Projektbereich B Discussion Paper No. B–284

On the Minimal Martingale Measure and the Föllmer-Schweizer Decomposition

by

Martin Schweizer *)

June 1994

^{*)} Financial support by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303 at the University of Bonn, is gratefully acknowledged.

(Stochastic Analysis and Applications 13 (1995), 573–599)

This version: 07.10.1994

On the Minimal Martingale Measure and the Föllmer-Schweizer Decomposition

Martin Schweizer Universität Göttingen Institut für Mathematische Stochastik Lotzestraße 13 D-37083 Göttingen Germany

- Abstract: We provide three characterizations of the minimal martingale measure \widehat{P} associated to a given *d*-dimensional semimartingale *X*. In each case, \widehat{P} is shown to be the unique solution of an optimization problem where one minimizes a certain functional over a suitable class of signed local martingale measures for *X*. Furthermore, we extend a result of Ansel and Stricker on the Föllmer-Schweizer decomposition to the case where *X* is continuous, but multidimensional.
- Key words: minimal signed martingale measure, Föllmer-Schweizer decomposition, martingale densities, structure condition, semimartingales

1991 Mathematics Subject Classification: 60G48, 90A09, 60H05

JEL Classification Numbers: G10, C60

0. Introduction

Suppose $X = (X_t)_{0 \le t \le T}$ is an \mathbb{R}^d -valued adapted RCLL process. An important notion in financial mathematics is the concept of an equivalent martingale measure for X, i.e., a probability measure P^* equivalent to the original measure P such that X is a martingale under P^* . If such a P^* exists, then its density process Z^* with respect to P is a strict martingale density for $X: Z^*$ is strictly positive, and both Z^* and Z^*X are local martingales under P. Under some very weak integrability assumptions, one can show in turn that the existence of such a strict martingale density already implies a certain structure for X. In fact, X must be a semimartingale under P of the form (we take here d = 1 for notational simplicity)

$$X = X_0 + M + \int \alpha \, d\langle M \rangle$$

for some predictable process α . Moreover, every locally square-integrable martingale density Z can then be obtained as solution of a stochastic differential equation,

(0.1)
$$Z_t = 1 - \int_0^t Z_{s-\alpha_s} \, dM_s + R_t \quad , \quad 0 \le t \le T,$$

for some $R \in \mathcal{M}^2_{0,\text{loc}}(P)$ strongly orthogonal to M. The multidimensional versions of these results are formulated and proved in section 1; they generalize previous work by Ansel/Stricker [1,2] and Schweizer [15].

In section 2, we provide three characterizations of the minimal martingale measure. This is the (possibly signed) measure \hat{P} associated to the minimal martingale density $\hat{Z} := \mathcal{E}\left(-\int \alpha \, dM\right)$ corresponding to $R \equiv 0$ in (0.1). If X is continuous, we first characterize \hat{P} among all local martingale measures for X as the unique solution of a minimization problem involving the relative entropy with respect to P; this slightly extends a previous result of Föllmer/Schweizer [10]. Next we show that \hat{P} also minimizes

$$D(Q,P) := \left\| \frac{dQ}{dP} - 1 \right\|_{\mathcal{L}^2(P)} = \sqrt{\operatorname{Var}\left[\frac{dQ}{dP} \right]}$$

over all equivalent local martingale measures Q for X if, in addition, the random variable $\int_{0}^{T} \alpha_s^2 d\langle M \rangle_s$ is deterministic. By a completely different argument, we then prove that this characterization still holds if X is possibly discontinuous, provided that we minimize over all signed local martingale measures for X and that the entire process $\int \alpha^2 d\langle M \rangle$ is deterministic. These results give further support for the terminology "minimal martingale measure" used for \hat{P} ; they are of course stated and proved for $d \geq 1$.

In section 3, we study the *Föllmer-Schweizer decomposition* in the multidimensional case. Extending a result of Ansel/Stricker [1] to the case $d \ge 1$, we obtain a necessary and sufficient condition for the existence of such a decomposition if X is continuous. Furthermore, we also show how to deduce more specific integrability properties for the various terms in this decomposition from assumptions on α and the random variable H to be decomposed.

1. Martingale densities and the structure of X

Let (Ω, \mathcal{F}, P) be a probability space with a filtration $I\!\!F = (\mathcal{F}_t)_{0 \le t \le T}$ satisfying the usual conditions of right-continuity and completeness, where T > 0 is a fixed and finite time horizon. All stochastic processes will be defined for $t \in [0, T]$. Let X be an $I\!\!F$ -adapted $I\!\!R^d$ -valued process such that X^i is right-continuous with left limits (RCLL for short) for $i = 1, \ldots, d$. We recall from Schweizer [15] the following

Definition. A real-valued process Z is called a *martingale density* for X if Z is a local P-martingale with $Z_0 = 1$ P-a.s. and such that the product XZ is a local P-martingale. We can and shall always choose an RCLL version of Z. If Z is in addition strictly positive, Z is called a *strict martingale density* for X.

As explained in Schweizer [15], the concept of a strict martingale density for X generalizes the notion of an equivalent martingale measure for X. The existence of one or the other is closely related to a condition of absence of arbitrage for X and has therefore a very appealing economic interpretation; see for instance Delbaen/Schachermayer [6] for recent results and a comprehensive list of references. Note that any $I\!\!F$ -adapted process X admitting a strict martingale density Z is necessarily a P-semimartingale. In fact, $\frac{1}{Z}$ is a P-semimartingale by Itô's formula, since Z is strictly positive, and X is the product of $\frac{1}{Z}$ and the local P-martingale XZ.

Our first result clarifies the structure of processes admitting a strict martingale density. For unexplained notations and terminology from martingale theory, we refer to Jacod [12] and Dellacherie/Meyer [7]. In order to abbreviate future statements, we say that X satisfies the structure condition (SC) if X is a special P-semimartingale with canonical decomposition

$$X = X_0 + M + A$$

which satisfies

(1.1) $M \in \mathcal{M}^2_{0,\mathrm{loc}}(P)$

and

(1.2) $A^i \ll \langle M^i \rangle$ with predictable density α^i

for $i = 1, \ldots, d$, and if there exists a predictable process $\widehat{\lambda} \in L^2_{\text{loc}}(M)$ with

(1.3)
$$\sigma_t \hat{\lambda}_t = \gamma_t \qquad P\text{-a.s. for } t \in [0,T].$$

The predictable processes σ and γ in (1.3) are defined by

$$\gamma_t^i := \alpha_t^i \sigma_t^{ii} \quad \text{for } i = 1, \dots, d$$

and

$$\sigma_t^{ij} := \frac{d\langle M^i, M^j \rangle_t}{dB_t} \quad \text{for } i, j = 1, \dots, d,$$

where B is a fixed increasing predictable RCLL process null at 0 such that $\langle M^i \rangle \ll B$ for each *i*. Such a process always exists, and it is easy to check that the stochastic integral $\int \hat{\lambda} dM$ does not depend on the choice of $\hat{\lambda}$ satisfying (1.3); see Jacod [12].

