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Chapter 1

Convex Analysis in R4

The following notation is used:
e deN:={1,2,...}

e ¢; is the i-th unit vector in R

(z,y) = ZL zy; for z,y € RY

l|z|| == \/(z, z) for x € RY

B.(x) = {y € R': |l — yl| < ¢}

R, ={zeR:2>0},R;, :={xeR:z>0}

xVy:=max{z,y} and x Ay := min{z,y} for z,y € R

1.1 Subspaces, affine sets, convex sets, cones and
half-spaces

Definition 1.1.1 Let C be a subset of R?. C is a subspace of R? if
A+yeC foralxz,yeC and X € R.
C is an affine set if
A+ (1=NyeC foralzyeC and X € R.
C is a conver set if
A+ (1=NyeC foralz,yeC and € |0,1].

C is a cone if

AeC forallzeC and N € Ry,
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Exercise 1.1.2 Let C, D be non-empty subsets of R%.

1. Show that if C', D are subspaces, then so is
C—D:={zx—y:ze€C,ye D},

and the same is true for affine sets, convex sets and cones.

2. Show that if C is affine, then C' + v is affine for every v € R*.

3. Show that if C is affine and contains 0, it is a subspace.

4. Show that if C' is affine and v € C, then C' — v = C — (' is a subspace.

5. Show that the intersection of arbitrarily many subspaces is a subspace, and that
the same is true for affine subsets, convex subsets and cones.

6. Show that there exists a smallest subspace containing C', and that the same is
true for affine sets, convex sets and cones.

Definition 1.1.3 If C is a non-empty subset of RY, we denote by linC, aff C,
conv C, coneC' the smallest subspace, affine set, convex set, cone containing C,
respectively.

Exercise 1.1.4 Let C be a non-empty subset of R?. Show that

linC = {Z)\ixi:néN, A €R, xiEC}

=1

aff ¢ = {i)\imiiTLEN, )\iER, xlEC,i)\lzl}

i=1 i=1

conv(C = {ZAixi:n eN, N\, eRy, x;, €C, Z/\i = 1}
i=1 i=1

coneC = {dx: NeR,,, xeC}

Definition 1.1.5 The dimension of an affine subset M of R? is the dimension of
the subspace M — M. The dimension of an arbitrary subset C' is the dimension of

aff C'.
Definition 1.1.6 Let C be a non-empty subset of R%. The dual cone of C is the set
C*:={z€R?: (x,2) >0 forallz € C}.

Exercise 1.1.7 Show that the dual cone C* of a non-empty subset C' C R? is a
closed convex cone and C' is contained in C**.

Definition 1.1.8 The recession cone 0YC' of a subset C' of R? consists of all y € R
satisfying
x+AyeC forallxeC and € R .

FEvery y € 07C \ {0} is called a direction of recession for C.
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Definition 1.1.9 Let C be a subset of R?. The closure c1C of C is the smallest
closed subset of R? containing C'. The interior int C consists of all x € C' such that
B.(x) C C for some ¢ € Ryy. The relative interior riC' is the set of all x € C
such that B.(z) Naff C C C for some ¢ € Ryy. The boundary of C is the set
bdC :=clC \ int C. The relative boundary is rbd C' :=clC \ riC

Exercise 1.1.10
1. Show that an affine subset of R? is closed.
2. Show that the closure of a cone is a cone.

3. Show that the closure of a convex set is convex.

Lemma 1.1.11 Let C be a non-empty convex subset of R® and A € (0,1]. Ifint C #
(), then
Aint C' + (1 — Nl C Cint C. (1.1.1)

IfriC # 0, then
AMiC 4+ (1—NeC CriC (1.1.2)

In particular, int C' and ri C' are convex.

Proof. Let x € intC, y € clC and A € (0,1]. There exists ¢ > 0 such that
By.(z) € C and z € C such that (1 — \)|ly — z|| < Ae. Choose v € B).(0). Then

v o 1—A
w:X+T(y—2)Eng(0),

and therefore,
MM+ (1-Ny+v=ANz+w)+(1-NzeC.

This shows (1.1.1). (1.1.2) follows by working in aff C' instead of R?. O

Lemma 1.1.12 Let C be a convex subset of R:. Then int C # 0 if and only if
aff 0 = R4,

Proof. If x € int C', then 0 € int C' — x, and it follows that
aff (C) — x = aff (C — x) =lin (C — z) = R%
On the other hand, if aff C' = R?, choose x € C. Then
lin (C — x) = aff (C — z) = aff (C) — 2z = R%

So there there exist d vectors xy,...,2x4 in C such that v; := x; — x are linearly
independent. Since C'is convex, one has

1
d+1(x+x1+ +xq) + v, € C for [N < T andi=1,...,d,
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and therefore,

d+1(x+x1+---+xd)+V§C’,

where V' := {Zle Ao 0L ] < ﬁ} So since n(z) == ¢ |\ for z =

Z?zl A\;v; defines a norm and all norms on R? are equivalent, there exists an ¢ > 0
such that

d+1($+x1+~--+xd)+35(0)QC.

O

Corollary 1.1.13 Let C be a non-empty convex subset of R?. Then 1iC' is dense
in C. In particular, ri C' is non-empty.

Proof. 1f C' consists of only one point zg, then riC' = C' = {x¢}. If C contains at
least two different points, one can, by shifting, assume that one of them is 0. Then
lin C' = aff C' is at least one-dimensional. So by restricting to lin C', one can assume
that linC' = RY. It follows from Lemma 1.1.12 that 1iC' # (). Now the corollary
follows from Lemma 1.1.11. O

Definition 1.1.14 A half-space in R? is a set of the form
{zeR: (x,2) >c} for some z € R*\ {0} and c € R.

We say a subset C' of R? is supported at o € C by z € R\ {0} if (mo,2) =
inf,ec (x, 2).

Note that if a subset C' of R? is supported at zy € C' by some z € R4\ {0}, then
xg is in the boundary of C' and C' is contained in the half-space

{z eR?: (z,2) > (m,2)}.

1.2 Separation results in finite dimensions

Lemma 1.2.1 Let C be a non-empty closed subset of R?. Then there exists xo € C
such that
= inf .
ol = int [z

If in addition, C' is convez, then xq is unique.

Proof. For fixed y € C, the set {x € C : ||z|| <||y||} is closed and bounded. So the
existence of x( follows because the norm is continuous. If C'is convex and g, x; are
two different norm minimizers, one has

I < floll = [ ]],

a contradiction. O
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Theorem 1.2.2 (Strong separation)
Let C, D be non-empty convex subsets of R?. Then there exists z € R? satisfying

inf (z, z) > sup (y, 2) (1.2.3)

if and only if 0 ¢ cl(C — D).

Proof. The “only if” direction is clear. On the other hand, if 0 ¢ cl(C — D), the
unique norm minimizer z € cl (C' — D) is different from zero. For all w € C'— D and
A € (0, 1], one has

121 < 111 = Xz + dwl* = [[2]]* + 2\ (w — 2, 2) + X*[Jw — 2||*.
By dividing by A and sending A to 0, one obtains
(w,z) > ||z]|* >0 for allw e C — D.
This proves (1.2.3). O

Lemma 1.2.3 Let C and D be two non-empty closed convex sets with no common
direction of recession. Then C' — D 1is closed.

Proof. Let (x,) be a sequence in C' and (y,) a sequence in D such that x,, — vy, —
w € RY. If (z,) is unbounded, one can pass to a subsequence such that ||z,|| — oo
and

||xn|| — 2z for some z € 57" = {2z e R ||z|]| =1} .
T
But then one has for all zp € C'and A € R,

A
JIO—FW(JIR—IO)—)JIO—F/\J_IEO
Tn

since C' is closed. This shows that £ € 07C. However,

1i Un 1i Ty —W
im —— = lim
woflyall e fall + (lyall = Haall)

:j’

and it follows as above that z € 07D, a contradiction. So (z,,) and (y,) must both
be bounded. After passing to subsequences, one has x,, - x € C and y,, — y € D.
Sow=xz—yeC—D. O

Corollary 1.2.4 If C, D are non-empty closed convexr disjoint subsets of R% with
no common direction of recession, there exists z € R% such that

inf (z,2) > sup(y, z).
Inf (@,2) > sup {y, 2)
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Proof. By Lemma 1.2.3, C' — D is closed and does not contain 0. So the corollary
follows from Theorem 1.2.2. O

Corollary 1.2.5 If C, D are non-empty closed convex disjoint subsets of R? such
that D is bounded, there exists z € R? such that

inf (x,z) > sup(y, 2) .
inf (¢,2) > sup (3.

Proof. D has no direction of recession. So the corollary follows from Corollary
1.2.4. O

Corollary 1.2.6 Every proper closed convex subset of R? is equal to the intersection
of all half-spaces containing it.

Proof. Consider a closed convex subset C' C R% It is clear that C is contained in
the intersection of all half-spaces enveloping it. On the other hand, if 2y € R?\ C,
it follows from Corollary 1.2.5 that there exists a half-space containing C' but not
xo. This proves the corollary. 0

Corollary 1.2.7 Let C be a non-empty subset of R:. Then C** is equal to the
smallest closed convex cone containing C'.

Proof. Since C** contains C, it also contains the smallest closed convex cone D
enveloping C. To show C** = D, assume that there exists o € C** \ D. But then
it follows from Corollary 1.2.5 that there exists a z € R¢ such that

;2}% (x,z) > (xg, 2) .

Since D is a cone, this implies

;2% <LU,Z> =0> <IO7Z>7

from which one obtains that z € C* and xq ¢ C**, a contradiction. O

Lemma 1.2.8 Let C be a non-empty convex cone in R such that C # R%. Then
there exists z € R®\ {0} such that
%Iég (x,z) = 0. (1.2.4)

Proof. If int C = (), it follows from Lemma 1.1.12, that M = aff C is different from
R9. Since C' is a cone, M contains 0. Therefore, it is a proper subspace of R?, and
one can choose z € M+,

If there exists zy € int C', —x¢ cannot be in cl C. Otherwise, it would follow from
Corollary 1.1.11 that 0 € int C, implying C = R?%. So one obtains from Corollary
1.2.5 that there exists z € R? such that

inf (z,2) > inf (,2) > (=20,2).

This implies (1.2.4) and z # 0. O
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Theorem 1.2.9 (Weak separation)
Let C, D be non-empty convex subsets of R:. Then there exists z € R4\ {0} such
that

inf (z,z) > sup (y, 2) (1.2.5)
zeC yeD

if and only if 0 ¢ int (C' — D).

Proof. The “only if” direction is clear. To show the other direction, let us assume
0 ¢ int (C' — D). If we can show that

cone (C' — D) # R?, (1.2.6)
we obtain from Lemma 1.2.8 the existence of a z € R?\ {0} such that

inf  (x,2) >0,
z€cone (C—D)

which implies (1.2.5). To prove (1.2.6), we assume by way of contradiction that
cone (C' — D) = R? But then there exists ¢ > 0 such that all the vectors +ee;,
i=1,...,d,arein C—D. This implies 0 € int (C'—D), contradicting the assumption.
So (1.2.6) must hold. O

Corollary 1.2.10 Let C, D be non-empty convex disjoint subsets of R% such that
D is open. Then there exists z € R? such that

ing (x,2) > (y,z) for everyy € D.
TE

Proof. By Theorem 1.2.9, there exists z € R?\ {0} such that

inf (z,2) > sup (y, 2) .
inf (2.2) > sup (y.2)

Since D is open, the sup is not attained in D, and the corollary follows. O

Corollary 1.2.11 A convexz subset C of R? is supported at every point xo € C\int C
by at least one vector z € R?\ {0}.

Proof. If zp € C'\int C, then 0 ¢ int (C'—x). So it follows from Theorem 1.2.9 that
there exists z € R\ {0} such that inf,cc (x, z) > (x¢, 2), proving the corollary. [

Corollary 1.2.12 Let C be a non-empty convex subset of R?. Then int C = intcl C.

Proof. Tt is enough to show that intcl C' C int C. To do that we assume xy ¢ int C.
Then it follows from Theorem 1.2.9 that there exists z € R?\ {0} such that

o
inf (,2) 2 {z0,2)

It follows that

o) 2 (a2,

which implies g ¢ intcl C. This proves the corollary. U
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Corollary 1.2.13 Let C be a dense convex subset of R?. Then C' = R?.
Proof. By Corollary 1.2.12, one has int C' = int cl C' = R%. U

Theorem 1.2.14 (Proper separation)
Let C, D be non-empty convex subsets of R?. Then there exists z € R? satisfying

inf (z,2z) >sup(y,z) and sup(z,z) > inf (y,z2) (1.2.7)
zeC yeD zeC yeD

if and only if 0 ¢ 11 (C' — D).

Proof. To show the “only if” direction, let us assume there exists a z € R? satisfying
(1.2.7) and 0 € ri (C—D). Then the affine hull M of C'— D is a subspace. Decompose
2 = 21 + 2 such that z; € M and 2, € M*. Then

inf >0 d > 0.
aselg—D <.Z', Zl) = al mESlClE)D <I7 Zl>

But this contradicts 0 € ri (C' — D).

To show the “if” direction, assume 0 ¢ 11 (C'— D). If 0 ¢ M, then 0 ¢ ¢l (C — D),
and (1.2.7) follows from Theorem 1.2.2. If 0 € M, one can without loss of generality
assume that M = RY. But then 0 ¢ int (C — D), and one obtains from Theorem
1.2.9 that there exists z € R?\ {0} such that

inf (z,z) > 0.
zeC—-D

Moreover, there must exist an z € C' — D satisfying (z,z) > 0. Otherwise, one
would have (x,z) = 0 for all z € C — D, contradicting M = R?. O
1.3 Linear, affine and convex functions
Definition 1.3.1 A function f : R* — RF is linear if
fOx+y)=Af(z)+ f(y) forallz,y € R and \ € R.
f s affine if
fOz+ (1 =Ny) =M(z)+ (1 =Nfy) forall z,y € R and X € R.

Exercise 1.3.2 Let f : R? — R* be an affine function and v € R¥.
1. Show that f + v is affine.

2. Show that f — f(0) is linear.

3. Show that f(z) = Az + f(0) for some k x d-matrix A.
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Proposition 1.3.3 Ewvery affine function f : RY — R* is Lipschitz-continuous.

