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Chapter 1

Convex Analysis in Rd

The following notation is used:

• d ∈ N := {1, 2, . . .}

• ei is the i-th unit vector in Rd

• 〈x, y〉 :=
∑d

i=1 xiyi for x, y ∈ Rd

• ||x|| :=
√
〈x, x〉 for x ∈ Rd

• Bε(x) :=
{
y ∈ Rd : ||x− y|| ≤ ε

}
• R+ := {x ∈ R : x ≥ 0}, R++ := {x ∈ R : x > 0}

• x ∨ y := max {x, y} and x ∧ y := min {x, y} for x, y ∈ R

1.1 Subspaces, affine sets, convex sets, cones and

half-spaces

Definition 1.1.1 Let C be a subset of Rd. C is a subspace of Rd if

λx+ y ∈ C for all x, y ∈ C and λ ∈ R.

C is an affine set if

λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ R.

C is a convex set if

λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ [0, 1].

C is a cone if
λx ∈ C for all x ∈ C and λ ∈ R++.
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Exercise 1.1.2 Let C,D be non-empty subsets of Rd.

1. Show that if C,D are subspaces, then so is

C −D := {x− y : x ∈ C, y ∈ D} ,

and the same is true for affine sets, convex sets and cones.

2. Show that if C is affine, then C + v is affine for every v ∈ Rk.

3. Show that if C is affine and contains 0, it is a subspace.

4. Show that if C is affine and v ∈ C, then C − v = C − C is a subspace.

5. Show that the intersection of arbitrarily many subspaces is a subspace, and that
the same is true for affine subsets, convex subsets and cones.

6. Show that there exists a smallest subspace containing C, and that the same is
true for affine sets, convex sets and cones.

Definition 1.1.3 If C is a non-empty subset of Rd, we denote by linC, aff C,
convC, coneC the smallest subspace, affine set, convex set, cone containing C,
respectively.

Exercise 1.1.4 Let C be a non-empty subset of Rd. Show that

linC =

{
n∑
i=1

λixi : n ∈ N, λi ∈ R, xi ∈ C

}

aff C =

{
n∑
i=1

λixi : n ∈ N, λi ∈ R, xi ∈ C,
n∑
i=1

λi = 1

}

convC =

{
n∑
i=1

λixi : n ∈ N, λi ∈ R+, xi ∈ C,
n∑
i=1

λi = 1

}
coneC = {λx : λ ∈ R++, x ∈ C}

Definition 1.1.5 The dimension of an affine subset M of Rd is the dimension of
the subspace M −M . The dimension of an arbitrary subset C is the dimension of
aff C.

Definition 1.1.6 Let C be a non-empty subset of Rd. The dual cone of C is the set

C∗ :=
{
z ∈ Rd : 〈x, z〉 ≥ 0 for all x ∈ C

}
.

Exercise 1.1.7 Show that the dual cone C∗ of a non-empty subset C ⊆ Rd is a
closed convex cone and C is contained in C∗∗.

Definition 1.1.8 The recession cone 0+C of a subset C of Rd consists of all y ∈ R
satisfying

x+ λy ∈ C for all x ∈ C and λ ∈ R++.

Every y ∈ 0+C \ {0} is called a direction of recession for C.
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Definition 1.1.9 Let C be a subset of Rd. The closure clC of C is the smallest
closed subset of Rd containing C. The interior intC consists of all x ∈ C such that
Bε(x) ⊆ C for some ε ∈ R++. The relative interior riC is the set of all x ∈ C
such that Bε(x) ∩ aff C ⊆ C for some ε ∈ R++. The boundary of C is the set
bdC := clC \ intC. The relative boundary is rbdC := clC \ riC

Exercise 1.1.10
1. Show that an affine subset of Rd is closed.

2. Show that the closure of a cone is a cone.

3. Show that the closure of a convex set is convex.

Lemma 1.1.11 Let C be a non-empty convex subset of Rd and λ ∈ (0, 1]. If intC 6=
∅, then

λintC + (1− λ)clC ⊆ intC. (1.1.1)

If riC 6= ∅, then
λriC + (1− λ)clC ⊆ riC (1.1.2)

In particular, intC and riC are convex.

Proof. Let x ∈ intC, y ∈ clC and λ ∈ (0, 1]. There exists ε > 0 such that
B2ε(x) ⊆ C and z ∈ C such that (1− λ)||y − z|| ≤ λε. Choose v ∈ Bλε(0). Then

w =
v

λ
+

1− λ
λ

(y − z) ∈ B2ε(0),

and therefore,
λx+ (1− λ)y + v = λ(x+ w) + (1− λ)z ∈ C.

This shows (1.1.1). (1.1.2) follows by working in aff C instead of Rd. �

Lemma 1.1.12 Let C be a convex subset of Rd. Then intC 6= ∅ if and only if
aff C = Rd.

Proof. If x ∈ intC, then 0 ∈ intC − x, and it follows that

aff (C)− x = aff (C − x) = lin (C − x) = Rd.

On the other hand, if aff C = Rd, choose x ∈ C. Then

lin (C − x) = aff (C − x) = aff (C)− x = Rd.

So there there exist d vectors x1, . . . , xd in C such that vi := xi − x are linearly
independent. Since C is convex, one has

1

d+ 1
(x+ x1 + · · ·+ xd) + λvi ∈ C for |λ| ≤ 1

d+ 1
and i = 1, . . . , d,
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and therefore,
1

d+ 1
(x+ x1 + · · ·+ xd) + V ⊆ C,

where V :=
{∑d

i=1 λivi :
∑d

i=1 |λi| ≤
1
d+1

}
. So since n(x) :=

∑d
i=1 |λi| for x =∑d

i=1 λivi defines a norm and all norms on Rd are equivalent, there exists an ε > 0
such that

1

d+ 1
(x+ x1 + · · ·+ xd) +Bε(0) ⊆ C.

�

Corollary 1.1.13 Let C be a non-empty convex subset of Rd. Then riC is dense
in C. In particular, riC is non-empty.

Proof. If C consists of only one point x0, then riC = C = {x0}. If C contains at
least two different points, one can, by shifting, assume that one of them is 0. Then
linC = aff C is at least one-dimensional. So by restricting to linC, one can assume
that linC = Rd. It follows from Lemma 1.1.12 that riC 6= ∅. Now the corollary
follows from Lemma 1.1.11. �

Definition 1.1.14 A half-space in Rd is a set of the form{
x ∈ Rd : 〈x, z〉 ≥ c

}
for some z ∈ Rd \ {0} and c ∈ R.

We say a subset C of Rd is supported at x0 ∈ C by z ∈ Rd \ {0} if 〈x0, z〉 =
infx∈C 〈x, z〉.

Note that if a subset C of Rd is supported at x0 ∈ C by some z ∈ Rd \ {0}, then
x0 is in the boundary of C and C is contained in the half-space{

x ∈ Rd : 〈x, z〉 ≥ 〈x0, z〉
}
.

1.2 Separation results in finite dimensions

Lemma 1.2.1 Let C be a non-empty closed subset of Rd. Then there exists x0 ∈ C
such that

||x0|| = inf
x∈C
||x||.

If in addition, C is convex, then x0 is unique.

Proof. For fixed y ∈ C, the set {x ∈ C : ||x|| ≤ ||y||} is closed and bounded. So the
existence of x0 follows because the norm is continuous. If C is convex and x0, x1 are
two different norm minimizers, one has

||x0 + x1
2
|| < ||x0|| = ||x1||,

a contradiction. �
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Theorem 1.2.2 (Strong separation)
Let C,D be non-empty convex subsets of Rd. Then there exists z ∈ Rd satisfying

inf
x∈C
〈x, z〉 > sup

y∈D
〈y, z〉 (1.2.3)

if and only if 0 /∈ cl (C −D).

Proof. The “only if” direction is clear. On the other hand, if 0 /∈ cl (C − D), the
unique norm minimizer z ∈ cl (C−D) is different from zero. For all w ∈ C−D and
λ ∈ (0, 1], one has

||z||2 ≤ ||(1− λ)z + λw||2 = ||z||2 + 2λ 〈w − z, z〉+ λ2||w − z||2.

By dividing by λ and sending λ to 0, one obtains

〈w, z〉 ≥ ||z||2 > 0 for all w ∈ C −D.

This proves (1.2.3). �

Lemma 1.2.3 Let C and D be two non-empty closed convex sets with no common
direction of recession. Then C −D is closed.

Proof. Let (xn) be a sequence in C and (yn) a sequence in D such that xn − yn →
w ∈ Rd. If (xn) is unbounded, one can pass to a subsequence such that ||xn|| → ∞
and

xn
||xn||

→ x̄ for some x̄ ∈ Sd−1 :=
{
x ∈ Rd : ||x|| = 1

}
.

But then one has for all x0 ∈ C and λ ∈ R++,

x0 +
λ

||xn||
(xn − x0)→ x0 + λx̄ ∈ C

since C is closed. This shows that x̄ ∈ 0+C. However,

lim
n

yn
||yn||

= lim
n

xn − w
||xn||+ (||yn|| − ||xn||)

= x̄,

and it follows as above that x̄ ∈ 0+D, a contradiction. So (xn) and (yn) must both
be bounded. After passing to subsequences, one has xn → x ∈ C and yn → y ∈ D.
So w = x− y ∈ C −D. �

Corollary 1.2.4 If C,D are non-empty closed convex disjoint subsets of Rd with
no common direction of recession, there exists z ∈ Rd such that

inf
x∈C
〈x, z〉 > sup

y∈D
〈y, z〉 .
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Proof. By Lemma 1.2.3, C − D is closed and does not contain 0. So the corollary
follows from Theorem 1.2.2. �

Corollary 1.2.5 If C,D are non-empty closed convex disjoint subsets of Rd such
that D is bounded, there exists z ∈ Rd such that

inf
x∈C
〈x, z〉 > sup

y∈D
〈y, z〉 .

Proof. D has no direction of recession. So the corollary follows from Corollary
1.2.4. �

Corollary 1.2.6 Every proper closed convex subset of Rd is equal to the intersection
of all half-spaces containing it.

Proof. Consider a closed convex subset C ( Rd. It is clear that C is contained in
the intersection of all half-spaces enveloping it. On the other hand, if x0 ∈ Rd \ C,
it follows from Corollary 1.2.5 that there exists a half-space containing C but not
x0. This proves the corollary. �

Corollary 1.2.7 Let C be a non-empty subset of Rd. Then C∗∗ is equal to the
smallest closed convex cone containing C.

Proof. Since C∗∗ contains C, it also contains the smallest closed convex cone D
enveloping C. To show C∗∗ = D, assume that there exists x0 ∈ C∗∗ \D. But then
it follows from Corollary 1.2.5 that there exists a z ∈ Rd such that

inf
x∈D
〈x, z〉 > 〈x0, z〉 .

Since D is a cone, this implies

inf
x∈D
〈x, z〉 = 0 > 〈x0, z〉 ,

from which one obtains that z ∈ C∗ and x0 /∈ C∗∗, a contradiction. �

Lemma 1.2.8 Let C be a non-empty convex cone in Rd such that C 6= Rd. Then
there exists z ∈ Rd \ {0} such that

inf
x∈C
〈x, z〉 = 0. (1.2.4)

Proof. If intC = ∅, it follows from Lemma 1.1.12, that M = aff C is different from
Rd. Since C is a cone, M contains 0. Therefore, it is a proper subspace of Rd, and
one can choose z ∈M⊥.

If there exists x0 ∈ intC, −x0 cannot be in clC. Otherwise, it would follow from
Corollary 1.1.11 that 0 ∈ intC, implying C = Rd. So one obtains from Corollary
1.2.5 that there exists z ∈ Rd such that

inf
x∈C
〈x, z〉 ≥ inf

x∈clC
〈x, z〉 > 〈−x0, z〉 .

This implies (1.2.4) and z 6= 0. �
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Theorem 1.2.9 (Weak separation)
Let C,D be non-empty convex subsets of Rd. Then there exists z ∈ Rd \ {0} such
that

inf
x∈C
〈x, z〉 ≥ sup

y∈D
〈y, z〉 (1.2.5)

if and only if 0 /∈ int (C −D).

Proof. The “only if” direction is clear. To show the other direction, let us assume
0 /∈ int (C −D). If we can show that

cone (C −D) 6= Rd, (1.2.6)

we obtain from Lemma 1.2.8 the existence of a z ∈ Rd \ {0} such that

inf
x∈cone (C−D)

〈x, z〉 ≥ 0,

which implies (1.2.5). To prove (1.2.6), we assume by way of contradiction that
cone (C − D) = Rd. But then there exists ε > 0 such that all the vectors ±εei,
i = 1, . . . , d, are in C−D. This implies 0 ∈ int (C−D), contradicting the assumption.
So (1.2.6) must hold. �

Corollary 1.2.10 Let C,D be non-empty convex disjoint subsets of Rd such that
D is open. Then there exists z ∈ Rd such that

inf
x∈C
〈x, z〉 > 〈y, z〉 for every y ∈ D.

Proof. By Theorem 1.2.9, there exists z ∈ Rd \ {0} such that

inf
x∈C
〈x, z〉 ≥ sup

y∈D
〈y, z〉 .

Since D is open, the sup is not attained in D, and the corollary follows. �

Corollary 1.2.11 A convex subset C of Rd is supported at every point x0 ∈ C\intC
by at least one vector z ∈ Rd \ {0}.

Proof. If x0 ∈ C \ intC, then 0 /∈ int (C−x0). So it follows from Theorem 1.2.9 that
there exists z ∈ R \ {0} such that infx∈C 〈x, z〉 ≥ 〈x0, z〉, proving the corollary. �

Corollary 1.2.12 Let C be a non-empty convex subset of Rd. Then intC = int clC.

Proof. It is enough to show that int clC ⊆ intC. To do that we assume x0 /∈ intC.
Then it follows from Theorem 1.2.9 that there exists z ∈ Rd \ {0} such that

inf
x∈C
〈x, z〉 ≥ 〈x0, z〉 .

It follows that
inf
x∈clC

〈x, z〉 ≥ 〈x0, z〉 ,

which implies x0 /∈ int clC. This proves the corollary. �
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Corollary 1.2.13 Let C be a dense convex subset of Rd. Then C = Rd.

Proof. By Corollary 1.2.12, one has intC = int clC = Rd. �

Theorem 1.2.14 (Proper separation)
Let C,D be non-empty convex subsets of Rd. Then there exists z ∈ Rd satisfying

inf
x∈C
〈x, z〉 ≥ sup

y∈D
〈y, z〉 and sup

x∈C
〈x, z〉 > inf

y∈D
〈y, z〉 (1.2.7)

if and only if 0 /∈ ri (C −D).

Proof. To show the “only if” direction, let us assume there exists a z ∈ Rd satisfying
(1.2.7) and 0 ∈ ri (C−D). Then the affine hull M of C−D is a subspace. Decompose
z = z1 + z2 such that z1 ∈M and z2 ∈M⊥. Then

inf
x∈C−D

〈x, z1〉 ≥ 0 and sup
x∈C−D

〈x, z1〉 > 0.

But this contradicts 0 ∈ ri (C −D).
To show the “if” direction, assume 0 /∈ ri (C−D). If 0 /∈M , then 0 /∈ cl (C−D),

and (1.2.7) follows from Theorem 1.2.2. If 0 ∈M , one can without loss of generality
assume that M = Rd. But then 0 /∈ int (C − D), and one obtains from Theorem
1.2.9 that there exists z ∈ Rd \ {0} such that

inf
x∈C−D

〈x, z〉 ≥ 0.

Moreover, there must exist an x ∈ C − D satisfying 〈x, z〉 > 0. Otherwise, one
would have 〈x, z〉 = 0 for all x ∈ C −D, contradicting M = Rd. �

1.3 Linear, affine and convex functions

Definition 1.3.1 A function f : Rd → Rk is linear if

f(λx+ y) = λf(x) + f(y) for all x, y ∈ Rd and λ ∈ R.

f is affine if

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y) for all x, y ∈ Rd and λ ∈ R.

Exercise 1.3.2 Let f : Rd → Rk be an affine function and v ∈ Rk.

1. Show that f + v is affine.

2. Show that f − f(0) is linear.

3. Show that f(x) = Ax+ f(0) for some k × d-matrix A.
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Proposition 1.3.3 Every affine function f : Rd → Rk is Lipschitz-continuous.

Proof. It is enough to show that f−f(0) is Lipschitz-continuous. So one can assume
that f is linear. But then there exists a k × d-matrix A such that f(x) = Ax, and
one has

||f || := sup
||x||≤1

||f(x)|| ≤ sup
||x||≤1

 k∑
i=1

(
d∑
j=1

Aijxj

)2
1/2

≤

(∑
ij

A2
ij

)1/2

.

So
||f(x)− f(y)|| ≤ ||f || ||x− y|| for all x, y ∈ Rd.

�

Definition 1.3.4 A function f : Rd → R ∪ {+∞} is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ R and λ ∈ (0, 1)

and quasi-convex if

f(λx+ (1− λ)y) ≤ f(x) ∨ f(y) for all x, y ∈ R and λ ∈ (0, 1).