Theorem 1. Suppose that X admits a strict martingale density Z^* and that either

(1.4) X is continuous

or

(1.5a)
$$X$$
 is a special semimartingale satisfying (1.1)

and

(1.5b)
$$Z^* \in \mathcal{M}^2_{\text{loc}}(P).$$

Then X satisfies the structure condition (SC), and

(1.6)
$$\alpha^i \in L^2_{\text{loc}}(M^i) \quad \text{for } i = 1, \dots, d.$$

Furthermore, Z^* can be written as

(1.7)
$$Z^* = \mathcal{E}\left(-\int \widehat{\lambda} \, dM + L\right),$$

where $L \in \mathcal{M}_{0,\text{loc}}(P)$ is strongly orthogonal to M^i for each *i*. If (1.5) holds, then we have $L \in \mathcal{M}^2_{0,\text{loc}}(P)$; if (1.4) holds, (1.7) can be simplified to

(1.8)
$$Z^* = \mathcal{E}\left(-\int \widehat{\lambda} \, dM\right) \mathcal{E}(L).$$

Proof. 1) Choose $N^1, \ldots, N^d \in \mathcal{M}^2_{0,\text{loc}}(P)$ pairwise strongly orthogonal such that each M^i is in the stable subspace of $\mathcal{M}^2_0(P)$ generated by N^1, \ldots, N^d . Each M^i can then be written as

$$M^i = \sum_{j=1}^d \int \varrho^{ij} \, dN^j$$

for some predictable $d \times d$ matrix-valued process ρ with $\rho^{ij} \in L^2_{loc}(N^j)$ for all i, j. If X (hence also M) is continuous, N can also be taken continuous. Choose an increasing predictable RCLL process B null at 0 with $\langle N^i \rangle \ll B$ for each i and set

$$\zeta_t^i := \frac{d\langle N^i \rangle_t}{dB_t} \quad \text{for } i = 1, \dots, d.$$

By replacing N^i with $\int I_{\{\zeta^i \neq 0\}} \frac{1}{\sqrt{\zeta^i}} dN^i$, we may and shall assume without loss of generality that $\zeta_t^i \in \{0,1\}$ for all i, t. Since

(1.9)
$$\int I_{\{\zeta^j=0\}} d\langle N^j \rangle = \int \zeta^j I_{\{\zeta^j=0\}} dB = 0,$$

we may and shall also assume that $\varrho_t^{ij} = 0$ on the set $\{\zeta_t^j = 0\}$ for all i, j, t. This implies that

(1.10)
$$\varrho_t^{ij}\zeta_t^j = \varrho_t^{ij} \quad \text{for all } i, j, t$$

and therefore

$$\langle M^i, M^j \rangle = \sum_{k=1}^d \int \varrho^{ik} \varrho^{jk} \, d\langle N^k \rangle = \sum_{k=1}^d \int \varrho^{ik} \varrho^{jk} \zeta^k \, dB = \int (\varrho \varrho^{\mathrm{tr}})^{ij} dB$$

by the pairwise strong orthogonality of the components of N and (1.10). Hence we conclude that

(1.11)
$$\sigma_t = \varrho_t \varrho_t^{\text{tr}} \qquad P\text{-a.s. for } t \in [0, T].$$

2) Define $U \in \mathcal{M}_{0,\text{loc}}(P)$ by $U := \int \frac{1}{Z_{-}^{*}} dZ^{*}$; this is well-defined since Z^{*} is strictly positive. Decompose U as $U = U^{1} + U^{2}$ with $U^{1} \in \mathcal{M}_{0,\text{loc}}^{2}(P)$ and $U^{2} \in \mathcal{M}_{0,\text{loc}}(P)$ such that U^{2} is strongly orthogonal to each N^{i} . In fact, we can choose $U^{2} \equiv 0$ if (1.5b) holds, and under (1.4), we can take $U^{1} = U^{c}$ and $U^{2} = U^{d}$ as the continuous and purely discontinuous martingale parts of U, respectively. By the Galtchouk-Kunita-Watanabe decomposition theorem, U^{1} can be written as

(1.12)
$$U^{1} = -\sum_{j=1}^{d} \int \psi^{j} \, dN^{j} + R,$$

where $\psi^j \in L^2_{\text{loc}}(N^j)$ and $R \in \mathcal{M}^2_{0,\text{loc}}(P)$ is strongly orthogonal to N^j for each j. Furthermore, (1.9) implies that we can choose ψ such that

(1.13)
$$\psi_t^j = 0 \qquad \text{on the set } \{\zeta_t^j = 0\}$$

for all j, t. Applying the product rule to X^i and Z^* now yields

(1.14)
$$d(Z^*X^i) = \left(X_-^i dZ^* + Z_-^* dM^i + d[Z^*, A^i]\right) + Z_-^* dA^i + d[Z^*, M^i].$$

Since Z^* is a strict martingale density for X, the left-hand side is (the differential of) a local *P*-martingale, and by Yoeurp's lemma, so is the term in brackets on the right-hand side. Furthermore, $Z^* = \mathcal{E}(U)$ implies that

$$[Z^*, M^i] = \int Z^*_- d[U, M^i],$$

and

$$\begin{split} [U, M^i] &= \left[-\sum_{j=1}^d \int \psi^j \, dN^j + R + U^2, \sum_{k=1}^d \int \varrho^{ik} \, dN^k \right] \\ &= -\sum_{j=1}^d \int \psi^j \varrho^{ij} \, d\langle N^j \rangle + \left[R + U^2, \sum_{k=1}^d \int \varrho^{ik} \, dN^k \right] \\ &= -\sum_{j=1}^d \int \varrho^{ij} \psi^j \, dB + \left[R + U^2, \sum_{k=1}^d \int \varrho^{ik} \, dN^k \right] \end{split}$$

by the pairwise strong orthogonality of the components of N and (1.10). Since the last term on the right-hand side is also a local P-martingale by the strong orthogonality of R and U^2 to each N^k , we conclude from (1.14) that

(1.15)
$$A^{i} = \int (\varrho \psi)^{i} dB \quad \text{for } i = 1, \dots, d,$$

since A is predictable and Z_{-}^{*} is strictly positive.

3) Now denote by $\widehat{\psi}$ the projection of ψ on (Ker ϱ)^{\perp} = Im ϱ^{tr} so that

(1.16)
$$\psi = \widehat{\psi} + \nu = \varrho^{\mathrm{tr}} \widehat{\lambda} + \nu$$

for some predictable processes $\hat{\lambda}$, ν with $\rho\nu = 0$. From (1.15) and (1.11), we then obtain