Proof. Tt is enough to show that f— f(0) is Lipschitz-continuous. So one can assume
that f is linear. But then there exists a k x d-matrix A such that f(z) = Az, and

one has
1/2
2
()
ij

2
I11:= s 7)1 < s Z(ng)
17 () = F@)I < 1l e = yl|for all 2,y € R,

1/2
So

Definition 1.3.4 A function f: R* — RU {+o0} is conver if
JOz+ (1 =Ny) <Af(x)+ (1 =Nf(y) forallz,yeR and X € (0,1)
and quasi-convex if
fAzx+(1=Ny) < f(z)V fly) forallz,y € R and X € (0,1).

A function f:R? — RU{—o0} is (quasi-) concave if —f is (quasi-) convez.
The effective domain of a function f: RY — RU {400} or f : R - RU {—o0}
is the set
dom f := {z € R?: f(z) e R}.

Exercise 1.3.5 Show that a function f : R? — R U {400} is quasi-convex if and
only if all the sublevel sets

[reR!: f@) <y}, yeR
are convex.

Exercise 1.3.6 Let f,g: R — RU {+oc} be convex functions and A > 0. Show
that A\f 4 g is convex.

Definition 1.3.7 We say a function f : R? — R U {Zoc} is quasi-convex if all
sub-level sets {x eRe: f(z) < y}, y € R, are convex. We say f is quasi-concave if
—f is quasi-convez.

Exercise 1.3.8
1. Let f: RY — RU {400} be quasi-convex and h : RU {00} — R U {£o0}
non-decreasing. Show that h o f is quasi-convex.

2. Give an example of a convex function f : R — R and a non-decreasing function
h : R — R such that h o f is not convex.

3. Let f; : RY — RU {%o0}, i € I, be a family of quasi-convex functions. Show
that sup;c; fi is quasi-convex.
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Definition 1.3.9 The epigraph of a function f: RY — RU {£oo} is the set
epi f i= {(z,y) € R x R : f(z) <y}

The hypograph of f is given by
hypo f := {(z,y) e R xR : f(z) > y}.

Exercise 1.3.10 Show that a function f : R? — RU {400} is convex if and only if
epi f is convex.

Definition 1.3.11 We say a function f : R? — R U {£o0} is conver if epi f is a
convex subset of R, A convex function f : R? — R U {400} is said to be proper
convex if f(x) > —oo for all v € R? and f(x) < +oo for at least one x € RY. We
say [ is concave if —f is convex and proper concave if —f is proper convez.

Exercise 1.3.12
1. Show that for a convex function f : R — R U {#+oco} and zy € R such that
f(aio) € R,

f(zo + ) — f(xo)

3

is non-decreasing in € € R\ {0}

2. Show that for a convex function f : R — R U {£oo} and zy € R such that
f(-CEO) € Ra

im J o + 2 — (o) and  f (zg) := lgigl .
exist and f! (z) < fi(x).

3. Let f; : RY - RU{+o0}, i € I, be a family of convex functions. Show that
sup,c; fi is convex.

4. Show that every function f: R? — R U {#oo} has a greatest convex minorant.

Definition 1.3.13 We denote the greatest convex minorant of a function f : R% —
R U {£o00} by conv f and call it the convex hull of f.

Theorem 1.3.14 Let f : R — RU {£o0} be a convex function and zy € R such
that f(xg) € R. Assume there exists a neighborhood U of xo such that f(x) < 400
for allz € U. Then f is proper convex and continuous at x.

Proof. There is an € > 0 such that m := max; f(zo &+ ¢;) < +o00. By convexity,
one has f(x) < m for all z € 2y + V, where V := {x eER: Y | < 6}. Since
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f(xo) € R and ¢ + V is a neighborhood of xy, one obtains f(z) > —oo for all
x € R?. In particular, f is proper convex. Now choose z € V and 0 < A < 1. Then

flxo+Ax) = f(Mao+2) + (1 — N)xo) < Af(xo+2) + (1 — X) f(x0),
and therefore,
f(xo+ Az) — fzo) < Alf (w0 + @) — f(20)] < Alm — f(z0)).
On the other hand,

(xo + Ax) +

To= 1) (xo — ).

14+
So

Flan) < 5 o0+ X0) + 5 (o0 = o),

from which one obtains

f(xo) = flzo + Ax) < Alf (w0 — ) — f(20)] < A(m — f(z0))
Hence, we have shown that
|f(z) = f(@o)| < A(m — f(z0)) forall z € zg+ AV,
which proves the theorem. O
Corollary 1.3.15 A convex function f : R¢ — RU{+o0} is continuous on int dom f.

Proof. 1f xy € int dom f, there exists a neighborhood U of x such that f(z) < +oo
for all x € U. Now the corollary follows from Theorem 1.3.14. O

Definition 1.3.16 A function f : R? — R U {£oo} is said to be positively homo-
geneous if f(A\x) = \f(x) for allz € RY and X € Ry ,. If f is convex and positively
homogeneous, it is called sub-linear.

Exercise 1.3.17
1. Show that a positively homogeneous function f : R? — R satisfies f(0) = 0.

2. Show that a function f : RY — R U {400} is positively homogeneous if and only
if epi f is a cone in R+,

3. Show that a positively homogeneous function f : R¢ — R U {+o0} is convex if
and only if f(z +y) < f(z) + f(y), z,y € R,

Corollary 1.3.18 (Hahn-Banach extension theorem in finite dimensions)

Let g : RT = R be a sub-linear function and f : M — R a linear function on a
subspace M of RY such that f(z) < g(z) for all x € M. Then there exists a linear
extension F': RT — R of f such that F(z) < g(x) for all x € R%.
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Proof. epig = {(z,y) € R x R : g(z) < y} is a non-empty convex cone in R**! and
graph f := {(z, f(z)) : © € M} a subspace. Since epig — graph f is a cone that does
not contain (0, —1), the point (0,0) cannot be in the interior of epi g — graph f. By
Theorem 1.2.9, there exists (z,v) € RY x R\ {0} such that

wanf (@ 2) +yv) 2 sup((z, 2) + f(z)).

It follows that v > 0, and by rescaling, one can assume v = 1. Since M is a subspace,
one must have f(x) = (x,—z), # € M, and therefore, (z,2) + g(x) > 0, x € R
This shows that F'(z) = (x, —z) has the desired properties. O

1.4 Derivatives, directional derivatives and sub-
gradients

Definition 1.4.1 Let f : RY — RU {£oc} and xg € R? such that f(z¢) € R. If
there exists z € R% such that

then f is said to be differentiable at xo with gradient V f(xo) = z (or derivative
Df(xo) = z).

Definition 1.4.2 Let f : R? — RU {400} and zy € R? such that f(x) € R. If the

limit
[ (zo;2) := 1&%1 flao + 5? — f(zo)

exists (it is allowed to be 400 or —o0), we call it the directional derivative of f at
o in the direction x.

Note that if f is differentiable at xg, then

f/(ﬂfosgﬁ) = (2, V f(x0)) -
is linear in x.

Definition 1.4.3 Let f : R? — RU {£oo} and zo € R? such that f(zy) € R.
2z € R? is a sub-gradient of f at xq if

f(zo+2) — flwo) > (2,2)  for all z € R%

The set of all sub-gradients of f at xq is denoted by Of (xo) and called sub-differential
of [ at xg.
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Exercise 1.4.4 Let f : R - RU {£o0} be a convex function and zy € R? such
that f(x¢) € R. Show the following:

1.
f’(Io; ZE) —inf f(xO + 51‘) B f(l'o) '

e>0 g

In particular, f’(zo; z) exists for all z € RY.
2. f'(xo,.) is sub-linear.
3. If 7y € int {z € R?: f(z) € R}, then f'(z¢;x) € R for all z € R%.
4. The following are equivalent:
(i) f(zo) = min, f(x)
(i) 0 € Of(xo)
(iii) f'(wo;x) > 0 for all z € RY.
5. The sub-differential 0f(x) is a closed convex subset of R,
6. 0f(xo) = 0g(0), where g(x) := f'(xo; 2).
7. If f is differentiable at o, then 0f(zo) = {V f(x¢)}.
8. The following are equivalent:
(i) z € 0f(xo)

(ii) (—=z,1) supports epi f at (zo, f(x0)).

Theorem 1.4.5 Let f : R — R U {400} be a convex function and xy € ridom f.
Then Of (zo) # 0.

Proof. Since (zo, f(zo) + 1) € epif, the point (x¢, f(zo)) is not in riepi f. By
Theorem 1.2.14, there exists (z,v) € R? x R such that

( i)réf .f((x, —z) +vy) > (xg, —2) + vf(x0) (1.4.8)
and
s)up ((x, —2) +vy) > (xo, —2) + v f(x0) (1.4.9)
(z,y)€epi f

It follows from (1.4.8) that v > 0. Now assume that v = 0. Then, since zy €
ridom f, (1.4.9) contradicts (1.4.8). So v > 0, and by scaling, one can assume
v =1. Then (—z, 1) supports epi f at (xo, f(x¢)), which by Exercise 1.4.4.8, proves
that z € Of(zo). O
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Definition 1.4.6 A function f : R? — RU {400} is lower semi-continuous (Isc) at
1o € R if f(xg) < liminf, .., f(x). f is Isc if it is lsc everywhere. f is upper semi-
continuous (usc) at xo if f(xo) > limsup,_,, f(x). f is usc if it is usc everywhere.
By f, we denote the function given by

f(x) :=liminf f(y)

Yy—x

and call it Isc hull of f. By conv f we denote the Isc hull of conv f and call it Isc
convex hull of f.

Exercise 1.4.7
Consider a function f: R? — R U {+o0}.

1. Show that the following are equivalent:

(i) fislsc

(ii) All sub-level sets {x eRY: f(z) < y}, y € R, are closed
(iii) epi f is closed

2. Show that the epigraph of f is the closure of epif and [ is the greatest lsc
minorant of f.

3. Show that if f is convex, then so is f.
4. Show that conv f is the greatest lsc convex minorant of f.

5. Let f; : R4 - RU {#oo}, i € I, be a family of Isc functions. Show that sup;; fi
is Isc.

Lemma 1.4.8 Let f : R? - RU {+oo} be a Isc conver function and xo € R? such
that f(zo) € R. Then f is proper conver.

Proof. Assume there exists z; € R? such that f(x;) = —oco. Then f(Axg + (1 —
A)zy) = —oo for all A € [0,1). But since f is Isc, one must have f(xy) = —o0, a
contradiction. O

Lemma 1.4.9 Let f be a proper convex function on RY and zy € dom f such that

Of(wo) # 0. Then f(xo) = f(x0) and Of(wo) = 9 f(xo).

Proof. Choose z € f(xg). The affine function g(z) = f(x¢) + (z — g, z) minorizes
f and equals f at 79. So g also minorizes f and equals f at zo. This shows f(zo) =
g(zo) = f(wo) and Of(x0) C Of (o). Of (o) 2 9f(x0) follows since f(zo) = f(o)
and f > f. O

Corollary 1.4.10 Let f be a proper convex function on R?. Then so is f. More-

over, f(z) = f(x) for all v € ridom f U (cldom f)¢ and 0f(x) = Of(x) for all
x € ridom f
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Proof. We already know that f is convex, and it is clear that it cannot be identically
equal to +oco. By Corollary 1.1.13, ridom f is not empty. Choose z € ridom f. By
Theorem 1.4.5, there exists z € df(x). So one obtains from Lemma 1.4.9 that
f(z) = f(z) and Of(z) = 0f(x), which implies that f is proper. Finally, note that
dom f C cldom f. So if z ¢ cldom f, then f(z) = f(z) = +o0. O

Theorem 1.4.11 A Isc convex function f : R — R U {+oo} equals the point-wise
supremum of all its affine minorants.

Proof. 1If f is constantly equal to 400, the theorem is clear. So we can assume
dom f # ). Choose a pair (zg,w) € R% x R that does not belong to epi f. By
Corollary 1.2.5, there exists (z,v) € R? x R such that

m:= inf ((z,2)+yv) > (20, 2) + wo.
(z,y)€epi f

It follows that v > 0. If v > 0, one can scale and assume v = 1. Then m — (z, z)
is an affine minorant of f whose epigraph does not contain (zo,w). If v = 0, set
A :=m — (xg,z) > 0 and choose x; € dom f. Since (x1, f(z1) — 1) is not in epi f,
there exists (2/,0v) € R? x R such that

m' = inf  ((z,2)) +yv') > (21, 2") + (f(z1) — D).
(z,y)€epi f
Since x; € dom f, one must have v’ > 0. So by scaling, one can assume v' = 1. Now

choose |
5> X(w + (20, 2") —m/)"

and set 2" := dz + 2’. Then
m" = inf ((x,2")+y)>om+nm
(z,y)€epi f

= oA+ (g, 2) +m' > (x0,2") + w.

So m” — (z,2") is an affine minorant of f whose epigraph does not contain (zg, w).
This completes the proof of the theorem. O

1.5 Convex conjugates

Definition 1.5.1 The conver conjugate of a function f : R? — R U {£oo} is the
function f*: R — RU {do0} given by

f(2) = sup {{z, 2) — f(2)}.

z€R4
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Exercise 1.5.2
Consider functions f,g: R? — R U {4o00}. Show that ...

1. f* is convex and lsc.

3. f < g implies f* > ¢*

4. f*** — f*.

Exercise 1.5.3 Calculate f* in the cases

L f(z) =0, aif? for p > 1
2. f(x) =exp(Azx) for A € R

Definition 1.5.4 Let C be a subset of RY.  The indicator function dc : R —
R U {+o0} is defined to be 0 on C' and +oo outside of C. The convex conjugate 0,
15 called support function of C'.

Exercise 1.5.5 Let f : R? — R be an affine function of the form f(z) = (x,z) — v
for a pair (z,v) € RY x R. Show that f* =v +J, and f** = f.

Exercise 1.5.6 Consider a function f : R — R U {#oc}.
1. Show that the Young—Fenchel inequality holds:
f*(2) > (z,2) — f(z) forall z,z € R%.
2. Show that if f(z) € R, the following are equivalent
(i) z € Of(z0)
(i) (x,z) — f(z) achieves its supremum in z at = xg
(iii) f(zo) + f*(2) = (0, 2)
S

3.
(i)~

(iv) o € Of*(2)

how that if f(xg) = f**(xo) € R, the following conditions are equivalent to

iii)

(i
)
(v) {(xo,v) — f*(v) achieves its supremum in v at v = z
(vi) z € 9f*(xo)

Theorem 1.5.7 (Fenchel-Moreau Theorem)
Let f : R — RU{+o0} be a function whose lsc convex hull conv f does not take the
value —oo. Then conv f = f**. In particular, if f is lsc and convex, then f = f**
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Proof. We know that f > f**. Since f** is Isc and convex, one has conv f > f**
Now let h be an affine minorant of conv f. Then it is also an affine minorant of
f. So one has h = h** < f**. Since by Theorem 1.4.11, conv f is the point-wise
supremum of its affine minorants, it follows that conv f < f**. O

Corollary 1.5.8 If f is a proper convex function on R%, then f* is lsc proper con-
VeL.