A function f : Rd → R ∪ {−∞} is (quasi-) concave if −f is (quasi-) convex.
The effective domain of a function f : Rd → R ∪ {+∞} or f : Rd → R ∪ {−∞}

is the set
dom f :=

{
x ∈ Rd : f(x) ∈ R

}
.

Exercise 1.3.5 Show that a function f : Rd → R ∪ {+∞} is quasi-convex if and
only if all the sublevel sets{

x ∈ Rd : f(x) ≤ y
}
, y ∈ R,

are convex.

Exercise 1.3.6 Let f, g : Rd → R ∪ {+∞} be convex functions and λ > 0. Show
that λf + g is convex.

Definition 1.3.7 We say a function f : Rd → R ∪ {±∞} is quasi-convex if all
sub-level sets

{
x ∈ Rd : f(x) ≤ y

}
, y ∈ R, are convex. We say f is quasi-concave if

−f is quasi-convex.

Exercise 1.3.8
1. Let f : Rd → R ∪ {±∞} be quasi-convex and h : R ∪ {±∞} → R ∪ {±∞}
non-decreasing. Show that h ◦ f is quasi-convex.

2. Give an example of a convex function f : Rd → R and a non-decreasing function
h : R→ R such that h ◦ f is not convex.

3. Let fi : Rd → R ∪ {±∞}, i ∈ I, be a family of quasi-convex functions. Show
that supi∈I fi is quasi-convex.
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Definition 1.3.9 The epigraph of a function f : Rd → R ∪ {±∞} is the set

epi f :=
{

(x, y) ∈ Rd × R : f(x) ≤ y
}
.

The hypograph of f is given by

hypo f :=
{

(x, y) ∈ Rd × R : f(x) ≥ y
}
.

Exercise 1.3.10 Show that a function f : Rd → R∪{+∞} is convex if and only if
epi f is convex.

Definition 1.3.11 We say a function f : Rd → R ∪ {±∞} is convex if epi f is a
convex subset of Rd+1. A convex function f : Rd → R ∪ {±∞} is said to be proper
convex if f(x) > −∞ for all x ∈ Rd and f(x) < +∞ for at least one x ∈ Rd. We
say f is concave if −f is convex and proper concave if −f is proper convex.

Exercise 1.3.12
1. Show that for a convex function f : R → R ∪ {±∞} and x0 ∈ R such that
f(x0) ∈ R,

f(x0 + ε)− f(x0)

ε

is non-decreasing in ε ∈ R \ {0}
2. Show that for a convex function f : R → R ∪ {±∞} and x0 ∈ R such that
f(x0) ∈ R,

f ′+(x0) := lim
ε↓0

f(x0 + ε)− f(x0)

ε
and f ′−(x0) := lim

ε↓0

f(x0)− f(x0 − ε)
ε

exist and f ′−(x) ≤ f ′+(x).

3. Let fi : Rd → R ∪ {±∞}, i ∈ I, be a family of convex functions. Show that
supi∈I fi is convex.

4. Show that every function f : Rd → R ∪ {±∞} has a greatest convex minorant.

Definition 1.3.13 We denote the greatest convex minorant of a function f : Rd →
R ∪ {±∞} by conv f and call it the convex hull of f .

Theorem 1.3.14 Let f : Rd → R ∪ {±∞} be a convex function and x0 ∈ Rd such
that f(x0) ∈ R. Assume there exists a neighborhood U of x0 such that f(x) < +∞
for all x ∈ U . Then f is proper convex and continuous at x0.

Proof. There is an ε > 0 such that m := maxi f(x0 ± εei) < +∞. By convexity,

one has f(x) ≤ m for all x ∈ x0 + V , where V :=
{
x ∈ Rd :

∑d
i=1 |xi| ≤ ε

}
. Since
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f(x0) ∈ R and x0 + V is a neighborhood of x0, one obtains f(x) > −∞ for all
x ∈ Rd. In particular, f is proper convex. Now choose x ∈ V and 0 < λ ≤ 1. Then

f(x0 + λx) = f(λ(x0 + x) + (1− λ)x0) ≤ λf(x0 + x) + (1− λ)f(x0),

and therefore,

f(x0 + λx)− f(x0) ≤ λ[f(x0 + x)− f(x0)] ≤ λ(m− f(x0)).

On the other hand,

x0 =
1

1 + λ
(x0 + λx) +

λ

1 + λ
(x0 − x).

So

f(x0) ≤
1

1 + λ
f(x0 + λx) +

λ

1 + λ
f(x0 − x),

from which one obtains

f(x0)− f(x0 + λx) ≤ λ[f(x0 − x)− f(x0)] ≤ λ(m− f(x0)).

Hence, we have shown that

|f(x)− f(x0)| ≤ λ(m− f(x0)) for all x ∈ x0 + λV,

which proves the theorem. �

Corollary 1.3.15 A convex function f : Rd → R∪{+∞} is continuous on int dom f .

Proof. If x0 ∈ int dom f , there exists a neighborhood U of x0 such that f(x) < +∞
for all x ∈ U . Now the corollary follows from Theorem 1.3.14. �

Definition 1.3.16 A function f : Rd → R ∪ {±∞} is said to be positively homo-
geneous if f(λx) = λf(x) for all x ∈ Rd and λ ∈ R++. If f is convex and positively
homogeneous, it is called sub-linear.

Exercise 1.3.17
1. Show that a positively homogeneous function f : Rd → R satisfies f(0) = 0.

2. Show that a function f : Rd → R ∪ {±∞} is positively homogeneous if and only
if epi f is a cone in Rd+1.

3. Show that a positively homogeneous function f : Rd → R ∪ {+∞} is convex if
and only if f(x+ y) ≤ f(x) + f(y), x, y ∈ Rd.

Corollary 1.3.18 (Hahn–Banach extension theorem in finite dimensions)
Let g : Rd → R be a sub-linear function and f : M → R a linear function on a
subspace M of Rd such that f(x) ≤ g(x) for all x ∈ M . Then there exists a linear
extension F : Rd → R of f such that F (x) ≤ g(x) for all x ∈ Rd.
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Proof. epi g =
{

(x, y) ∈ Rd × R : g(x) ≤ y
}

is a non-empty convex cone in Rd+1 and
graph f := {(x, f(x)) : x ∈M} a subspace. Since epi g− graph f is a cone that does
not contain (0,−1), the point (0, 0) cannot be in the interior of epi g − graph f . By
Theorem 1.2.9, there exists (z, v) ∈ Rd × R \ {0} such that

inf
(x,y)∈epi g

(〈x, z〉+ yv) ≥ sup
x∈M

(〈x, z〉+ f(x)v).

It follows that v > 0, and by rescaling, one can assume v = 1. Since M is a subspace,
one must have f(x) = 〈x,−z〉, x ∈ M , and therefore, 〈x, z〉 + g(x) ≥ 0, x ∈ Rd.
This shows that F (x) = 〈x,−z〉 has the desired properties. �

1.4 Derivatives, directional derivatives and sub-

gradients

Definition 1.4.1 Let f : Rd → R ∪ {±∞} and x0 ∈ Rd such that f(x0) ∈ R. If
there exists z ∈ Rd such that

lim
x 6=0, x→0

f(x0 + x)− f(x0)− 〈x, z〉
||x||

= 0,

then f is said to be differentiable at x0 with gradient ∇f(x0) = z (or derivative
Df(x0) = z).

Definition 1.4.2 Let f : Rd → R∪{±∞} and x0 ∈ Rd such that f(x0) ∈ R. If the
limit

f ′(x0;x) := lim
ε↓0

f(x0 + εx)− f(x0)

ε

exists (it is allowed to be +∞ or −∞), we call it the directional derivative of f at
x0 in the direction x.

Note that if f is differentiable at x0, then

f ′(x0;x) = 〈x,∇f(x0)〉 .

is linear in x.

Definition 1.4.3 Let f : Rd → R ∪ {±∞} and x0 ∈ Rd such that f(x0) ∈ R.
z ∈ Rd is a sub-gradient of f at x0 if

f(x0 + x)− f(x0) ≥ 〈x, z〉 for all x ∈ Rd.

The set of all sub-gradients of f at x0 is denoted by ∂f(x0) and called sub-differential
of f at x0.
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Exercise 1.4.4 Let f : Rd → R ∪ {±∞} be a convex function and x0 ∈ Rd such
that f(x0) ∈ R. Show the following:

1.

f ′(x0;x) = inf
ε>0

f(x0 + εx)− f(x0)

ε
.

In particular, f ′(x0;x) exists for all x ∈ Rd.

2. f ′(x0, .) is sub-linear.

3. If x0 ∈ int
{
x ∈ Rd : f(x) ∈ R

}
, then f ′(x0;x) ∈ R for all x ∈ Rd.

4. The following are equivalent:

(i) f(x0) = minx f(x)

(ii) 0 ∈ ∂f(x0)

(iii) f ′(x0;x) ≥ 0 for all x ∈ Rd.

5. The sub-differential ∂f(x0) is a closed convex subset of Rd.

6. ∂f(x0) = ∂g(0), where g(x) := f ′(x0;x).

7. If f is differentiable at x0, then ∂f(x0) = {∇f(x0)}.
8. The following are equivalent:

(i) z ∈ ∂f(x0)

(ii) (−z, 1) supports epi f at (x0, f(x0)).

Theorem 1.4.5 Let f : Rd → R ∪ {+∞} be a convex function and x0 ∈ ri dom f .
Then ∂f(x0) 6= ∅.

Proof. Since (x0, f(x0) + 1) ∈ epi f , the point (x0, f(x0)) is not in ri epi f . By
Theorem 1.2.14, there exists (z, v) ∈ Rd × R such that

inf
(x,y)∈epi f

(〈x,−z〉+ vy) ≥ 〈x0,−z〉+ vf(x0) (1.4.8)

and

sup
(x,y)∈epi f

(〈x,−z〉+ vy) > 〈x0,−z〉+ vf(x0) (1.4.9)

It follows from (1.4.8) that v ≥ 0. Now assume that v = 0. Then, since x0 ∈
ri dom f , (1.4.9) contradicts (1.4.8). So v > 0, and by scaling, one can assume
v = 1. Then (−z, 1) supports epi f at (x0, f(x0)), which by Exercise 1.4.4.8, proves
that z ∈ ∂f(x0). �
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Definition 1.4.6 A function f : Rd → R∪{±∞} is lower semi-continuous (lsc) at
x0 ∈ Rd if f(x0) ≤ lim infx→x0 f(x). f is lsc if it is lsc everywhere. f is upper semi-
continuous (usc) at x0 if f(x0) ≥ lim supx→x0 f(x). f is usc if it is usc everywhere.
By f , we denote the function given by

f(x) := lim inf
y→x

f(y)

and call it lsc hull of f . By conv f we denote the lsc hull of conv f and call it lsc
convex hull of f .

Exercise 1.4.7
Consider a function f : Rd → R ∪ {±∞}.
1. Show that the following are equivalent:

(i) f is lsc

(ii) All sub-level sets
{
x ∈ Rd : f(x) ≤ y

}
, y ∈ R, are closed

(iii) epi f is closed

2. Show that the epigraph of f is the closure of epi f and f is the greatest lsc
minorant of f .

3. Show that if f is convex, then so is f .

4. Show that conv f is the greatest lsc convex minorant of f .

5. Let fi : Rd → R ∪ {±∞}, i ∈ I, be a family of lsc functions. Show that supi∈I fi
is lsc.

Lemma 1.4.8 Let f : Rd → R ∪ {±∞} be a lsc convex function and x0 ∈ Rd such
that f(x0) ∈ R. Then f is proper convex.

Proof. Assume there exists x1 ∈ Rd such that f(x1) = −∞. Then f(λx0 + (1 −
λ)x1) = −∞ for all λ ∈ [0, 1). But since f is lsc, one must have f(x0) = −∞, a
contradiction. �

Lemma 1.4.9 Let f be a proper convex function on Rd and x0 ∈ dom f such that
∂f(x0) 6= ∅. Then f(x0) = f(x0) and ∂f(x0) = ∂f(x0).

Proof. Choose z ∈ ∂f(x0). The affine function g(x) = f(x0) + 〈x− x0, z〉 minorizes
f and equals f at x0. So g also minorizes f and equals f at x0. This shows f(x0) =
g(x0) = f(x0) and ∂f(x0) ⊆ ∂f(x0). ∂f(x0) ⊇ ∂f(x0) follows since f(x0) = f(x0)
and f ≥ f . �

Corollary 1.4.10 Let f be a proper convex function on Rd. Then so is f . More-
over, f(x) = f(x) for all x ∈ ri dom f ∪ (cl dom f)c and ∂f(x) = ∂f(x) for all
x ∈ ri dom f
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Proof. We already know that f is convex, and it is clear that it cannot be identically
equal to +∞. By Corollary 1.1.13, ri dom f is not empty. Choose x ∈ ri dom f . By
Theorem 1.4.5, there exists z ∈ ∂f(x). So one obtains from Lemma 1.4.9 that
f(x) = f(x) and ∂f(x) = ∂f(x), which implies that f is proper. Finally, note that
dom f ⊆ cl dom f . So if x /∈ cl dom f , then f(x) = f(x) = +∞. �

Theorem 1.4.11 A lsc convex function f : Rd → R ∪ {+∞} equals the point-wise
supremum of all its affine minorants.

Proof. If f is constantly equal to +∞, the theorem is clear. So we can assume
dom f 6= ∅. Choose a pair (x0, w) ∈ Rd × R that does not belong to epi f . By
Corollary 1.2.5, there exists (z, v) ∈ Rd × R such that

m := inf
(x,y)∈epi f

(〈x, z〉+ yv) > 〈x0, z〉+ wv.

It follows that v ≥ 0. If v > 0, one can scale and assume v = 1. Then m − 〈x, z〉
is an affine minorant of f whose epigraph does not contain (x0, w). If v = 0, set
λ := m − 〈x0, z〉 > 0 and choose x1 ∈ dom f . Since (x1, f(x1) − 1) is not in epi f ,
there exists (z′, v′) ∈ Rd × R such that

m′ := inf
(x,y)∈epi f

(〈x, z′〉+ yv′) > 〈x1, z′〉+ (f(x1)− 1)v′.

Since x1 ∈ dom f , one must have v′ > 0. So by scaling, one can assume v′ = 1. Now
choose

δ >
1

λ
(w + 〈x0, z′〉 −m′)+

and set z′′ := δz + z′. Then

m′′ := inf
(x,y)∈epi f

(〈x, z′′〉+ y) ≥ δm+m′

= δλ+ δ 〈x0, z〉+m′ > 〈x0, z′′〉+ w.

So m′′ − 〈x, z′′〉 is an affine minorant of f whose epigraph does not contain (x0, w).
This completes the proof of the theorem. �

1.5 Convex conjugates

Definition 1.5.1 The convex conjugate of a function f : Rd → R ∪ {±∞} is the
function f ∗ : Rd → R ∪ {±∞} given by

f ∗(z) := sup
x∈Rd

{〈x, z〉 − f(x)} .
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Exercise 1.5.2
Consider functions f, g : Rd → R ∪ {±∞}. Show that ...

1. f ∗ is convex and lsc.

2. f ≥ f ∗∗

3. f ≤ g implies f ∗ ≥ g∗

4. f ∗∗∗ = f ∗.

Exercise 1.5.3 Calculate f ∗ in the cases

1. f(x) =
∑d

i=1 |xi|p for p ≥ 1

2. f(x) = exp(λx) for λ ∈ R

Definition 1.5.4 Let C be a subset of Rd. The indicator function δC : Rd →
R ∪ {+∞} is defined to be 0 on C and +∞ outside of C. The convex conjugate δ∗C
is called support function of C.

Exercise 1.5.5 Let f : Rd → R be an affine function of the form f(x) = 〈x, z〉 − v
for a pair (z, v) ∈ Rd × R. Show that f ∗ = v + δz and f ∗∗ = f .

Exercise 1.5.6 Consider a function f : Rd → R ∪ {±∞}.
1. Show that the Young–Fenchel inequality holds:

f ∗(z) ≥ 〈x, z〉 − f(x) for all x, z ∈ Rd.

2. Show that if f(x0) ∈ R, the following are equivalent

(i) z ∈ ∂f(x0)

(ii) 〈x, z〉 − f(x) achieves its supremum in x at x = x0

(iii) f(x0) + f ∗(z) = 〈x0, z〉

3. Show that if f(x0) = f ∗∗(x0) ∈ R, the following conditions are equivalent to
(i)–(iii)

(iv) x0 ∈ ∂f ∗(z)

(v) 〈x0, v〉 − f ∗(v) achieves its supremum in v at v = z

(vi) z ∈ ∂f ∗∗(x0)

Theorem 1.5.7 (Fenchel–Moreau Theorem)
Let f : Rd → R∪{+∞} be a function whose lsc convex hull conv f does not take the
value −∞. Then conv f = f ∗∗. In particular, if f is lsc and convex, then f = f ∗∗.
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Proof. We know that f ≥ f ∗∗. Since f ∗∗ is lsc and convex, one has conv f ≥ f ∗∗.
Now let h be an affine minorant of conv f . Then it is also an affine minorant of
f . So one has h = h∗∗ ≤ f ∗∗. Since by Theorem 1.4.11, conv f is the point-wise
supremum of its affine minorants, it follows that conv f ≤ f ∗∗. �

Corollary 1.5.8 If f is a proper convex function on Rd, then f ∗ is lsc proper con-
vex.