(1.17)
$$A^{i} = \int (\sigma \widehat{\lambda})^{i} dB \quad \text{for } i = 1, \dots, d,$$

and since $\sigma_t^{ij} = 0$ on the set $\{\sigma_t^{ii} = 0\}$ by the Kunita-Watanabe inequality, we conclude that $A^i \ll \langle M^i \rangle$ with density

$$\alpha^i = \frac{(\sigma \widehat{\lambda})^i}{\sigma^{ii}}$$

and that $\hat{\lambda}$ satisfies (1.3). Furthermore, we have

$$\int (\alpha^i)^2 d\langle M^i \rangle = \int \frac{1}{\sigma^{ii}} \left((\varrho \psi)^i \right)^2 dB$$
$$\leq \int \frac{1}{\sigma^{ii}} \sum_{j=1}^d (\varrho^{ij})^2 \sum_{j=1}^d (\psi^j)^2 dB$$
$$= \sum_{j=1}^d \int (\psi^j)^2 dB$$
$$= \sum_{j=1}^d \int (\psi^j)^2 d\langle N^j \rangle$$

by (1.15) and (1.17), the Cauchy-Schwarz inequality, (1.11) and (1.13). Because each ψ^j is in $L^2_{\text{loc}}(N^j)$, this yields $\alpha^i \in L^2_{\text{loc}}(M^i)$ for each *i*, hence (1.6). Similarly, (1.11), (1.16) and (1.13) imply that

$$\int \widehat{\lambda}^{\mathrm{tr}} \sigma \widehat{\lambda} \, dB = \int \left\| \varrho^{\mathrm{tr}} \widehat{\lambda} \right\|^2 dB \le \int \|\psi\|^2 \, dB = \sum_{j=1}^d \int (\psi^j)^2 \, d\langle N^j \rangle$$

and therefore $\hat{\lambda} \in L^2_{loc}(M)$ by (4.34) of Jacod [12]. In particular, the process $\int \hat{\lambda} dM \in \mathcal{M}^2_{0,loc}(P)$ is well-defined, and

$$\left\langle Y, \int \widehat{\lambda} \, dM \right\rangle = \sum_{i=1}^d \int \widehat{\lambda}^i \, d\langle Y, M^i \rangle = \sum_{i=1}^d \sum_{j=1}^d \int \widehat{\lambda}^i \varrho^{ij} \, d\langle Y, N^j \rangle = \left\langle Y, \sum_{j=1}^d \int (\varrho^{\mathrm{tr}} \widehat{\lambda})^j \, dN^j \right\rangle$$

for every $Y \in \mathcal{M}^2_{0,\mathrm{loc}}(P)$ shows that

$$\int \widehat{\lambda} \, dM = \sum_{j=1}^d \int (\varrho^{\mathrm{tr}} \widehat{\lambda})^j \, dN^j.$$

Hence $Z^* = \mathcal{E}(U)$ with

$$U = -\int \widehat{\lambda} \, dM + R + U^2 - \sum_{j=1}^d \int \nu^j \, dN^j$$

by (1.12) and (1.16), and since $\rho\nu = 0$, $L := R + U^2 - \sum_{j=1}^d \int \nu^j dN^j$ is strongly orthogonal to N^k , hence also to M^k , for each k. By (1.16), $\nu^j \in L^2_{\text{loc}}(N^j)$ for each j, and so $L \in \mathcal{M}^2_{0,\text{loc}}(P)$ under (1.5b). Finally, (1.4) implies that

$$\left[L,\int\widehat{\lambda}\,dM\right] = \left\langle L,\int\widehat{\lambda}\,dM\right\rangle = 0,$$

since M is continuous and L is strongly orthogonal to each M^k ; thus (1.7) implies (1.8) by Proposition (6.4) of Jacod [12].

q.e.d.

Remark. Theorem 1 is at the same time a unification and a slight generalization of previous results. For the case where X is continuous and admits an equivalent martingale measure, the theorem was proved by Ansel/Stricker [1,2]; the scheme of the preceding proof is essentially due to them. The extension to general X admitting a locally square-integrable strict martingale density was obtained in Schweizer [15] under an invertibility assumption on the process σ . For related results with d = 1, see also Christopeit/Musiela [5].

The next result is a sort of converse to Theorem 1; it provides in addition a characterization of all martingale densities Z in $\mathcal{M}^2_{loc}(P)$ if X satisfies the structure condition (SC). Note that (1.20) below is more general than (1.7) since Z may vanish or even become negative.

Proposition 2. Suppose that X satisfies the structure condition (SC). Then

(1.18)
$$\widehat{Z} := \mathcal{E}\left(-\int \widehat{\lambda} \, dM\right)$$

is a martingale density for X; \hat{Z} is a strict martingale density for X if and only if

(1.19)
$$\lambda_t^{\text{tr}} \Delta M_t < 1 \qquad P\text{-a.s. for } t \in [0, T]$$

More generally, $Z \in \mathcal{M}^2_{loc}(P)$ is a martingale density for X if and only if Z satisfies the stochastic differential equation

(1.20)
$$Z_t = 1 - \int_0^t Z_{s-} \widehat{\lambda}_s \, dM_s + R_t \quad , \quad 0 \le t \le T$$

for some $R \in \mathcal{M}^2_{0,\text{loc}}(P)$ strongly orthogonal to M^i for each *i*.

Proof. For d = 1, the second assertion is due to Yoeurp/Yor [17], Théorème 2.1; for $d \ge 1$, the "only if" part can be proved exactly as in Proposition 5 of Schweizer [15] since $\hat{\lambda}$ exists and satisfies (1.3). Conversely, if $Z \in \mathcal{M}^2_{loc}(P)$ satisfies (1.20), the product rule yields

$$d(ZX^{i}) = \left(X_{-}^{i} dZ + Z_{-} dM^{i} + d[Z, A^{i}] + d[Z, M^{i}] - d\langle Z, M^{i} \rangle\right) + Z_{-} dA^{i} + d\langle Z, M^{i} \rangle.$$

By Yoeurp's lemma, the term in brackets is (the differential of) a local P-martingale, and by (1.2), (1.20) and (1.3), we have

$$Z_{-} dA^{i} + d\langle Z, M^{i} \rangle = Z_{-} \gamma^{i} dB - Z_{-} (\sigma \lambda)^{i} dB = 0.$$

Thus Z is a martingale density which proves the "if" part. Finally, (1.18) follows from (1.20) for $R \equiv 0$.

q.e.d.

Corollary 3. A continuous $I\!F$ -adapted process X admits a strict martingale density if and only if it satisfies the structure condition (SC).

Proof. Since continuity of X implies (1.19), this follows immediately from Theorem 1 and Proposition 2.

q.e.d.

2. Characterizations of the minimal martingale measure

Let X be an $I\!\!F$ -adapted $I\!\!R^d$ -valued RCLL process. If Z is any martingale density for X, we can define a signed measure $Q \ll P$ on (Ω, \mathcal{F}) by setting

$$\frac{dQ}{dP} := Z_T$$

If Z is not only a local P-martingale, but a P-martingale, then $E[Z_T] = 1$ and Q is a signed local martingale measure for X in the sense of the following

Definition. A signed measure Q on (Ω, \mathcal{F}) is called a signed local martingale measure for X if $Q[\Omega] = 1$, $Q \ll P$ on \mathcal{F}_T , Q = P on \mathcal{F}_0 and X is a local Q-martingale in the sense that (an RCLL version of) the density process $\left(\frac{dQ}{dP}\Big|_{\mathcal{F}_t}\right)_{0 \le t \le T}$ is a martingale density for X. Q is called a *local martingale measure* for X if in addition, Q is a measure, i.e., nonnegative, and an equivalent local martingale measure for X if in addition, $Q \approx P$ on \mathcal{F}_T .

Definition. Suppose that X satisfies the structure condition (SC). The increasing predictable process \hat{K} defined by

(2.1)
$$\widehat{K}_t := \int_0^t \widehat{\lambda}_s^{\mathrm{tr}} dA_s = \int_0^t \widehat{\lambda}_s^{\mathrm{tr}} \sigma_s \widehat{\lambda}_s dB_s = \left\langle \int \widehat{\lambda} dM \right\rangle_t$$

is called the *mean-variance tradeoff process* of X; we always choose an RCLL version. If $\widehat{Z} = \mathcal{E}\left(-\int \widehat{\lambda} \, dM\right)$ is a martingale, the signed local martingale measure \widehat{P} with density \widehat{Z}_T with respect to P is called the *minimal signed local martingale measure* for X.