Proof. f*is Isc convex for every function f : R? — RU{4o0}. If f is proper convex,
one obtains from Corollary 1.4.10 that so is f, and it follows from Theorem 1.5.7
that f = f**. This implies that f* is proper convex. O

Corollary 1.5.9 Let C' be a non-empty subset of R? with closed convex hull D.
Then 05(z) = sup,ep (z,2) and 65 = 0p.

Proof. 0§ = dp follows from Theorem 1.5.7 since dp is the Isc convex hull of dc.
Now one obtains 07, = 05" = ¢},, and the proof is complete. O

Corollary 1.5.10 Let f be a lsc proper sub-linear function on R?. Then f = 55]‘(0)
and f* = 58f(0)' In particular, f(O) =0 and af<0) # (Z)

Proof. 1t can easily be checked that f* = o for the set
C={zeR’: (z,2) < f(z) for all z € R?} .

By Theorem 1.5.7, one has f = 5. It follows that C' is non-empty, which implies
f(0) =0 and 0f(0) = C. O

Exercise 1.5.11 Calculate f* for

1/p
f(@) = |[z|], = <Z W”) for p > 1.

Corollary 1.5.12 Let f: R? — RU {£oo} be a conver function and o € R? such
that f(xg) € R. Assume there ezists a neighborhood U of x¢ and a constant M € R,
such that

f(z) = f(xg) > =M||x — zo|| for all x € U. (1.5.10)

Then f has a sub-gradient z at xo such that ||z|| < M.
Proof. Denote by h : R? — R U {400} the Isc hull of the directional derivative

g(x) = f'(xp;x). It follows from (1.5.10) that h(x) > —M]||z||. In particular,
h(0) = 0. h is a lsc sublinear function satisfying 0h(0) C 0f(x). So it is enough to
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show that h has a sub-gradient z at g such that ||z|| < M. It follows from Corollary
1.5.10 that 9h(0) is non-empty and

h(z) = sup (z,z).
z€0h(0)

Now assume that 0h(0) N By (0) = 0. Since Oh(0) is closed and convex, there exists
an x such that

ha) = sup (w,2) < inf (,2) = —M]fz]),
2€dh(0) z€Bp(0)

a contradiction. U
Theorem 1.5.13 Let f be a proper convex function on R and zy € ridom f. Then

f'(xg:;z) = sup (z,2), xcRL (1.5.11)
z€0f(20)

Proof. Consider the sub-linear function g(z) = f'(x¢;x). It follows from Theorem
1.4.5 that d¢g(0) = Of (xo) # 0. So g is proper convex with dom g = aff dom f—=z,. In
particular, dom g is closed, and g restricted to dom g is a real-valued convex function.
It follows from Corollary 1.3.15 that g is continuous on dom g, and therefore Isc on
R?. So one obtains from Corollary 1.5.10 that g = 3, for C = 9g(0) = df (o). This
proves the theorem. O

Theorem 1.5.14 Let f be a proper convexs function on R and xy € dom f. Then
Of(xo) is non-empty and bounded if and only if xy € int dom f.

Proof. Let us first assume that zy € int dom f. Then it follows from Theorem 1.4.5
that df(zo) # (0. If there exists a sequence (z,) in df(xg) such that ||z,|| > n, then
one has for every ¢,

fxo+ezn/llzall) = f (o) + & (2n/llznll, 2n) = f(20) + €l|2n]] = f(w0) +en.

That is, f is unbounded from above on every neighborhood of zq, and it follows from
Corollary 1.3.15 that zg ¢ int dom f, a contradiction. So df(xy) must be bounded.

Now we assume that Of(zo) is non-empty and bounded but z, ¢ intdom f.
Define g(z) := f'(zo; z). By Corollary 1.2.11, there exists a 2 € R?\ {0} such that

dom f C{z € R: (x,2) > (x,2)}.
It follows that
g=+oo on theset {z € R?: (z,z) <0}. (1.5.12)

Since f (zo) = dg(0) is not empty, it follows from Lemma 1.4.9 that g(0) = g(0) = 0
and dg(0) = 0g(0) = df(wo). In particular, g is a Isc proper sub-linear function,
and one obtains from Corollary 1.5.10 that

g(z) = sup (z,2),
2€0f(z0)

contradicting (1.5.12). This shows that xy € int dom f. O
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Theorem 1.5.15 Let f be a proper convex function on R and xy € dom f such
that Of (xg) = {z} for some z € RY. Then f is differentiable at xo with V f(zo) = z.

Proof. 1t follows from Theorems 1.5.14 and 1.5.13 that o € int dom f and f'(zo;z) =
(x,z), € R So for given € > 0, there exists a 6 > 0 such that

flzo+ Aei) — fxg) — (Nes, 2) < g]A], (1.5.13)

foralli=1,...,d and A € [, 0]. Now choose z € R? such that

d
o]l =) |zl € (0,0].
i=1

By convexity of the function g(x) := f(x¢ + x) — f(x0) — (x, 2), one obtains from
(1.5.13) that

d
Z |z;|sign(z;)e; |z
)= g (|\x||1 Z o(llellisign(z)er) < elle]l.
=1

{1 [l

Since
flzo+2) — f(xo) > (x,2) for all 2 € RY,

and all norms on R? are equivalent, one obtains

lim f(zo+x) — fwo) — (2, 2)

=0.
x#0,2—0 ||{L‘||

D

The following example shows that Theorem 1.5.15 does not hold for non-convex
functions.

Example 1.5.16 The function f : R — R defined by

e tl for x < —1
f(z) = ||  for —1<z<1
el= forl1 <z

is not differentiable at 0. But 0f(0) = {0}.

1.6 Inf-convolution

Definition 1.6.1 Consider functions f; : RY — R U {+oo}, j = 1,...,n. The
inf-convolution of fi and fy is given by

Si0f2(x) = yiggd(fl(iv —y)+ f(y) = inf (f(z1) + f(22)).

T1+xo=x
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The inf-convolution of f;, j =1,...,n, is the function

n

Ui fi(@):= inf > i),
=1

The inf-convolution is said to be exact if the infimum is attained.

Lemma 1.6.2 Let f; : RY - RU{+o0}, j =1,...,n, be convex functions. Then
J=Uj_1f; is convex.

Proof. If f = +o00, the lemma is clear. Otherwise, let (z,v),(y,w) € epif, A €
(0,1) and € > 0. There exist z; and y;, j = 1,...,n, such that Z?Zl r; = ,
Yo flzg) Sv+e 370 y;=yand Y70, fy;) Sw+e. Set zp = Axj+ (1 - N)y;.
Then z:= 3", zj = Az + (1 — \)y and

f(z) < ij(zj) < Z)\fj(%‘) + (1 =Nf(y;) < v+ (1—=Nw+e.

It follows that f(z) < Av + (1 — A)w, which shows that epi f and f are convex. [

Lemma 1.6.3 Let f;, j = 1,...,n, be proper convex functions on R? and denote
f=05_f;. Assume f(xo) = >, fi(x;) < 400 for some x; summing up to x
and fi(z) < oo for all x in some neighborhood of x1. Then f is a proper convex
function, xo € intdom f and f is continuous on int dom f.

Proof. By definition of f, one has
flwo+2) = fl@o) < filwr +)+ 3 filws) = 3 filws) = filwr +2) = ()

for all z € R?. Therefore, f(x) < +oo for all x in some neighborhood of zy. Since
by Lemma 1.6.2, f is convex, the result follows from Theorem 1.3.14. U

Lemma 1.6.4 Consider functions f; : R - RU {+o00}, j = 1,...,n, and denote
f=0_f;. Assume f(xo) = Y7, fij(x;) < +oo for some x; summing up to xo.

Then Of (o) = (j—, 0f;(x)).
Proof. Assume z € df(xg) and x € RY. Then

n

filvi+x) = fi(2) = fl(l’l‘i‘l’)‘i‘z fj(%)‘ij(Ij) > f(xotx)— f(zo) = (z,2).

j=1
Hence z € 0fi(x;), and it follows by symmetry that 0f(z¢) C ﬂ?zl Jfj(x;). On the

other hand, if z € (;_, 0f;(z;) and = € R?, choose y; such that > 1Y = To+ T
Then

ij(yj) > ij(l'j) +(y; — x5, 2) = ij(l’j) +(z,2).

So f(xo+ x) — f(xg) > (x, 2), and the lemma follows. O
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Lemma 1.6.5 Let f;, j = 1,...,n, be proper convex functions on R? and denote
f =070 f;. Assume f(xg) = Zj fi(x;) < 400 for some x; summing up to and f
is dzﬁerentzable at x1. Then f is differentiable at xo with V f(xo) = V f1(x1).

Proof. One has

f(xo+2) — fz0) < fi(zr +2) + ng zj) = filz1 +z) — fi(21)
]:2
for all z € RY. Tt follows that the directional derivative g(z) := f'(zo; x) satisfies
9(x) < filzy;x) = (z, Vfi(z1))

for all z € R%. But by Lemma 1.6.2, f is convex. So g is sub-linear, and it follows
that g(z) = (x, V fi(z1)). This implies that df(z¢) = 9g(0) = {V fi(z1)}, and the
lemma follows from Theorem 1.5.15. U

Lemma 1.6.6 Consider functions f; : RY — R U {+o00}, j = 1,...,n, none of
which 1s identically equal to +o0o. Then (Dyzlfj)* = Z?Zl 15

Proof.

(O, f) (2) = sup({z, z) — O, f(2)) = sup Z zj,2) = fi(23) = D_ £ (2).

z T Ty,

Corollary 1.6.7 Let f;, j =1,...,n, be lsc proper convex functions on R?. Then

o ) =00 15

Proof. We know from Corollary 1.5.8 that f;, i« = 1,...,n, are Isc proper convex.
So one obtains from Theorem 1.5.7 and Lemma 1.6.6 that

Yo=Y 5= (OR)
j=1 j=1

and therefore, (37, f;)* = O7_, f. H
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Chapter 2

General Vector Spaces

2.1 Definitions

A general vector space is a set whose elements can be added and multiplied with
scalars. It can be defined over a general field of scalars. But here we just consider
vector spaces over R. The precise definition is as follows:

Definition 2.1.1 A wvector space is a non-empty set X with an addition
(r,y) e X xX—az+yeX
and a scalar multiplication
Nr)ERx X = reX
satisfying the following properties:
1. (z+y)+z=x+(y+2) forallz,y,z € X
2.x+y=y+x foralz,yeX
3. There exists an element 0 € X such that v + 0 =x for all x € X.
4. For every x € X there ezists —x € X such that x + (—x) =0
S Mzx+y)=Xx+ Ay forall e R and z,y € X
6. AN+ p)x = e+ px for all \,p € R and z € X
7. Mpz) = (A
8. le =z

27



28 CHAPTER 2. GENERAL VECTOR SPACES

Exercise 2.1.2
1. Show that there exists only one element 0 € X satisfying 3. It is called zero-
element or neutral element of the addition.

2. Show that 0z = 0 for all z € X.

3. Show that for given z € X, there exists only one —x € X satisfying 4. It is
called the negative or additive inverse of x.

4. Show that (—1)z = —=.

Examples 2.1.3 The following are vector spaces:
1. {0}

2. R?

3. The set of all linear functions f : R? — R*.

4. The set of all functions f : X — Y, where X is an arbitrary set and Y a vector
space.

All polynomials on RY,
All real sequences.
All real sequences that converge.

LP(Q, F, 1), where (£, F, ) is a measure space.

© ® = -

The product X x Y of two vector spaces X and Y.

10. The quotient X/Y if Y is a subspace of X. (In X/Y, x and 2’ are identified if
r—2'eY.)

Definition 2.1.4 Let Y be a subset of a vector space X.

o Y is said to be linearly independent if for every non-empty finite subset {yy, ..., yx}
of Y, (0,...,0) is the only vector X in R* such that \yy; + -+ + \yr = 0.

o IfY is linearly independent and for every x € X, there exists a finite subset
{yi, ... yr}t of Y and \ € R¥ such that x = M\jw1+-- -+ \pxy, then Y is called
a Hamel basis of X.

Exercise 2.1.5
1. Let Y be a Hamel basis of a vector space X. Show that the representation of
points x € X as linear combinations of elements in Y is unique.

2. Show that 1,cos(2mnx),sin(2rnz), n = 1,2,... are linearly independent in
L?[0,1].

Definition 2.1.6 Let C be a subset of R?. C' is a subspace of R? if

AM+yeC forallx,yeC and X € R.
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C s an affine set if
A+ (1=NyeC foralzyeC and X € R.
C is a conver set if
A+ (1=NyeC foralz,yeC and X € [0,1].

C is a cone if

AeC forallzeC and N € Ry,

Exercise 2.1.7 Show that the statements of Exercise 1.1.2 hold for non-empty
subsets C, D of a vector space.

Definition 2.1.8 If C' is a non-empty subset of a vector space, we denote by linC,
aff C', conv C, cone C' the smallest subspace, affine set, convexr set, cone containing
C, respectively.

Definition 2.1.9 A function f: X — Y between vector spaces is linear if
fQOz+y)=Af(z)+ fly) foralXeR and z,y € X,
and affine if

fOAz+ 1 =Ny)=Af(x)+ (1 =N f(y) forall\eR and z,y € X.

Definition 2.1.10 The algebraic dual X' of a vector space X is the vector space of
all linear functions f : X — R. Elements of X' are usually called linear functionals.

Definition 2.1.11 A function f: X — RU {£o0} on a vector space X is ...
o quasi-convex if all sub-level sets {x € X : f(z) <y}, y € R, are convex.
e quasi-concave if all super-level sets {z € X : f(x) >y}, y € R, are convex.
o convex ifepi f = {(z,y) € X xR : f(x) <y} is convex.

e proper convez if it is convex, f(x) > —oo for all x € X and f(x) < +oo for
at least one v € X.

e concave if —f is convex.
e proper concave if —f is proper concave.
e positively homogeneous if epi f is a cone.

e sub-linear if epi f is a convex cone.
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Exercise 2.1.12 Let X be a vector space. Show the following:
1. The pointwise supremum of quasi-convex functions on X is quasi-convex.
2. The point wise supremum of convex functions on X is convez.

. A positively homogeneous function f: X — R satisfies f(0) = 0.

3
4. A positively homogeneous function f : X — R U {400} is convez if and only if
fl@+y) < flx)+ fy) for all z,y € X.