Proof. f ∗ is lsc convex for every function f : Rd → R∪{±∞}. If f is proper convex,
one obtains from Corollary 1.4.10 that so is f , and it follows from Theorem 1.5.7
that f = f ∗∗. This implies that f ∗ is proper convex. �

Corollary 1.5.9 Let C be a non-empty subset of Rd with closed convex hull D.
Then δ∗C(z) = supx∈D 〈x, z〉 and δ∗∗C = δD.

Proof. δ∗∗C = δD follows from Theorem 1.5.7 since δD is the lsc convex hull of δC .
Now one obtains δ∗C = δ∗∗∗C = δ∗D, and the proof is complete. �

Corollary 1.5.10 Let f be a lsc proper sub-linear function on Rd. Then f = δ∗∂f(0)
and f ∗ = δ∂f(0). In particular, f(0) = 0 and ∂f(0) 6= ∅.

Proof. It can easily be checked that f ∗ = δC for the set

C =
{
z ∈ Rd : 〈x, z〉 ≤ f(x) for all x ∈ Rd

}
.

By Theorem 1.5.7, one has f = δ∗C . It follows that C is non-empty, which implies
f(0) = 0 and ∂f(0) = C. �

Exercise 1.5.11 Calculate f ∗ for

f(x) = ||x||p :=

(
d∑
i=1

|xi|p
)1/p

for p ≥ 1.

Corollary 1.5.12 Let f : Rd → R ∪ {±∞} be a convex function and x0 ∈ Rd such
that f(x0) ∈ R. Assume there exists a neighborhood U of x0 and a constant M ∈ R+

such that

f(x)− f(x0) ≥ −M ||x− x0|| for all x ∈ U. (1.5.10)

Then f has a sub-gradient z at x0 such that ||z|| ≤M .

Proof. Denote by h : Rd → R ∪ {+∞} the lsc hull of the directional derivative
g(x) = f ′(x0;x). It follows from (1.5.10) that h(x) ≥ −M ||x||. In particular,
h(0) = 0. h is a lsc sublinear function satisfying ∂h(0) ⊆ ∂f(x0). So it is enough to
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show that h has a sub-gradient z at x0 such that ||z|| ≤M . It follows from Corollary
1.5.10 that ∂h(0) is non-empty and

h(x) = sup
z∈∂h(0)

〈x, z〉 .

Now assume that ∂h(0)∩BM(0) = ∅. Since ∂h(0) is closed and convex, there exists
an x such that

h(x) = sup
z∈∂h(0)

〈x, z〉 < inf
z∈BM (0)

〈x, z〉 = −M ||x||,

a contradiction. �

Theorem 1.5.13 Let f be a proper convex function on Rd and x0 ∈ ri dom f . Then

f ′(x0;x) = sup
z∈∂f(x0)

〈x, z〉 , x ∈ Rd. (1.5.11)

Proof. Consider the sub-linear function g(x) = f ′(x0;x). It follows from Theorem
1.4.5 that ∂g(0) = ∂f(x0) 6= ∅. So g is proper convex with dom g = aff dom f−x0. In
particular, dom g is closed, and g restricted to dom g is a real-valued convex function.
It follows from Corollary 1.3.15 that g is continuous on dom g, and therefore lsc on
Rd. So one obtains from Corollary 1.5.10 that g = δ∗C for C = ∂g(0) = ∂f(x0). This
proves the theorem. �

Theorem 1.5.14 Let f be a proper convex function on Rd and x0 ∈ dom f . Then
∂f(x0) is non-empty and bounded if and only if x0 ∈ int dom f .

Proof. Let us first assume that x0 ∈ int dom f . Then it follows from Theorem 1.4.5
that ∂f(x0) 6= ∅. If there exists a sequence (zn) in ∂f(x0) such that ||zn|| ≥ n, then
one has for every ε,

f(x0 + εzn/||zn||) ≥ f(x0) + ε 〈zn/||zn||, zn〉 = f(x0) + ε||zn|| ≥ f(x0) + εn.

That is, f is unbounded from above on every neighborhood of x0, and it follows from
Corollary 1.3.15 that x0 /∈ int dom f , a contradiction. So ∂f(x0) must be bounded.

Now we assume that ∂f(x0) is non-empty and bounded but x0 /∈ int dom f .
Define g(x) := f ′(x0;x). By Corollary 1.2.11, there exists a z ∈ Rd \ {0} such that

dom f ⊆ {x ∈ R : 〈x, z〉 ≥ 〈x0, z〉} .

It follows that
g = +∞ on the set

{
x ∈ Rd : 〈x, z〉 < 0

}
. (1.5.12)

Since ∂f(x0) = ∂g(0) is not empty, it follows from Lemma 1.4.9 that g(0) = g(0) = 0
and ∂g(0) = ∂g(0) = ∂f(x0). In particular, g is a lsc proper sub-linear function,
and one obtains from Corollary 1.5.10 that

g(x) = sup
z∈∂f(x0)

〈x, z〉 ,

contradicting (1.5.12). This shows that x0 ∈ int dom f . �
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Theorem 1.5.15 Let f be a proper convex function on Rd and x0 ∈ dom f such
that ∂f(x0) = {z} for some z ∈ Rd. Then f is differentiable at x0 with ∇f(x0) = z.

Proof. It follows from Theorems 1.5.14 and 1.5.13 that x0 ∈ int dom f and f ′(x0;x) =
〈x, z〉, x ∈ Rd. So for given ε > 0, there exists a δ > 0 such that

f(x0 + λei)− f(x0)− 〈λei, z〉 ≤ ε|λ|, (1.5.13)

for all i = 1, . . . , d and λ ∈ [−δ, δ]. Now choose x ∈ Rd such that

||x||1 :=
d∑
i=1

|xi| ∈ (0, δ].

By convexity of the function g(x) := f(x0 + x) − f(x0) − 〈x, z〉, one obtains from
(1.5.13) that

g(x) =
d∑
i=1

g

(
||x||1

∑
i |xi|sign(xi)ei
||x||1

)
≤

d∑
i=1

|xi|
||x||1

g(||x||1sign(xi)ei) ≤ ε||x||1.

Since
f(x0 + x)− f(x0) ≥ 〈x, z〉 for all x ∈ Rd,

and all norms on Rd are equivalent, one obtains

lim
x 6=0, x→0

f(x0 + x)− f(x0)− 〈x, z〉
||x||

= 0.

�

The following example shows that Theorem 1.5.15 does not hold for non-convex
functions.

Example 1.5.16 The function f : R→ R defined by

f(x) :=


ex+1 for x < −1
|x| for − 1 ≤ x ≤ 1
e1−x for 1 ≤ x

is not differentiable at 0. But ∂f(0) = {0}.

1.6 Inf-convolution

Definition 1.6.1 Consider functions fj : Rd → R ∪ {+∞}, j = 1, . . . , n. The
inf-convolution of f1 and f2 is given by

f1�f2(x) := inf
y∈Rd

(f1(x− y) + f2(y)) = inf
x1+x2=x

(f(x1) + f(x2)).
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The inf-convolution of fj, j = 1, . . . , n, is the function

�n
j=1fj(x) := inf

x1+···+xn=x

n∑
j=1

fj(xj).

The inf-convolution is said to be exact if the infimum is attained.

Lemma 1.6.2 Let fj : Rd → R ∪ {+∞}, j = 1, . . . , n, be convex functions. Then
f = �n

j=1fj is convex.

Proof. If f ≡ +∞, the lemma is clear. Otherwise, let (x, v), (y, w) ∈ epi f , λ ∈
(0, 1) and ε > 0. There exist xj and yj, j = 1, . . . , n, such that

∑n
j=1 xj = x,∑n

j=1 f(xj) ≤ v+ ε,
∑n

j=1 yj = y and
∑n

j=1 f(yj) ≤ w+ ε. Set zj = λxj + (1−λ)yj.
Then z :=

∑n
j=1 zj = λx+ (1− λ)y and

f(z) ≤
n∑
j=1

fj(zj) ≤
n∑
j=1

λfj(xj) + (1− λ)f(yj) ≤ λv + (1− λ)w + ε.

It follows that f(z) ≤ λv + (1− λ)w, which shows that epi f and f are convex. �

Lemma 1.6.3 Let fj, j = 1, . . . , n, be proper convex functions on Rd and denote
f = �n

j=1fj. Assume f(x0) =
∑

j fj(xj) < +∞ for some xj summing up to x0
and f1(x) < +∞ for all x in some neighborhood of x1. Then f is a proper convex
function, x0 ∈ int dom f and f is continuous on int dom f .

Proof. By definition of f , one has

f(x0 + x)− f(x0) ≤ f1(x1 + x) +
n∑
j=2

fj(xj)−
n∑
j=1

fj(xj) = f1(x1 + x)− f1(x1)

for all x ∈ Rd. Therefore, f(x) < +∞ for all x in some neighborhood of x0. Since
by Lemma 1.6.2, f is convex, the result follows from Theorem 1.3.14. �

Lemma 1.6.4 Consider functions fj : Rd → R ∪ {+∞}, j = 1, . . . , n, and denote
f = �n

j=1fj. Assume f(x0) =
∑n

j=1 fj(xj) < +∞ for some xj summing up to x0.
Then ∂f(x0) =

⋂n
j=1 ∂fj(xj).

Proof. Assume z ∈ ∂f(x0) and x ∈ Rd. Then

f1(x1+x)−f1(x1) = f1(x1+x)+
n∑
j=2

fj(xj)−
n∑
j=1

fj(xj) ≥ f(x0+x)−f(x0) ≥ 〈x, z〉 .

Hence z ∈ ∂f1(x1), and it follows by symmetry that ∂f(x0) ⊆
⋂n
j=1 ∂fj(xj). On the

other hand, if z ∈
⋂n
j=1 ∂fj(xj) and x ∈ Rd, choose yj such that

∑n
j=1 yj = x0 + x.

Then
n∑
j=1

fj(yj) ≥
n∑
j=1

fj(xj) + 〈yj − xj, z〉 =
n∑
j=1

fj(xj) + 〈x, z〉 .

So f(x0 + x)− f(x0) ≥ 〈x, z〉, and the lemma follows. �
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Lemma 1.6.5 Let fj, j = 1, . . . , n, be proper convex functions on Rd and denote
f = �n

j=1fj. Assume f(x0) =
∑

j fj(xj) < +∞ for some xj summing up to and f1
is differentiable at x1. Then f is differentiable at x0 with ∇f(x0) = ∇f1(x1).

Proof. One has

f(x0 + x)− f(x0) ≤ f1(x1 + x) +
n∑
j=2

fj(xj)−
n∑
j=1

fj(xj) = f1(x1 + x)− f1(x1)

for all x ∈ Rd. It follows that the directional derivative g(x) := f ′(x0;x) satisfies

g(x) ≤ f ′1(x1;x) = 〈x,∇f1(x1)〉

for all x ∈ Rd. But by Lemma 1.6.2, f is convex. So g is sub-linear, and it follows
that g(x) = 〈x,∇f1(x1)〉. This implies that ∂f(x0) = ∂g(0) = {∇f1(x1)}, and the
lemma follows from Theorem 1.5.15. �

Lemma 1.6.6 Consider functions fj : Rd → R ∪ {+∞}, j = 1, . . . , n, none of
which is identically equal to +∞. Then

(
�n
j=1fj

)∗
=
∑n

j=1 f
∗
j .

Proof.

(
�n
j=1fj

)∗
(z) = sup

x
(〈x, z〉 −�n

j=1fj(x)) = sup
x1,...,xn

n∑
j=1

(〈xj, z〉 − fj(xj)) =
n∑
j=1

f ∗j (z).

�

Corollary 1.6.7 Let fj, j = 1, . . . , n, be lsc proper convex functions on Rd. Then
(
∑n

j=1 fj)
∗ = �n

j=1f
∗
j .

Proof. We know from Corollary 1.5.8 that f ∗j , i = 1, . . . , n, are lsc proper convex.
So one obtains from Theorem 1.5.7 and Lemma 1.6.6 that

n∑
j=1

fj =
n∑
j=1

f ∗∗j =
(
�n
j=1f

∗
j

)∗
,

and therefore, (
∑n

j=1 fj)
∗ = �n

j=1f
∗
j . �
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Chapter 2

General Vector Spaces

2.1 Definitions

A general vector space is a set whose elements can be added and multiplied with
scalars. It can be defined over a general field of scalars. But here we just consider
vector spaces over R. The precise definition is as follows:

Definition 2.1.1 A vector space is a non-empty set X with an addition

(x, y) ∈ X ×X 7→ x+ y ∈ X

and a scalar multiplication

(λ, x) ∈ R×X 7→ λx ∈ X

satisfying the following properties:

1. (x+ y) + z = x+ (y + z) for all x, y, z ∈ X

2. x+ y = y + x for all x, y ∈ X

3. There exists an element 0 ∈ X such that x+ 0 = x for all x ∈ X.

4. For every x ∈ X there exists −x ∈ X such that x+ (−x) = 0

5. λ(x+ y) = λx+ λy for all λ ∈ R and x, y ∈ X

6. (λ+ µ)x = λx+ µx for all λ, µ ∈ R and x ∈ X

7. λ(µx) = (λµ)x

8. 1x = x

27
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Exercise 2.1.2
1. Show that there exists only one element 0 ∈ X satisfying 3. It is called zero-
element or neutral element of the addition.

2. Show that 0x = 0 for all x ∈ X.

3. Show that for given x ∈ X, there exists only one −x ∈ X satisfying 4. It is
called the negative or additive inverse of x.

4. Show that (−1)x = −x.

Examples 2.1.3 The following are vector spaces:

1. {0}
2. Rd

3. The set of all linear functions f : Rd → Rk.

4. The set of all functions f : X → Y , where X is an arbitrary set and Y a vector
space.

5. All polynomials on Rd.

6. All real sequences.

7. All real sequences that converge.

8. Lp(Ω,F , µ), where (Ω,F , µ) is a measure space.

9. The product X × Y of two vector spaces X and Y .

10. The quotient X/Y if Y is a subspace of X. (In X/Y , x and x′ are identified if
x− x′ ∈ Y .)

Definition 2.1.4 Let Y be a subset of a vector space X.

• Y is said to be linearly independent if for every non-empty finite subset {y1, . . . , yk}
of Y , (0, . . . , 0) is the only vector λ in Rk such that λ1y1 + · · ·+ λkyk = 0.

• If Y is linearly independent and for every x ∈ X, there exists a finite subset
{y1, . . . , yk} of Y and λ ∈ Rk such that x = λ1x1 + · · ·+λkxk, then Y is called
a Hamel basis of X.

Exercise 2.1.5
1. Let Y be a Hamel basis of a vector space X. Show that the representation of
points x ∈ X as linear combinations of elements in Y is unique.

2. Show that 1, cos(2πnx), sin(2πnx), n = 1, 2, . . . are linearly independent in
L2[0, 1].

Definition 2.1.6 Let C be a subset of Rd. C is a subspace of Rd if

λx+ y ∈ C for all x, y ∈ C and λ ∈ R.
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C is an affine set if

λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ R.

C is a convex set if

λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ [0, 1].

C is a cone if
λx ∈ C for all x ∈ C and λ ∈ R++.

Exercise 2.1.7 Show that the statements of Exercise 1.1.2 hold for non-empty
subsets C,D of a vector space.

Definition 2.1.8 If C is a non-empty subset of a vector space, we denote by linC,
aff C, convC, coneC the smallest subspace, affine set, convex set, cone containing
C, respectively.

Definition 2.1.9 A function f : X → Y between vector spaces is linear if

f(λx+ y) = λf(x) + f(y) for all λ ∈ R and x, y ∈ X,

and affine if

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y) for all λ ∈ R and x, y ∈ X.

Definition 2.1.10 The algebraic dual X ′ of a vector space X is the vector space of
all linear functions f : X → R. Elements of X ′ are usually called linear functionals.

Definition 2.1.11 A function f : X → R ∪ {±∞} on a vector space X is ...

• quasi-convex if all sub-level sets {x ∈ X : f(x) ≤ y}, y ∈ R, are convex.

• quasi-concave if all super-level sets {x ∈ X : f(x) ≥ y}, y ∈ R, are convex.

• convex if epi f := {(x, y) ∈ X × R : f(x) ≤ y} is convex.

• proper convex if it is convex, f(x) > −∞ for all x ∈ X and f(x) < +∞ for
at least one x ∈ X.

• concave if −f is convex.

• proper concave if −f is proper concave.

• positively homogeneous if epi f is a cone.