It is clear from (1.20) that \hat{Z} is in a sense the simplest martingale density for X. Originally, however, the expression "minimal" was motivated in a different way when \hat{P} was first introduced in Föllmer/Schweizer [10]. They studied the case where X is continuous and \widehat{Z} is square-integrable; for more general situations and various properties of \widehat{P} , see also Ansel/Stricker [1,2], El Karoui/Quenez [8], Hofmann/Platen/Schweizer [11] and the references contained in these papers. Our goal in this section is to give three characterizations of \widehat{P} by proving certain minimality properties within a suitable class of signed local martingale measures for X.

A first characterization in terms of a relative entropy can be obtained if X is continuous; Theorem 5 below is a slight refinement of the basic result due to Föllmer/Schweizer [10]. If Q and P are probability measures on (Ω, \mathcal{F}) and $\mathcal{G} \subseteq \mathcal{F}$ is a σ -algebra, the relative entropy on \mathcal{G} is defined by

$$H_{\mathcal{G}}(Q|P) := \begin{cases} E_Q \left[\log \frac{dQ}{dP} \Big|_{\mathcal{G}} \right] &, \text{ if } Q \ll P \text{ on } \mathcal{G} \\ +\infty &, \text{ otherwise.} \end{cases}$$

Recall that $H_{\mathcal{G}}(Q|P)$ is always nonnegative, increasing in \mathcal{G} , and that $H(Q|P) := H_{\mathcal{F}}(Q|P)$ is 0 if and only if Q = P.

Lemma 4. Suppose that X is a continuous \mathbb{F} -adapted process admitting a strict martingale density and that $E[\widehat{Z}_T] = 1$. If Q is any local martingale measure for X with

$$(2.2) H(Q|P) < \infty,$$

then

(2.3)
$$E_Q[\log \widehat{Z}_T] = \frac{1}{2} E_Q[\widehat{K}_T] < \infty$$

and

(2.4)
$$H(Q|\hat{P}) = H(Q|P) - \frac{1}{2}E_Q[\hat{K}_T].$$

Proof. Since X is continuous, \hat{Z} is a strictly positive local martingale and therefore a martingale because of $E[\hat{Z}_T] = 1$. Thus $\hat{P} \approx P$ and so (2.2) implies that $Q \ll \hat{P}$ and

(2.5)
$$\frac{dQ}{dP} = \hat{Z}_T \frac{dQ}{d\hat{P}}.$$

Moreover, the stochastic integral $\int \hat{\lambda} dX$ is well-defined under Q, the same as under P and a local Q-martingale; see Propriété f) of Chou/Meyer/Stricker [4] and Proposition 1 of Emery [9], respectively. If $(T_n)_{n \in \mathbb{N}}$ is a localizing sequence for $\int \hat{\lambda} dX$ under Q, (2.2) yields

$$\sup_{n \in \mathbb{N}} H_{\mathcal{F}_{T_n}}(Q|P) \le H(Q|P) < \infty$$

and therefore

(2.6)
$$\sup_{n \in \mathbb{N}} \left| \log \frac{dQ}{dP} \right|_{\mathcal{F}_{T_n}} \right| \in \mathcal{L}^1(Q)$$

by Lemma 2 of Barron [3]. Furthermore, (2.1) implies that

$$\log \widehat{Z}_{T_n} = -\int_{0}^{T_n} \widehat{\lambda}_s \, dM_s - \frac{1}{2} \widehat{K}_{T_n} = -\int_{0}^{T_n} \widehat{\lambda}_s \, dX_s + \frac{1}{2} \widehat{K}_{T_n}$$

and therefore

(2.7)
$$E_Q\left[\log \widehat{Z}_{T_n}\right] = \frac{1}{2}E_Q\left[\widehat{K}_{T_n}\right] \ge 0$$

hence

$$\sup_{n \in \mathbb{N}} H_{\mathcal{F}_{T_n}}(Q|\widehat{P}) \le \sup_{n \in \mathbb{N}} H_{\mathcal{F}_{T_n}}(Q|P) \le H(Q|P) < \infty$$

by (2.5) and (2.2) and thus

$$\sup_{n \in \mathbb{N}} \left| \log \frac{dQ}{d\hat{P}} \right|_{\mathcal{F}_{T_n}} \right| \in \mathcal{L}^1(Q)$$

again by Lemma 2 of Barron [3]. Combining this with (2.6) and (2.5) shows that

$$\sup_{n \in \mathbb{N}} \left| \log \widehat{Z}_{T_n} \right| \in \mathcal{L}^1(Q),$$

and passing to the limit in (2.7) yields by continuity of \widehat{Z} and \widehat{K} the equality in (2.3). Since

$$\frac{1}{2}E_Q\left[\widehat{K}_{T_n}\right] = H_{\mathcal{F}_{T_n}}(Q|P) - H_{\mathcal{F}_{T_n}}(Q|\widehat{P}) \le H(Q|P)$$

for all n by (2.7) and (2.5), we obtain (2.3) by monotone integration. Finally, (2.4) follows from (2.5) and (2.3).

Theorem 5. Suppose that X is a continuous IF-adapted process admitting a strict martingale density and that $E[\hat{Z}_T] = 1$. If $H(\hat{P}|P) < \infty$, then \hat{P} is the unique solution of

(2.8) Minimize
$$H(Q|P) - \frac{1}{2}E_Q[\widehat{K}_T]$$
 over all local martingale measures Q for X satisfying the "finite energy condition" $E_Q[\widehat{K}_T] < \infty$.

Proof. Due to Lemma 4, \hat{P} satisfies the condition in (2.8). If $H(Q|P) = \infty$, there is nothing to prove; otherwise, Lemma 4 implies that

$$H(Q|P) - \frac{1}{2}E_Q[\widehat{K}_T] = H(Q|\widehat{P}) \ge 0$$

by (2.4), with equality if and only if $Q = \hat{P}$.

q.e.d.

Corollary 6. Suppose that X is a continuous \mathbb{F} -adapted process admitting a strict martingale density. If \widehat{K}_T is bounded, then \widehat{P} is the unique solution of

Minimize
$$H(Q|P) - \frac{1}{2}E_Q[\widehat{K}_T]$$
 over all local martingale measures Q for X .

In particular, if \hat{K}_T is deterministic, then \hat{P} minimizes the relative entropy H(Q|P) over all local martingale measures Q for X.

Proof. If \widehat{K} is bounded, (2.1) implies by the continuity of M that \widehat{Z}_T is in $\mathcal{L}^p(P)$ for every $p < \infty$ and in particular $H(\widehat{P}|P) < \infty$. Hence the assertion follows from Theorem 5.

q.e.d.

If we measure the distance from a given probability measure by the relative entropy, Corollary 6 shows that within the class of all local martingale measures for X, \hat{P} is closest to the original measure P if X is continuous and \hat{K}_T is deterministic. Our second characterization of \hat{P} gives a similar result if we replace the relative entropy by the χ^2 -distance

$$D(Q,P) := \left\| \frac{dQ}{dP} - 1 \right\|_{\mathcal{L}^2(P)} = \sqrt{\operatorname{Var}\left[\frac{dQ}{dP} \right]}$$

In the following, all expectations without subscript are with respect to P.