2.2 Zorn’s lemma and extension results

Definition 2.2.1 A binary relation on a non-empty set X is a subset R of X x X.
One usually writes xRy instead of (z,y) € R. R is said to be ...

o reflexive if tRx for all x € X.

o symmetric if xRy implies yRx.

e antisymmetric if Ry and yRx imply x = v.

o transitive if Ry and yRz imply xRz.

e total if for all x,y € X, one has xRy, yRx or both.

e an equivalence relation if it is reflexive, symmetric and transitive.

a preorder if it is reflexive and transitive.

a partial order if it is an antisymmetric preorder.

a total order (or linear order) if it is a total partial order.
Definition 2.2.2 Let V' be a subset of a partially ordered set (X,>).

e V is called a chain if (V,>) is totally ordered.

o An upper (lower) bound of V is an element x € X such that v > v (z < v)
forallveV.

o [fx €V isan upper (lower) bound of V', it is called largest (smallest) element
of V.

o An element x € V is called mazimal (minimal) if there is no element y €
V\A{z} such that x <y (x > y).
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Zorn’s lemma is equivalent to the axiom of choice. We use it as an axiom.

Zorn’s lemma
Let X be a partially ordered set in which every chain has an upper bound. Then X
has a maximal element.

Theorem 2.2.3 FEvery vector space has a Hamel basis.

Proof. Let X be a vector space and denote by W be the set of all linearly independent
subsets Y of X. Y] > Y; i< Y] DY, defines a partial order on W. If V is a chain
in W, then (Jy, Y is an upper bound of V. So it follows from Zorn’s lemma that
there exists a maximal element Y € W. Y is a Hamel Basis of X. U

Exercise 2.2.4 Let Y be subspace of a vector space X.

1. Show that there exist subsets V C Y and W C X such that V is a Hamel Basis
of Y and V U W is a Hamel basis of X.

2. Show that every linear function f : Y — R has a linear extension F': X — R.

Theorem 2.2.5 (Hahn-Banach extension theorem)

Let g : X — R be a sub-linear function on a vector space X and f :Y — R a linear
function on a subspace Y of X such that f(x) < g(x) for all x € Y. Then there
exists a linear extension F : X — R of f such that F(x) < g(x) for all z € X.

Proof. Y # X, choose z € X \ Y and set Y := {y+ Az :y € Y, € R}. For all
x,y € Y, one has

fl@)+fy)=flz+y) <glx+y) <glx—2)+gy+2).

So there exists a number 5 € R such that

sup {f(z) — gz —2)} < < inf {~f(y) +g(y +2)}.

zeY

Hence, if f is extended to Y by setting

fly+Az) = f(y) + A8,

it stays dominated by g.

Now let W be the set of all pairs (V, F'), where V is a subspace of X containing
Y and F : V — R a linear extension of f that is dominated by g on V. Write
(Vi, F1) > (Vo, ) if Vi D Vo and Fy = Fy on Va. If U is a chainin W, V = o, V
is a vector space and F( ) = F( ) if z € V for some (V| F) € U, defines a linear
function F': V — R such that (V, F) is an upper bound of W. So it follows from
Zorn’s lemma that W has a maximal element (V,F). But this means V = X.
Otherwise, there would exist a z € X \ V and F' could be extended to lin (V U {z})
while staying dominated by g, a contradiction to the maximality of (V| F). O
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Remark 2.2.6 If g : X — R is a sub-linear function on a vector space X, then
g(0) = 0. Since {0} is a subspace of X, and f(0) = 0 is a linear function on {0}, one
obtains from the Hahn—Banach extension theorem that there exists a linear function
F : X — R dominated by g.

Theorem 2.2.7 (Mazur—Orlicz)

Let g : X — R be a sub-linear function on a vector space X and C' a non-empty
convex subset of X. Then there exists a linear function f : X — R that is dominated
by g and satisfies

inf f(x) = inf g(x).

zeC zeC

Proof. If o := inf,cc g(x) = —o0, choose any f € X' that is dominated by ¢ (such
an f exists by Hahn-Banach). Then inf,co f(z) = infec g(z) = —oo. If o € R,
define

h(z) = inf {g(x+ \y) — Aa}.

yeC, A>0

Since a < ¢(y), one has

g(r +Ay) — Aa > g(x + Ay) — Ag(y) = g(z + Ay) — g(\y) > —g(—x),

which shows that h(z) is real-valued on R. It is clear that h is positively homoge-
neous. Moreover, if 1,29 € R, one has for all y;,y2 € C' and A\, Ay > 0,

A A
g <l’1 + ) + ()\1 + )\2)%) — ()\1 -+ /\2)0(
1 2

= g(x1+z2+ My1 + Aoy2) — (A1 + X))o
< gz +Myr) — Ma + g(z2 + Aaya) — Aea,

which shows that h(z; + z2) < h(z1) + h(x2). From the Hahn-Banach extension
theorem one obtains an f € X’ that is dominated by h. Note that

(@) < h(z) < nf {g(z +y) —a} < Inf {g(2) +9(y) —a} =g(z) forallzeX.

In particular, inf,cc f(2) < inf,ec g(z). On the other hand,

—fy) = f(=y) <h(—y) <g(=y+y) —a=—a foralyecC,

and it follows that inf,cc f(z) > a = inf,cc g(x). O

Corollary 2.2.8 Let g : X — R be a sub-linear function on a vector space X and
xog € X. Then there exists an f € X' that is dominated by g such that f(xo) = g(z0).

Proof. Apply Mazur-Orlicz with C' = {z}. O



2.3. ALGEBRAIC INTERIOR AND SEPARATION RESULTS 33

2.3 Algebraic interior and separation results
Definition 2.3.1 Let C be a subset of a vector space X .

e The algebraic interior, core C, of C consists of all points vy € C with the
property that for every x € X, there exists A\, > 0 such that

xo+Ar € C for all X € [0, \,].

o [fxy € coreC, we call C an algebraic neighborhood of x.

e /f0 € coreC, we call C absorbing.

Lemma 2.3.2 Let C be a convex subset of a vector space X such that core C' # (.
Then
Acore C' + (1 — A)C' C core C (2.3.1)

for all A € (0,1]. In particular, core C' is conver.

Proof. Let x € coreC, y € C, A € (0,1] and z € X. There exists p, > 0 such that
x+ pz € C for all p € [0, p,]. So one has

M+ (1=Ny+dpz=Nex+pz)+(1-NyeC
for all € [0, p1.]. O

Definition 2.3.3 Let C' be a non-empty subset of a vector space X. The Minkowski
functional pc : X — [0, 400] is given by

po(x) :=inf{A >0:2 € \C},
where inf 0 is understood as +oo.

Lemma 2.3.4 Let C be an absorbing convex subset of a vector space X. Then the
Minkowski functional pue has the following properties:

(1) po is real-valued and sub-linear

(ii) pe(z) <1 ifx € coreC, po(x) < 1ifx € C and pc(x) > 1 if © ¢ coreC.

Proof. 1t is clear that uc is real-valued and positively homogeneous. Moreover,
if z;y € X and A\,u > 0 are such that + € AC and y € puC. Then z +y €
AC' + pC = (A + p)C (the inclusion C holds because C' is convex). This shows that
po(z+y) < pe(x)+ pe(y). So pe is sub-linear. The first two statements of (ii) are
obvious. To show that last one, assume pe(x) < 1. Then there exists a y > 1 such
that pz € C. Since 0 € core C, it follows from Lemma 2.3.2 that x € core C'. So if
x ¢ core C, then uc(x) > 1. O
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Theorem 2.3.5 (Algebraic weak separation)
Let C' and D be non-empty convex subsets of a vector space X such that core D # ().
Then there exists f € X'\ {0} such that

inf f(z) > sup f(y)

zeC yeD
if and only if C' N core D = ().

Proof. The “only if” direction is clear. To show the “if” direction, we assume that
C NcoreD = (). Choose xy € coreD. Then A = C — 29 and B = D — x, are
non-empty convex sets such that ANcore B = () and B is absorbing. Therefore, the
Minkowski functional pp is real-valued and sub-linear. It follows from Mazur—Orlicz
that there exists an f € X’ satisfying

f<ppon X and  inf f(z) = inf up(z).

By Lemma 2.3.2, one has up < 1 on B. On the other hand, ug > 1 on X \ core B,
and therefore, inf,c4 up(z) > 1. So one obtains

flz)>1> f(y) forallz € Aandy € B.
In particular, f € X’ \ {0} and

f@) > 14 f(zo) > f(y) forallze Candye D.

Theorem 2.3.6 (Algebraic strong separation)
Let C and D be non-empty convex subsets of a vector space X. Then there exists
f e X' such that

in(fjf(a;) > sup f(y) (2.3.2)
xe yeD

if and only if there exists a convex absorbing set U such that C N (D + U) = 0.

Proof. 1f there exists f € X’ such that (2.3.2) holds, set

g = inf f(x) —sup f(y) > 0.
zeC yED
The set U := {z € X : f(x) < B} is convex absorbing, and C' does not intersect
D + U. This shows the “only if” direction.
For the “if” direction, assume there exists a convex absorbing set U such that
CN(D+U)=0. Then 0 ¢ D+ U — C. Since core (D + U — C) # (), one obtains
from Theorem 2.3.5 an f € X'\ {0} such that

0> sup f(x),
2eD+U~C
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or equivalently,

inf f(z) > sup f(y) + sup f(u).
ze yeD uel

Since U is absorbing, there exists u € U such that f(u) > 0, and it follows that

inf f(x) > sup f(y).
xe yeD

2.4 Directional derivatives and sub-gradients

Definition 2.4.1 Let f : X — RU {00} be a function on a vector space X and
zo € X such that f(xg) € R. If the limit

i) o= lim flo + g? — f(a)

exists (it is allowed to be +00 or —o0), we call it the directional derivative of f at
o in the direction x.

If there exists ' € X' such that f'(zo;x) = o'(x) for all x € X, 2’ is called
algebraic Gateaux derivative of f at xg.

Definition 2.4.2 Let f : X — RU {00} be a function on a vector space X and
xg € X such that f(zo) € R. ' € X' is an algebraic sub-gradient of f at zq if

flzo+ ) — f(xg) > a'(z) forallz € X.

We denote the set of all algebraic sub-gradients of f at xo by Oy f(xo) and call it
algebraic sub-differential of f at xg.

Definition 2.4.3 The effective domain of a function f : X — RU {400} or f :
X - RU{—00} on a set X is

dom f:={zx € X : f(z) € R}.
Exercise 2.4.4 Let f : X — R U {£o00} be a convex function on a vector space
and xo € X such that f(x¢) € R. Show the following:

1.
F(z0;7) = inf flxo +ex) — f(ﬂfo)‘

e>0 g

In particular, f(zo; z) exists for all z € R%.
2. f'(zo,.) is sub-linear.
3. If zy € core {x € X : f(x) € R}, then f'(zp;z) € R for all z € X.

4. The following are equivalent:
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(i) f(xo) = min, f(z)
(i) 0 € Ouf (o)
(iii) f'(xp;x) >0 for all z € X.

5. 0,f(x¢) is a convex subset of X'.
6. 0.f(z0) = 0,9(0), where g(z) := f'(x¢; ).
7. The following are equivalent:

(i) z € 0fa(xo)

(ii) (—z,1) supports epi f at (zo, f(z0)).

Lemma 2.4.5 Let f : X — RU{£oo} be a convex function on a vector space X
such that f(xg) € R. Assume there exists an algebraic neighborhood U of x¢ such
that f(z) < 4oo for allz € U. Then f(z) > —oo for all x € X.

Proof. Assume there exists ;7 € X such that f(x;) = —oo. Then there exists
xo € U and A € (0,1) such that xo = Az + (1 — A)xo. It follows that f(xg) = —o0,
a contradiction. O

Theorem 2.4.6 Let f be a proper convex function on a vector space X and xq € X.
Assume there exists an algebraic neighborhood U of xo such that f(x) < +oo for all
z e Unaffdom f. Then 9,f(xg) # 0.

Proof. The restriction of the directional derivative g(x) := f'(zo, x) to the subspace
Y = aff dom f — x( is sub-linear and real-valued because f(z) < +oo for all z €
U Naffdom f. So it follows from the Hahn—Banach extension theorem that there
exists a ' € Y’ such that ¥/'(y) < g(y), y € Y. By Exercise 2.2.4, ¢/ has a linear
extension 2’ € X', and since g(z) = +oo for € X\ Y, one has 2/(z) < g(x), z € X.
This shows that 2’ € 0,9(0) = 0 f.(x). O



Chapter 3

Topological Vector Spaces

3.1 Topological spaces

Definition 3.1.1 A topological space is a non-empty set X with a family T of subsets
of X satisfying:

i) 0, X er
(i) Uye,V € 7 for every non-empty subset n C 7

(iii) N, Vi € 7 for every finite subset {Vi,...,Vi} of T.

T 15 called a topology and the members of T open sets. A set V C X is called closed
if X \'V is open. The interior int C' of a set C' C X is the largest open set contained
in C'. The closure cl1C' is the smallest closed set containing C'. The boundary bd C

of C is the set c1C \ intC. C is dense in X if c1C = X. (X,7) is separable if it
contains a countable dense subset.

Definition 3.1.2 A filter on a non-empty set X is a family V of subsets satisfying
(i) 0¢Vand X € V.
(i) IfU,V €V, then UNV € V.

(iii) fU €V and U CV, thenV € V.

Definition 3.1.3 A subset U of a topological space (X, T) is a neighborhood of a
point x € X if x € int U. The neighborhood filter 1, of x s the family of all
neighborhoods of x. A subset B, of T, is called a neighborhood base of x if for every
U € 7, there exists a V € B, such that V C U. (X, 1) is called first countable if every
x € X has a countable neighborhood base. The neighborhood system of the topology
T consists of all neighborhood filters 1, v € X. (X, 7) is said to be Hausdorff (or
separated) if any two different points have disjoint neighborhoods.

37
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Exercise 3.1.4 Show that every point in a Hausdorff topological space is closed.

Exercise 3.1.5 Let (X, 7) be a topological space and x € X. Show the following:
1. 7, is a filter on X such that each U € 7, contains z.

2. Each U € 7, contains a V' € 7, such that U € 7, for all y € V.

Exercise 3.1.6 Let X be a non-empty set and N, z € X, a collection of filters on
X satistying 1. and 2. of Exercise 3.1.5. Show that the collection of all sets V' C X

satisfying V € N, for every z € V, forms a topology 7 on X such that 7, = N, for
all z € X.

