A proper proof of Theorem A

In this section, we give a rigorous proof of Theorem A. Throughout the section, L is a P -Lévy

process for IF = IFL with Lévy characteristics (b, c,K), and U is a fixed d × d-matrix. The

basic idea is the assertion of “Pseudo-Proposition 14” that the local martingale property

of UL under Q is preserved under an averaging of Girsanov parameters. However, we can

rigorously prove this only if the big jumps of UL are Q-integrable. To make this precise, we

define for a semimartingale X a new set of martingale measures by

QUint(X) :=
{
Q ∈ QUa (X)

∣∣EQ
[
|U(xY − h)| ∗ νPt

]
<∞ for all t ∈ T

}

and write QUs = QUs (L) for s ∈ {a, e, f, int, `}. As pointed out after Lemma 9, Q being in QUint

is equivalent to Q-integrability of |x− h(x)| ∗ µUL, the sum over large jumps of UL, if Q has

a finite entropy process. But for proof purposes, the above formulation is more convenient.

Remark. Any Q ∈ QUe ∩QUf ∩QU` is also in QUint. In fact, part c) of Lemma 12 and the proof

of Proposition 10 show that |U(xY − h)| ∗ νP is finite-valued; this uses only Q ∈ QUe ∩ QUf .

If also Q ∈ QU` , then Y is deterministic, hence so is |U(xY − h)| ∗ νP , and then finiteness is

the same as Q-integrability. ¦

The correct version of “Pseudo-Proposition 14” is now
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Proposition 17. Let Q ∈ QUe ∩ QUf ∩ QUint with Girsanov parameters β, Y . Then Q` con-

structed from Q in Theorem 13 is in QUe ∩QUf ∩QU` so that UL is still a local Q`-martingale.

Proof. Let β`, Y ` be the Girsanov parameters of Q`. Theorem 13 gives Q`
loc≈ P , that L is

a Q`-Lévy process and IT (Q`|P ) < ∞ for some T ∈ (0,∞). Since β`, Y ` are deterministic

and time-independent, this implies It(Q
`|P ) = t I1(Q`|P ) < ∞ for all t ∈ T and it only

remains to show that UL is a local Q`-martingale. By Proposition 10, we need to verify that∫
IRd

∣∣U
(
xY `(x)− h(x)

)∣∣ K(dx) <∞ and that β`, Y ` satisfy the martingale condition (2.8).

Using the definition of Y `, Jensen’s inequality and Fubini’s theorem yields

∫
IRd

∣∣U
(
xY `(x)− h(x)

)∣∣ K(dx) =

∫

IRd

∣∣∣EQ
[

1
T

T∫
0

U
(
xY (s, x)− h(x)

)
ds
]∣∣∣K(dx)

≤ 1
T EQ

[
|U(xY − h)| ∗ νPT

]
<∞

since Q ∈ QUint. This allows us now to use Fubini’s theorem for U
(
xY (s, x) − h(x)

)
and

combine this with (2.8) for β, Y to conclude

U
(
b+ cβ` +

∫
IRd

(
xY `(x)− h(x)

)
K(dx)

)

= 1
T EQ

[ T∫
0

U
(
b+ cβs +

∫
IRd

(
xY (s, x)− h(x)

)
K(dx)

)
ds
]

= 0

so that β`, Y ` satisfy the martingale condition for UL as well. q.e.d.

If Q is not in QUint, we do not know if Q` from Theorem 13 preserves the local martingale

property of UL. The key idea for using Proposition 17 in a proper proof of Theorem A is

thus to argue that the martingale measures in QUe ∩ QUf ∩ QUint are dense in the set of all

martingale measures QUe ∩ QUf in a suitable sense. This is achieved by

Proposition 18. Let Q ∈ QUe ∩ QUf and suppose QUe ∩ QUf ∩ QU` 6= ∅. Then there exists a

sequence (Qn)n∈IN in QUe ∩ QUf ∩ QUint with lim
n→∞

It(Q
n|P ) = It(Q|P ) for all t ∈ T .