Theorem 7. Suppose that X is a continuous IF-adapted process admitting a strict martingale density. If \widehat{K}_T is deterministic, then \widehat{P} is the unique solution of

(2.9) Minimize
$$D(Q, P)$$
 over all equivalent local martingale measures
 Q for X with $\frac{dQ}{dP} \in \mathcal{L}^2(P)$.

Proof. Since X is continuous, (2.1) implies that

(2.10)
$$\widehat{Z} = \exp\left(-\int\widehat{\lambda}\,dX + \frac{1}{2}\widehat{K}\right) = \mathcal{E}\left(-\int\widehat{\lambda}\,dX\right)e^{\widehat{K}}$$

and

(2.11)
$$\frac{1}{\widehat{Z}} = \mathcal{E}\left(\int \widehat{\lambda} \, dX\right).$$

Since \hat{K}_T is deterministic, hence bounded, we deduce first that

(2.12)
$$\widehat{Z} \in \mathcal{M}^r(P)$$
 for every $r \ge 1$;

hence \hat{P} is well-defined and satisfies the condition in (2.9). As in the proof of Lemma 4, $\int \hat{\lambda} dX$ is a continuous local \hat{P} -martingale, and the boundedness of $\hat{K} = \left\langle \int \hat{\lambda} dX \right\rangle$ implies that

(2.13)
$$\mathcal{E}\left(-\int \widehat{\lambda} \, dX\right) \in \mathcal{M}^r(\widehat{P}) \quad \text{for every } r \ge 1$$

and

(2.14)
$$\frac{1}{\widehat{Z}} \in \mathcal{M}^r(\widehat{P})$$
 for every $r \ge 1$.

If Q is any signed local martingale measure for X satisfying the integrability condition in (2.9), so is $R := 2Q - \hat{P}$, and $Q = \hat{P} + \frac{1}{2}(R - \hat{P})$ yields

$$D^{2}(Q,P) = D^{2}(\widehat{P},P) + \frac{1}{4}E\left[\left(\frac{dR}{dP} - \frac{d\widehat{P}}{dP}\right)^{2}\right] + E\left[\left(\frac{dR}{dP} - \frac{d\widehat{P}}{dP}\right)\left(\frac{d\widehat{P}}{dP} - 1\right)\right]$$

But the last term equals $E_R[\widehat{Z}_T] - E_{\widehat{P}}[\widehat{Z}_T]$, and thus it only remains to show that $E_R[\widehat{Z}_T]$ is constant over all signed local martingale measures R for X satisfying the integrability condition in (2.9). If Z is the density process of any such R, then ZX is a local P-martingale, hence so is the product of Z and $\int \widehat{\lambda} dX$, and we conclude that

$$Z\mathcal{E}\left(-\int\widehat{\lambda}\,dX\right)\in\mathcal{M}_{\mathrm{loc}}(P).$$

But $Z \in \mathcal{M}^2(P)$ by (2.9) and

$$E\left[\sup_{0\leq t\leq T}\left|\mathcal{E}\left(-\int\widehat{\lambda}\,dX\right)_{t}\right|^{2}\right] = \widehat{E}\left[\frac{1}{\widehat{Z}_{T}}\sup_{0\leq t\leq T}\left|\mathcal{E}\left(-\int\widehat{\lambda}\,dX\right)_{t}\right|^{2}\right] < \infty$$

by (2.14) and (2.13) and so $Z\mathcal{E}\left(-\int \hat{\lambda} dX\right)$ is a true *P*-martingale. Since \hat{K}_T is deterministic, we conclude from (2.10) that

$$E_R[\widehat{Z}_T] = e^{\widehat{K}_T}$$

for every signed local martingale measure R satisfying the integrability condition in (2.9), and this completes the proof.

q.e.d.

For a general, not necessarily continuous process X, we have a third characterization of \hat{P} under the stronger assumption that the entire process \hat{K} is deterministic. Although Theorem 8 looks quite similar to Theorem 7, we believe it is worth stating separately, because its proof is entirely different from the preceding one.

Theorem 8. Suppose that X satisfies the structure condition (SC). If the mean-variance tradeoff process \widehat{K} of X is deterministic, then \widehat{P} is the unique solution of

(2.15) Minimize
$$D(Q, P)$$
 over all signed local martingale measures
 Q for X with $\frac{dQ}{dP} \in \mathcal{L}^2(P)$.

Proof. Since \widehat{K} is deterministic, hence bounded, $\widehat{Z} \in \mathcal{M}^2(P)$ by Théorème II.2 of Lepingle/Mémin [14], and so \widehat{P} satisfies the conditions in (2.15). Now fix any Q as in (2.15) and denote by Z its density process with respect to P. Then $Z \in \mathcal{M}^2(P)$ is a martingale density for X and therefore

$$\langle Z \rangle_t = \int_0^t Z_{s-}^2 d\hat{K}_s + \langle R \rangle_t \qquad , \qquad 0 \le t \le T$$

for some $R \in \mathcal{M}^2_{0,\text{loc}}(P)$ by (1.20) and (2.1). Since $Z^2 - \langle Z \rangle$ is a *P*-martingale whose initial value is $Z^2_0 = 1$ because of Q = P on \mathcal{F}_0 , we thus have

(2.16)
$$E[Z_t^2] - 1 = E[\langle Z \rangle_t] = \int_0^t E[Z_{s-}^2] \, d\widehat{K}_s + E[\langle R \rangle_t]$$

for all $t \in [0, T]$, where the last step uses Fubini's theorem and the fact that \widehat{K} is deterministic. If we now define the functions h and g on [0, T] by

$$h(t) := E[Z_t^2] \qquad , \qquad 0 \le t \le T$$

and

$$g(t) := 1 + E\left[\langle R \rangle_t\right] \qquad , \qquad 0 \le t \le T,$$

then $Z \in \mathcal{M}^2(P)$ implies that

$$h(s-) = E[Z_{s-}^2].$$

Thus (2.16) shows that h satisfies the equation

$$h(t) = g(t) + \int_{0}^{t} h(s-) d\widehat{K}_{s} , \quad 0 \le t \le T,$$

and by Théorème (6.8) of Jacod [12], h is therefore given by

(2.17)
$$h(t) = \mathcal{E}(\widehat{K})_t + \int_0^t \frac{\mathcal{E}(\widehat{K})_t}{\mathcal{E}(\widehat{K})_s} dg(s) \quad , \quad 0 \le t \le T,$$

since \hat{K} is increasing, hence $\Delta \hat{K} > -1$. But since \hat{K} and g are both increasing and nonnegative, we obtain

$$E\left[\left(\frac{dQ}{dP}\Big|_{\mathcal{F}_t} - 1\right)^2\right] = E[Z_t^2] - 1 \ge \mathcal{E}(\widehat{K})_t - 1 = E\left[\left(\frac{d\widehat{P}}{dP}\Big|_{\mathcal{F}_t} - 1\right)^2\right],$$

where the last equality follows from (2.17) with $g \equiv 1$ which corresponds to $R \equiv 0$, i.e., $Q = \hat{P}$; the inequality is strict unless $R \equiv 0$ *P*-a.s., i.e., $Q = \hat{P}$, and this proves the assertion.

q.e.d.