Hint: The proof of the inclusion 7, C N, is straight-forward. To show the other
inclusion, let U € N, and note that x € V :={y € U : U € N, }. If it can be shown
that V' belongs to 7, it follows that U € 7.

Definition 3.1.7 A directed set is a non-empty set A with a preorder > such that
for every pair (a,b) € A? there ezists a ¢ € A such that ¢ > a and ¢ > b.

A net in a set X is a family (z4)aca of elements in X indexed by a directed set
A.

A net (24)aea in a topological space (X, T) is said to converge to a point v € X
if for every meighborhood U of x there exists an ag € A such that x, € U for all
a > ag.

Exercise 3.1.8 Let C' be a non-empty subset of a topological space X and x € X.
Show that the following are equivalent:

(i) z € clC;
(i) CNU # P for every neighborhood U of x;
(iii) There exists a net (x,)qea in C' converging to x.

Definition 3.1.9 Let (X, 1) be a topological space. A subsetY of X is compact if
for every subset n of T satisfying UV€77 V' DY there exists a finite subset {V1,...,Vi}

of n such that Ule V,DY.

Exercise 3.1.10 Let (X, 7) be a topological space. Show the following:
(i) Single points in X are compact but not necessarily closed.
(i) If (X, 7) is Hausdorff, then compact sets in X are closed.

Definition 3.1.11 Let (X, 7) be a topological space and Y a subset of X. The
topology induced by T on'Y s

v ={VNnY:Ver}.

Members of 7y are called relatively open in 'Y .
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Definition 3.1.12 A function f : (X,7) — (Y, n) between topological spaces is con-
tinuous at a point xg € X if f~Y(U) is a neighborhood of xo for every neighborhood
U of f(xg). [ is said to be continuous if it is continuous at every x € X.

Exercise 3.1.13 Let f: (X,7) — (Y,n) be a function between topological spaces.
Show the following:

1. f is continuous if and only if f~1(V) € 7 for every V € 1.

2. f is continuous at a point x € X if and only if f(z,) converges to f(z) for every
net (4)aca in X that converges to x.

3. If (X, 7) is first countable, then f is continuous at a point = € X if and only if
f(z,) converges to f(x) for every sequence (x,)nen in X that converges to .

4. If (X, 7) is not first countable, it is possible that f is not continuous at some
x € X but f(x,) converges to f(z) for every sequence (z,),y that converges to .

Definition 3.1.14 A function f: (X,7) = RU{£o0} on a topological space is lsc
at a point xg € X if for every e > 0 there exists a neighborhood U of xy such that
fz) > f(xg) —€ for allx € U. It is said to be lsc if it is lsc everywhere on X. f is
usc at xo if —f is Isc at xo and usc if —f is lsc. By f, we denote the function given

by
[f(xo) := sup inf f(z)

- Uer, z€U

and call it lsc hull of f.

Exercise 3.1.15
Consider a function f: X — RU {£o0} on a topological vector space.

1. Show that the following are equivalent:

(i) fislsc

(ii) All sub-level sets {z € R?: f(z) < c}, ¢ € R, are closed
(iii) epi f is closed

2. Show that the epigraph of f is the closure of epi f and f is the greatest Isc
minorant of f.

3. Let f; : X = RU{=£o0}, i € I, be a family of Isc functions. Show that sup;; f;
is Isc.

Definition 3.1.16 Let (X;,7;), i € I, be a family of topological spaces. The product
topology on [[,c; X is the coarsest topology that makes all the projections continuous.

Definition 3.1.17 A pseudo-metric on a non-empty set X is a function d : X X
X — R with the following three properties:
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(i) d(z,z) =0 for allz € X.

(i) d(z,y) = d(y,x) for all z,y € X.

(iii) d(z,y) +d(y, z) > d(z,2) for all x,y,z € X.
If in addition to (1)—(iii), d satisfies

(iv) d(x,y) = 0 implies © =y,
then d is a metric.
Exercise 3.1.18 Let d be a pseudo-metric on a non-empty set X and define

Bn(z) ={y e X :d(z,y) <1/n}, xze€X,neN.

Show that
B, :={B,(x):neN}, zelX,

define neighborhood bases inducing a first countable topology 7 on X, which is
separable if and only if d is a metric.

Definition 3.1.19 A semi-norm on a vector space X is a sub-linear function p :
X — R, such that

p(Ax) = |Ap(x) for all x € X and X € R.
If in addition, p(x) = 0 implies v = 0, p is a norm.

Exercise 3.1.20 Let p be a semi-norm on a vector space X. Show that ...
1. d(x,y) := p(x — y) defines a pseudo-metric.

2. if p is a norm, then d is a metric.

Definition 3.1.21 An inner product (or scalar product) on a vector space is a map-
ping (x,y) € X x X — (x,y) € R with the properties:

(i) Me+y,2)=A(x,2)+ (y,z) for all \ € R and z,y,z € X.
(i) (.} = (g,2) for all 2,y € X.

(iii) (z,z) >0 for allz € X \ {0}.

Exercise 3.1.22 Let (x,z) be an inner product on a vector space X. Show that
||z]| := (x, )" defines a norm.
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Definition 3.1.23 A topological vector space is a vector space X with a topology T
such that the operations

(zy) e X xXm—arx+yeX and (M) eRxX = reX

are continuous with respect to the product topologies on X x X and R x X, respec-
tively, where R is endowed with the usual topology induced by d(x,y) = |x — y|.

X is said to be locally convex if O has a neighborhood base consisting of convex
sets.

Exercise 3.1.24 Show that for a vector space X the following hold:

1. A norm on X induces a topology under which X is a locally convex topological
vector space.

2. For every o’ € X', |2/(z)| defines a semi-norm on X.

3. Let D be a non-empty subset of X’. Write neighborhood bases of the coarsest
topology on X making every x’ € D continuous.

Remark 3.1.25

1. Let X be a topological vector space. Since the addition is continuous, the
translation x — x 4 z( is a homeomorphism for each zy with inverse x — x — xg.
Therefore, a subset V' C X is open/closed/a neighborhood of 0 if and only if V' 4 x
is open/closed/a neighborhood of ¢, respectively.

2. The multiplication with real numbers is also continuous. Therefore, for every
A € R\ {0}, the mapping x — Az is a homeormorphism with inverse z — x/A. So a
subset V' C X is open/closed/a neighborhood of 0 if and only if AV is open/closed/a
neighborhood of 0, respectively.

Lemma 3.1.26 Let C' be subset of a topological vector space X. Then intC' C
core C. In particular, every 0-neighborhood in X s absorbing.

Proof. Let x € int C' and y € X. Since the vector space operations are continuous,
there exists a € > 0 such that z + Ay € C for all 0 < X\ < e. Hence, x € coreC. If
U is a O-neighborhood in X, then 0 € int U, and therefore, U is absorbing. U

Lemma 3.1.27 Let C be a convex subset of a topological vector space X. Then the
following hold:

(i) Ifint C # 0, then Aint C' + (1 — X)elC Cint C for all X € (0,1].
(i) int C and c1C are conver.

(iii) Ifint C' # 0, then int C' = core C.
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Proof. (i) Let z € int C, y € c1C and A € (0, 1]. There exists a neighborhood U of 0
in X such that z + U C C'. Since the vector space operations are continuous, there
exist neighborhoods V' and W of 0 in X such that

1-N. 1
VAW CU

Moreover, there is a z € C' such that y — 2z € V. So one has

)\x+(1—)\)y+w:)\(x—%w(y—z)jL%w) +(1-XNzeC
for all w € W. This proves (i).

(ii) That int C' is convex is a consequence of (i). If z,y € clC, there exist nets
(Ta)aca and (Y, )aca converging to x and y, respectively. But then Az, + (1—\)y, —
Az + (1 — Ny for every 0 < A < 1, and it follows that ¢l C' is convex.

(iii) We know from Lemma 3.1.26 that int C' C coreC. On the other hand if
x € core C' and there exist a y € int C, there is a z € C such that z = Ay + (1 — \)z
for some A € (0,1]. So it follows from (i) that z € int C'. O

Exercise 3.1.28 Let f : X — R U {400} be a convex function on a topological
vector space. Show that f is still convex.

Definition 3.1.29 We call a subset C' of a vector space X balanced if \C C C for
all X € [—1,1].

Lemma 3.1.30 Let X be a topological vector space. Then 0 has a neighborhood
base consisting of open balanced sets. If X 1is locally convez, 0 has a neighborhood
base consisting of convex open balanced sets.

Proof. Let U be a 0-neighborhood in X. Then there exists an open 0-neighborhood
V in X and € > 0 such that Az € U for all A € [—¢c,e] and z € V. W = eV is still
an open 0-neighborhood in X and |J_;.,.,; AW is an open balanced 0-neighborhood
contained in U. o

If X is locally convex, there exists a convex 0-neighborhood V' contained in U.
W = intV is a convex open neighborhood of 0 contained in U and W N (=W) a
convex open balanced neighborhood of 0 contained in U. O

3.2 Continuous linear functionals and extension
results

Theorem 3.2.1 Let X be a topological vector space and f € X'\ {0}. Then the
following are equivalent:

(i) f is continuous;
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(ii) f is continuous at O;

~10) is closed;

(iii

s bounded on some 0-neighborhood U in X;

(v

)
) f
(iv) f1(0) is not dense in X;
) f
(vi)

There exists a non-empty open subset V' of X such that f(V) # R.

Proof. 1t is clear that (i) implies (ii) and (iii). (ii) = (i) follows since for every
x € X, U is a O-neighborhood if and only if x + U is an a-neighborhood. (iii) =
(iv) follows since f~1(0) # X. (iv) = (v): If f71(0) is not dense in X, it follows
from Lemma 3.1.30 that there exist z € X and a balanced 0-neighborhood U such
that (z + U) N f~1(0) = @. This implies that f is bounded on U. (v) = (ii): If U
is a O0-neighborhood on which f is bounded by m > 0, then |f(z)| < m/n for all
all x € U/n, which shows (ii). (v) = (vi): If f is bounded on a 0-neighborhood U
in X, then V' = intU is a non-empty open set such that f(V) # R. (vi) = (iv):
If V C X satisfies (vi), there exists a € R such that V N f~*(a) = 0. Since f is
non-trivial, there exists a z € f~!(a). Then V — x is a non-empty open set that
does not intersect f~1(0). It follows that f~1(0) is not dense in X. O

Remark 3.2.2 Theorem 3.2.1 shows that for a non-zero linear functional f : X —
R on a topological vector space one of the following holds:

(i) f71(0) is a proper closed subspace of X and f is continuous.

(ii) f7'(0) is dense in X and f is not continuous.

Corollary 3.2.3 Let f : X — R be a linear function on a topological vector space
X that s dominated by a sub-linear function g : X — R which is continuous at 0.
Then f is continuous.

Proof. 1t follows from Lemma 3.1.30 that for given € > 0, there exists a balanced
0-neighborhood U in X such that |g(x)| < e for all z € U. Hence, f(z) < g(x) <e
and —f(z) = f(—x) < g(—x) < ¢ for all z € U. This shows that f is continuous at
0, which by Theorem 3.2.1 implies that it is continuous everywhere. 0

Theorem 3.2.4 (Hahn-Banach topological extension theorem)

Let g : X — R be a sub-linear function on a topological vector space that is continu-
ous at 0 and f 1Y — R a linear function on a subspace Y of X such that f(z) < g(x)
forall x € Y. Then there exists a continuous linear extension F' : X — R of f such

that F(z) < g(z) for all x € X.

Proof. We know from the algebraic version of Hahn—Banach that there exists a
linear extension F' : X — R of f that is dominated by g. By Corollary 3.2.3, F' is
continuous. 0
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Theorem 3.2.5 (Topological version of Mazur—Orlicz)

Let g : X — R be a sub-linear function on a topological vector space X that is con-
tinuous at 0 and C' a non-empty convex subset of X. Then there exists a continuous
linear function f: X — R that is dominated by g and satisfies

inf f(z) = inf g(). (3.2.1)
Proof. From the algebraic version of Mazur—Orlicz we know that there exist a linear
function f : X — R that is dominated by ¢ and satisfies (3.2.1). By Corollary 3.2.3,
f is continuous. O

Definition 3.2.6 The topological dual of a topological vector space X consists of
the vector space
X*:={2" € X": 12 is continuous} .

Remark 3.2.7 Every linear functional on R? is continuous and can be represented
by a vector z € RY. Hence, (RY)* = (RY)" = R,

Remark 3.2.8 For a general topological vector space X, the topological dual X*
depends on the topology. But it is possible that there exist different topologies
inducing the same space X* of continuous linear functionals.

3.3 Separation with continuous linear functionals

Theorem 3.3.1 (Topological weak separation)
Let C' and D be non-empty convex subsets of a topological vector space X such that
int D # (. Then there exists an f € X*\ {0} such that

inf f(z) = sup f(y) (3.3.2)
Te yeD

if and only if C Nint D = ().

Proof. We know from Lemma 3.1.27 that int C' = core C'. So the “only if” direction is
clear. On the other hand, if C'Nint D = (), it follows from algebraic weak separation
that there exists an f € X'\ {0} satisfying (3.3.2). But then int D is a non-empty
open subset of X such that f(int D) # R. Thus one obtains from Theorem 3.2.1
that f is continuous. 0

The following is an immediate consequence of Theorem 3.3.1:
Corollary 3.3.2 Let C' be a closed convex subset of a topological vector space. If C'

has non-empty interior, then it is supported at every boundary point by a non-trivial
continuous linear functional.
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Another consequence of Theorem 3.3.1 is:

Corollary 3.3.3 Let X be a topological vector space. Then X* # {0} if and only
if 0 has a convex neighborhood different from X.

Proof. If there exists f € X*\{0}, then {z € X : f(x) < 1} is a convex 0-neighborhood
different from X. On the other hand, if U is such a neighborhood, there exists
z € X \U. Since intU # 0 and {z} Nint U = (), the existence of an f € X*\ {0}
follows from Theorem 3.3.1. O

Lemma 3.3.4 Let C' and D be non-empty disjoint subsets of a topological vector
space X such that C 1is closed and D compact. Then there exists a neighborhood U
of 0 in X such that C N (D+U) = 0.