Proof. Choose Q̄ ∈ QUe ∩ QUf ∩ QU` so that Q̄ ∈ QUint by the remark before Proposition 17.

Denote by β, Y the Girsanov parameters of Q and write the density process as ZQ = E(N)

with N =
∫
β dLc + (Y − 1) ∗ (µL − νP ) by Proposition 3. Analogous quantities with a

bar ¯ refer to Q̄. Because UL is a local Q-martingale, |U(xY − h)| ∗ νP is continuous and
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finite-valued by Proposition 10, hence locally Q-integrable with localizing sequence (τn)n∈IN .

To construct Qn which agrees with Q up to τn and with Q̄ afterwards, we define for n ∈ IN

βns = βsI[[0,τn]] + β̄I]]τn,∞[[,

Y n(s, x) = Y (s, x)I[[0,τn]] + Ȳ (x)I]]τn,∞[[,

and set Nn =
∫
βn dLc+(Y n−1)∗(µL−νP ) and Zn = E(Nn). It is straightforward to check

that Nn = Nτn + N̄ − N̄τn and Zn = ZI[[0,τn]] +
Zτn
Z̄τn

Z̄I]]τn,∞[[. Hence Zn is a strictly positive

martingale starting at 1 and there exists Qn
loc≈ P with density process Zn. (For T = [0,∞),

we work on the path space IDd as usual.) It follows from Proposition 7 that βn, Y n are the

Girsanov parameters of Qn, and Qn = Q on Fτn since Znτn = Zτn . We claim that Qn is a

local martingale measure for UL with Qn ∈ QUint. In fact, the definition of Y n yields

|U(xY n − h)| ∗ νPt ≤ |U(xY − h)| ∗ νPt + |U(xȲ − h)| ∗ νPt <∞ Qn-a.s. for all t ∈ T

by Proposition 10 since Q, Q̄ ∈ QUe , and βn, Y n satisfy (2.8) by construction so that Qn

is in QUe as well. Moreover, using Qn = Q on Fτn , the fact that Ȳ is deterministic and

time-independent, and
t∫

0

I]]τn,∞[[ ds ≤ t yields

EQn
[
|U(xY n − h)| ∗ νPt

]
≤ EQ

[
|U(xY − h)| ∗ νPτn

]
+ t

∫
IRd

∣∣U
(
xȲ (x)− h(x)

)∣∣ K(dx) <∞

by the choice of τn and since Q̄ ∈ QUint. Hence Qn is in QUe ∩ QUint as claimed above.

It remains to show that each Qn is in QUf and the convergence of It(Q
n|P ) to It(Q|P ).

From Lemma 12, we know that

(5.1) It(R|P ) = 1
2ER

[ t∫
0

(βRs )>c βRs ds
]

+ ER
[
f(Y R) ∗ νPt

]
for R ∈ {Q,Qn},

and because Qn = Q on Fτn and τn is Fτn -measurable, we get from the definition of βn that

EQn
[ t∫

0

(βns )>c βns ds
]

= EQ

[ t∫
0

β>s c βsI[[0,τn]](s) ds
]

+ β̄>c β̄EQ[(t− τn)+]→ EQ

[ t∫
0

β>s c βs ds
]

by monotone convergence since τn ↑ ∞ Q-a.s. In the same way, the definition of Y n yields

EQn
[
f(Y n) ∗ νPt

]
= EQ

[ t∫
0

∫
IRd

f
(
Y (s, x)

)
I[[0,τn]](s)K(dx) ds

]

+
∫
IRd

f
(
Ȳ (x)

)
K(dx)EQ[(t− τn)+]

−→ EQ

[ t∫
0

∫
IRd

f
(
Y (s, x)

)
K(dx) ds

]

= EQ
[
f(Y ) ∗ νPt

]
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by monotone convergence, and in view of (5.1), this completes the proof. q.e.d.

The next result shows that for the approximating martingale measures in Proposition

18, we also get convergence of entropies for the corresponding “Lévyfied” measures.

Proposition 19. In the setting of Proposition 18, let Q` and Qn,` = (Qn)` be constructed

as in Theorem 13 for some T ∈ (0,∞). Then lim
n→∞

It(Q
n,`|P ) = It(Q

`|P ) for all t ∈ T .