Remark. Actually, the preceding argument shows that \hat{P} even minimizes $D\left(Q|_{\mathcal{F}_t}, P|_{\mathcal{F}_t}\right)$ for each $t \in [0, T]$ over all signed local martingale measures Q for X such that $\frac{dQ}{dP} \in \mathcal{L}^2(P)$; the assumption that \hat{K} is deterministic seems therefore stronger than really necessary to obtain Theorem 8.

3. On the Föllmer-Schweizer decomposition

Let X be a continuous \mathbb{F} -adapted \mathbb{R}^d -valued process admitting a strict martingale density and denote by $\widehat{Z} = \mathcal{E}\left(-\int \widehat{\lambda} dM\right)$ the minimal martingale density for X. We recall from Ansel/Stricker [1] the following

Definition. An \mathcal{F}_T -measurable random variable H is said to admit a generalized Föllmer-Schweizer decomposition if there exist a constant H_0 , a predictable X-integrable process ξ^H and a local P-martingale L^H strongly orthogonal to M^i for each i such that H can be written as

(3.1)
$$H = H_0 + \int_0^T \xi_s^H \, dX_s + L_T^H \qquad P\text{-a.s}$$

and such that the process $\widehat{Z}\widehat{V}$ is a *P*-martingale, where

(3.2)
$$\widehat{V} := H_0 + \int \xi^H dX + L^H$$

Recall from Jacod [13] and Chou/Meyer/Stricker [4] that a (possibly not locally bounded) predictable process ξ is called X-integrable with respect to the semimartingale X if the sequence $Y^n = \int \xi I_{\{|\xi| \le n\}} dX$ converges to a semimartingale Y in the semimartingale topology; the limit Y is then denoted by $\int \xi dX$ and called the stochastic integral of ξ with respect to X. We do not explain here how the semimartingale topology is defined; we only remark that those results of Chou/Meyer/Stricker [4] that we use below extend in a straightforward fashion from their situation of a real-valued X to the case where X takes values in \mathbb{R}^d . As a matter of fact, the definition of a generalized Föllmer-Schweizer decomposition given in Ansel/Stricker [1] is slightly different. They assume \mathcal{F}_0 to be trivial and allow X to be possibly discontinuous. However, the proof of Theorem 9 below shows that L^H is null at 0 if \mathcal{F}_0 is trivial, and thus it follows from their Remarque (ii) that the two definitions agree for X continuous and \mathcal{F}_0 trivial.

The main result of this section is a necessary and sufficient condition for H to admit a generalized Föllmer-Schweizer decomposition. For the case d = 1, i.e., if X is real-valued, this is due to Ansel/Stricker [1]; we shall comment below on the difficulty in the multidimensional case. Before we state our theorem, we introduce some notation. For any stochastic process Y and any stopping time S, we denote by

$$Y^{S} = (Y_{t}^{S})_{0 \le t \le T} := (Y_{t \land S})_{0 \le t \le T}$$

the process Y stopped at S. Furthermore, $\langle M^i \rangle^{qv}$ denotes the pathwise quadratic variation of M^i along a fixed sequence $(\tau_n)_{n \in \mathbb{N}}$ of partitions of [0,T] whose mesh size $|\tau_n| := \max_{t_\ell, t_{\ell+1} \in \tau_n} |t_{\ell+1} - t_\ell|$ tends to 0 as $n \to \infty$. Then

(3.3)
$$\langle M^i \rangle^{\mathrm{qv}} = \langle M^i \rangle^P = [M^i] \qquad P\text{-a.s. for } i = 1, \dots, d.$$

Recall that $\langle M^i \rangle^P$ is the sharp bracket process associated to M^i with respect to P; the notational distinction between $\langle M^i \rangle^{qv}$ and $\langle M^i \rangle^P$ is made to clarify which definition of $\langle M^i \rangle$ is used.

Theorem 9. Suppose that X is a continuous \mathbb{F} -adapted process admitting a strict martingale density. An \mathcal{F}_T -measurable random variable H admits a generalized Föllmer-Schweizer decomposition if and only if H satisfies

(3.4)
$$H\widehat{Z}_T \in \mathcal{L}^1(P).$$

Proof. 1) Define the process N by

(3.5)
$$N_t := \frac{1}{\widehat{Z}_t} E[H\widehat{Z}_T | \mathcal{F}_t]$$

so that $N\widehat{Z}$ is a *P*-martingale by (3.4). Choose a localizing sequence $(T_m)_{m \in \mathbb{N}}$ for the local *P*-martingales \widehat{Z} and $X\widehat{Z}$, and define for each $m \in \mathbb{N}$ the probability measure \widehat{P}^m on (Ω, \mathcal{F}) by

$$d\widehat{P}^m := \widehat{Z}_T^{T_m} \, dP = \widehat{Z}_{T_m} \, dP.$$

Since \widehat{Z} is strictly positive, \widehat{P}^m is equivalent to P, and

$$N^{T_m}\widehat{Z}^{T_m} = (N\widehat{Z})^{T_m}$$

is a *P*-martingale by the stopping theorem; hence N^{T_m} is a \widehat{P}^m -martingale for each m, and so is X^{T_m} by the same argument. Now fix $m \in \mathbb{N}$ and write

(3.6)
$$N^{T_m} = N_0 + (N^{T_m})^c + (N^{T_m})^d$$

for the decomposition of N^{T_m} with respect to \hat{P}^m into a continuous and a purely discontinuous local \hat{P}^m -martingale. Since both $(N^{T_m})^c$ and X^{T_m} are continuous local \hat{P}^m -martingales, the Galtchouk-Kunita-Watanabe decomposition theorem implies that

(3.7)
$$(N^{T_m})^c = \int \xi^m \, dX^{T_m} + L^m$$

for a unique predictable process $\xi^m \in L^2_{\text{loc}}(X^{T_m}, \hat{P}^m)$ and a unique continuous L^m in $\mathcal{M}^2_{0,\text{loc}}(\hat{P}^m)$ strongly \hat{P}^m -orthogonal to each $(X^{T_m})^i$. In particular, ξ^m is X^{T_m} -integrable with respect to \hat{P}^m by Propriété c) of Chou/Meyer/Stricker [4]; hence Propriété f) of Chou/Meyer/Stricker [4] implies that ξ^m is also X^{T_m} -integrable with respect to $P \approx \hat{P}^m$. Furthermore, (3.3) yields by polarization

(3.8)
$$[(X^{T_m})^i, L^m + (N^{T_m})^d] = \langle (X^{T_m})^i, L^m + (N^{T_m})^d \rangle^{qv}$$
$$= \langle (X^{T_m})^i, L^m + (N^{T_m})^d \rangle^{\widehat{P}^m}$$
$$= 0 \qquad P\text{-a.s. for } i = 1, \dots, d.$$

since L^m and $(N^{T_m})^d$ are strongly \widehat{P}^m -orthogonal to $(X^{T_m})^i$, and $P \approx \widehat{P}^m$. 2) Now define processes ξ^H and L^H by setting

(3.9)
$$\xi^H := \xi^m \qquad \text{on } \llbracket 0, T_m \rrbracket$$

and

(3.10)
$$L^{H} := N_{0} - E[N_{0}] + L^{m} + (N^{T_{m}})^{d} \quad \text{on } \llbracket 0, T_{m} \rrbracket.$$