• sub-linear if epi f is a convex cone.
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Exercise 2.1.12 Let X be a vector space. Show the following:

1. The pointwise supremum of quasi-convex functions on X is quasi-convex.

2. The point wise supremum of convex functions on X is convex.

3. A positively homogeneous function f : X → R satisfies f(0) = 0.

4. A positively homogeneous function f : X → R ∪ {+∞} is convex if and only if
f(x+ y) ≤ f(x) + f(y) for all x, y ∈ X.

2.2 Zorn’s lemma and extension results

Definition 2.2.1 A binary relation on a non-empty set X is a subset R of X ×X.
One usually writes xRy instead of (x, y) ∈ R. R is said to be ...

• reflexive if xRx for all x ∈ X.

• symmetric if xRy implies yRx.

• antisymmetric if xRy and yRx imply x = y.

• transitive if xRy and yRz imply xRz.

• total if for all x, y ∈ X, one has xRy, yRx or both.

• an equivalence relation if it is reflexive, symmetric and transitive.

• a preorder if it is reflexive and transitive.

• a partial order if it is an antisymmetric preorder.

• a total order (or linear order) if it is a total partial order.

Definition 2.2.2 Let V be a subset of a partially ordered set (X,≥).

• V is called a chain if (V,≥) is totally ordered.

• An upper (lower) bound of V is an element x ∈ X such that x ≥ v (x ≤ v)
for all v ∈ V .

• If x ∈ V is an upper (lower) bound of V , it is called largest (smallest) element
of V .

• An element x ∈ V is called maximal (minimal) if there is no element y ∈
V \ {x} such that x ≤ y (x ≥ y).
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Zorn’s lemma is equivalent to the axiom of choice. We use it as an axiom.

Zorn’s lemma
Let X be a partially ordered set in which every chain has an upper bound. Then X
has a maximal element.

Theorem 2.2.3 Every vector space has a Hamel basis.

Proof. LetX be a vector space and denote byW be the set of all linearly independent
subsets Y of X. Y1 ≥ Y2 :⇔ Y1 ⊇ Y2 defines a partial order on W . If V is a chain
in W , then

⋃
Y ∈V Y is an upper bound of V . So it follows from Zorn’s lemma that

there exists a maximal element Y ∈ W . Y is a Hamel Basis of X. �

Exercise 2.2.4 Let Y be subspace of a vector space X.

1. Show that there exist subsets V ⊆ Y and W ⊆ X such that V is a Hamel Basis
of Y and V ∪W is a Hamel basis of X.

2. Show that every linear function f : Y → R has a linear extension F : X → R.

Theorem 2.2.5 (Hahn–Banach extension theorem)
Let g : X → R be a sub-linear function on a vector space X and f : Y → R a linear
function on a subspace Y of X such that f(x) ≤ g(x) for all x ∈ Y . Then there
exists a linear extension F : X → R of f such that F (x) ≤ g(x) for all x ∈ X.

Proof. If Y 6= X, choose z ∈ X \ Y and set Ŷ := {y + λz : y ∈ Y, λ ∈ R}. For all
x, y ∈ Y , one has

f(x) + f(y) = f(x+ y) ≤ g(x+ y) ≤ g(x− z) + g(y + z).

So there exists a number β ∈ R such that

sup
x∈Y
{f(x)− g(x− z)} ≤ β ≤ inf

y∈Y
{−f(y) + g(y + z)} .

Hence, if f is extended to Ŷ by setting

f(y + λz) = f(y) + λβ,

it stays dominated by g.
Now let W be the set of all pairs (V, F ), where V is a subspace of X containing

Y and F : V → R a linear extension of f that is dominated by g on V . Write
(V1, F1) ≥ (V2, F2) if V1 ⊇ V2 and F1 = F2 on V2. If U is a chain in W , V̂ =

⋃
V ∈U V

is a vector space and F̂ (x) := F (x) if x ∈ V for some (V, F ) ∈ U , defines a linear
function F̂ : V̂ → R such that (V̂ , F̂ ) is an upper bound of W . So it follows from
Zorn’s lemma that W has a maximal element (V, F ). But this means V = X.
Otherwise, there would exist a z ∈ X \ V and F could be extended to lin (V ∪ {z})
while staying dominated by g, a contradiction to the maximality of (V, F ). �
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Remark 2.2.6 If g : X → R is a sub-linear function on a vector space X, then
g(0) = 0. Since {0} is a subspace of X, and f(0) = 0 is a linear function on {0}, one
obtains from the Hahn–Banach extension theorem that there exists a linear function
F : X → R dominated by g.

Theorem 2.2.7 (Mazur–Orlicz)
Let g : X → R be a sub-linear function on a vector space X and C a non-empty
convex subset of X. Then there exists a linear function f : X → R that is dominated
by g and satisfies

inf
x∈C

f(x) = inf
x∈C

g(x).

Proof. If α := infx∈C g(x) = −∞, choose any f ∈ X ′ that is dominated by g (such
an f exists by Hahn–Banach). Then infx∈C f(x) = infx∈C g(x) = −∞. If α ∈ R,
define

h(x) := inf
y∈C, λ>0

{g(x+ λy)− λα} .

Since α ≤ g(y), one has

g(x+ λy)− λα ≥ g(x+ λy)− λg(y) = g(x+ λy)− g(λy) ≥ −g(−x),

which shows that h(x) is real-valued on R. It is clear that h is positively homoge-
neous. Moreover, if x1, x2 ∈ R, one has for all y1, y2 ∈ C and λ1, λ2 > 0,

g

(
x1 + x2 + (λ1 + λ2)

λ1y1 + λ2y2
λ1 + λ2

)
− (λ1 + λ2)α

= g(x1 + x2 + λ1y1 + λ2y2)− (λ1 + λ2)α

≤ g(x1 + λ1y1)− λ1α + g(x2 + λ2y2)− λ2α,

which shows that h(x1 + x2) ≤ h(x1) + h(x2). From the Hahn-Banach extension
theorem one obtains an f ∈ X ′ that is dominated by h. Note that

f(x) ≤ h(x) ≤ inf
y∈C
{g(x+ y)− α} ≤ inf

y∈C
{g(x) + g(y)− α} = g(x) for all x ∈ X.

In particular, infx∈C f(x) ≤ infx∈C g(x). On the other hand,

−f(y) = f(−y) ≤ h(−y) ≤ g(−y + y)− α = −α for all y ∈ C,

and it follows that infx∈C f(x) ≥ α = infx∈C g(x). �

Corollary 2.2.8 Let g : X → R be a sub-linear function on a vector space X and
x0 ∈ X. Then there exists an f ∈ X ′ that is dominated by g such that f(x0) = g(x0).

Proof. Apply Mazur–Orlicz with C = {x0}. �
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2.3 Algebraic interior and separation results

Definition 2.3.1 Let C be a subset of a vector space X.

• The algebraic interior, coreC, of C consists of all points x0 ∈ C with the
property that for every x ∈ X, there exists λx > 0 such that

x0 + λx ∈ C for all λ ∈ [0, λx].

• If x0 ∈ coreC, we call C an algebraic neighborhood of x0.

• If 0 ∈ coreC, we call C absorbing.

Lemma 2.3.2 Let C be a convex subset of a vector space X such that coreC 6= ∅.
Then

λcoreC + (1− λ)C ⊆ coreC (2.3.1)

for all λ ∈ (0, 1]. In particular, coreC is convex.

Proof. Let x ∈ coreC, y ∈ C, λ ∈ (0, 1] and z ∈ X. There exists µz > 0 such that
x+ µz ∈ C for all µ ∈ [0, µz]. So one has

λx+ (1− λ)y + λµz = λ(x+ µz) + (1− λ)y ∈ C

for all µ ∈ [0, µz]. �

Definition 2.3.3 Let C be a non-empty subset of a vector space X. The Minkowski
functional µC : X → [0,+∞] is given by

µC(x) := inf {λ > 0 : x ∈ λC} ,

where inf ∅ is understood as +∞.

Lemma 2.3.4 Let C be an absorbing convex subset of a vector space X. Then the
Minkowski functional µC has the following properties:

(i) µC is real-valued and sub-linear

(ii) µC(x) < 1 if x ∈ coreC, µC(x) ≤ 1 if x ∈ C and µC(x) ≥ 1 if x /∈ coreC.

Proof. It is clear that µC is real-valued and positively homogeneous. Moreover,
if x, y ∈ X and λ, µ > 0 are such that x ∈ λC and y ∈ µC. Then x + y ∈
λC + µC = (λ+ µ)C (the inclusion ⊆ holds because C is convex). This shows that
µC(x+ y) ≤ µC(x) +µC(y). So µC is sub-linear. The first two statements of (ii) are
obvious. To show that last one, assume µC(x) < 1. Then there exists a µ > 1 such
that µx ∈ C. Since 0 ∈ coreC, it follows from Lemma 2.3.2 that x ∈ coreC. So if
x /∈ coreC, then µC(x) ≥ 1. �
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Theorem 2.3.5 (Algebraic weak separation)
Let C and D be non-empty convex subsets of a vector space X such that coreD 6= ∅.
Then there exists f ∈ X ′ \ {0} such that

inf
x∈C

f(x) ≥ sup
y∈D

f(y)

if and only if C ∩ coreD = ∅.

Proof. The “only if” direction is clear. To show the “if” direction, we assume that
C ∩ coreD = ∅. Choose x0 ∈ coreD. Then A = C − x0 and B = D − x0 are
non-empty convex sets such that A∩ coreB = ∅ and B is absorbing. Therefore, the
Minkowski functional µB is real-valued and sub-linear. It follows from Mazur–Orlicz
that there exists an f ∈ X ′ satisfying

f ≤ µB on X and inf
x∈A

f(x) = inf
x∈A

µB(x).

By Lemma 2.3.2, one has µB ≤ 1 on B. On the other hand, µB ≥ 1 on X \ coreB,
and therefore, infx∈A µB(x) ≥ 1. So one obtains

f(x) ≥ 1 ≥ f(y) for all x ∈ A and y ∈ B.

In particular, f ∈ X ′ \ {0} and

f(x) ≥ 1 + f(x0) ≥ f(y) for all x ∈ C and y ∈ D.

�

Theorem 2.3.6 (Algebraic strong separation)
Let C and D be non-empty convex subsets of a vector space X. Then there exists
f ∈ X ′ such that

inf
x∈C

f(x) > sup
y∈D

f(y) (2.3.2)

if and only if there exists a convex absorbing set U such that C ∩ (D + U) = ∅.

Proof. If there exists f ∈ X ′ such that (2.3.2) holds, set

β := inf
x∈C

f(x)− sup
y∈D

f(y) > 0.

The set U := {x ∈ X : f(x) < β} is convex absorbing, and C does not intersect
D + U . This shows the “only if” direction.

For the “if” direction, assume there exists a convex absorbing set U such that
C ∩ (D + U) = ∅. Then 0 /∈ D + U − C. Since core (D + U − C) 6= ∅, one obtains
from Theorem 2.3.5 an f ∈ X ′ \ {0} such that

0 ≥ sup
x∈D+U−C

f(x),
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or equivalently,
inf
x∈C

f(x) ≥ sup
y∈D

f(y) + sup
u∈U

f(u).

Since U is absorbing, there exists u ∈ U such that f(u) > 0, and it follows that

inf
x∈C

f(x) > sup
y∈D

f(y).

�

2.4 Directional derivatives and sub-gradients

Definition 2.4.1 Let f : X → R ∪ {±∞} be a function on a vector space X and
x0 ∈ X such that f(x0) ∈ R. If the limit

f ′(x0;x) := lim
ε↓0

f(x0 + εx)− f(x0)

ε

exists (it is allowed to be +∞ or −∞), we call it the directional derivative of f at
x0 in the direction x.

If there exists x′ ∈ X ′ such that f ′(x0;x) = x′(x) for all x ∈ X, x′ is called
algebraic Gâteaux derivative of f at x0.

Definition 2.4.2 Let f : X → R ∪ {±∞} be a function on a vector space X and
x0 ∈ X such that f(x0) ∈ R. x′ ∈ X ′ is an algebraic sub-gradient of f at x0 if

f(x0 + x)− f(x0) ≥ x′(x) for all x ∈ X.

We denote the set of all algebraic sub-gradients of f at x0 by ∂af(x0) and call it
algebraic sub-differential of f at x0.

Definition 2.4.3 The effective domain of a function f : X → R ∪ {+∞} or f :
X → R ∪ {−∞} on a set X is

dom f := {x ∈ X : f(x) ∈ R} .

Exercise 2.4.4 Let f : X → R ∪ {±∞} be a convex function on a vector space
and x0 ∈ X such that f(x0) ∈ R. Show the following:

1.

f ′(x0;x) = inf
ε>0

f(x0 + εx)− f(x0)

ε
.

In particular, f ′(x0;x) exists for all x ∈ Rd.

2. f ′(x0, .) is sub-linear.

3. If x0 ∈ core {x ∈ X : f(x) ∈ R}, then f ′(x0;x) ∈ R for all x ∈ X.

4. The following are equivalent:



36 CHAPTER 2. GENERAL VECTOR SPACES

(i) f(x0) = minx f(x)

(ii) 0 ∈ ∂af(x0)

(iii) f ′(x0;x) ≥ 0 for all x ∈ X.

5. ∂af(x0) is a convex subset of X ′.

6. ∂af(x0) = ∂ag(0), where g(x) := f ′(x0;x).

7. The following are equivalent:

(i) z ∈ ∂fa(x0)

(ii) (−z, 1) supports epi f at (x0, f(x0)).

Lemma 2.4.5 Let f : X → R ∪ {±∞} be a convex function on a vector space X
such that f(x0) ∈ R. Assume there exists an algebraic neighborhood U of x0 such
that f(x) < +∞ for all x ∈ U . Then f(x) > −∞ for all x ∈ X.

Proof. Assume there exists x1 ∈ X such that f(x1) = −∞. Then there exists
x2 ∈ U and λ ∈ (0, 1) such that x0 = λx1 + (1− λ)x2. It follows that f(x0) = −∞,
a contradiction. �

Theorem 2.4.6 Let f be a proper convex function on a vector space X and x0 ∈ X.
Assume there exists an algebraic neighborhood U of x0 such that f(x) < +∞ for all
x ∈ U ∩ aff dom f . Then ∂af(x0) 6= ∅.

Proof. The restriction of the directional derivative g(x) := f ′(x0, x) to the subspace
Y = aff dom f − x0 is sub-linear and real-valued because f(x) < +∞ for all x ∈
U ∩ aff dom f . So it follows from the Hahn–Banach extension theorem that there
exists a y′ ∈ Y ′ such that y′(y) ≤ g(y), y ∈ Y . By Exercise 2.2.4, y′ has a linear
extension x′ ∈ X ′, and since g(x) = +∞ for x ∈ X \Y , one has x′(x) ≤ g(x), x ∈ X.
This shows that x′ ∈ ∂ag(0) = ∂fa(x0). �
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Topological Vector Spaces

3.1 Topological spaces

Definition 3.1.1 A topological space is a non-empty set X with a family τ of subsets
of X satisfying:

(i) ∅, X ∈ τ

(ii)
⋃
V ∈η V ∈ τ for every non-empty subset η ⊆ τ

(iii)
⋂k
i=1 Vi ∈ τ for every finite subset {V1, . . . , Vk} of τ .

τ is called a topology and the members of τ open sets. A set V ⊆ X is called closed
if X \V is open. The interior intC of a set C ⊆ X is the largest open set contained
in C. The closure clC is the smallest closed set containing C. The boundary bdC
of C is the set clC \ intC. C is dense in X if clC = X. (X, τ) is separable if it
contains a countable dense subset.

Definition 3.1.2 A filter on a non-empty set X is a family V of subsets satisfying

(i) ∅ /∈ V and X ∈ V.

(ii) If U, V ∈ V, then U ∩ V ∈ V.

(iii) If U ∈ V and U ⊆ V , then V ∈ V.

Definition 3.1.3 A subset U of a topological space (X, τ) is a neighborhood of a
point x ∈ X if x ∈ int U . The neighborhood filter τx of x is the family of all
neighborhoods of x. A subset Bx of τx is called a neighborhood base of x if for every
U ∈ τx there exists a V ∈ Bx such that V ⊆ U . (X, τ) is called first countable if every
x ∈ X has a countable neighborhood base. The neighborhood system of the topology
τ consists of all neighborhood filters τx, x ∈ X. (X, τ) is said to be Hausdorff (or
separated) if any two different points have disjoint neighborhoods.

37
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Exercise 3.1.4 Show that every point in a Hausdorff topological space is closed.

Exercise 3.1.5 Let (X, τ) be a topological space and x ∈ X. Show the following:

1. τx is a filter on X such that each U ∈ τx contains x.

2. Each U ∈ τx contains a V ∈ τx such that U ∈ τy for all y ∈ V .

Exercise 3.1.6 Let X be a non-empty set and Nx, x ∈ X, a collection of filters on
X satisfying 1. and 2. of Exercise 3.1.5. Show that the collection of all sets V ⊆ X
satisfying V ∈ Nx for every x ∈ V , forms a topology τ on X such that τx = Nx for
all x ∈ X.