Proof. Since Q`, Qn,` have deterministic and time-independent Girsanov parameters,

It(R|P ) =
(

1
2 (βR)>c βR +

∫
IRd

f
(
Y R(x)

)
K(dx)

)
t for R ∈ {Q`, Qn,`}

by Lemma 12 and so it is enough to prove that βn,` → β` and
∫
IRd

f
(
Y n,`(x)

)
K(dx) →

∫
IRd

f
(
Y `(x)

)
K(dx).

Denote by β, Y and βn, Y n the Girsanov parameters of Q and Qn. By the construction

of βn,` and βn, and since Qn = Q on Fτn and τn is Fτn -measurable, we have

βn,` = EQn
[

1
T

T∫
0

βns ds
]

= EQ

[
1
T

T∫
0

βsI[[0,τn]](s) ds
]
+ 1
T β̄EQ[(T−τn)+]→ EQ

[
1
T

T∫
0

βs ds
]

= β`

by monotone convergence for the second and dominated convergence for the first term, be-

cause
∣∣∣
T∫
0

βsI[[0,τn]](s) ds
∣∣∣ ≤

T∫
0

|βs| ds ∈ L1(Q) by part b) of Lemma 12. In the same way, we

obtain f
(
Y n,`(x)

)
→ f

(
Y `(x)

)
for all x ∈ supp K by using part d) of Lemma 12 and conti-

nuity of f . To find a K-integrable dominating function for f
(
Y n,`(x)

)
, we use the definition

of Y n,`, Jensen’s inequality for the convex function f ≥ 0, the definition of Y n, and again

that Qn = Q on Fτn and Fτn -measurability of τn to obtain

f
(
Y n,`(x)

)
≤ EQn

[
1
T

T∫
0

f
(
Y n(s, x)

)
ds
]

= EQ

[
1
T

T∫
0

f
(
Y (s, x)

)
I[[0,τn]](s) ds

]
+ 1

T f
(
Ȳ (x)

)
EQ[(T − τn)+]

≤ EQ
[

1
T

T∫
0

f
(
Y (s, x)

)
ds
]

+ f
(
Ȳ (x)

)
.

But Q and Q̄ both have finite relative entropy and since f ≥ 0, we can use Fubini’s theorem

and part c) of Lemma 12 to get

∫

IRd

EQ

[ T∫
0

f
(
Y (s, x)

)
ds
]
K(dx) = EQ

[ ∫
IRd

T∫
0

f
(
Y (s, x)

)
dsK(dx)

]
= EQ

[
f(Y ) ∗ νPT

]
<∞.
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In the same way, we get K-integrability of f
(
Ȳ (x)

)
. Hence dominated convergence yields

∫
IRd

f
(
Y n,`(x)

)
K(dx)→

∫
IRd

f
(
Y `(x)

)
K(dx), and this completes the proof. q.e.d.

Now we can finally prove Theorem A which we recall for the convenience of the reader.

Theorem A. Let L be a P -Lévy process for IF = IFL, and U a fixed d× d-matrix. Suppose

thatQUe (L)∩QUf (L)∩QU` (L) 6= ∅. If QE(UL) exists, then L is a Lévy process under QE(UL).

Proof. For brevity, we write QE for QE(UL). If L is not a Lévy process under QE ,

there exists T ∈ (0,∞) such that L is not a QE-Lévy process on [0, T ]. For the measure

QE,` = (QE)` obtained from Theorem 13, we then have IT (QE,`|P ) < IT (QE |P ). However,

this is not yet a contradiction to the optimality of QE ; we do not know whether UL is a local

martingale under QE,` since QE is perhaps not in QUint. But if (QE,n)n∈IN is the sequence

in QUe ∩ QUf ∩ QUint for QE from Proposition 18 and QE,n,` = (QE,n)` are the corresponding

Lévy martingale measures for UL obtained from Theorem 13, Proposition 19 yields

lim
n→∞

IT (QE,n,`|P ) = IT (QE,`|P ) < IT (QE |P ).

So for n sufficiently large we have IT (QE,n,`|P ) < IT (QE |P ) and QE,n,` ∈ QUe ∩ QUf by

Proposition 17 which is the desired contradiction. q.e.d.

In view of Theorem A, it seems clear that we should be able to find QE(UL) by mini-

mizing relative entropy only over Lévy martingale measures. This is indeed true:

Corollary 20. Let L be a P -Lévy process for IF = IFL, and U a fixed d×d-matrix. Suppose

thatQUe (L)∩QUf (L)∩QU` (L) 6= ∅. If QE` (UL) exists, then QE(UL) exists as well and coincides

with QE` (UL). In particular, we have QE` (UL)
loc≈ P .

Proof. We again omit writing (L) and (UL) for brevity. If QE exists, it is in QUe ∩QUf ∩QU`
by Theorem A. Then we must have QE = QE` , and it also follows from Theorem 2.2 of Frittelli

(2000) that QE
loc≈ P .

Suppose QE does not exist. Then there is some T ∈ (0,∞) and some Q ∈ QUf with

IT (Q|P ) < IT (QE` |P ). Since QUe ∩ QUf 6= ∅ and IT (· |P ) is convex, we may assume that

Q ∈ QUe as well
(
otherwise replace Q by (1− ε)Q+ εQ′ for some Q′ ∈ QUe ∩QUf

)
. Construct

Q` from Q via Theorem 13, the sequence (Qn)n∈IN for Q via Proposition 18 and then Qn,` :=

(Qn)` from Qn via Theorem 13. Then Proposition 19 yields

lim
n→∞

IT (Qn,`|P ) = IT (Q`|P ) ≤ IT (Q|P ) < IT (QE` |P )
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and thus IT (Qn,`|P ) < IT (QE` |P ) for large n. But since Qn,` ∈ QUe ∩QUf ∩QU` , this contradicts

the optimality of QE` , and so QE does exist. q.e.d.

Remark. Theorem A implies that in order to determine QE(UL) it suffices to find a mar-

tingale measure which is optimal in QUf ∩QU` , and Corollary 20 shows that this measure must

be locally equivalent to P . Hence we have to look for the optimal measure in QUe ∩QUf ∩QU`
so that the assumption QUe ∩ QUf ∩ QU` 6= ∅ is entirely natural. ¦
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6. Appendix

This section collects a number of proofs omitted from the body of the paper for better reading.

Proof of Proposition 5. By Lemma 4 and since f(Ȳ ) ∗ νP ≥ 0, we have for all t ∈ T

(6.1) g(Ȳ ) ∗ νPt ≤ f(Ȳ ) ∗ νPt ≤ exp

(
t∫

0

(
1
2 β̄
>
s c β̄s +

∫
IRd

f
(
Ȳ (s, x)

)
K(dx)

)
ds

)
.

So
(
1 −
√
Ȳ
)2 ∗ νP is locally P -integrable by (2.3), and JS, Theorem II.1.33 gives the inte-

grability of Ȳ − 1 with respect to µL − νP . By (2.3),
∫
β̄>s c β̄s ds is also locally P -integrable

so that β̄ is integrable with respect to Lc and N̄ is well-defined. Since N̄ is a local P -

martingale and (2.4) is its decomposition into continuous and purely discontinuous parts,

∆N̄t =
(
Ȳ (t,∆Lt) − 1

)
I{∆Lt 6=0} > −1 P -a.s. since Ȳ > 0. Hence Z̄ = E(N̄) is a strictly

positive local P -martingale, and a true P -martingale if EP [E(N̄)τ ] = 1 for every bounded

stopping time τ . But if τ ≤ t0 for some deterministic t0 ∈ (0,∞), then E(N̄)τ = E(N̄ t0)τ

and M := N̄ t0 is again a local P -martingale null at 0 with ∆M > −1. So if we define A by

At := 1
2 〈M c〉t +

∑
s≤t

(
(1 + ∆Ms) log(1 + ∆Ms)−∆Ms

)
for t ≤ t0

and show that A admits a predictable P -compensator B with EP [exp(Bt0)] < ∞, then