The first problem is then to show that these definitions make sense: since ξ^m , L^m and $(N^{T_m})^d$ are obtained by decomposing with respect to different measures \widehat{P}^m for different m, it is not clear a priori that they are consistent in the sense that $\xi^{m+1} = \xi^m$ on $[[0, T_m]]$ and so on. Consider first (3.6). We want to show that

(3.11)
$$\left((N^{T_{m+1}})^{x,\widehat{P}^{m+1}} \right)^{T_m} = (N^{T_m})^{x,\widehat{P}^m} \quad \text{for } x \in \{c,d\},$$

where the superscripts indicate the measures with respect to which the decomposition (3.6) is taken. Now first of all, $(N^{T_{m+1}})^{c,\widehat{P}^{m+1}} \in \mathcal{M}_{loc}^{c}(\widehat{P}^{m+1})$, so $(N^{T_{m+1}})^{c,\widehat{P}^{m+1}}\widehat{Z}^{T_{m+1}} \in \mathcal{M}_{loc}^{c}(P)$, hence by stopping $((N^{T_{m+1}})^{c,\widehat{P}^{m+1}})^{T_m}$ is in $\mathcal{M}_{loc}^{c}(\widehat{P}^m)$. An analogous argument shows that $((N^{T_{m+1}})^{d,\widehat{P}^{m+1}})^{T_m}$ is in $\mathcal{M}_{loc}(\widehat{P}^m)$. By the uniqueness of (3.6) with respect to \widehat{P}^m , (3.11) will be proved once we show that $R := ((N^{T_{m+1}})^{d,\widehat{P}^{m+1}})^{T_m}$ is strongly orthogonal to every $Y \in \mathcal{M}_{loc}^{c}(\widehat{P}^m)$. But since \widehat{P}^{m+1} and \widehat{P}^m are equivalent, Y is a continuous \widehat{P}^{m+1} semimartingale and can therefore be written as

$$Y = U^{m+1} + B^{m+2}$$

with $U^{m+1} \in \mathcal{M}_{\text{loc}}^c(\widehat{P}^{m+1})$ and B^{m+1} continuous and of finite variation. Thus we obtain

$$\langle Y, R \rangle^{\widehat{P}^m} = [Y, R] = \left[U^{m+1}, (N^{T_{m+1}})^{d, \widehat{P}^{m+1}} \right]^{T_m} = \left(\left\langle U^{m+1}, (N^{T_{m+1}})^{d, \widehat{P}^{m+1}} \right\rangle^{\widehat{P}^{m+1}} \right)^{T_m} = 0$$

from (3.3) and the fact that U^{m+1} is continuous and $(N^{T_{m+1}})^{d,\widehat{P}^{m+1}}$ purely discontinuous with respect to \widehat{P}^{m+1} . This proves (3.11). Now consider (3.7). By (3.11),

$$(N^{T_m})^{c,\widehat{P}^m} = \left((N^{T_{m+1}})^{c,\widehat{P}^{m+1}} \right)^{T_m} \\ = \left(\int \xi^{m+1} dX^{T_{m+1}} \right)^{T_m} + (L^{m+1})^{T_m} \\ = \int \xi^{m+1} I_{[0,T_m]} dX^{T_m} + (L^{m+1})^{T_m},$$

where the second equality uses (3.7) with m+1 instead of m. By the uniqueness of (3.7) with respect to \widehat{P}^m , it is therefore enough to show that $(L^{m+1})^{T_m}$ is strongly \widehat{P}^m -orthogonal to $(X^{T_m})^i$ for each i, since this implies both that $L^m = (L^{m+1})^{T_m}$ and that $\xi^m = \xi^{m+1}I_{[0,T_m]}$. But $L^{m+1} \in \mathcal{M}^c_{\text{loc}}(\widehat{P}^{m+1})$, so $(L^{m+1})^{T_m} \in \mathcal{M}^c_{\text{loc}}(\widehat{P}^m)$ and therefore

$$\left\langle (L^{m+1})^{T_m}, (X^{T_m})^i \right\rangle^{\widehat{P}^m} = \left\langle (L^{m+1})^{T_m}, (X^{T_m})^i \right\rangle^{q_V}$$

$$= \left(\left\langle L^{m+1}, (X^{T_{m+1}})^i \right\rangle^{q_V} \right)^{T_m}$$

$$= \left(\left\langle L^{m+1}, (X^{T_{m+1}})^i \right\rangle^{\widehat{P}^{m+1}} \right)^{T_m}$$

$$= 0$$

by (3.3) and the strong \widehat{P}^{m+1} -orthogonality of L^{m+1} to $(X^{T_{m+1}})^i$ for each *i*. Thus ξ^H and L^H are indeed well-defined by (3.9) and (3.10), respectively.

3) Since each ξ^m is predictable and X^{T_m} -integrable, ξ^H is also predictable and X-integrable by Théorème 4 of Chou/Meyer/Stricker [4]. If we set

(3.12)
$$H_0 := E[N_0]$$

then (3.6), (3.7), (3.9) and (3.10) show that

$$N = H_0 + \int \xi^H dX + L^H = \widehat{V}$$

by (3.2), so (3.1) holds by the definition of N, and $\widehat{Z}\widehat{V} = \widehat{Z}N$ is a P-martingale. Since

(3.13)
$$[L^H, M^i]^{T_m} = [L^H, X^i]^{T_m} = \left(\left\langle L^H, X^i \right\rangle^{q_v} \right)^{T_m} = \left\langle L^m + (N^{T_m})^d, (X^{T_m})^i \right\rangle^{q_v} = 0$$

for all m, i by the continuity of A, (3.3), (3.10) and (3.8), it only remains to show that L^H is a local P-martingale. To that end, it is enough to show that

$$(L^{H})^{T_{m}} = L^{m} + (N^{T_{m}})^{d} + N_{0} - E[N_{0}]$$

is a local *P*-martingale for each *m*, and since $\widehat{P}^m \approx P$ with density process \widehat{Z}^{T_m} , this is equivalent to showing that $L^m + (N^{T_m})^d$ is strongly \widehat{P}^m -orthogonal to $\frac{1}{\widehat{Z}^{T_m}}$ for each *m*. But (2.11) implies that

$$\frac{1}{\widehat{Z}^{T_m}} = \mathcal{E}\left(\int \widehat{\lambda} \, dX\right)^{T_m} = \mathcal{E}\left(\int \widehat{\lambda} \, dX^{T_m}\right),$$

hence the required strong orthogonality follows from (3.8), and this completes the proof.

q.e.d.

Remarks. 1) As mentioned above, Theorem 9 was already obtained by Ansel/Stricker [1] for the case d = 1. Their proof is considerably shorter since for d = 1, ξ^H can be defined directly by setting

$$\xi^H = \frac{d\langle X, N \rangle^{\mathrm{qv}}}{d\langle X \rangle^{\mathrm{qv}}}.$$

The properties of ξ^H and L^H are then derived by showing that on $[0, T_m], \xi^H$ coincides with the integrand ξ^m in the Kunita-Watanabe decomposition (3.7). For d > 1, no such explicit formula for ξ^H is available and thus ξ^H and L^H must be pasted together as in the preceding proof.