Hint: The proof of the inclusion τx ⊆ Nx is straight-forward. To show the other
inclusion, let U ∈ Nx and note that x ∈ V := {y ∈ U : U ∈ Ny}. If it can be shown
that V belongs to τ , it follows that U ∈ τx.

Definition 3.1.7 A directed set is a non-empty set A with a preorder ≥ such that
for every pair (a, b) ∈ A2 there exists a c ∈ A such that c ≥ a and c ≥ b.

A net in a set X is a family (xa)a∈A of elements in X indexed by a directed set
A.

A net (xa)a∈A in a topological space (X, τ) is said to converge to a point x ∈ X
if for every neighborhood U of x there exists an a0 ∈ A such that xa ∈ U for all
a ≥ a0.

Exercise 3.1.8 Let C be a non-empty subset of a topological space X and x ∈ X.
Show that the following are equivalent:

(i) x ∈ clC;

(ii) C ∩ U 6= ∅ for every neighborhood U of x;

(iii) There exists a net (xa)a∈A in C converging to x.

Definition 3.1.9 Let (X, τ) be a topological space. A subset Y of X is compact if
for every subset η of τ satisfying

⋃
V ∈η V ⊇ Y there exists a finite subset {V1, . . . , Vk}

of η such that
⋃k
i=1 Vi ⊇ Y .

Exercise 3.1.10 Let (X, τ) be a topological space. Show the following:

(i) Single points in X are compact but not necessarily closed.

(ii) If (X, τ) is Hausdorff, then compact sets in X are closed.

Definition 3.1.11 Let (X, τ) be a topological space and Y a subset of X. The
topology induced by τ on Y is

τY := {V ∩ Y : V ∈ τ} .

Members of τY are called relatively open in Y .
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Definition 3.1.12 A function f : (X, τ)→ (Y, η) between topological spaces is con-
tinuous at a point x0 ∈ X if f−1(U) is a neighborhood of x0 for every neighborhood
U of f(x0). f is said to be continuous if it is continuous at every x ∈ X.

Exercise 3.1.13 Let f : (X, τ)→ (Y, η) be a function between topological spaces.
Show the following:

1. f is continuous if and only if f−1(V ) ∈ τ for every V ∈ η.

2. f is continuous at a point x ∈ X if and only if f(xa) converges to f(x) for every
net (xa)a∈A in X that converges to x.

3. If (X, τ) is first countable, then f is continuous at a point x ∈ X if and only if
f(xn) converges to f(x) for every sequence (xn)n∈N in X that converges to x.

4. If (X, τ) is not first countable, it is possible that f is not continuous at some
x ∈ X but f(xn) converges to f(x) for every sequence (xn)nN that converges to x.

Definition 3.1.14 A function f : (X, τ)→ R∪ {±∞} on a topological space is lsc
at a point x0 ∈ X if for every ε > 0 there exists a neighborhood U of x0 such that
f(x) ≥ f(x0)− ε for all x ∈ U . It is said to be lsc if it is lsc everywhere on X. f is
usc at x0 if −f is lsc at x0 and usc if −f is lsc. By f , we denote the function given
by

f(x0) := sup
U∈τx

inf
x∈U

f(x)

and call it lsc hull of f .

Exercise 3.1.15
Consider a function f : X → R ∪ {±∞} on a topological vector space.

1. Show that the following are equivalent:

(i) f is lsc

(ii) All sub-level sets
{
x ∈ Rd : f(x) ≤ c

}
, c ∈ R, are closed

(iii) epi f is closed

2. Show that the epigraph of f is the closure of epi f and f is the greatest lsc
minorant of f .

3. Let fi : X → R ∪ {±∞}, i ∈ I, be a family of lsc functions. Show that supi∈I fi
is lsc.

Definition 3.1.16 Let (Xi, τi), i ∈ I, be a family of topological spaces. The product
topology on

∏
i∈I Xi is the coarsest topology that makes all the projections continuous.

Definition 3.1.17 A pseudo-metric on a non-empty set X is a function d : X ×
X → R+ with the following three properties:
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(i) d(x, x) = 0 for all x ∈ X.

(ii) d(x, y) = d(y, x) for all x, y ∈ X.

(iii) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

If in addition to (i)–(iii), d satisfies

(iv) d(x, y) = 0 implies x = y,

then d is a metric.

Exercise 3.1.18 Let d be a pseudo-metric on a non-empty set X and define

Bn(x) := {y ∈ X : d(x, y) ≤ 1/n} , x ∈ X,n ∈ N.

Show that

Bx := {Bn(x) : n ∈ N} , x ∈ X,

define neighborhood bases inducing a first countable topology τ on X, which is
separable if and only if d is a metric.

Definition 3.1.19 A semi-norm on a vector space X is a sub-linear function p :
X → R+ such that

p(λx) = |λ|p(x) for all x ∈ X and λ ∈ R.

If in addition, p(x) = 0 implies x = 0, p is a norm.

Exercise 3.1.20 Let p be a semi-norm on a vector space X. Show that ...

1. d(x, y) := p(x− y) defines a pseudo-metric.

2. if p is a norm, then d is a metric.

Definition 3.1.21 An inner product (or scalar product) on a vector space is a map-
ping (x, y) ∈ X ×X 7→ 〈x, y〉 ∈ R with the properties:

(i) 〈λx+ y, z〉 = λ 〈x, z〉+ 〈y, z〉 for all λ ∈ R and x, y, z ∈ X.

(ii) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X.

(iii) 〈x, x〉 > 0 for all x ∈ X \ {0}.

Exercise 3.1.22 Let 〈x, x〉 be an inner product on a vector space X. Show that

||x|| := 〈x, x〉1/2 defines a norm.
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Definition 3.1.23 A topological vector space is a vector space X with a topology τ
such that the operations

(x, y) ∈ X ×X 7→ x+ y ∈ X and (λ, x) ∈ R×X 7→ λx ∈ X

are continuous with respect to the product topologies on X ×X and R×X, respec-
tively, where R is endowed with the usual topology induced by d(x, y) = |x− y|.

X is said to be locally convex if 0 has a neighborhood base consisting of convex
sets.

Exercise 3.1.24 Show that for a vector space X the following hold:

1. A norm on X induces a topology under which X is a locally convex topological
vector space.

2. For every x′ ∈ X ′, |x′(x)| defines a semi-norm on X.

3. Let D be a non-empty subset of X ′. Write neighborhood bases of the coarsest
topology on X making every x′ ∈ D continuous.

Remark 3.1.25
1. Let X be a topological vector space. Since the addition is continuous, the
translation x 7→ x + x0 is a homeomorphism for each x0 with inverse x 7→ x − x0.
Therefore, a subset V ⊆ X is open/closed/a neighborhood of 0 if and only if V +x0
is open/closed/a neighborhood of x0, respectively.

2. The multiplication with real numbers is also continuous. Therefore, for every
λ ∈ R\{0}, the mapping x 7→ λx is a homeormorphism with inverse x 7→ x/λ. So a
subset V ⊆ X is open/closed/a neighborhood of 0 if and only if λV is open/closed/a
neighborhood of 0, respectively.

Lemma 3.1.26 Let C be subset of a topological vector space X. Then intC ⊆
coreC. In particular, every 0-neighborhood in X is absorbing.

Proof. Let x ∈ intC and y ∈ X. Since the vector space operations are continuous,
there exists a ε > 0 such that x + λy ∈ C for all 0 ≤ λ ≤ ε. Hence, x ∈ coreC. If
U is a 0-neighborhood in X, then 0 ∈ intU , and therefore, U is absorbing. �

Lemma 3.1.27 Let C be a convex subset of a topological vector space X. Then the
following hold:

(i) If intC 6= ∅, then λ intC + (1− λ)clC ⊆ intC for all λ ∈ (0, 1].

(ii) intC and clC are convex.

(iii) If intC 6= ∅, then intC = coreC.
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Proof. (i) Let x ∈ intC, y ∈ clC and λ ∈ (0, 1]. There exists a neighborhood U of 0
in X such that x+ U ⊆ C. Since the vector space operations are continuous, there
exist neighborhoods V and W of 0 in X such that

(1− λ)

λ
V +

1

λ
W ⊆ U.

Moreover, there is a z ∈ C such that y − z ∈ V . So one has

λx+ (1− λ)y + w = λ

(
x+

(1− λ)

λ
(y − z) +

1

λ
w

)
+ (1− λ)z ∈ C

for all w ∈ W . This proves (i).
(ii) That intC is convex is a consequence of (i). If x, y ∈ clC, there exist nets

(xa)a∈A and (ya)a∈A converging to x and y, respectively. But then λxa+(1−λ)ya →
λx+ (1− λ)y for every 0 < λ < 1, and it follows that clC is convex.

(iii) We know from Lemma 3.1.26 that intC ⊆ coreC. On the other hand if
x ∈ coreC and there exist a y ∈ intC, there is a z ∈ C such that x = λy+ (1− λ)z
for some λ ∈ (0, 1]. So it follows from (i) that x ∈ intC. �

Exercise 3.1.28 Let f : X → R ∪ {±∞} be a convex function on a topological
vector space. Show that f is still convex.

Definition 3.1.29 We call a subset C of a vector space X balanced if λC ⊆ C for
all λ ∈ [−1, 1].

Lemma 3.1.30 Let X be a topological vector space. Then 0 has a neighborhood
base consisting of open balanced sets. If X is locally convex, 0 has a neighborhood
base consisting of convex open balanced sets.

Proof. Let U be a 0-neighborhood in X. Then there exists an open 0-neighborhood
V in X and ε > 0 such that λx ∈ U for all λ ∈ [−ε, ε] and x ∈ V . W = εV is still
an open 0-neighborhood in X and

⋃
−1≤λ≤1 λW is an open balanced 0-neighborhood

contained in U .
If X is locally convex, there exists a convex 0-neighborhood V contained in U .

W = intV is a convex open neighborhood of 0 contained in U and W ∩ (−W ) a
convex open balanced neighborhood of 0 contained in U . �

3.2 Continuous linear functionals and extension

results

Theorem 3.2.1 Let X be a topological vector space and f ∈ X ′ \ {0}. Then the
following are equivalent:

(i) f is continuous;
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(ii) f is continuous at 0;

(iii) f−1(0) is closed;

(iv) f−1(0) is not dense in X;

(v) f is bounded on some 0-neighborhood U in X;

(vi) There exists a non-empty open subset V of X such that f(V ) 6= R.

Proof. It is clear that (i) implies (ii) and (iii). (ii) ⇒ (i) follows since for every
x ∈ X, U is a 0-neighborhood if and only if x + U is an x-neighborhood. (iii) ⇒
(iv) follows since f−1(0) 6= X. (iv) ⇒ (v): If f−1(0) is not dense in X, it follows
from Lemma 3.1.30 that there exist x ∈ X and a balanced 0-neighborhood U such
that (x + U) ∩ f−1(0) = ∅. This implies that f is bounded on U . (v) ⇒ (ii): If U
is a 0-neighborhood on which f is bounded by m > 0, then |f(x)| ≤ m/n for all
all x ∈ U/n, which shows (ii). (v) ⇒ (vi): If f is bounded on a 0-neighborhood U
in X, then V = intU is a non-empty open set such that f(V ) 6= R. (vi) ⇒ (iv):
If V ⊆ X satisfies (vi), there exists a ∈ R such that V ∩ f−1(a) = ∅. Since f is
non-trivial, there exists a x ∈ f−1(a). Then V − x is a non-empty open set that
does not intersect f−1(0). It follows that f−1(0) is not dense in X. �

Remark 3.2.2 Theorem 3.2.1 shows that for a non-zero linear functional f : X →
R on a topological vector space one of the following holds:

(i) f−1(0) is a proper closed subspace of X and f is continuous.

(ii) f−1(0) is dense in X and f is not continuous.

Corollary 3.2.3 Let f : X → R be a linear function on a topological vector space
X that is dominated by a sub-linear function g : X → R which is continuous at 0.
Then f is continuous.

Proof. It follows from Lemma 3.1.30 that for given ε > 0, there exists a balanced
0-neighborhood U in X such that |g(x)| ≤ ε for all x ∈ U . Hence, f(x) ≤ g(x) ≤ ε
and −f(x) = f(−x) ≤ g(−x) ≤ ε for all x ∈ U . This shows that f is continuous at
0, which by Theorem 3.2.1 implies that it is continuous everywhere. �

Theorem 3.2.4 (Hahn–Banach topological extension theorem)
Let g : X → R be a sub-linear function on a topological vector space that is continu-
ous at 0 and f : Y → R a linear function on a subspace Y of X such that f(x) ≤ g(x)
for all x ∈ Y . Then there exists a continuous linear extension F : X → R of f such
that F (x) ≤ g(x) for all x ∈ X.

Proof. We know from the algebraic version of Hahn–Banach that there exists a
linear extension F : X → R of f that is dominated by g. By Corollary 3.2.3, F is
continuous. �
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Theorem 3.2.5 (Topological version of Mazur–Orlicz)
Let g : X → R be a sub-linear function on a topological vector space X that is con-
tinuous at 0 and C a non-empty convex subset of X. Then there exists a continuous
linear function f : X → R that is dominated by g and satisfies

inf
x∈C

f(x) = inf
x∈C

g(x). (3.2.1)

Proof. From the algebraic version of Mazur–Orlicz we know that there exist a linear
function f : X → R that is dominated by g and satisfies (3.2.1). By Corollary 3.2.3,
f is continuous. �

Definition 3.2.6 The topological dual of a topological vector space X consists of
the vector space

X∗ := {x′ ∈ X ′ : x′ is continuous} .

Remark 3.2.7 Every linear functional on Rd is continuous and can be represented
by a vector z ∈ Rd. Hence, (Rd)∗ = (Rd)′ = Rd.

Remark 3.2.8 For a general topological vector space X, the topological dual X∗

depends on the topology. But it is possible that there exist different topologies
inducing the same space X∗ of continuous linear functionals.

3.3 Separation with continuous linear functionals

Theorem 3.3.1 (Topological weak separation)
Let C and D be non-empty convex subsets of a topological vector space X such that
intD 6= ∅. Then there exists an f ∈ X∗ \ {0} such that

inf
x∈C

f(x) ≥ sup
y∈D

f(y) (3.3.2)

if and only if C ∩ intD = ∅.

Proof. We know from Lemma 3.1.27 that intC = coreC. So the “only if” direction is
clear. On the other hand, if C ∩ intD = ∅, it follows from algebraic weak separation
that there exists an f ∈ X ′ \ {0} satisfying (3.3.2). But then intD is a non-empty
open subset of X such that f(intD) 6= R. Thus one obtains from Theorem 3.2.1
that f is continuous. �

The following is an immediate consequence of Theorem 3.3.1:

Corollary 3.3.2 Let C be a closed convex subset of a topological vector space. If C
has non-empty interior, then it is supported at every boundary point by a non-trivial
continuous linear functional.
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Another consequence of Theorem 3.3.1 is:

Corollary 3.3.3 Let X be a topological vector space. Then X∗ 6= {0} if and only
if 0 has a convex neighborhood different from X.

Proof. If there exists f ∈ X∗\{0}, then {x ∈ X : f(x) < 1} is a convex 0-neighborhood
different from X. On the other hand, if U is such a neighborhood, there exists
x ∈ X \ U . Since intU 6= ∅ and {x} ∩ intU = ∅, the existence of an f ∈ X∗ \ {0}
follows from Theorem 3.3.1. �

Lemma 3.3.4 Let C and D be non-empty disjoint subsets of a topological vector
space X such that C is closed and D compact. Then there exists a neighborhood U
of 0 in X such that C ∩ (D + U) = ∅.

Proof. For every x ∈ D there exists a neighborhood Vx of 0 in X such that C ∩
(x + Vx) = ∅. Since the vector space operations are continuous, there is an open
neighborhood Ux of 0 in X satisfying Ux + Ux ⊆ Vx. Due to compactness, there are
finitely many x1, . . . , xn ∈ D such that D ⊆

⋃n
i=1(xi + Uxi). U =

⋂n
i=1 Uxi is again

a 0-neighborhood, and for every x ∈ D there exists an i such that x = xi + ui for
some ui ∈ Uxi . So for all u ∈ U , one has

x+ u = xi + ui + u ⊆ xi + Uxi + Uxi ⊆ xi + Vxi ,

and therefore, C ∩ (x+ U) = ∅. �

Theorem 3.3.5 (Topological strong separation)
Let C and D be non-empty disjoint convex subsets of a locally convex topological
vector space X such that C is closed and D is compact. Then there exists an f ∈
X∗ \ {0} such that

inf
x∈C

f(x) > sup
y∈D

f(y). (3.3.3)

Proof. We know from Lemma 3.3.4 that there exists a neighborhood U of 0 in X such
that C∩ (D+U) = ∅. Since X is locally convex, there exists a convex neighborhood
V of 0 with the same property. D + V is a convex set satisfying int (D + V ) 6= ∅
and C ∩ int (D + V ) = ∅. So it follows from Theorem 3.3.1 that there exists an
f ∈ X∗ \ {0} such that

inf
x∈C

f(x) ≥ sup
y∈D+V

f(y).