Proof. For every x € D there exists a neighborhood V, of 0 in X such that C'N
(x +V,) = (. Since the vector space operations are continuous, there is an open
neighborhood U, of 0 in X satisfying U, + U, C V. Due to compactness, there are
finitely many z1,...,x, € D such that D C |J;_,(x; + U,,). U =, Uy, is again
a 0-neighborhood, and for every x € D there exists an ¢ such that x = z; + u; for
some u; € U,,. So for all u € U, one has

rru=z;+u+uCx+ Uy +Up Cay+ Vo,

and therefore, C' N (z + U) = 0. O

Theorem 3.3.5 (Topological strong separation)
Let C and D be non-empty disjoint convex subsets of a locally convex topological
vector space X such that C' s closed and D is compact. Then there exists an f €

X*\ {0} such that
inf f(x) > sup £ (y). (3.3.3)

yeD

Proof. We know from Lemma 3.3.4 that there exists a neighborhood U of 0 in X such
that CN(D+U) = (). Since X is locally convex, there exists a convex neighborhood
V of 0 with the same property. D + V is a convex set satisfying int (D + V) # ()
and C'Nint (D + V) = 0. So it follows from Theorem 3.3.1 that there exists an
f € X*\ {0} such that

inf f(z) > sup f(y).

zed yeD+V

But, by By Lemma 3.1.26, V' is absorbing, and one obtains (3.3.3). O

Remark 3.3.6 Note that in Theorem 3.3.5 we did not assume X to by Hausdorff
or D to be closed.
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Corollary 3.3.7 Let C' be a non-empty closed convexr subset of a locally convex
topological vector space X and xy € X \ C. Then there exists an f € X*\ {0} such
that

inf f(z) > f(zo).

zeC

Proof. The corollary is a consequence of Theorem 3.3.5 since {zo} is compact. [

As an immediate consequence one obtains the following:

Corollary 3.3.8 Let C' be a proper non-empty closed convex subset of a locally
convex topological vector space X. Then

C’:ﬂ{H(x*,c):x* e X", ceR CCH("c)},

where
H(z",c) ={r e X :a"(x) > c}.

Corollary 3.3.9 Let X be a locally convex topological vector space. Then the fol-
lowing two are equivalent:

(i) X is Hausdorff.

(ii) For any two different points x,y € X, there exists an f € X* such that

f@) # fy).

Proof. 1f X is Hausdorff, then single points are closed. So one obtains from Corollary
3.3.7 that different points can be separated with continuous linear functionals.

On the other hand, if there exists an f € X* such that f(x) < f(y), set m :=
(f(x) + f(y))/2. Then {z € X : f(2) <m} is an z-neighborhood that does not
intersect the y-neighborhood {z € X : f(2) > m}. O

Definition 3.3.10 The topological dual cone of a non-empty subset C' of a topolog-
1cal vector space X is given by

Cr:={2"e X" :2%(x) >0 forallxz € C}.
Exercise 3.3.11 Let C' be a non-empty subset of a locally convex topological vector

space X. Show the following:

1. C* is a convex cone in X* that is closed with respect to o(X*, X) (the coarsest
topology on X* such that all x, viewed as linear functionals on X*, are continuous).

2. The set
{r e X :z"(x) >0 for all z* € C*}

is the smallest closed convex cone in X that contains C'.
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3.4 Continuity of convex functions

Theorem 3.4.1 Let f : X — RU{zo0} be a conver function on a topological vector
space X and xy € X such that f(xg) € R. Assume there ezists a neighborhood U of
0 such that sup,cy f(xo + x) < +o00. Then f is proper convex, xy € intdom f and
f is continuous on int dom f.

Proof. Since xq € core (zg + U), it follows from the convexity of f that f(x) > —o0
for all x € X. Hence f is proper convex, and xg € int dom f.
Now choose a balanced 0-neighborhood V' contained in U and set

m :=sup f(x) € R.
zcV

Then for z € V and 0 < A < 1, one has
flzo+ Ax) = f(Mzo + ) + (1 — N)ag) < Af(xo + ) + (1 — A) f(20),
and therefore,
fl@o+ Az) = fxo) < Alf(zo + ) = f(0)] < A(m — f(0)).
On the other hand,

Ty = (o + Az) + (zo — ).

14+ A 1+ A
So

f(zo) < 1+L}\j‘"(:co + Az) + H%f(xo — ),

from which one obtains
f(@o) = fzo + Az) < A[f (o — x) — f(0)] < AMm — f(x0))-
Hence, we have proved that
If(x) = f(zo)| < A(m — f(xg)) for all x € g+ AV,

showing that f is continuous at z.
Finally, let z; € int dom f. Then there exists a p > 1 such that

xo + pu(xy — o) € dom f.
Soone has for all z € V
flzr+ (1 =1/pz) = f(zr — (1= 1/p)zo + (1 — 1/p)(20 + x))
< Lo+t —20) + (1= 1) S+
1 1

< Sfntuto—a) + (1= 1) m

This shows that f is bounded above on z; + (1 — 1/u)V, and it follows as above
that f is continuous at z;. O
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Corollary 3.4.2 Let f : X — R U {+o0} be a convex function on a topological
vector space. Then the following are equivalent:

(i) intdom f is not empty, and f is continuous on int dom f.
(i) intepi f is not empty.

Proof. (i) = (ii): If (i) holds, there exists a neighborhood U of some xy € X and a
y € R such that f(z) <y for all x € U. It follows that U x [b, +00) C epi f, which
implies (ii).

(ii) = (i): If (z0,y0) € intepi f, there exists a neighborhood U of 2 in X and
an £ > 0 such that U X [y — €,29 + €] C epif. In particular, f(zo) € R and
sup,cp f(x) < +00. So (ii) follows from Theorem 3.4.1. O

Definition 3.4.3 Let C be a subset of a topological vector space X .
o (' is called a barrel if it is closed, convex, balanced and absorbing.

e X is called a barreled space if it is locally convex and every barrel is a neigh-

borhood of 0.

Remark 3.4.4 It can be shown that every Banach space is barreled. But there
exist normed vector spaces that are not barreled.

Corollary 3.4.5 Let f be a lsc proper convex function on a barreled space X. Then
f is continuous on int dom f.

Proof. Let us suppose that int dom f is not empty. Then we can assume without
loss of generality that 0 € int dom f. Choose a number m > f(0). Then

U:={zeX: f(r)<mand f(—z) <m}

is closed, convex and balanced. Next, note that for every x € X, the function
f2(N\) :== f(Ax) is a proper convex function on R with 0 € intdom f*. It follows
that f* is continuous at 0. So there exists an € > 0 such that f(Az) < m for all
A € |—¢,¢|. This shows that U is absorbing and therefore, a barrel. Since X is
barreled, U is a 0-neighborhood. Now the corollary follows from Theorem 3.4.1. [

3.5 Derivatives and sub-gradients

Definition 3.5.1 Let f: X — RU {£oo} be a function on a normed vector space
and xg € X such that f(zg) € R. A Fréchet derivative of f at xo is a continuous
linear functional x* € X* satisfying

o S+ n) = F

) —2'(@) =0 foralzelX.
270, ||z||—0 |||
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Definition 3.5.2 Let f: X — RU{do00} be a function on a topological vector space
and xy € X such that f(zo) € R. A Gateauz-derivative of f at xq is a continuous
linear functional x* € X* satisfying x*(x) = f'(xo;x) for all x € X.

Definition 3.5.3 Let f : X — R U {£oc} be a function on a topological vector
space and o € X such that f(xy) € R. The sub-differential of f at xq is the set
Of(xo) := O0uf(xo) N X*. Elements of Of (xy) are called sub-gradients of f at xy.

Exercise 3.5.4 Let f: X — U{zoo} be a convex function on a topological vector
space and zp € X such that f(zo) € R. Show the following:

1. Of(zo) is a o(X*, X)-closed convex subset of X*.

2. If the function g(z) := f’(x¢;x) is continuous at x = 0, then
Of (o) = 0o f (o) = 9g(0) = 0uyg(0).

Theorem 3.5.5 Let f: X — R{£o00} be a convex function on a topological vector
space and xo € X such that f(xg) € R. If f is continuous at xq, then Of(xq) # 0.

Proof. Tt follows from Theorem 3.4.1 that f is proper convex, and xy has a neigh-
borhood U on which f is bounded from above. So one obtains from Theorem 2.32
that there exists 2’ € J,f(xo). It follows that 2’ is bounded from above on U — x,
which by Theorem 3.2.1, impies that it is continuous. 0

Lemma 3.5.6 Let f : X — RU{zxoo} be a lsc convexr function on a topological
vector space and xg € X such that f(zo) € R. Then f is proper conver.

Proof. Assume there exists 1 € X such that f(z;) = —oo. Then f(Azo+ (1 —
A)z1) = —oo for all A € [0,1). Since Axg+ (1 — A)xy) converges to zg for A — 1, one
obtains f(xg) = —oo, which contradicts the assumption. O

Lemma 3.5.7 Let f be a proper convez function on X and xq € dom f such that
Of (o) # 0. Then f(xo) = f(xo) and Of (wo) = Of (x0). In particular, f is proper

conver.

Proof. Choose x* € 0f(xy). The affine function g(z) = f(zo) +2*(x — x¢) minorizes
f and equals f at 9. So g also minorizes f and equals f at z¢. This shows f(zo) =
g(z0) = f(wo) and Of(wo) C Of(wo). Of(w0) 2 Of(x0) follows since f(zo) = f(0)
and f > i O

Theorem 3.5.8 A Isc convex function f : X — R U {+o0} on a locally convex
topological vector space equals the point-wise supremum of all its continuous affine
minorants.
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Proof. If f is constantly equal to 400, the theorem is clear. So we can assume
dom f # ). Choose a pair (zg,w) € X x R that does not belong to epi f. By
Corollary 3.3.9, there exists (z*,v) € X* x R such that

m:= inf (2%(z)+yv) > 2" (zg) + wo.
(z,y)€epi f

It follows that v > 0. If v > 0, one can scale and assume v = 1. Then m — z*(z)
is an affine minorant of f whose epigraph does not contain (zo,w). If v = 0, set
A :=m — x*(x9) > 0 and choose z; € dom f. Since (z1, f(x;) — 1) is not in epi f,
there exists (y*,v') € X* X R such that

m':= inf (y*(z) +yv") >y (x1) + (f(z1) — V"
(z,y)€epi f

Since x; € dom f, one must have v' > 0. So by scaling, one can assume v = 1. Now
choose
1

o> X(w + y*(mo) — m’)+
and set z* := dz* + y*. Then

m” = inf (2*(z)+y)>om+m
(z,y)cepi f

= o+ 0x"(x) +m' > 2"(xg) + w.

So m” — z*(z) is an affine minorant of f whose epigraph does not contain (xq, w).
This completes the proof of the theorem. O

3.6 Dual pairs

Definition 3.6.1 Two vector spaces X and Y together with a bilinear function
(,.): X XY — R form a dual pair if the following hold:

(i) For every x € X \ {0} there exists ay € Y such that (x,y) # 0;
(ii) For everyy € Y \ {0} there exists a x € X (x,y) # 0.

o(X,Y) is the coarsest topology on X making ally € Y continuous. It is called weak
topology induced by Y. A locally convex topology 7 on X is said to be consistent with
Y if (X, 7)* =Y. Analogously, the weak topology o(Y, X)) is the coarsest topology on
Y such that all x € X are continuous. A locally convex topology T on'Y is consistent
with X if (Y, 7)* = X.

Exercise 3.6.2 Show that the following are dual pairs:
1. X =Y =R4, (x,y) = Z?Zl Tilis
2. X =Y = H if H is a vector space with an inner product (.,.);
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3. Y = X’ for a vector space X with (z,y) = y(z);

4. Y = X* for a Hausdorff locally convex topological vector space X with (x,y) =
y(x); e.g., X could be a normed vector space;

5. X = LP(Q,F,p), Y = LYQ, F,p) with (x,y) = [aydu, where (Q,F, u) is a
measure space and 1/p+1/q = 1.
Exercise 3.6.3 Let (X,Y) be a dual pair. Show the following:

1. For each y € Y,
Uly) :={r e X :[(z,y) | <1}

is a convex balanced neighborhood of 0 in X with respect to o(X,Y).

2.
UI:{U(yl)ﬂ"'ﬂU(yn)I’I’LGR,yh...,ynGY}

is a neighborhood base of 0 in X with respect to o(X,Y).

3. X with the topology o(X,Y’) is a Hausdorff locally convex topological vector
space.

Exercise 3.6.4 Let H be a Hilbert space. Show the following:
(@) Nz +yll* + llz = ylI* = 2[|z[]* + 2[|y|* for all z,y € H.

(ii) If C is a non-empty closed convex subset of H, there exists a unique zy € C
such that
= inf .
Jaoll = inf 1o

(iii) If D is a non-empty closed subspace of H and z € H, there exists a unique
y € D such that
—yl|| = inf ||z — v||.
e =yl = ing [l — o]

This y € D satisfies
(x —y,v) =0 forallveD.
In particular, H = D + D+ and D N D+ = {0}.

(iv) If f: H — R is a continuous linear functional, f~'(0) is a closed linear sub-
space of H. Show that there exists a z € H such that f~1(0)* = {\z : A € R}.
It follows that there exists a y € H such that f(x) = (z,y) for all x € X. This
shows that H* can be identified with H.

Theorem 3.6.5 (Fundamental theorem of duality)
Let X be a vector space and xy, . ..,z € X'. Then the following are equivalent:

(i) xp =1, Nix} for some A € R™
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(i) Ny 25 (0) S 25(0).
Proof. (i) = (ii) is clear. To show (ii) = (i), define a linear function f : X — R™ by
f(z) == () (z),..., 2 (z)). Due to (ii), there exists a linear function g : f(X) — R
such that zy(z) = go f(z) for all x € X. g can be extended to a linear function
G :R" = R, and G has a representation of the form G(x) = ATz for some A € R".

This shows (i). O

Theorem 3.6.6 (Duality theorem for dual pairs)
Let (X,Y) be a dual pair of vector spaces. Then (X,o(X,Y))* =Y and (Y,o(Y, X))*
X.

Proof. First note that it follows from Definition 3.6.1 that two different elements
y1,y2 € Y induce different continuous linear functionals on (X, o(X,Y)).

Now pick a 2’ € X’ that is continuous with respect to o(X,Y"). Then there exist
Y1,---,Yn € Y such that

{reX |[{(z,y)|<lforalli=1,...,n} C{z e X :|2'(z)| <1},
implying that

M (0) €0,

By Theorem 3.6.5, there exists A € R™ such that @’ = " | \iy;, implying that
' € Y. This shows (X,0(X,Y))* =Y. (Y,0(Y, X)) = X follows by symmetry. [J

Remark 3.6.7 Let X be a Hausdorff locally convex topological vector space. It
follows from Theorem 3.6.6 that (X,o(X, X*))* = X* and (X*,o(X*, X))* = X.
(X, X*) is called the weak topology on X and o(X*, X) the weak™ topology on
X,

For 1 < p,q < oo such that 1/p + 1/¢ one has (L?,||.|[,)* = L¢ and LP =
(L% )]l But (LY ]].]]1)* = L and (L™, ||.||«)* = ba, which is strictly larger
than L.