Theorem III.1 of Lepingle/Mémin (1978) implies that E(M) is a uniformly integrable P -

martingale and therefore EP [E(N̄)τ ] = EP [E(M)τ ] = 1, which will end the proof.
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To find the P -compensator B of A, note that 〈N̄ c〉 = 〈
∫
β̄ dLc〉 =

∫
β̄>s c β̄s ds so that

At = 1
2

t∫
0

β̄>s c β̄s ds+
∑
s≤t

(
Ȳ (s,∆Ls) log Ȳ (s,∆Ls)− Ȳ (s,∆Ls) + 1

)
I{∆Ls 6=0}

= 1
2

t∫
0

β̄>s c β̄s ds+ f(Ȳ ) ∗ µLt for t ≤ t0.

Now |f(Ȳ )| ∗ νPt = f(Ȳ ) ∗ νPt is P -integrable for all t ∈ T by (6.1) and (2.3), and so

we get from JS, Prop. II.1.28 that f(Ȳ ) is integrable with respect to µL − νP and that

f(Ȳ ) ∗ (µL − νP ) = f(Ȳ ) ∗ µL − f(Ȳ ) ∗ νP . Hence Bt = 1
2

t∫
0

β̄>s c β̄s ds + f(Ȳ ) ∗ νPt is the

P -compensator of A, and we have E[exp(Bt0)] <∞ by assumption (2.3). q.e.d.

Proof of Proposition 7. By assumption, the density process ZQ̄ = E(N̄) is a strictly

positive P -martingale. On the other hand, Proposition 2 gives us a predictable function

Ŷ ≥ 0 and a predictable process β̂ with
t∫

0

β̂>s c β̂s ds <∞ and |(Ŷ − 1)h| ∗ νPt <∞ P -a.s. for

all t ∈ T , and we know that ZQ̄ = E(N Q̄) with N Q̄ =
∫
β̂s dL

c
s + (Ŷ − 1) ∗ (µL − νP ) by

Proposition 3. So since E(N Q̄) = E(N̄) > 0, we have N Q̄ = N̄ or, equivalently,

V 1
t :=

t∫
0

(β̄s − β̂s) dLcs = (Ŷ − Ȳ ) ∗ (µL − νP )t =: V 2
t , t ∈ T .

As V 1 is a continuous and V 2 a purely discontinuous local P -martingale, we get V 1 ≡ 0 ≡ V 2,

and this implies β̂ = β̄ and Ŷ = Ȳ . In fact, 〈V 1〉 =
∫

(β̄s − β̂s)>c (β̄s − β̂s) ds ≡ 0 yields

(β̄s − β̂s)>S c̃ S>(β̄s − β̂s) = 0 P -a.s. for all s ∈ T ,

and because β̄ and β̂ are chosen as in Remark NV, this implies
(
S>(β̄s − β̂s)

)j
= 0 for

j ≤ rank (c) and (S>β̂s)j = 0 = (S>β̄s)j for j > rank (c). Hence we get S>(β̄s − β̂s) = 0

and thus β̄s = β̂s P -a.s. for all s ∈ T . Moreover, applying JS, Theorem II.1.33 to the

square-integrable P -martingale V 2 yields

0 = 〈V 2〉t = (Ŷ − Ȳ )2 ∗ νPt =
t∫

0

∫
IRd

(
Ŷ (s, x)− Ȳ (s, x)

)2
K(dx) ds P -a.s. for all t ∈ T

so that Ŷ (s, x) = Ȳ (s, x) νP -a.e., P -a.s. Thus β̄ and Ȳ are the Girsanov parameters of Q̄.

q.e.d.