But, by By Lemma 3.1.26, V is absorbing, and one obtains (3.3.3). �

Remark 3.3.6 Note that in Theorem 3.3.5 we did not assume X to by Hausdorff
or D to be closed.
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Corollary 3.3.7 Let C be a non-empty closed convex subset of a locally convex
topological vector space X and x0 ∈ X \ C. Then there exists an f ∈ X∗ \ {0} such
that

inf
x∈C

f(x) > f(x0).

Proof. The corollary is a consequence of Theorem 3.3.5 since {x0} is compact. �

As an immediate consequence one obtains the following:

Corollary 3.3.8 Let C be a proper non-empty closed convex subset of a locally
convex topological vector space X. Then

C =
⋂
{H(x∗, c) : x∗ ∈ X∗, c ∈ R, C ⊆ H(x∗, c)} ,

where
H(x∗, c) := {x ∈ X : x∗(x) ≥ c} .

Corollary 3.3.9 Let X be a locally convex topological vector space. Then the fol-
lowing two are equivalent:

(i) X is Hausdorff.

(ii) For any two different points x, y ∈ X, there exists an f ∈ X∗ such that
f(x) 6= f(y).

Proof. If X is Hausdorff, then single points are closed. So one obtains from Corollary
3.3.7 that different points can be separated with continuous linear functionals.

On the other hand, if there exists an f ∈ X∗ such that f(x) < f(y), set m :=
(f(x) + f(y))/2. Then {z ∈ X : f(z) < m} is an x-neighborhood that does not
intersect the y-neighborhood {z ∈ X : f(z) > m}. �

Definition 3.3.10 The topological dual cone of a non-empty subset C of a topolog-
ical vector space X is given by

C∗ := {x∗ ∈ X∗ : x∗(x) ≥ 0 for all x ∈ C} .

Exercise 3.3.11 Let C be a non-empty subset of a locally convex topological vector
space X. Show the following:

1. C∗ is a convex cone in X∗ that is closed with respect to σ(X∗, X) (the coarsest
topology on X∗ such that all x, viewed as linear functionals on X∗, are continuous).

2. The set
{x ∈ X : x∗(x) ≥ 0 for all x∗ ∈ C∗}

is the smallest closed convex cone in X that contains C.
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3.4 Continuity of convex functions

Theorem 3.4.1 Let f : X → R∪{±∞} be a convex function on a topological vector
space X and x0 ∈ X such that f(x0) ∈ R. Assume there exists a neighborhood U of
0 such that supx∈U f(x0 + x) < +∞. Then f is proper convex, x0 ∈ int dom f and
f is continuous on int dom f .

Proof. Since x0 ∈ core (x0 + U), it follows from the convexity of f that f(x) > −∞
for all x ∈ X. Hence f is proper convex, and x0 ∈ int dom f .

Now choose a balanced 0-neighborhood V contained in U and set

m := sup
x∈V

f(x) ∈ R.

Then for x ∈ V and 0 < λ ≤ 1, one has

f(x0 + λx) = f(λ(x0 + x) + (1− λ)x0) ≤ λf(x0 + x) + (1− λ)f(x0),

and therefore,

f(x0 + λx)− f(x0) ≤ λ[f(x0 + x)− f(x0)] ≤ λ(m− f(x0)).

On the other hand,

x0 =
1

1 + λ
(x0 + λx) +

λ

1 + λ
(x0 − x).

So

f(x0) ≤
1

1 + λ
f(x0 + λx) +

λ

1 + λ
f(x0 − x),

from which one obtains

f(x0)− f(x0 + λx) ≤ λ[f(x0 − x)− f(x0)] ≤ λ(m− f(x0)).

Hence, we have proved that

|f(x)− f(x0)| ≤ λ(m− f(x0)) for all x ∈ x0 + λV,

showing that f is continuous at x0.
Finally, let x1 ∈ int dom f . Then there exists a µ > 1 such that

x0 + µ(x1 − x0) ∈ dom f.

So one has for all x ∈ V

f(x1 + (1− 1/µ)x) = f(x1 − (1− 1/µ)x0 + (1− 1/µ)(x0 + x))

≤ 1

µ
f(x0 + µ(x1 − x0)) +

(
1− 1

µ

)
f(x0 + x)

≤ 1

µ
f(x0 + µ(x1 − x0)) +

(
1− 1

µ

)
m.

This shows that f is bounded above on x1 + (1 − 1/µ)V , and it follows as above
that f is continuous at x1. �
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Corollary 3.4.2 Let f : X → R ∪ {+∞} be a convex function on a topological
vector space. Then the following are equivalent:

(i) int dom f is not empty, and f is continuous on int dom f .

(ii) int epi f is not empty.

Proof. (i) ⇒ (ii): If (i) holds, there exists a neighborhood U of some x0 ∈ X and a
y ∈ R such that f(x) ≤ y for all x ∈ U . It follows that U × [b,+∞) ⊆ epi f , which
implies (ii).

(ii) ⇒ (i): If (x0, y0) ∈ int epi f , there exists a neighborhood U of x0 in X and
an ε > 0 such that U × [y0 − ε, x0 + ε] ⊆ epi f . In particular, f(x0) ∈ R and
supx∈U f(x) < +∞. So (ii) follows from Theorem 3.4.1. �

Definition 3.4.3 Let C be a subset of a topological vector space X.

• C is called a barrel if it is closed, convex, balanced and absorbing.

• X is called a barreled space if it is locally convex and every barrel is a neigh-
borhood of 0.

Remark 3.4.4 It can be shown that every Banach space is barreled. But there
exist normed vector spaces that are not barreled.

Corollary 3.4.5 Let f be a lsc proper convex function on a barreled space X. Then
f is continuous on int dom f .

Proof. Let us suppose that int dom f is not empty. Then we can assume without
loss of generality that 0 ∈ int dom f . Choose a number m > f(0). Then

U := {x ∈ X : f(x) ≤ m and f(−x) ≤ m}

is closed, convex and balanced. Next, note that for every x ∈ X, the function
fx(λ) := f(λx) is a proper convex function on R with 0 ∈ int dom fx. It follows
that fx is continuous at 0. So there exists an ε > 0 such that f(λx) ≤ m for all
λ ∈ [−ε, ε]. This shows that U is absorbing and therefore, a barrel. Since X is
barreled, U is a 0-neighborhood. Now the corollary follows from Theorem 3.4.1. �

3.5 Derivatives and sub-gradients

Definition 3.5.1 Let f : X → R ∪ {±∞} be a function on a normed vector space
and x0 ∈ X such that f(x0) ∈ R. A Fréchet derivative of f at x0 is a continuous
linear functional x∗ ∈ X∗ satisfying

lim
x 6=0, ||x||→0

f(x0 + x)− f(x0)− x∗(x)

||x||
= 0 for all x ∈ X.
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Definition 3.5.2 Let f : X → R∪{±∞} be a function on a topological vector space
and x0 ∈ X such that f(x0) ∈ R. A Gâteaux-derivative of f at x0 is a continuous
linear functional x∗ ∈ X∗ satisfying x∗(x) = f ′(x0;x) for all x ∈ X.

Definition 3.5.3 Let f : X → R ∪ {±∞} be a function on a topological vector
space and x0 ∈ X such that f(x0) ∈ R. The sub-differential of f at x0 is the set
∂f(x0) := ∂af(x0) ∩X∗. Elements of ∂f(x0) are called sub-gradients of f at x0.

Exercise 3.5.4 Let f : X → ∪{±∞} be a convex function on a topological vector
space and x0 ∈ X such that f(x0) ∈ R. Show the following:

1. ∂f(x0) is a σ(X∗, X)-closed convex subset of X∗.

2. If the function g(x) := f ′(x0;x) is continuous at x = 0, then

∂f(x0) = ∂af(x0) = ∂g(0) = ∂ag(0).

Theorem 3.5.5 Let f : X → R {±∞} be a convex function on a topological vector
space and x0 ∈ X such that f(x0) ∈ R. If f is continuous at x0, then ∂f(x0) 6= ∅.

Proof. It follows from Theorem 3.4.1 that f is proper convex, and x0 has a neigh-
borhood U on which f is bounded from above. So one obtains from Theorem 2.32
that there exists x′ ∈ ∂af(x0). It follows that x′ is bounded from above on U − x0,
which by Theorem 3.2.1, impies that it is continuous. �

Lemma 3.5.6 Let f : X → R ∪ {±∞} be a lsc convex function on a topological
vector space and x0 ∈ X such that f(x0) ∈ R. Then f is proper convex.

Proof. Assume there exists x1 ∈ X such that f(x1) = −∞. Then f(λx0 + (1 −
λ)x1) = −∞ for all λ ∈ [0, 1). Since λx0 + (1−λ)x1) converges to x0 for λ→ 1, one
obtains f(x0) = −∞, which contradicts the assumption. �

Lemma 3.5.7 Let f be a proper convex function on X and x0 ∈ dom f such that
∂f(x0) 6= ∅. Then f(x0) = f(x0) and ∂f(x0) = ∂f(x0). In particular, f is proper
convex.

Proof. Choose x∗ ∈ ∂f(x0). The affine function g(x) = f(x0) +x∗(x−x0) minorizes
f and equals f at x0. So g also minorizes f and equals f at x0. This shows f(x0) =
g(x0) = f(x0) and ∂f(x0) ⊆ ∂f(x0). ∂f(x0) ⊇ ∂f(x0) follows since f(x0) = f(x0)
and f ≥ f . �

Theorem 3.5.8 A lsc convex function f : X → R ∪ {+∞} on a locally convex
topological vector space equals the point-wise supremum of all its continuous affine
minorants.
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Proof. If f is constantly equal to +∞, the theorem is clear. So we can assume
dom f 6= ∅. Choose a pair (x0, w) ∈ X × R that does not belong to epi f . By
Corollary 3.3.9, there exists (x∗, v) ∈ X∗ × R such that

m := inf
(x,y)∈epi f

(x∗(x) + yv) > x∗(x0) + wv.

It follows that v ≥ 0. If v > 0, one can scale and assume v = 1. Then m − x∗(x)
is an affine minorant of f whose epigraph does not contain (x0, w). If v = 0, set
λ := m − x∗(x0) > 0 and choose x1 ∈ dom f . Since (x1, f(x1) − 1) is not in epi f ,
there exists (y∗, v′) ∈ X∗ × R such that

m′ := inf
(x,y)∈epi f

(y∗(x) + yv′) > y∗(x1) + (f(x1)− 1)v′.

Since x1 ∈ dom f , one must have v′ > 0. So by scaling, one can assume v′ = 1. Now
choose

δ >
1

λ
(w + y∗(x0)−m′)+

and set z∗ := δx∗ + y∗. Then

m′′ := inf
(x,y)∈epi f

(z∗(x) + y) ≥ δm+m′

= δλ+ δx∗(x) +m′ > z∗(x0) + w.

So m′′ − z∗(x) is an affine minorant of f whose epigraph does not contain (x0, w).
This completes the proof of the theorem. �

3.6 Dual pairs

Definition 3.6.1 Two vector spaces X and Y together with a bilinear function
〈., .〉 : X × Y → R form a dual pair if the following hold:

(i) For every x ∈ X \ {0} there exists a y ∈ Y such that 〈x, y〉 6= 0;

(ii) For every y ∈ Y \ {0} there exists a x ∈ X 〈x, y〉 6= 0.

σ(X, Y ) is the coarsest topology on X making all y ∈ Y continuous. It is called weak
topology induced by Y . A locally convex topology τ on X is said to be consistent with
Y if (X, τ)∗ = Y . Analogously, the weak topology σ(Y,X) is the coarsest topology on
Y such that all x ∈ X are continuous. A locally convex topology τ on Y is consistent
with X if (Y, τ)∗ = X.

Exercise 3.6.2 Show that the following are dual pairs:

1. X = Y = Rd, 〈x, y〉 =
∑d

i=1 xiyi;

2. X = Y = H if H is a vector space with an inner product 〈., .〉;
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3. Y = X ′ for a vector space X with 〈x, y〉 = y(x);

4. Y = X∗ for a Hausdorff locally convex topological vector space X with 〈x, y〉 =
y(x); e.g., X could be a normed vector space;

5. X = Lp(Ω,F , µ), Y = Lq(Ω,F , µ) with 〈x, y〉 =
∫
xydµ, where (Ω,F , µ) is a

measure space and 1/p+ 1/q = 1.

Exercise 3.6.3 Let (X, Y ) be a dual pair. Show the following:

1. For each y ∈ Y ,
U(y) := {x ∈ X : | 〈x, y〉 | ≤ 1}

is a convex balanced neighborhood of 0 in X with respect to σ(X, Y ).

2.
U := {U(y1) ∩ · · · ∩ U(yn) : n ∈ R, y1, . . . , yn ∈ Y }

is a neighborhood base of 0 in X with respect to σ(X, Y ).

3. X with the topology σ(X, Y ) is a Hausdorff locally convex topological vector
space.

Exercise 3.6.4 Let H be a Hilbert space. Show the following:

(i) ||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2 for all x, y ∈ H.

(ii) If C is a non-empty closed convex subset of H, there exists a unique x0 ∈ C
such that

||x0|| = inf
x∈C
||x||.

(iii) If D is a non-empty closed subspace of H and x ∈ H, there exists a unique
y ∈ D such that

||x− y|| = inf
v∈D
||x− v||.

This y ∈ D satisfies

〈x− y, v〉 = 0 for all v ∈ D.

In particular, H = D +D⊥ and D ∩D⊥ = {0}.

(iv) If f : H → R is a continuous linear functional, f−1(0) is a closed linear sub-
space of H. Show that there exists a z ∈ H such that f−1(0)⊥ = {λz : λ ∈ R}.
It follows that there exists a y ∈ H such that f(x) = 〈x, y〉 for all x ∈ X. This
shows that H∗ can be identified with H.

Theorem 3.6.5 (Fundamental theorem of duality)
Let X be a vector space and x′0, . . . , x

′
n ∈ X ′. Then the following are equivalent:

(i) x′0 =
∑n

i=1 λix
′
i for some λ ∈ Rn
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(ii)
⋂n
i=1 x

′−1
i (0) ⊆ x′−10 (0).

Proof. (i)⇒ (ii) is clear. To show (ii)⇒ (i), define a linear function f : X → Rn by
f(x) := (x′1(x), . . . , x′n(x)). Due to (ii), there exists a linear function g : f(X)→ R
such that x′0(x) = g ◦ f(x) for all x ∈ X. g can be extended to a linear function
G : Rn → R, and G has a representation of the form G(x) = λTx for some λ ∈ Rn.
This shows (i). �

Theorem 3.6.6 (Duality theorem for dual pairs)
Let (X, Y ) be a dual pair of vector spaces. Then (X, σ(X, Y ))∗ = Y and (Y, σ(Y,X))∗ =
X.

Proof. First note that it follows from Definition 3.6.1 that two different elements
y1, y2 ∈ Y induce different continuous linear functionals on (X, σ(X, Y )).

Now pick a x′ ∈ X ′ that is continuous with respect to σ(X, Y ). Then there exist
y1, . . . , yn ∈ Y such that

{x ∈ X : | 〈x, yi〉 | ≤ 1 for all i = 1, . . . , n} ⊆ {x ∈ X : |x′(x)| ≤ 1} ,
implying that

n⋂
i=1

y−1i (0) ⊆ x′−1(0).

By Theorem 3.6.5, there exists λ ∈ Rn such that x′ =
∑n

i=1 λiyi, implying that
x′ ∈ Y . This shows (X, σ(X, Y ))∗ = Y . (Y, σ(Y,X))∗ = X follows by symmetry. �

Remark 3.6.7 Let X be a Hausdorff locally convex topological vector space. It
follows from Theorem 3.6.6 that (X, σ(X,X∗))∗ = X∗ and (X∗, σ(X∗, X))∗ = X.
σ(X,X∗) is called the weak topology on X and σ(X∗, X) the weak* topology on
X∗.

For 1 < p, q < ∞ such that 1/p + 1/q one has (Lp, ||.||p)∗ = Lq and Lp =
(Lq, ||.||q)∗. But (L1, ||.||1)∗ = L∞ and (L∞, ||.||∞)∗ = ba, which is strictly larger
than L1.

Theorem 3.6.8 (Closed convex sets in dual pairs)
Let (X, Y ) be a dual pair of vector spaces. Then all locally convex vector space
topologies on X consistent with Y have the same collection of closed convex sets in
X.