2) If $E[\widehat{Z}_T] = 1$ so that \widehat{Z} is not only a local martingale, but a true martingale under P, the proof of Theorem 9 also simplifies considerably. In fact, we can then argue directly with the minimal equivalent local martingale measure \widehat{P} instead of using \widehat{P}^m . Thus ξ^H and L^H can immediately be constructed globally, and part 2) of the above proof can be dispensed with. In addition, the constant H_0 is then given by $H_0 = \widehat{E}[H]$, due to (3.12) and (3.5).

In some situations, it is desirable to have more integrability for ξ^H and L^H in the decomposition (3.1) of H; see for instance Föllmer/Schweizer [10] or Schweizer [16] for applications

to hedging problems in financial mathematics. The next result shows how this can be deduced from assumptions on \hat{K} and H.

Corollary 10. Suppose that X is a continuous \mathbb{F} -adapted process admitting a strict martingale density. If the mean-variance tradeoff process \widehat{K} of X is bounded and if $H \in \mathcal{L}^p(P, \mathcal{F}_T)$ for some p > 1, then H admits a generalized Föllmer-Schweizer decomposition with $\xi^H \in L^r(M)$ and $L^H \in \mathcal{M}^r(P)$ for every r < p.

Proof. Since \widehat{K} is bounded, (2.12) holds; thus \widehat{Z} is a martingale and the minimal equivalent local martingale measure \widehat{P} exists. Now fix p > 1 and $H \in \mathcal{L}^p(P, \mathcal{F}_T)$. Then (2.12) implies by Hölder's inequality that $H\widehat{Z}_T$ is in $\mathcal{L}^1(P)$, so H admits a decomposition (3.1) by Theorem 9, and it only remains to prove the integrability assertions concerning ξ^H and L^H . But (3.2), (3.3), continuity of A and (3.13) imply that

$$\int_{0}^{T} (\xi_{s}^{H})^{\mathrm{tr}} \sigma_{s} \xi_{s}^{H} dB_{s} = \left\langle \int \xi^{H} dM \right\rangle_{T}^{P} = \left[\int \xi^{H} dM \right]_{T} = \left[\int \xi^{H} dX \right]_{T} \leq \left[\widehat{V} \right]_{T}$$

and

$$\left[L^H\right]_T \le \left[\widehat{V}\right]_T,$$

and since L^H is a local *P*-martingale we have

$$E\left[\left(\sup_{0\leq t\leq T}\left|L_{t}^{H}\right|\right)^{r}\right]\leq \text{ const. } E\left[\left[L^{H}\right]_{T}^{\frac{r}{2}}\right]$$

for r > 1 by the Burkholder-Davis-Gundy inequality. Hence $\xi^H \in L^r(M)$ and $L^H \in \mathcal{M}^r(P)$ will both follow for every r < p once we have proved that

(3.14)
$$\left[\widehat{V}\right]_T \in \mathcal{L}^{\frac{r}{2}}(P)$$
 for every $r < p$.

But $\widehat{V}\widehat{Z}$ is a *P*-martingale by Theorem 9, so \widehat{V} is a \widehat{P} -martingale and thus

$$\widehat{E}\left[\left(\left[\widehat{V}\right]_{T}\right)^{s}\right] \leq \text{ const. } \widehat{E}\left[\left(\sup_{0 \le t \le T} \left|\widehat{V}_{t}\right|\right)^{2s}\right] \le \text{ const. } \widehat{E}\left[\left|\widehat{V}_{T}\right|^{2s}\right]$$

for 2s > 1 by the Burkholder-Davis-Gundy inequality and Doob's inequality. Since p > 1 and $\widehat{V}_T = H \in \mathcal{L}^p(P)$ by (3.1), (2.12) implies that $\widehat{V}_T \in \mathcal{L}^{2s}(\widehat{P})$ for 2s < p, hence $[\widehat{V}]_T \in \mathcal{L}^s(\widehat{P})$ for every $s < \frac{p}{2}$, so (3.14) follows by (2.14), and this completes the proof.

q.e.d.

Acknowledgement. This work is based on a part of my Habilitationsschrift at the University of Göttingen. Financial support by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303 at the University of Bonn, is gratefully acknowledged.

References

[1] J. P. Ansel and C. Stricker, "Lois de Martingale, Densités et Décomposition de Föllmer-Schweizer", Annales de l'Institut Henri Poincaré 28 (1992), 375–392

- [2] J. P. Ansel and C. Stricker, "Unicité et Existence de la Loi Minimale", Séminaire de Probabilités XXVII, Lecture Notes in Mathematics 1557, Springer (1993), 22–29
- [3] A. R. Barron, "The Strong Ergodic Theorem for Densities: Generalized Shannon-McMillan-Breiman Theorem", Annals of Probability 13 (1985), 1292–1303
- [4] C. S. Chou, P.-A. Meyer and C. Stricker, "Sur les Intégrales Stochastiques de Processus Prévisibles Non Bornés", Séminaire de Probabilités XIV, Lecture Notes in Mathematics 784, Springer (1980), 128–139
- [5] N. Christopeit and M. Musiela, "On the Existence and Characterization of Arbitrage-Free Measures in Contingent Claim Valuation", SFB 303 discussion paper no. B–214, University of Bonn (1992), to appear in Stochastic Analysis and Applications
- [6] F. Delbaen and W. Schachermayer, "A General Version of the Fundamental Theorem of Asset Pricing", preprint, Free University of Brussels (1993), to appear in Mathematische Annalen
- [7] C. Dellacherie and P.-A. Meyer, "Probabilities and Potential B", North-Holland (1982)
- [8] N. El Karoui and M.-C. Quenez, "Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market", preprint, Université Paris VI (1992), to appear in SIAM Journal on Control and Optimization
- [9] M. Emery, "Compensation de Processus à Variation Finie Non Localement Intégrables", Séminaire de Probabilités XIV, Lecture Notes in Mathematics 784, Springer (1980), 152–160
- [10] H. Föllmer and M. Schweizer, "Hedging of Contingent Claims under Incomplete Information", in: M. H. A. Davis and R. J. Elliott (eds.), "Applied Stochastic Analysis", Stochastics Monographs, Vol. 5, Gordon and Breach, London/New York (1991), 389–414
- [11] N. Hofmann, E. Platen and M. Schweizer, "Option Pricing under Incompleteness and Stochastic Volatility", Mathematical Finance 2 (1992), 153–187
- [12] J. Jacod, "Calcul Stochastique et Problèmes de Martingales", Lecture Notes in Mathematics 714, Springer (1979)
- [13] J. Jacod, "Intégrales Stochastiques par Rapport à une Semimartingale Vectorielle et Changements de Filtration", Séminaire de Probabilités XIV, Lecture Notes in Mathematics 784, Springer (1980), 161–172
- [14] D. Lepingle and J. Mémin, "Sur l'Intégrabilité Uniforme des Martingales Exponentielles", Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 42 (1978), 175–203
- [15] M. Schweizer, "Martingale Densities for General Asset Prices", Journal of Mathematical Economics 21 (1992), 363–378

- [16] M. Schweizer, "Approximating Random Variables by Stochastic Integrals", preprint, University of Göttingen (1993), to appear in Annals of Probability
- [17] C. Yoeurp and M. Yor, "Espace Orthogonal à une Semi-Martingale et Applications", preprint, Université Paris VI (1977) [unpublished]