Proof of Lemma 9. We claim that we have for every truncation function h the estimates

|Uh(x)− h(Ux)| ∗ νQt ≤ const.
(
t+ f(Y ) ∗ νPt

)
,(6.2)

|(Y − 1)h| ∗ νPt ≤ const.
(
t+ f(Y ) ∗ νPt

)
.(6.3)
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Moreover, the triangle inequality gives

|Ux− h(Ux)|Y ≤ |U(xY − h)|+ |Uh(x)(1− Y )|+ |Uh(x)− h(Ux)|Y,
|U(xY − h)| ≤ |Ux− h(Ux)|Y + |Uh(x)(1− Y )|+ |Uh(x)− h(Ux)|Y

and using (6.2), (6.3) and νQ = Y νP , we obtain

|Ux− h(Ux)| ∗ νQt ≤ |U(xY − h)| ∗ νPt + const.
(
t+ f(Y ) ∗ νPt

)
,

|U(xY − h)| ∗ νPt ≤ |Ux− h(Ux)| ∗ νQt + const.
(
t+ f(Y ) ∗ νPt

)
.

So (2.6) and (2.7) follow directly from (6.2) and (6.3). Since
∫
IRd

(1 ∧ |x|2)K(dx) < ∞ and

νQ(dt, dx) = Y (t, x) νP (dt, dx) = Y (t, x)K(dx) dt, we obtain (6.2) and (6.3) if we show that

|Uh(x)− h(Ux)|Y ≤ const.
(
1 ∧ |x|2 + f(Y )

)
,

|(Y − 1)h| ≤ const.
(
1 ∧ |x|2 + f(Y )

)
.

Since this is just analysis, we omit the proof; see Appendix C of Esche (2004). q.e.d.

Proof of Proposition 10. Let (B̃, C̃, ν̃) be the Q-characteristics of UL. Due to JS,

Prop. II.2.29, UL is a local Q-martingale if and only if M := B̃ +
(
x − h(x)

)
∗ µUL is, and

using Proposition 2 to get the Q-characteristics of L and Proposition 1 to pass to UL gives

Mt = Ubt+
t∫

0

Ucβs ds+
(
Uh(x)(Y − 1)−

(
Uh(x)− h(Ux)

)
Y
)
∗ νPt +

(
x− h(x)

)
∗ µULt

=

t∫

0

(
Ub+ Ucβs +

∫
IRd

(
h(Ux)Y (s, x)− Uh(x)

)
K(dx)

)
ds+

(
Ux− h(Ux)

)
∗ µLt .

If |Ux − h(Ux)| ∗ νQ is locally Q-integrable, we can use JS, Prop. II.1.28 and νQ(ds, dx) =

Y (s, x)K(dx) ds to write

Mt =

t∫

0

(
Ub+ Ucβs +

∫
IRd

U
(
xY (s, x)− h(x)

)
K(dx)

)
ds+

(
Ux− h(Ux)

)
∗ (µL − νQ)t

=:
t∫

0

m̃s ds+
(
Ux− h(Ux)

)
∗ (µL − νQ)t.

Note that m̃t = 0 Q-a.s. for all t ∈ T is just the martingale condition (2.8).

If UL is a local Q-martingale, (|x|2∧|x|)∗µUL is locally Q-integrable by JS, Prop. II.1.28

and Prop. II.2.29. Since |x−h(x)| ≤ const. (|x|2∧ |x|), we conclude that |Ux−h(Ux)| ∗µL =

|x − h(x)| ∗ µUL is locally Q-integrable. By JS, Prop. II.1.28, |Ux − h(Ux)| ∗ νQ is locally
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Q-integrable as well and thus finite-valued so that |U(xY − h)| ∗ νPt <∞ Q-a.s. for all t ∈ T
by Lemma 9. Moreover, M and

(
Ux − h(Ux)

)
∗ (µL − νQ) are local Q-martingales which

implies that m̃t = 0 Q-a.s. for all t ∈ T .

Conversely, |U(xY − h)| ∗ νPt < ∞ Q-a.s. for all t ∈ T implies that |Ux − h(Ux)| ∗ νQ
is locally Q-integrable because it is continuous

(
this uses νQ(ds, dx) = Y (s, x)K(dx) ds

)
and

finite-valued by Lemma 9. Thus M =
∫
m̃s ds + (Ux − h(Ux)) ∗ (µL − νQ), and if we also

have (2.8), the first term vanishes and M , hence also UL, is a local Q-martingale. q.e.d.
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