Proof. By Corollary 3.3.8, every proper closed convex subset C of X equals the
intersection of all closed half-spaces containing C. But this intersection depends
only on Y . �

Corollary 3.6.9 Let (X, Y ) be a dual pair of vector spaces. Then all locally convex
vector space topologies on X consistent with Y have the same collections of lsc convex
functions f : X → R ∪ {±∞} and lsc quasi-convex functions f : X → R ∪ {±∞}.
Proof. A function f : X → R ∪ {±∞} is lsc if and only if all sub-level sets
{x ∈ X : f(x) ≤ c}, c ∈ R, are closed. If f is (quasi-)convex, its sub-level sets
are convex. So the corollary follows from Theorem 3.6.8. �
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3.7 Convex conjugates

In this whole subsection, (X, Y ) is dual pair of vector spaces. X is endowed with
the topology σ(X, Y ) and Y with σ(Y,X). For instance, X could be a normed
vector space and Y = X∗, or more generally, X could be a Hausdorff locally convex
topological vector space and Y = X∗.

Definition 3.7.1 The convex conjugate of a function f : X → R ∪ {±∞} is the
function f ∗ : Y → R ∪ {±∞} given by

f ∗(y) := sup
x∈X
{〈x, y〉 − f(x)} .

The convex conjugate of a function h : Y → R ∪ {±∞} is the function h∗ : X →
R ∪ {±∞} given by

h∗(x) := sup
y∈Y
{〈x, y〉 − h(y)} .

Exercise 3.7.2
Consider functions f, g : X → R ∪ {±∞}. Show that ...

1. f ∗ is convex and lsc.

2. f ≥ f ∗∗

3. f ≤ g implies f ∗ ≥ g∗

4. f ∗∗∗ = f ∗.

Definition 3.7.3 Let C be a subset of X. The indicator function δC : X → R ∪
{+∞} is defined to be 0 on C and +∞ outside of C. The convex conjugate δ∗C is
called support function of C.

Exercise 3.7.4 Let f : X → R be a continuous affine function of the form f(x) =
〈x, y〉 − v for a pair (y, v) ∈ Y × R. Show that f ∗ = v + δy and f ∗∗ = f .

Exercise 3.7.5 Consider a function f : X → R ∪ {±∞}.
1. Show that the Young–Fenchel inequality holds:

f ∗(y) ≥ 〈x, y〉 − f(x) for all (x, y) ∈ X × Y.

2. Show that if f(x0) ∈ R, the following are equivalent

(i) y ∈ ∂f(x0)

(ii) 〈x, y〉 − f(x) achieves its supremum in x at x = x0

(iii) f(x0) + f ∗(y) = 〈x0, y〉
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3. Show that if f(x0) = f ∗∗(x0) ∈ R, the following conditions are equivalent to
(i)–(iii)

(iv) x0 ∈ ∂f ∗(y)

(v) 〈x0, v〉 − f ∗(v) achieves its supremum in v at v = y

(vi) y ∈ ∂f ∗∗(x0)

Theorem 3.7.6 (Fenchel–Moreau Theorem)
Let f : X → R∪{+∞} be a function whose lsc convex hull conv f does not take the
value −∞. Then conv f = f ∗∗. In particular, if f is lsc and convex, then f = f ∗∗.

Proof. We know that f ≥ f ∗∗. Since f ∗∗ is lsc and convex, one obtains conv f ≥ f ∗∗.
Now let h be a continuous affine minorant of conv f . Then it also minorizes f . So
one has h = h∗∗ ≤ f ∗∗. But by Theorem 3.5.8, conv f is the point-wise supremum
of its continuous affine minorants. So one gets conv f ≤ f ∗∗. �

Corollary 3.7.7 If f is a lsc proper convex function on X, then f ∗ is lsc proper
convex.

Proof. f ∗ is lsc convex for every function f : X → R ∪ {±∞}. If f is lsc proper
convex, one obtains from Theorem 3.7.6 that f = f ∗∗, and it follows that f ∗ is
proper convex. �

Corollary 3.7.8 Let C be a non-empty subset of X with closed convex hull D. Then
δ∗C(y) = supx∈D 〈x, y〉 and δ∗∗C = δD.

Proof. δ∗∗C = δD follows from Theorem 3.7.6 since δD is the lsc convex hull of δC .
Now one obtains δ∗C = δ∗∗∗C = δ∗D, and the corollary follows. �

Corollary 3.7.9 Let f be a lsc proper sub-linear function on X. Then f = δ∗∂f(0)
and f ∗ = δ∂f(0). In particular, f(0) = 0 and ∂f(0) 6= ∅.

Proof. It can easily be checked that f ∗ = δC for the set

C = {y ∈ Y : 〈x, y〉 ≤ f(x) for all x ∈ X} .

By Theorem 3.7.6, one has f = δ∗C . In particular, C is non-empty, f(0) = 0 and
∂f(0) = C. �

Corollary 3.7.10 Let f : X → R∪{±∞} be a convex function on a normed vector
space and x0 ∈ Rd such that f(x0) ∈ R. Assume there exists a neighborhood U of
x0 and a constant M ∈ R+ such that

f(x)− f(x0) ≥ −M ||x− x0|| for all x ∈ U. (3.7.4)

Then ∂f(x0) 6= ∅.
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Proof. It follows from condition (3.7.4) that g(x) := f ′(x0;x) ≥ −M ||x||, and
therefore, g(x) ≥ −M ||x|| for all x ∈ X. So one obtains from Corollary 3.7.9 that
g(0) = 0 = g(0) and ∂g(0) 6= ∅, which implies that ∂f(x0) = ∂g(0) 6= ∅. �

Theorem 3.7.11 Let f be a proper convex function on X and x0 ∈ dom f . If f is
continuous at x0, then

f ′(x0;x) = sup
y∈∂f(x0)

〈x, y〉 , x ∈ X. (3.7.5)

Proof. Consider the sub-linear function g(x) = f ′(x0;x). It follows from Theorem
3.5.5 that ∂g(0) = ∂f(x0) 6= ∅. Since g is bounded above on a neighborhood of
0, one obtains from Theorem 3.4.1 that g is continuous on X. So it follows from
Corollary 3.7.9 that g = δ∗C for C = ∂g(0) = ∂f(x0), which proves the theorem. �

3.8 Inf-convolution

Definition 3.8.1 Let fj : X → R ∪ {+∞}, j = 1, . . . , n, be functions on a vector
space. The inf-convolution of fj, j = 1, . . . , n, is the function

�n
j=1fj(x) := inf

x1+···+xn=x

n∑
j=1

fj(xj).

The inf-convolution is said to be exact if the infimum is attained.

Lemma 3.8.2 Let fj : X → R ∪ {+∞}, j = 1, . . . , n, be convex functions on a
vector space X. Then f = �n

j=1fj is convex.

Proof. If f ≡ +∞, it is convex. If not, let (x, v), (y, w) ∈ epi f , λ ∈ (0, 1) and ε > 0.
There exist xj and yj, j = 1, . . . , n, such that

∑n
j=1 xj = x,

∑n
j=1 f(xj) ≤ v + ε,∑n

j=1 yj = y and
∑n

j=1 f(yj) ≤ w+ε. Set zj = λxj+(1−λ)yj. Then z :=
∑n

j=1 zj =
λx+ (1− λ)y and

f(z) ≤
n∑
j=1

fj(zj) ≤
n∑
j=1

λfj(xj) + (1− λ)f(yj) ≤ λv + (1− λ)w + ε.

It follows that f(z) ≤ λv + (1− λ)w, which shows that epi f and f are convex. �

Lemma 3.8.3 Let fj, j = 1, . . . , n, be proper convex functions on a topological
vector space X and denote f = �n

j=1fj. Assume f(x0) =
∑

j fj(xj) < +∞ for some
xj summing up to x0 and f1 is bounded from above on a neighborhood of x1. Then
f is a proper convex function, x0 ∈ int dom f and f is continuous on int dom f .
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Proof. By definition of f , one has

f(x0 + x)− f(x0) ≤ f1(x1 + x) +
n∑
j=2

fj(xj)−
n∑
j=1

fj(xj) = f1(x1 + x)− f1(x1)

for all x ∈ X. It follows that f is bounded from above on a neighborhood of x0.
Now the lemma is a consequence of Theorem 3.4.1. �

Lemma 3.8.4 Consider functions fj : X → R∪{+∞}, j = 1, . . . , n, on a topolog-
ical vector space and denote f = �n

j=1fj. Assume f(x0) =
∑n

j=1 fj(xj) < +∞ for
some xj summing up to x0. Then ∂f(x0) =

⋂n
j=1 ∂fj(xj).

Proof. Assume x∗ ∈ ∂f(x0) and x ∈ X. Then

f1(x1+x)−f1(x1) = f1(x1+x)+
n∑
j=2

fj(xj)−
n∑
j=1

fj(xj) ≥ f(x0+x)−f(x0) ≥ x∗(x).

Hence x∗ ∈ ∂f1(x1), and it follows by symmetry that ∂f(x0) ⊆
⋂n
j=1 ∂fj(xj). On the

other hand, if x∗ ∈
⋂n
j=1 ∂fj(xj) and x ∈ X, choose yj such that

∑n
j=1 yj = x0 + x.

Then
n∑
j=1

fj(yj) ≥
n∑
j=1

fj(xj) + x∗(yj − xj) =
n∑
j=1

fj(xj) + x∗(x).

So f(x0 + x)− f(x0) ≥ x∗(x), and the lemma follows. �

Lemma 3.8.5 Let fj, j = 1, . . . , n, be proper convex functions on a topological
vector space X and denote f = �n

j=1fj. Assume f(x0) =
∑

j fj(xj) < +∞ for some
xj summing up to x0 and f1 is Gâteaux-differentiable at x1 with f ′1(x1;x) = x∗(x)
for some x∗ ∈ X∗. Then f is Gâteaux-differentiable at x0 with f ′(x0;x) = x∗(x). In
particular, ∂f(x0) = {x∗}.

Proof. One has

f(x0 + x)− f(x0) ≤ f1(x1 + x) +
n∑
j=2

fj(xj)−
n∑
j=1

fj(xj) = f1(x1 + x)− f1(x1)

for all x ∈ X. It follows that the directional derivative g(x) := f ′(x0;x) satisfies

g(x) ≤ f ′1(x1;x) = x∗(x)

for all x ∈ X. But by Lemma 3.8.2, f is convex. So g is sub-linear, and it follows
that g(x) = x∗(x). �

Lemma 3.8.6 Let (X, Y ) be a dual pair of vector spaces and fj : X → R∪ {+∞},
j = 1, . . . , n, functions none of which is identically equal to +∞. Then

(
�n
j=1fj

)∗
=∑n

j=1 f
∗
j .
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Proof.

(
�n
j=1fj

)∗
(y) = sup

x
(〈x, y〉 −�n

j=1fj(x)) = sup
x1,...,xn

n∑
j=1

(〈xj, y〉 − fj(xj)) =
n∑
j=1

f ∗j (y).

�
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Chapter 4

Convex Optimization

In this chapter we study the minimization problem

inf
x∈X

f(x) (P)

for a function f : X → R∪ {±∞} on a vector space. If one wants to constrain x to
be in a subset C ⊆ X, one can replace f with f + δC .

4.1 Perturbation and the dual problem

We assume that there exist vector spaces Y,W,Z such that (X,W ) and (Y, Z) are
dual pairs. A perturbation of f is a function F : X × Y → R ∪ {±∞} such
that f(x) = F (x, 0). Note that ((X, Y ), (W,Z)) is again a dual pair with pairing
〈(x, y), (w, z)〉 := 〈x,w〉+〈y, z〉. The value function associated with F is the function
u : Y → R ∪ {±∞} given by

u(y) := inf
x∈X

F (x, y).

In particular, u(0) = infx f(x).
The dual problem of (P) is

sup
z∈Z
−F ∗(0, z) = − inf

z∈Z
F ∗(0, z), (D)

where F ∗ is the convex conjugate

F ∗(w, z) := sup
(x,y)∈X×Y

(〈x,w〉+ 〈y, z〉 − F (x, y)) .

The dual value function is the function v : W → R ∪ {±∞}, given by

v(w) := sup
z∈Z
−F ∗(w, z) = − inf

z∈Z
F ∗(w, z).

59
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Proposition 4.1.1 (Weak Duality)
One always has u(0) ≥ v(0).

Proof. By the Young–Fenchel inequality, one has

F ∗(w, z) ≥ 〈x,w〉+ 〈y, z〉 − F (x, y) for all x, y, w, z.

In particular,
F (x, 0) ≥ −F ∗(0, z) for all x, z,

and the proposition follows. �

The dual problem of (D) is

sup
x∈X
−F ∗∗(x, 0) = − inf

x∈X
F ∗∗(x, 0), (BD).

If F = F ∗∗, then (BD) is equivalent to (P). In the general case, one obtains from
Proposition 4.1.1 applied to (D) and (BD) that

sup
z
−F ∗(0, z) = − inf

z
F ∗(0, z) ≤ inf

x
F ∗∗(x, 0) ≤ inf

x
F (x, 0),

and both inequalities can be strict. Note that the first term is a “concave max”, the
third term a “convex min”, and the last term a “min” of a general function.

Lemma 4.1.2 If F is convex, then u : Y → R ∪ {±∞} is convex too.

Proof. Assume there exist (y1, r1), (y2, r2) ∈ epiu. Choose λ ∈ (0, 1) and ε > 0.
There are x1, x2 ∈ X such that

F (xi, yi) ≤ ri + ε, i = 1, 2.

So

u(λy1 + (1− λ)y2) ≤ F (λx1 + (1− λ)x2, λy1 + (1− λ)y2)

≤ λF (x1, y1) + (1− λ)F (x2, y2) ≤ λr1 + (1− λ)r2 + ε,

which shows that epiu and u are convex. �

Exercise 4.1.3 Show that u∗(z) = F ∗(0, z) and v(0) = u∗∗(0). In particular, strong
duality u(0) = v(0) is equivalent to u(0) = u∗∗(0).

Definition 4.1.4 Problem (P) is called normal if u(0) = v(0) ∈ R. It is called
stable if it is normal and problem (D) has a solution.

Lemma 4.1.5 Assume that F is convex. Then (P) is normal if and only if u(0) =
u(0) ∈ R.
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Proof. If (P) is normal, then u(0) = v(0) = u∗∗(0) ∈ R, which implies u(0) =
u(0) ∈ R. On the other hand, we know from Lemma 4.1.2 that u is convex. So
if u(0) = u(0) ∈ R, one obtains from Lemma 3.5.6 that u is a lsc proper convex
function, and it follows from Theorem 3.7.6 that u(0) = u(0) = u∗∗(0) = v(0) ∈ R.�

Proposition 4.1.6 (P) is stable if and only if u(0) ∈ R and ∂u(0) 6= ∅.

Proof. If (P) is stable, then there exists z such that u(0) = v(0) = −F ∗(0, z) ∈ R.
So one has

u(0) = v(0) = 〈0, z〉 − u∗(z) ∈ R,

and it follows that z ∈ ∂u(0). On the other hand, if u(0) ∈ R and z ∈ ∂u(0), then

u(0) = 〈0, z〉 − u∗(z) = −F ∗(0, z),

which by weak duality, implies that z is a solution of (D). �

Theorem 4.1.7 (Fundamental duality formula of convex analysis)
Assume F is convex and u(0) ∈ R. Then (P) is stable if one of the following
conditions holds:

(i) There exists a neighborhood U of 0 in Y such that supy∈U u(y) < +∞.

(ii) Y is barreled, u is lsc and 0 ∈ int domu;

(iii) Y is a normed vector space and there exists a constant M ∈ R+ such that

u(y)− u(0) ≥ −M ||y||

for all y in a neighborhood of 0 in Y ;

(iv) Y = Rd, u does not take the value −∞ and 0 ∈ ri domu;

(v) Y = Rd, u(y) < +∞ for y in a neighborhood of 0 in Y .

Proof. By Proposition 4.1.6, it is enough to show that ∂u(0) 6= ∅. We know from
Lemma 4.1.2 that u is convex. So ∂u(0) 6= ∅ follows from each of the conditions
(i)–(v). �

In the following, consider functions f : X → R∪{+∞} and g : Y → R∪{+∞}.
Moreover, let A : X → Y be a continuous linear function and define the adjoint
A∗ : Z → W by 〈x,A∗z〉 := 〈Ax, z〉. Denote

p := inf
x∈X
{f(x) + g(Ax)} (P− FR)

d := sup
z∈Z
{−f ∗(−A∗z)− g∗(z)} (D− FR)

As a consequence of Proposition 4.1.1 and Theorem 4.1.7, one obtains the fol-
lowing
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Corollary 4.1.8 (Fenchel–Rockafellar duality theorem)
One always has p ≥ d. Moreover, p = d and (D-FR) has a solution if f and g are
convex, p ∈ R and one of the following conditions holds:

(i) The function h(y) := infx {f(x) + g(Ax+ y)} satisfies supy∈U h(y) < +∞ for
some neighborhood U of 0 in Y;

(ii) Y is barreled, h is lsc and 0 ∈ int domh;

(iii) Y is a normed vector space and there exists a constant M ∈ R+ such that

h(y)− h(0) ≥ −M ||y||

for all y in a neighborhood of 0 in Y ;

(iv) Y = Rd, h does not take the value −∞ and 0 ∈ ri domu;

(v) Y = Rd, h(y) < +∞ for y in a neighborhood of 0 in Y .