Theorem 3.6.8 (Closed convex sets in dual pairs)
Let (X,Y) be a dual pair of vector spaces. Then all locally conver vector space
topologies on X consistent with Y have the same collection of closed convex sets in

X.

Proof. By Corollary 3.3.8, every proper closed convex subset C' of X equals the
intersection of all closed half-spaces containing C. But this intersection depends
only on Y. U

Corollary 3.6.9 Let (X,Y) be a dual pair of vector spaces. Then all locally convex
vector space topologies on X consistent with Y have the same collections of lsc convex
Junctions f: X — RU{Zo0} and Isc quasi-convex functions f: X — R U {£o0}.

Proof. A function f : X — R U {£oo} is Isc if and only if all sub-level sets
{reX: f(x)<c}, ¢ € R, are closed. If f is (quasi-)convex, its sub-level sets
are convex. So the corollary follows from Theorem 3.6.8. U
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3.7 Convex conjugates

In this whole subsection, (X,Y") is dual pair of vector spaces. X is endowed with
the topology o(X,Y) and Y with o(Y, X). For instance, X could be a normed
vector space and Y = X*, or more generally, X could be a Hausdorff locally convex
topological vector space and Y = X*.

Definition 3.7.1 The convezr conjugate of a function f : X — RU {doo} is the
function f*:Y — RU{£o0} given by

f(y) :=sup {(z,y) — f(z)}.

rzeX

The conver conjugate of a function h : Y — R U {+oo} is the function h* : X —
R U {£o0} given by
h*(x) == sup{(z,y) — h(y)}.

yey

Exercise 3.7.2
Consider functions f,g: X — RU {Z+oo}. Show that ...

1. f* is convex and lsc.
2. f=2 [

3. f < g implies f* > ¢*
4. fr = f*.

Definition 3.7.3 Let C' be a subset of X. The indicator function éc : X — R U
{+o0} is defined to be 0 on C' and +oo outside of C. The convexr conjugate 0F is
called support function of C'.

Exercise 3.7.4 Let f: X — R be a continuous affine function of the form f(x) =
(x,y) — v for a pair (y,v) € Y x R. Show that f* =v +J, and f** = f.

Exercise 3.7.5 Consider a function f: X — R U {£o0}.
1. Show that the Young-Fenchel inequality holds:

f*(y) = (z,y) — f(z) forall (z,y) € X xY.
2. Show that if f(z¢) € R, the following are equivalent

(i) y € f (o)

(i) (z,y) — f(x) achieves its supremum in x at x = zg

(iii) f(zo) + f*(v) = (20, ¥)
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3. Show that if f(xg) = f**(zo) € R, the following conditions are equivalent to

(i) (i)
(iv) o € Of*(y)

(
)

(v) (zo,v) — f*(v) achieves its supremum in v at v =y
i)

(vi) y € Of** (o)

Theorem 3.7.6 (Fenchel-Moreau Theorem)
Let f: X — RU{+o00} be a function whose lsc convex hull conv f does not take the
value —oo. Then conv f = f**. In particular, if f is lsc and convex, then f = f**

Proof. We know that f > f**. Since f** is Isc and convex, one obtains conv f > f**.
Now let h be a continuous affine minorant of conv f. Then it also minorizes f. So
one has h = b < f**. But by Theorem 3.5.8, conv f is the point-wise supremum
of its continuous affine minorants. So one gets conv f < f**. U

Corollary 3.7.7 If f is a lsc proper convex function on X, then f* is lsc proper
conver.

Proof. f* is Isc convex for every function f : X — RU {z£oo}. If f is Isc proper
convex, one obtains from Theorem 3.7.6 that f = f**, and it follows that f* is
proper convex. ]

Corollary 3.7.8 Let C be a non-empty subset of X with closed convex hull D. Then
52'(:1/) = SUPgzep <3§’, y) and 68* = 5D-

Proof. 0 = dp follows from Theorem 3.7.6 since dp is the Isc convex hull of dc.
Now one obtains 05, = 05 = 0}, and the corollary follows. O

Corollary 3.7.9 Let f be a Isc proper sub-linear function on X. Then f = 5;;‘(0)
and f* = dgs). In particular, f(0) =0 and Of(0) # 0.

Proof. 1t can easily be checked that f* = o for the set
C={yeY:(x,y) < f(zx)forallz e X}.

By Theorem 3.7.6, one has f = 5. In particular, C' is non-empty, f(0) = 0 and
af(0) =C. O

Corollary 3.7.10 Let f: X — RU{+o0} be a convex function on a normed vector
space and xog € RY such that f(xg) € R. Assume there exists a neighborhood U of
xo and a constant M € Ry such that

f(x) = f(xo) > —M]||z — zo|| for all z € U. (3.7.4)
Then Of (zo) # 0.
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Proof. 1t follows from condition (3.7.4) that g(x) := f'(zo;x) > —M||z||, and
therefore, g(z) > —M||z|| for all x € X. So one obtains from Corollary 3.7.9 that
g(0) =0 =g(0) and dg(0) # 0, which implies that 0f (o) = dg(0) # 0. O

Theorem 3.7.11 Let f be a proper convez function on X and xo € dom f. If f is
continuous at xq, then

f(xo;2) = sup (x,y), zeX. (3.7.5)
yedf(zo)

Proof. Consider the sub-linear function g(z) = f'(x¢;x). It follows from Theorem
3.5.5 that dg(0) = Jf(xo) # 0. Since g is bounded above on a neighborhood of
0, one obtains from Theorem 3.4.1 that ¢ is continuous on X. So it follows from
Corollary 3.7.9 that g = 0, for C = 9g(0) = 0f(x), which proves the theorem. [J

3.8 Inf-convolution

Definition 3.8.1 Let f; : X — RU {+o0}, j =1,...,n, be functions on a vector
space. The inf-convolution of f;, j =1,...,n, is the function

n

Uimfi(e) = inf > fi).
j=1

The inf-convolution is said to be exact if the infimum is attained.

Lemma 3.8.2 Let f; : X — RU{+o0}, j = 1,...,n, be convexr functions on a
vector space X. Then [ =U_, f; 1s conver.

Proof. If f = +o0, it is convex. If not, let (x,v), (y,w) € epi f, A € (0,1) and € > 0.
There exist x; and y;, j = 1,...,n, such that Y7 x; = 2, 37| f(z;) < v+e,
Yy =yand 30 f(y;) < we. Set zj = Az + (1= N)y;. Then z:= 77 2 =
Az + (1 — M)y and

f(z) < ij(zj) < Z)\fj(%‘) +(1=Nfly;) < v+ (1=Nw+e.

It follows that f(z) < Av + (1 — A)w, which shows that epi f and f are convex. [

Lemma 3.8.3 Let f;, j = 1,...,n, be proper convex functions on a topological
vector space X and denote f =007, f;. Assume f(xo) = >, fi(z;) < +oc for some
x; summing up to xy and fi is bounded from above on a neighborhood of x1. Then
f s a proper convex function, xy € intdom f and f is continuous on int dom f.
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Proof. By definition of f, one has

n n

f(xo+2) — fzo) < filzr +2) + ij(xj) - ij(%) = filz1 +2) = fi(z1)

Jj=2 J=1

for all x € X. It follows that f is bounded from above on a neighborhood of z.
Now the lemma is a consequence of Theorem 3.4.1. U

Lemma 3.8.4 Consider functions f; : X - RU{+o0}, j=1,...,n, on a topolog-
ical vector space and denote f = U}_, f;. Assume f(xq) = Z;;l fi(z;) < 400 for
some x; summing up to xo. Then Of(zo) = ﬂ;‘zl Ofj(x;).

Proof. Assume z* € 0f(xy) and z € X. Then

f1($1+$)—f1(1’1)=f1($1+$)+2fj($g Z (;) = f(wo+x)— fxo) 2 2™ (2).

Hence z* € 0f;(x1), and it follows by symmetry that 0 f(z) C ﬂ?zl 0f;(z;). On the
other hand, if z* € (\}_, 0f;(z;) and x € X, choose y; such that > 7, y; = zo + 7.

Then

ij Yj) >ij ;) + 2" (y; — ;) ij ;) + 27 (
So f(xg+x) — f(zg) > x (x), and the lemma follows. O
Lemma 3.8.5 Let f;, j = 1,...,n, be proper convex functions on a topological

vector space X and denote f = 7_, f;. Assume f(wo) =3 ; fj(x;) < +oo for some
x; summing up to xo and fi is Gateaus-differentiable at xy with fi(z1;2) = o*(x)
for some x* € X*. Then f is Gateaux-differentiable at xo with f'(x¢;x) = z*(x). In
particular, Of (xo) = {z*}.

Proof. One has

n n

Flwo+2) = flwo) < filwr+ )+ 3 fiwy) = 3 filws) = falar +2) = filw)

=2
for all x € X. It follows that the directional derivative g(z) := f'(xo; ) satisfies
g(x) < filar;x) = 2" (z)

for all x € X. But by Lemma 3.8.2, f is convex. So ¢ is sub-linear, and it follows
that g(x) = x*(x). O

Lemma 3.8.6 Let (X,Y) be a dual pair of vector spaces and f; : X — RU {400},
j=1,...,n, functions none of which is identically equal to +0o. Then (D;‘Zlfj)* =

Z;LZI f;‘
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Proof.

(T5=1 /)" () = sup((w, y) —

xT

] 1f]

= sup Z xj,y

T1yeery a:n -

— filz;)) =
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Chapter 4

Convex Optimization

In this chapter we study the minimization problem

inf f(z) (P)

zeX

for a function f: X — RU{£o0} on a vector space. If one wants to constrain z to
be in a subset C' C X, one can replace f with f + d¢.

4.1 Perturbation and the dual problem

We assume that there exist vector spaces Y, W, Z such that (X, W) and (Y, Z) are
dual pairs. A perturbation of f is a function F' : X x Y — R U {f+oo} such
that f(z) = F(z,0). Note that ((X,Y), (W, %)) is again a dual pair with pairing
((x,y), (w, 2)) = (x,w)+(y, z). The value function associated with F' is the function
u:Y — RU{+oo} given by

u(y) = inf F(z,y).

In particular, u(0) = inf, f(z).
The dual problem of (P) is

sup —F*(0, z) = — inf F*(0, 2), (D)

zeZ z2€Z

where ™ is the convex conjugate

Fr(w, 2) = AN ({z, w) + (y, 2) = F(z,y))

The dual value function is the function v : W — R U {#o0}, given by

v(w) :=sup —F*(w, z) = — inf F*(w, 2).
z2€Z z€Z

99
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Proposition 4.1.1 (Weak Duality)
One always has u(0) > v(0).

Proof. By the Young—Fenchel inequality, one has
F*(w,z) > (z,w) + (y,z) — F(z,y) forall z,y,w, z.

In particular,
F(z,0) > —F*(0,2) for all z,z,

and the proposition follows. O

The dual problem of (D) is

sup —F**(z,0) = — inf F**(x,0), (BD).

zeX zeX

If F = F**, then (BD) is equivalent to (P). In the general case, one obtains from
Proposition 4.1.1 applied to (D) and (BD) that

sup —F*(0, z) = —inf F*(0, 2) < inf F"**(z,0) < inf F(z,0),

and both inequalities can be strict. Note that the first term is a “concave max”, the
third term a “convex min”, and the last term a “min” of a general function.

Lemma 4.1.2 If F is convex, then u:Y — RU{Zo0} is convez too.

Proof. Assume there exist (yi,71), (y2,72) € epiu. Choose A € (0,1) and ¢ > 0.
There are z1, 9 € X such that

F(l’i,yi)STz‘—Fg, Z:1,2

So
u(Ayr + (1= Ny2) < F(Azp + (1 — N)axg, Adyp + (1 — N)yo)
< AF(z,y1) + (1 = N F(z,y2) < Arp+ (1 — N)rg + ¢,
which shows that epiu and u are convex. O

Exercise 4.1.3 Show that u*(z) = F*(0, z) and v(0) = «**(0). In particular, strong
duality u(0) = v(0) is equivalent to u(0) = u**(0).

Definition 4.1.4 Problem (P) is called normal if uw(0) = v(0) € R. [t is called
stable if it is normal and problem (D) has a solution.

Lemma 4.1.5 Assume that F is conver. Then (P) is normal if and only if u(0) =
u(0) € R.
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Proof. 1f (P) is normal, then u(0) = v(0) = «**(0) € R, which implies u(0) =
u(0) € R. On the other hand, we know from Lemma 4.1.2 that u is convex. So
if u(0) = u(0) € R, one obtains from Lemma 3.5.6 that u is a lsc proper convex
function, and it follows from Theorem 3.7.6 that u(0) = u(0) = «**(0) = v(0) € R.O

Proposition 4.1.6 (P) is stable if and only if u(0) € R and du(0) # 0.

Proof. 1f (P) is stable, then there exists z such that u(0) = v(0) = —F*(0, 2) € R.
So one has
u(0) =v(0) = (0, 2) —u*(2) € R,
and it follows that z € du(0). On the other hand, if u(0) € R and z € du(0), then
u(0) = (0,2) —u*(z) = —F7(0, 2),
which by weak duality, implies that z is a solution of (D). U

Theorem 4.1.7 (Fundamental duality formula of convex analysis)
Assume F is conver and uw(0) € R. Then (P) is stable if one of the following
conditions holds:

(i) There erists a neighborhood U of 0 in'Y such that sup,c;; u(y) < +oc.
(ii) Y is barreled, u is lsc and 0 € int dom u;
(iii) Y is a normed vector space and there exists a constant M € R, such that
u(y) —u(0) = —Mlly]|
for all y in a neighborhood of 0 in Y ;
(iv) Y = R?, u does not take the value —oo and 0 € ri dom u;
(v) Y =R4, u(y) < +oo for y in a neighborhood of 0 in Y.

Proof. By Proposition 4.1.6, it is enough to show that du(0) # . We know from
Lemma 4.1.2 that u is convex. So du(0) # () follows from each of the conditions

(i)—(v). O
In the following, consider functions f : X - RU{4+o00} and g : Y — RU{+o0}.

Moreover, let A : X — Y be a continuous linear function and define the adjoint
A*: Z — W by (x, A*z) := (Ax, z). Denote

= inf {/(x) + g(A2)} (P - FR)
d = sup{—f(-A'%) ~ g'(2)} (D~ FR)

As a consequence of Proposition 4.1.1 and Theorem 4.1.7, one obtains the fol-
lowing
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Corollary 4.1.8 (Fenchel-Rockafellar duality theorem)
One always has p > d. Moreover, p = d and (D-FR) has a solution if f and g are
convex, p € R and one of the following conditions holds:

(i) The function h(y) := inf, {f(x) + g(Az +y)} satisfies sup ey h(y) < +oo for
some neighborhood U of O in Y;

(ii) Y is barreled, h is lsc and 0 € int dom h;
(iii) Y is a normed vector space and there exists a constant M € R, such that
h(y) —h(0) = —M][y]|
for all y in a neighborhood of 0 in Y ;
(iv) Y =R%, h does not take the value —oo and 0 € ri dom u;
(v) Y =R4, h(y) < +oo for y in a neighborhood of 0 in Y.
Proof. Define the function F': X x Y — RU {400} by
F(z,y) = f(z) + g(Az +y).
Then
Fr(w,2) = s;ga{(x, w) +{y,2) = f(x) = g(Az +y)}
= s {{m,w) + {y — Az, 2) = f(2) = 9(y)}
= sup{(mw =A%)+ {y.2) = flr) =9y}
= [i(w—=A"2) +g"(2).

So u(0) = p and v(0) = d, and it follows from Proposition 4.1.1 that p > d. The
rest of the corollary follows from Theorem 4.1.7. O

Example 4.1.9 Let A be an m x n-matrix, b € R™ and ¢ € R". Denote by
p € [—00, 00| the value of the primal problem

(P) minimize ¢’z subject to Az =b and x > 0
and by d € [—00, 00| the value of the dual problem
(D) maximize by subject to ATy < c.

If one sets
flz)=cTz+ orn (r) and  g(y) = d(y),

then (P) corresponds to the problem (P-FR) and (D) to (D-FR). So one obtains
from Proposition 4.1.1 that p > d.
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Corollary 4.1.10 (Sandwich Theorem)
Let f : X - RU{+o0} and g : Y — RU{+00} be convex functions and A: X —Y
a continuous linear function. Assume f(x) > —g(Ax) for all x € X and one of the
conditions (1)—(v) of Corollary 4.1.8 holds. Then there exist z € Z and r € R such
that

flx) > (x,A"2) —r > —g(Ax) forallz € X.

Proof. 1t follows from Corollary 4.1.8 that there exists a z € Z such that
0.< inf {f(x) + g(An)} = —*(4"2) — g*(~2).
Choose r € R such that g*(—z) < —r < —f*(A*z). Then
flz) = (x, A%2) > —f*(A*2) > —r forall z € X,

and
(y,—2) —g(y) < g*(—2) < —r forallyeY. (4.1.1)

Choosing y = Az in (4.1.1) gives
(Az,—z) — g(Az) < —r,

which is equivalent to
(x, A"2) —r > —g(Ax) forall x € X.
O

Corollary 4.1.11 (Subdifferential Calculus)
Let f : X - RU{+o0} and g : Y — RU{+00} be convex functions and A: X —Y
a continuous linear function. Then

Of(x) + A*0g(Azx) CO(f +go A)(x) forallxze X.

Moreover, if v € dom f and sup,c; g(y) < +oo for some neighborhood U of Az,
then the inclusion is an equality.

Proof. That the inclusion holds for all z € X is straightforward to check. Now
assume that r € dom f and sup,¢;; g(y) < 400 for some neighborhood U of Azx. If
there exists a w € (f + g o A)(x), then the mapping

v’ f(2f) + g(A) — (o, w)

takes its minimum at 2’ = x, and by shifting f, one can assume that this minimum
is 0. Then it follows from the sandwich theorem that there exist z € Z and r € R
such that

f(x') — (2 w) > (2!, A*2) —r > —g(Ax') for all 2’ € X. (4.1.2)
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In particular,
flz) —(x,w) = (x, A"z) —r = —g(Ax). (4.1.3)

By subtracting (4.1.3) from (4.1.2), one obtains that w + A*z € df(z) and
g(Ax') — g(Ax) > (Ax' — Ax,—2) forall z € X.

Moreover, it follows from the assumptions that g is proper convex and continuous at
Az. So ¢'(Az;y) is a real-valued continuous sub-linear function on Y that dominates
(., —z) on the subspace {Az’ : 2’ € X'}. By Hahn-Banach, there exists Z € Z such
that (A2’, 2) = (A2/, z) forall 2’ € X and ¢'(Az;y) > (y, —Z2) forally € Y. It follows
that —Z € Jg(Ax) and A*Z = A*z. Sow =w+ A"z — A*2 € 0f (x) + A*0g(Ax). O

Corollary 4.1.12 (Sum Rule)
Let f,g: X — RU {400} be convex functions. Then

Of(x)+0g(x) CO(f +g)(z) forallze X.

Moreover, if x € dom f and sup,c; 9(y) < +oo for some neighborhood U of x, then
the inclusion is an equality.

Proof. Choose X =Y and A =id in Corollary 4.1.11. O

Corollary 4.1.13 (Chain Rule)
Let g : Y — RU {400} be a convex function and A : X — Y a continuos linear
function. Then

A*0g(Az) CO(go A)(x) forallz € X.

Moreover, if sup,c;; g(y) < +0o for some neighborhood U of Ax, then the inclusion
1S an equality.

Proof. Choose f =0 in Corollary 4.1.11. 0

Corollary 4.1.14 Let f : X — RU{+o0} be a convex function and C' a non-empty
conver subset of X. If 0 € Of(xg) + 0dc(xo) for some xy € C, then xy solves the
optimization problem

min f(x). (4.1.4)

zeC

On the other hand, if xy € C' solves (4.1.4) and sup,c; f(x) < 00 for a neighbor-
hood U of xy, then 0 € Of(zo) + 0dc(zo).

Proof. The minimization problem (4.1.4) is equivalent to
min {f(z) + dc(2)}, (4.1.5)

and xy € C solves (4.1.5) if and only if 0 € 9(f + d¢)(zo), which by Corollary 4.1.12
follows if 0 € Of(xg) + 0dc(x). Moreover, if sup,; f(z) < +oo for a neighborhood
U of xg, one obtains from Corollary 4.1.12 that 0 (x¢) 4+ 9d¢c (o) = O(f + dc) (o).
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4.2 Lagrangians and saddle points

Definition 4.2.1 A saddle point of a function L : X x Z — R U {+£o0} is a pair
(z,z) € X x Z satisfying

sup L(z,2) < L(z,z) < inf L(z, 2).

z

Lemma 4.2.2 For every function L : X x Z — RU {£o0}, one has

supinf L(z, z) < infsup L(z, z), (4.2.6)

z z

and if L has a saddle point (Z,Z), then

supinf L(z, z) = L(Z, 2) = inf sup L(z, 2).

z Z Tz
Proof. For every x’, one has

supinf L(z, 2) < sup L(2/, 2),

z z

and one obtains (4.2.6). If (z, 2) is a saddle point of L, then

infsup L(x, z) <sup L(Z,2) < L(z,z) < inf L(z,z) < supinf L(z, 2),

z

and the lemma follows. ]

Now we assume that — L is the y-conjugate of a function F' : X XY — RU{+o0}:
ye
Then L is called the Lagrangian of the problem (P) related to the perturbation F.

Lemma 4.2.3 If L is of the form (4.2.7), then it is concave and usc in z. If
moreover, F is convex, then L is convex in x.

Proof. That L is concave and usc in z is clear. That L is convex in zx if F' is convex,
follows as in the proof of Lemma 4.1.2. O

Lemma 4.2.4 Assume L is of the form (4.2.7). Then

F*(w,z) = sgp{(:c,w> — L(z,2)}.

In particular,
sup —F*(0, z) = supinf L(z, 2).
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Proof.
F(w,z) = sup{(z,w) + (y,2) — F(z,y)}

_ sgp{<x,w> ~ L{z,2)}.
]

Lemma 4.2.5 If L is of the form (4.2.7) for a lsc convex function F': X XY —
R U {+o0}, then
F(z,y) =sup{(y,2) + L(z,2)} .

In particular,
inf F(x,0) = inf sup L(z, z).

T oz

Proof. For fixed x, F(x,.) is identically equal to 400 or Isc proper convex. So one
obtains from Theorem 3.7.6 that

F(r,y) = sup {{y,2) + L(z,2)} .
O

Lemma 4.2.6 Let L be of the form (4.2.7) for a lsc convex F and (Z,z) € X X Z.
Then the following two are equivalent:

(i) (z,2) is a saddle point of L

(ii)  is a solution of the primal problem (P), z is a solution of the dual problem
(D), and both problems have the the same value.

If (1)-(ii) hold, then the value of (P) and (D) is equal to L(Z,Z).
Proof. By Lemmas 4.2.2, 4.2.4 and 4.2.5, one has
inf F(x,0) = infsup L(z, z) > supinf L(z, z) = sup —F*(0, 2). (4.2.8)

If (z, 2) is a saddle point of L, one obtains from Lemmas 4.2.2, 4.2.4 and 4.2.5 that
F(z,0)=L(z,z) = —F*(0, 2).
On the other hand, if (ii) holds, one obtains from (4.2.8) that
sup L(z, z) = irzlf L(z, z),

which implies that (z, Z) is a saddle point of L. O

Proposition 4.2.7 Let L be of the form (4.2.7) for a lsc convex F and assume the
primal problem (P) is stable. Then for fired T € X, the following two are equivalent:

(i) @ is a solution of the primal problem (P);
(ii) There exists a Z € Z such that (Z,Z) is a saddle point of L.

Proof. (i) = (ii) follows from stability and Lemma 4.2.6. (ii) = (i) is a consequence
of Lemma 4.2.6. O
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4.3 Karush—Kuhn—Tucker-type conditions

Let f,q1,---,9m : X = RU{£o0} be functions and C' a non-empty subset of X
such that
f(x),g1(x),...,gm(z) e R forall x € C.

We consider the constraint minimization problem:
inf f(z) subject toxz € C and g;(x) <Oforalli=1,...,m. (CP)
Let us define the Lagrange functions
L:CxR?—>R and M:CxR}" SR

by
L(z,2) = f(x) + 2 g(x) and Mz, 2, 2) = zf(x) + 27 g(x),

where 2z = (21,...,2n) € RT and 2z, € Ry.
We call (z,%) € C' x R} a saddle point of L on C' x R if

L(z,z) < L(z,2) < L(z,z) for all (z,2) € C' x RY.
The following is called Slater condition:
(SC) There exists xy € C such that g;(xg) <0 foralli=1,...,m.
For given z € C' we consider the following conditions:
(S) z is a solution of (CP);
(SP) There exists z € R such that (7, Z) is a saddle point of L on C' x RY;
(L) There exists z € R such that the following hold:

(i) L(Z, 2) = mingec L(z, 2)
(i) g:(Z) <0 and z;9;(%) =0foralli =1,...,m;

(M) There exists (2, z) € R\ {0} such that the following hold:
(i) M(z, Z0, Z) = mingec M(z, %, 2)
(ii) g:(Z) <0 and z;9;(x) =0foralli=1,...,m.
Theorem 4.3.1 Let z € C. Then one has
(i) (SP) & (L) = (S);
(i) IfC, f,91,...,9m are convex, then (S) = (M);
(ii) If C, f, 91, .., gm are convex and (SC) holds, then (SP) < (L) < (S) & (M).
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Proof. (i) First, assume that (z, Z) is a saddle point of L on C'x R”’. Then L(Z, 2) =
mingec L(z, %) € R. Therefore, one obtains from max.cgry L(Z,2) = L(Z,Z) that
9:(Z) <0 and zg;(x) =0 for all i = 1,.

On the other hand, if (L) holds, then L( zZ) < L(z,z) for all x € C, and
L(z,2) = f(z)+ 2Tg(z) < f(z) + 2Tg9(z) = (’, zZ). ThlS shows that (z,z) is a
saddle point. Moreover, it follows from (L) that f(z) = L(z,2) < L(z,2) < f(z)
for all x € C satisfying g;(z) <0 foralli=1,...,m.

To show (ii), assume that C, f, g1, ..., gm are convex. Denote

K :=conv {(f(z) — f(2),91(x),...,gm(2)) : . € D} C R™,

Condition (S) implies K N intR™" = ). Indeed, otherwise there would exist
Z1,...,2, € C and \q,..., A, > 0 such that Zj)‘j =1 and

ij(f(xj) — f(@), 91(5), .-, gm(;)) € It RTTL.

But this would imply Y~ N\jz; € C, f(35; \jy) < 355 Aif(25) < f(7) and g; (37, Ajy) <
> Aigi(w;) <0, a contradiction to (S). Therefore there exists (%, z) € R™*!\ {0}
such that

inf (v, (2,2)) > sup (w,Zz).
veK wERT+1

It follows that (%, 2) € RT™'\ {0} and
Zof(x) + 2 g(z) > Zof(z) forallz € C.

In particular,
Z0f(Z) + 2" 9(7) = 20 f(T) = Z20f () + 2" 9(2).

So z;gi(z) = 0 for all ¢ and M(z, 2y, 2) < M(x, 2y, z) for all z € C.
(iii) We show that if C, f, g1, ..., gm are convex and (SC) holds, then (M) = (L).
So assume (M) holds for some (%, z) € R7 \ {0}. If Z5 = 0, one has

0>2Tg(x0):M($07207 )>M($ ZO? )_Z g( ) 07

a contradiction. So Zy > 0. By rescaling, one can assume Zy = 1. Then (L) holds.[J

Now for given z € C, consider the Karush-Kuhn-Tucker condition:
(KKT) There exists z € R} such that the following hold:

(i) 0€0f(2) + > 1L, Zi0gi(T) + 0oc(T)
(ii) ¢:(Z) <0 and z;g;(z) =0 foralli =1,...,m;

Theorem 4.3.2 Assume C, f,q1,...,9m are convex and let T € C. Then the fol-
lowing hold:
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(i) (KKT) = (S);
(i) If f, g1, ..., gm are continuous at T and (SC) is satisfied, then (KKT) < (S).

Proof. (i) If (KKT) holds, it follows from Corollary 4.1.14 that z satisfies (L), which
by Theorem 4.3.1, implies (S).

(ii) We know that under (SC), (S) implies (L). So there exists z € RY such that
0€d(f+2zTg+dc)(x). Butif f,g1,...,9m are continuous at Z, one obtains from
Corollary 4.1.12 that d(f + z7g + 6c)(z) = Of(z) + >_in, z:09;(T) + ddc(Z). So
(KKT) holds. O