Proof. Define the function F : X × Y → R ∪ {+∞} by

F (x, y) := f(x) + g(Ax+ y).

Then

F ∗(w, z) = sup
x,y
{〈x,w〉+ 〈y, z〉 − f(x)− g(Ax+ y)}

= sup
x,y
{〈x,w〉+ 〈y − Ax, z〉 − f(x)− g(y)}

= sup
x,y
{〈x,w − A∗z〉+ 〈y, z〉 − f(x)− g(y)}

= f ∗(w − A∗z) + g∗(z).

So u(0) = p and v(0) = d, and it follows from Proposition 4.1.1 that p ≥ d. The
rest of the corollary follows from Theorem 4.1.7. �

Example 4.1.9 Let A be an m × n-matrix, b ∈ Rm and c ∈ Rn. Denote by
p ∈ [−∞,∞] the value of the primal problem

(P) minimize cTx subject to Ax = b and x ≥ 0

and by d ∈ [−∞,∞] the value of the dual problem

(D) maximize bTy subject to ATy ≤ c.

If one sets
f(x) = cTx+ δRn

+
(x) and g(y) = δb(y),

then (P) corresponds to the problem (P-FR) and (D) to (D-FR). So one obtains
from Proposition 4.1.1 that p ≥ d.
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Corollary 4.1.10 (Sandwich Theorem)
Let f : X → R∪{+∞} and g : Y → R∪{+∞} be convex functions and A : X → Y
a continuous linear function. Assume f(x) ≥ −g(Ax) for all x ∈ X and one of the
conditions (i)–(v) of Corollary 4.1.8 holds. Then there exist z ∈ Z and r ∈ R such
that

f(x) ≥ 〈x,A∗z〉 − r ≥ −g(Ax) for all x ∈ X.

Proof. It follows from Corollary 4.1.8 that there exists a z ∈ Z such that

0 ≤ inf
x∈X
{f(x) + g(Ax)} = −f ∗(A∗z)− g∗(−z).

Choose r ∈ R such that g∗(−z) ≤ −r ≤ −f ∗(A∗z). Then

f(x)− 〈x,A∗z〉 ≥ −f ∗(A∗z) ≥ −r for all x ∈ X,

and
〈y,−z〉 − g(y) ≤ g∗(−z) ≤ −r for all y ∈ Y. (4.1.1)

Choosing y = Ax in (4.1.1) gives

〈Ax,−z〉 − g(Ax) ≤ −r,

which is equivalent to

〈x,A∗z〉 − r ≥ −g(Ax) for all x ∈ X.

�

Corollary 4.1.11 (Subdifferential Calculus)
Let f : X → R∪{+∞} and g : Y → R∪{+∞} be convex functions and A : X → Y
a continuous linear function. Then

∂f(x) + A∗∂g(Ax) ⊆ ∂(f + g ◦ A)(x) for all x ∈ X.

Moreover, if x ∈ dom f and supy∈U g(y) < +∞ for some neighborhood U of Ax,
then the inclusion is an equality.

Proof. That the inclusion holds for all x ∈ X is straightforward to check. Now
assume that x ∈ dom f and supy∈U g(y) < +∞ for some neighborhood U of Ax. If
there exists a w ∈ ∂(f + g ◦ A)(x), then the mapping

x′ 7→ f(x′) + g(Ax′)− 〈x′, w〉

takes its minimum at x′ = x, and by shifting f , one can assume that this minimum
is 0. Then it follows from the sandwich theorem that there exist z ∈ Z and r ∈ R
such that

f(x′)− 〈x′, w〉 ≥ 〈x′, A∗z〉 − r ≥ −g(Ax′) for all x′ ∈ X. (4.1.2)
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In particular,
f(x)− 〈x,w〉 = 〈x,A∗z〉 − r = −g(Ax). (4.1.3)

By subtracting (4.1.3) from (4.1.2), one obtains that w + A∗z ∈ ∂f(x) and

g(Ax′)− g(Ax) ≥ 〈Ax′ − Ax,−z〉 for all x ∈ X.

Moreover, it follows from the assumptions that g is proper convex and continuous at
Ax. So g′(Ax; y) is a real-valued continuous sub-linear function on Y that dominates
〈.,−z〉 on the subspace {Ax′ : x′ ∈ X}. By Hahn–Banach, there exists z̃ ∈ Z such
that 〈Ax′, z̃〉 = 〈Ax′, z〉 for all x′ ∈ X and g′(Ax; y) ≥ 〈y,−z̃〉 for all y ∈ Y . It follows
that −z̃ ∈ ∂g(Ax) and A∗z̃ = A∗z. So w = w + A∗z − A∗z̃ ∈ ∂f(x) + A∗∂g(Ax). �

Corollary 4.1.12 (Sum Rule)
Let f, g : X → R ∪ {+∞} be convex functions. Then

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x) for all x ∈ X.

Moreover, if x ∈ dom f and supy∈U g(y) < +∞ for some neighborhood U of x, then
the inclusion is an equality.

Proof. Choose X = Y and A = id in Corollary 4.1.11. �

Corollary 4.1.13 (Chain Rule)
Let g : Y → R ∪ {+∞} be a convex function and A : X → Y a continuos linear
function. Then

A∗∂g(Ax) ⊆ ∂(g ◦ A)(x) for all x ∈ X.
Moreover, if supy∈U g(y) < +∞ for some neighborhood U of Ax, then the inclusion
is an equality.

Proof. Choose f ≡ 0 in Corollary 4.1.11. �

Corollary 4.1.14 Let f : X → R∪{+∞} be a convex function and C a non-empty
convex subset of X. If 0 ∈ ∂f(x0) + ∂δC(x0) for some x0 ∈ C, then x0 solves the
optimization problem

min
x∈C

f(x). (4.1.4)

On the other hand, if x0 ∈ C solves (4.1.4) and supx∈U f(x) < +∞ for a neighbor-
hood U of x0, then 0 ∈ ∂f(x0) + ∂δC(x0).

Proof. The minimization problem (4.1.4) is equivalent to

min
x∈X
{f(x) + δC(x)} , (4.1.5)

and x0 ∈ C solves (4.1.5) if and only if 0 ∈ ∂(f + δC)(x0), which by Corollary 4.1.12
follows if 0 ∈ ∂f(x0) +∂δC(x0). Moreover, if supx∈U f(x) < +∞ for a neighborhood
U of x0, one obtains from Corollary 4.1.12 that ∂f(x0) +∂δC(x0) = ∂(f + δC)(x0).�
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4.2 Lagrangians and saddle points

Definition 4.2.1 A saddle point of a function L : X × Z → R ∪ {±∞} is a pair
(x̄, z̄) ∈ X × Z satisfying

sup
z
L(x̄, z) ≤ L(x̄, z̄) ≤ inf

x
L(x, z̄).

Lemma 4.2.2 For every function L : X × Z → R ∪ {±∞}, one has

sup
z

inf
x
L(x, z) ≤ inf

x
sup
z
L(x, z), (4.2.6)

and if L has a saddle point (x̄, z̄), then

sup
z

inf
x
L(x, z) = L(x̄, z̄) = inf

x
sup
z
L(x, z).

Proof. For every x′, one has

sup
z

inf
x
L(x, z) ≤ sup

z
L(x′, z),

and one obtains (4.2.6). If (x̄, z̄) is a saddle point of L, then

inf
x

sup
z
L(x, z) ≤ sup

z
L(x̄, z) ≤ L(x̄, z̄) ≤ inf

x
L(x, z̄) ≤ sup

z
inf
x
L(x, z),

and the lemma follows. �

Now we assume that −L is the y-conjugate of a function F : X×Y → R∪{±∞}:

L(x, z) = inf
y∈Y
{F (x, y)− 〈y, z〉} . (4.2.7)

Then L is called the Lagrangian of the problem (P) related to the perturbation F .

Lemma 4.2.3 If L is of the form (4.2.7), then it is concave and usc in z. If
moreover, F is convex, then L is convex in x.

Proof. That L is concave and usc in z is clear. That L is convex in x if F is convex,
follows as in the proof of Lemma 4.1.2. �

Lemma 4.2.4 Assume L is of the form (4.2.7). Then

F ∗(w, z) = sup
x
{〈x,w〉 − L(x, z)} .

In particular,
sup
z
−F ∗(0, z) = sup

z
inf
x
L(x, z).
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Proof.

F ∗(w, z) = sup
x,y
{〈x,w〉+ 〈y, z〉 − F (x, y)}

= sup
x
{〈x,w〉 − L(x, z)} .

�

Lemma 4.2.5 If L is of the form (4.2.7) for a lsc convex function F : X × Y →
R ∪ {+∞}, then

F (x, y) = sup
z
{〈y, z〉+ L(x, z)} .

In particular,
inf
x
F (x, 0) = inf

x
sup
z
L(x, z).

Proof. For fixed x, F (x, .) is identically equal to +∞ or lsc proper convex. So one
obtains from Theorem 3.7.6 that

F (x, y) = sup
z
{〈y, z〉+ L(x, z)} .

�

Lemma 4.2.6 Let L be of the form (4.2.7) for a lsc convex F and (x̄, z̄) ∈ X × Z.
Then the following two are equivalent:

(i) (x̄, z̄) is a saddle point of L

(ii) x̄ is a solution of the primal problem (P), z̄ is a solution of the dual problem
(D), and both problems have the the same value.

If (i)–(ii) hold, then the value of (P) and (D) is equal to L(x̄, z̄).

Proof. By Lemmas 4.2.2, 4.2.4 and 4.2.5, one has

inf
x
F (x, 0) = inf

x
sup
z
L(x, z) ≥ sup

z
inf
x
L(x, z) = sup

z
−F ∗(0, z). (4.2.8)

If (x̄, z̄) is a saddle point of L, one obtains from Lemmas 4.2.2, 4.2.4 and 4.2.5 that

F (x̄, 0) = L(x̄, z̄) = −F ∗(0, z̄).

On the other hand, if (ii) holds, one obtains from (4.2.8) that

sup
z
L(x̄, z) = inf

x
L(x, z̄),

which implies that (x̄, z̄) is a saddle point of L. �

Proposition 4.2.7 Let L be of the form (4.2.7) for a lsc convex F and assume the
primal problem (P) is stable. Then for fixed x̄ ∈ X, the following two are equivalent:

(i) x̄ is a solution of the primal problem (P);

(ii) There exists a z̄ ∈ Z such that (x̄, z̄) is a saddle point of L.

Proof. (i)⇒ (ii) follows from stability and Lemma 4.2.6. (ii)⇒ (i) is a consequence
of Lemma 4.2.6. �
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4.3 Karush–Kuhn–Tucker-type conditions

Let f, g1, . . . , gm : X → R ∪ {±∞} be functions and C a non-empty subset of X
such that

f(x), g1(x), . . . , gm(x) ∈ R for all x ∈ C.

We consider the constraint minimization problem:

inf f(x) subject to x ∈ C and gi(x) ≤ 0 for all i = 1, . . . ,m. (CP)

Let us define the Lagrange functions

L : C × Rm
+ → R and M : C × Rm+1

+ → R

by
L(x, z) = f(x) + zTg(x) and M(x, z0, z) = z0f(x) + zTg(x),

where z = (z1, . . . , zm) ∈ Rm
+ and z0 ∈ R+.

We call (x̄, z̄) ∈ C × Rm
+ a saddle point of L on C × Rm

+ if

L(x̄, z) ≤ L(x̄, z̄) ≤ L(x, z̄) for all (x, z) ∈ C × Rm
+ .

The following is called Slater condition:

(SC) There exists x0 ∈ C such that gi(x0) < 0 for all i = 1, . . . ,m.

For given x̄ ∈ C we consider the following conditions:

(S) x̄ is a solution of (CP);

(SP) There exists z̄ ∈ Rm
+ such that (x̄, z̄) is a saddle point of L on C × Rm

+ ;

(L) There exists z̄ ∈ Rm
+ such that the following hold:

(i) L(x̄, z̄) = minx∈C L(x, z̄)

(ii) gi(x̄) ≤ 0 and z̄igi(x̄) = 0 for all i = 1, . . . ,m;

(M) There exists (z̄0, z̄) ∈ Rm+1
+ \ {0} such that the following hold:

(i) M(x̄, z̄0, z̄) = minx∈CM(x, z̄0, z̄)

(ii) gi(x̄) ≤ 0 and z̄igi(x̄) = 0 for all i = 1, . . . ,m.

Theorem 4.3.1 Let x̄ ∈ C. Then one has

(i) (SP)⇔ (L)⇒ (S);

(ii) If C, f, g1, . . . , gm are convex, then (S)⇒ (M);

(iii) If C, f, g1, . . . , gm are convex and (SC) holds, then (SP)⇔ (L)⇔ (S)⇔ (M).
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Proof. (i) First, assume that (x̄, z̄) is a saddle point of L on C×Rm
+ . Then L(x̄, z̄) =

minx∈C L(x, z̄) ∈ R. Therefore, one obtains from maxz∈Rm
+
L(x̄, z) = L(x̄, z̄) that

gi(x̄) ≤ 0 and z̄igi(x̄) = 0 for all i = 1, . . . ,m.
On the other hand, if (L) holds, then L(x̄, z̄) ≤ L(x, z̄) for all x ∈ C, and

L(x̄, z) = f(x̄) + zTg(x̄) ≤ f(x̄) + z̄Tg(x̄) = L(x̄, z̄). This shows that (x̄, z̄) is a
saddle point. Moreover, it follows from (L) that f(x̄) = L(x̄, z̄) ≤ L(x, z̄) ≤ f(x)
for all x ∈ C satisfying gi(x) ≤ 0 for all i = 1, . . . ,m.

To show (ii), assume that C, f, g1, . . . , gm are convex. Denote

K := conv {(f(x)− f(x̄), g1(x), . . . , gm(x)) : x ∈ D} ⊆ Rm+1.

Condition (S) implies K ∩ intRm+1
− = ∅. Indeed, otherwise there would exist

x1, . . . , xn ∈ C and λ1, . . . , λn ≥ 0 such that
∑

j λj = 1 and

n∑
j=1

λj(f(xj)− f(x̄), g1(xj), . . . , gm(xj)) ∈ intRm+1
− .

But this would imply
∑

j λjxj ∈ C, f(
∑

j λjxj) ≤
∑

j λjf(xj) < f(x̄) and gi(
∑

j λjxj) ≤∑
j λjgi(xj) ≤ 0, a contradiction to (S). Therefore there exists (z̄0, z̄) ∈ Rm+1 \ {0}

such that
inf
v∈K
〈v, (z̄0, z̄)〉 ≥ sup

w∈Rm+1
−

〈w, z̄〉 .

It follows that (z̄0, z̄) ∈ Rm+1
+ \ {0} and

z̄0f(x) + z̄Tg(x) ≥ z̄0f(x̄) for all x ∈ C.

In particular,
z̄0f(x̄) + z̄Tg(x̄) ≥ z̄0f(x̄) ≥ z̄0f(x̄) + z̄Tg(x̄).

So z̄igi(x̄) = 0 for all i and M(x̄, z̄0, z̄) ≤M(x, z̄0, z̄) for all x ∈ C.
(iii) We show that if C, f, g1, . . . , gm are convex and (SC) holds, then (M)⇒ (L).

So assume (M) holds for some (z̄0, z̄) ∈ Rm+1
+ \ {0}. If z̄0 = 0, one has

0 > z̄Tg(x0) = M(x0, z̄0, z̄) ≥M(x̄, z̄0, z̄) = z̄Tg(x̄) = 0,

a contradiction. So z̄0 > 0. By rescaling, one can assume z̄0 = 1. Then (L) holds.�

Now for given x̄ ∈ C, consider the Karush–Kuhn–Tucker condition:

(KKT) There exists z̄ ∈ Rm
+ such that the following hold:

(i) 0 ∈ ∂f(x̄) +
∑m

i=1 z̄i∂gi(x̄) + ∂δC(x̄)

(ii) gi(x̄) ≤ 0 and z̄igi(x̄) = 0 for all i = 1, . . . ,m;

Theorem 4.3.2 Assume C, f, g1, . . . , gm are convex and let x̄ ∈ C. Then the fol-
lowing hold:
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(i) (KKT) ⇒ (S);

(ii) If f, g1, . . . , gm are continuous at x̄ and (SC) is satisfied, then (KKT) ⇔ (S).

Proof. (i) If (KKT) holds, it follows from Corollary 4.1.14 that z̄ satisfies (L), which
by Theorem 4.3.1, implies (S).

(ii) We know that under (SC), (S) implies (L). So there exists z̄ ∈ Rm
+ such that

0 ∈ ∂(f + z̄Tg + δC)(x̄). But if f, g1, . . . , gm are continuous at x̄, one obtains from
Corollary 4.1.12 that ∂(f + z̄Tg + δC)(x̄) = ∂f(x̄) +

∑m
i=1 z̄i∂gi(x̄) + ∂δC(x̄). So

(KKT) holds. �


