Convex $Analysis^1$

Patrick Cheridito

Princeton University, Spring 2013

 $^1{\rm Many}$ thanks to Andreas Hamel for providing his lecture notes. Large parts of chapters 2-4 are based on them.

Contents

Contents 2							
1	Convex Analysis in \mathbb{R}^d						
	1.1	Subspaces, affine sets, convex sets, cones and half-spaces					
	1.2	Separation results in finite dimensions					
	1.3	Linear, affine and convex functions					
	1.4	Derivatives, directional derivatives and sub-gradients					
	1.5	Convex conjugates					
	1.6	Inf-convolution					
2	Ger	neral Vector Spaces 27					
	2.1	Definitions					
	2.2	Zorn's lemma and extension results					
	2.3	Algebraic interior and separation results					
	2.4	Directional derivatives and sub-gradients					
3	Topological Vector Spaces						
	3.1	Topological spaces					
	3.2	Continuous linear functionals and extension results					
	3.3	Separation with continuous linear functionals					
	3.4	Continuity of convex functions					
	3.5	Derivatives and sub-gradients					
	3.6	Dual pairs					
	3.7	Convex conjugates					
	3.8	Inf-convolution					
4	Convex Optimization						
	4.1	Perturbation and the dual problem					
	4.2	Lagrangians and saddle points					
	4.3	Karush–Kuhn–Tucker-type conditions					

Chapter 1 Convex Analysis in \mathbb{R}^d

The following notation is used:

- $d \in \mathbb{N} := \{1, 2, \ldots\}$
- e_i is the *i*-th unit vector in \mathbb{R}^d
- $\langle x, y \rangle := \sum_{i=1}^{d} x_i y_i \text{ for } x, y \in \mathbb{R}^d$
- $||x|| := \sqrt{\langle x, x \rangle}$ for $x \in \mathbb{R}^d$
- $B_{\varepsilon}(x) := \left\{ y \in \mathbb{R}^d : ||x y|| \le \varepsilon \right\}$
- $\mathbb{R}_+ := \{ x \in \mathbb{R} : x \ge 0 \}, \mathbb{R}_{++} := \{ x \in \mathbb{R} : x > 0 \}$
- $x \lor y := \max \{x, y\}$ and $x \land y := \min \{x, y\}$ for $x, y \in \mathbb{R}$

1.1 Subspaces, affine sets, convex sets, cones and half-spaces

Definition 1.1.1 Let C be a subset of \mathbb{R}^d . C is a subspace of \mathbb{R}^d if

$$\lambda x + y \in C$$
 for all $x, y \in C$ and $\lambda \in \mathbb{R}$.

C is an affine set if

$$\lambda x + (1 - \lambda)y \in C$$
 for all $x, y \in C$ and $\lambda \in \mathbb{R}$.

C is a convex set if

$$\lambda x + (1 - \lambda)y \in C$$
 for all $x, y \in C$ and $\lambda \in [0, 1]$.

C is a cone if

$$\lambda x \in C$$
 for all $x \in C$ and $\lambda \in \mathbb{R}_{++}$.

Exercise 1.1.2 Let C, D be non-empty subsets of \mathbb{R}^d .

1. Show that if C, D are subspaces, then so is

$$C - D := \{x - y : x \in C, y \in D\},\$$

and the same is true for affine sets, convex sets and cones.

- **2.** Show that if C is affine, then C + v is affine for every $v \in \mathbb{R}^k$.
- **3.** Show that if C is affine and contains 0, it is a subspace.
- **4.** Show that if C is affine and $v \in C$, then C v = C C is a subspace.

5. Show that the intersection of arbitrarily many subspaces is a subspace, and that the same is true for affine subsets, convex subsets and cones.

6. Show that there exists a smallest subspace containing C, and that the same is true for affine sets, convex sets and cones.

Definition 1.1.3 If C is a non-empty subset of \mathbb{R}^d , we denote by $\lim C$, aff C, conv C, cone C the smallest subspace, affine set, convex set, cone containing C, respectively.

Exercise 1.1.4 Let C be a non-empty subset of \mathbb{R}^d . Show that

$$\lim C = \left\{ \sum_{i=1}^{n} \lambda_{i} x_{i} : n \in \mathbb{N}, \, \lambda_{i} \in \mathbb{R}, \, x_{i} \in C \right\}$$

$$\operatorname{aff} C = \left\{ \sum_{i=1}^{n} \lambda_{i} x_{i} : n \in \mathbb{N}, \, \lambda_{i} \in \mathbb{R}, \, x_{i} \in C, \, \sum_{i=1}^{n} \lambda_{i} = 1 \right\}$$

$$\operatorname{conv} C = \left\{ \sum_{i=1}^{n} \lambda_{i} x_{i} : n \in \mathbb{N}, \, \lambda_{i} \in \mathbb{R}_{+}, \, x_{i} \in C, \, \sum_{i=1}^{n} \lambda_{i} = 1 \right\}$$

$$\operatorname{cone} C = \left\{ \lambda x : \, \lambda \in \mathbb{R}_{++}, \, x \in C \right\}$$

Definition 1.1.5 The dimension of an affine subset M of \mathbb{R}^d is the dimension of the subspace M - M. The dimension of an arbitrary subset C is the dimension of aff C.

Definition 1.1.6 Let C be a non-empty subset of \mathbb{R}^d . The dual cone of C is the set

$$C^* := \left\{ z \in \mathbb{R}^d : \langle x, z \rangle \ge 0 \text{ for all } x \in C \right\}.$$

Exercise 1.1.7 Show that the dual cone C^* of a non-empty subset $C \subseteq \mathbb{R}^d$ is a closed convex cone and C is contained in C^{**} .

Definition 1.1.8 The recession cone 0^+C of a subset C of \mathbb{R}^d consists of all $y \in \mathbb{R}$ satisfying

 $x + \lambda y \in C$ for all $x \in C$ and $\lambda \in \mathbb{R}_{++}$.

Every $y \in 0^+C \setminus \{0\}$ is called a direction of recession for C.

Definition 1.1.9 Let C be a subset of \mathbb{R}^d . The closure $\operatorname{cl} C$ of C is the smallest closed subset of \mathbb{R}^d containing C. The interior int C consists of all $x \in C$ such that $B_{\varepsilon}(x) \subseteq C$ for some $\varepsilon \in \mathbb{R}_{++}$. The relative interior $\operatorname{ri} C$ is the set of all $x \in C$ such that $B_{\varepsilon}(x) \cap \operatorname{aff} C \subseteq C$ for some $\varepsilon \in \mathbb{R}_{++}$. The boundary of C is the set bd $C := \operatorname{cl} C \setminus \operatorname{int} C$. The relative boundary is $\operatorname{rbd} C := \operatorname{cl} C \setminus \operatorname{ri} C$

Exercise 1.1.10

1. Show that an affine subset of \mathbb{R}^d is closed.

- **2.** Show that the closure of a cone is a cone.
- **3.** Show that the closure of a convex set is convex.

Lemma 1.1.11 Let C be a non-empty convex subset of \mathbb{R}^d and $\lambda \in (0, 1]$. If int $C \neq \emptyset$, then

$$\lambda \operatorname{int} C + (1 - \lambda) \operatorname{cl} C \subseteq \operatorname{int} C. \tag{1.1.1}$$

If $\operatorname{ri} C \neq \emptyset$, then

$$\lambda \operatorname{ri} C + (1 - \lambda) \operatorname{cl} C \subseteq \operatorname{ri} C \tag{1.1.2}$$

In particular, int C and ri C are convex.

Proof. Let $x \in \text{int } C$, $y \in cl C$ and $\lambda \in (0,1]$. There exists $\varepsilon > 0$ such that $B_{2\varepsilon}(x) \subseteq C$ and $z \in C$ such that $(1-\lambda)||y-z|| \leq \lambda \varepsilon$. Choose $v \in B_{\lambda\varepsilon}(0)$. Then

$$w = \frac{v}{\lambda} + \frac{1-\lambda}{\lambda}(y-z) \in B_{2\varepsilon}(0),$$

and therefore,

$$\lambda x + (1 - \lambda)y + v = \lambda(x + w) + (1 - \lambda)z \in C.$$

This shows (1.1.1). (1.1.2) follows by working in aff C instead of \mathbb{R}^d .

Lemma 1.1.12 Let C be a convex subset of \mathbb{R}^d . Then int $C \neq \emptyset$ if and only if aff $C = \mathbb{R}^d$.

Proof. If $x \in \text{int } C$, then $0 \in \text{int } C - x$, and it follows that

aff
$$(C) - x = aff (C - x) = lin (C - x) = \mathbb{R}^d$$
.

On the other hand, if aff $C = \mathbb{R}^d$, choose $x \in C$. Then

$$\lim (C - x) = \operatorname{aff} (C - x) = \operatorname{aff} (C) - x = \mathbb{R}^d.$$

So there there exist d vectors x_1, \ldots, x_d in C such that $v_i := x_i - x$ are linearly independent. Since C is convex, one has

$$\frac{1}{d+1}(x+x_1+\cdots+x_d)+\lambda v_i \in C \quad \text{for } |\lambda| \le \frac{1}{d+1} \quad \text{and } i=1,\ldots,d,$$

and therefore,

$$\frac{1}{d+1}(x+x_1+\cdots+x_d)+V\subseteq C,$$

where $V := \left\{ \sum_{i=1}^{d} \lambda_i v_i : \sum_{i=1}^{d} |\lambda_i| \le \frac{1}{d+1} \right\}$. So since $n(x) := \sum_{i=1}^{d} |\lambda_i|$ for $x = \sum_{i=1}^{d} \lambda_i v_i$ defines a norm and all norms on \mathbb{R}^d are equivalent, there exists an $\varepsilon > 0$ such that

$$\frac{1}{d+1}(x+x_1+\cdots+x_d)+B_{\varepsilon}(0)\subseteq C.$$

Corollary 1.1.13 Let C be a non-empty convex subset of \mathbb{R}^d . Then $\operatorname{ri} C$ is dense in C. In particular, $\operatorname{ri} C$ is non-empty.

Proof. If C consists of only one point x_0 , then ri $C = C = \{x_0\}$. If C contains at least two different points, one can, by shifting, assume that one of them is 0. Then $\lim C = \inf C$ is at least one-dimensional. So by restricting to $\lim C$, one can assume that $\lim C = \mathbb{R}^d$. It follows from Lemma 1.1.12 that ri $C \neq \emptyset$. Now the corollary follows from Lemma 1.1.11.

Definition 1.1.14 A half-space in \mathbb{R}^d is a set of the form

$$\{x \in \mathbb{R}^d : \langle x, z \rangle \ge c\}$$
 for some $z \in \mathbb{R}^d \setminus \{0\}$ and $c \in \mathbb{R}$.

We say a subset C of \mathbb{R}^d is supported at $x_0 \in C$ by $z \in \mathbb{R}^d \setminus \{0\}$ if $\langle x_0, z \rangle = \inf_{x \in C} \langle x, z \rangle$.

Note that if a subset C of \mathbb{R}^d is supported at $x_0 \in C$ by some $z \in \mathbb{R}^d \setminus \{0\}$, then x_0 is in the boundary of C and C is contained in the half-space

$$\left\{x \in \mathbb{R}^d : \langle x, z \rangle \ge \langle x_0, z \rangle\right\}.$$

1.2 Separation results in finite dimensions

Lemma 1.2.1 Let C be a non-empty closed subset of \mathbb{R}^d . Then there exists $x_0 \in C$ such that

$$||x_0|| = \inf_{x \in C} ||x||.$$

If in addition, C is convex, then x_0 is unique.

Proof. For fixed $y \in C$, the set $\{x \in C : ||x|| \leq ||y||\}$ is closed and bounded. So the existence of x_0 follows because the norm is continuous. If C is convex and x_0, x_1 are two different norm minimizers, one has

$$||\frac{x_0 + x_1}{2}|| < ||x_0|| = ||x_1||,$$

a contradiction.

Theorem 1.2.2 (Strong separation)

Let C, D be non-empty convex subsets of \mathbb{R}^d . Then there exists $z \in \mathbb{R}^d$ satisfying

$$\inf_{x \in C} \langle x, z \rangle > \sup_{y \in D} \langle y, z \rangle \tag{1.2.3}$$

if and only if $0 \notin cl(C - D)$.

Proof. The "only if" direction is clear. On the other hand, if $0 \notin \operatorname{cl}(C - D)$, the unique norm minimizer $z \in \operatorname{cl}(C - D)$ is different from zero. For all $w \in C - D$ and $\lambda \in (0, 1]$, one has

$$||z||^{2} \leq ||(1-\lambda)z + \lambda w||^{2} = ||z||^{2} + 2\lambda \langle w - z, z \rangle + \lambda^{2} ||w - z||^{2}.$$

By dividing by λ and sending λ to 0, one obtains

$$\langle w, z \rangle \ge ||z||^2 > 0$$
 for all $w \in C - D$.

This proves (1.2.3).

Lemma 1.2.3 Let C and D be two non-empty closed convex sets with no common direction of recession. Then C - D is closed.

Proof. Let (x_n) be a sequence in C and (y_n) a sequence in D such that $x_n - y_n \to w \in \mathbb{R}^d$. If (x_n) is unbounded, one can pass to a subsequence such that $||x_n|| \to \infty$ and

$$\frac{x_n}{||x_n||} \to \bar{x} \quad \text{for some } \bar{x} \in S^{d-1} := \left\{ x \in \mathbb{R}^d : ||x|| = 1 \right\}.$$

But then one has for all $x_0 \in C$ and $\lambda \in \mathbb{R}_{++}$,

$$x_0 + \frac{\lambda}{||x_n||}(x_n - x_0) \to x_0 + \lambda \bar{x} \in C$$

since C is closed. This shows that $\bar{x} \in 0^+C$. However,

$$\lim_{n} \frac{y_n}{||y_n||} = \lim_{n} \frac{x_n - w}{||x_n|| + (||y_n|| - ||x_n||)} = \bar{x},$$

and it follows as above that $\bar{x} \in 0^+ D$, a contradiction. So (x_n) and (y_n) must both be bounded. After passing to subsequences, one has $x_n \to x \in C$ and $y_n \to y \in D$. So $w = x - y \in C - D$.

Corollary 1.2.4 If C, D are non-empty closed convex disjoint subsets of \mathbb{R}^d with no common direction of recession, there exists $z \in \mathbb{R}^d$ such that

$$\inf_{x \in C} \langle x, z \rangle > \sup_{y \in D} \langle y, z \rangle \,.$$

Proof. By Lemma 1.2.3, C - D is closed and does not contain 0. So the corollary follows from Theorem 1.2.2.

Corollary 1.2.5 If C, D are non-empty closed convex disjoint subsets of \mathbb{R}^d such that D is bounded, there exists $z \in \mathbb{R}^d$ such that

$$\inf_{x \in C} \langle x, z \rangle > \sup_{y \in D} \langle y, z \rangle.$$

Proof. D has no direction of recession. So the corollary follows from Corollary 1.2.4.

Corollary 1.2.6 Every proper closed convex subset of \mathbb{R}^d is equal to the intersection of all half-spaces containing it.

Proof. Consider a closed convex subset $C \subsetneq \mathbb{R}^d$. It is clear that C is contained in the intersection of all half-spaces enveloping it. On the other hand, if $x_0 \in \mathbb{R}^d \setminus C$, it follows from Corollary 1.2.5 that there exists a half-space containing C but not x_0 . This proves the corollary.

Corollary 1.2.7 Let C be a non-empty subset of \mathbb{R}^d . Then C^{**} is equal to the smallest closed convex cone containing C.

Proof. Since C^{**} contains C, it also contains the smallest closed convex cone D enveloping C. To show $C^{**} = D$, assume that there exists $x_0 \in C^{**} \setminus D$. But then it follows from Corollary 1.2.5 that there exists a $z \in \mathbb{R}^d$ such that

$$\inf_{x \in D} \langle x, z \rangle > \langle x_0, z \rangle$$

Since D is a cone, this implies

$$\inf_{x \in D} \langle x, z \rangle = 0 > \langle x_0, z \rangle,$$

from which one obtains that $z \in C^*$ and $x_0 \notin C^{**}$, a contradiction.

Lemma 1.2.8 Let C be a non-empty convex cone in \mathbb{R}^d such that $C \neq \mathbb{R}^d$. Then there exists $z \in \mathbb{R}^d \setminus \{0\}$ such that

$$\inf_{x \in C} \langle x, z \rangle = 0. \tag{1.2.4}$$

Proof. If int $C = \emptyset$, it follows from Lemma 1.1.12, that M = aff C is different from \mathbb{R}^d . Since C is a cone, M contains 0. Therefore, it is a proper subspace of \mathbb{R}^d , and one can choose $z \in M^{\perp}$.

If there exists $x_0 \in \operatorname{int} C$, $-x_0$ cannot be in cl C. Otherwise, it would follow from Corollary 1.1.11 that $0 \in \operatorname{int} C$, implying $C = \mathbb{R}^d$. So one obtains from Corollary 1.2.5 that there exists $z \in \mathbb{R}^d$ such that

$$\inf_{x \in C} \langle x, z \rangle \ge \inf_{x \in \operatorname{cl} C} \langle x, z \rangle > \langle -x_0, z \rangle$$

This implies (1.2.4) and $z \neq 0$.

 \square

Theorem 1.2.9 (Weak separation)

Let C, D be non-empty convex subsets of \mathbb{R}^d . Then there exists $z \in \mathbb{R}^d \setminus \{0\}$ such that

$$\inf_{x \in C} \langle x, z \rangle \ge \sup_{y \in D} \langle y, z \rangle \tag{1.2.5}$$

if and only if $0 \notin int (C - D)$.

Proof. The "only if" direction is clear. To show the other direction, let us assume $0 \notin int (C - D)$. If we can show that

$$\operatorname{cone}\left(C-D\right) \neq \mathbb{R}^d,\tag{1.2.6}$$

we obtain from Lemma 1.2.8 the existence of a $z \in \mathbb{R}^d \setminus \{0\}$ such that

$$\inf_{x\in\operatorname{cone}\left(C-D\right)}\left\langle x,z\right\rangle\geq0,$$

which implies (1.2.5). To prove (1.2.6), we assume by way of contradiction that $\operatorname{cone}(C-D) = \mathbb{R}^d$. But then there exists $\varepsilon > 0$ such that all the vectors $\pm \varepsilon e_i$, $i = 1, \ldots, d$, are in C-D. This implies $0 \in \operatorname{int}(C-D)$, contradicting the assumption. So (1.2.6) must hold.

Corollary 1.2.10 Let C, D be non-empty convex disjoint subsets of \mathbb{R}^d such that D is open. Then there exists $z \in \mathbb{R}^d$ such that

$$\inf_{x \in C} \langle x, z \rangle > \langle y, z \rangle \quad for \ every \ y \in D.$$

Proof. By Theorem 1.2.9, there exists $z \in \mathbb{R}^d \setminus \{0\}$ such that

$$\inf_{x \in C} \left\langle x, z \right\rangle \ge \sup_{y \in D} \left\langle y, z \right\rangle$$

Since D is open, the sup is not attained in D, and the corollary follows.

Corollary 1.2.11 A convex subset C of \mathbb{R}^d is supported at every point $x_0 \in C \setminus \text{int } C$ by at least one vector $z \in \mathbb{R}^d \setminus \{0\}$.

Proof. If $x_0 \in C \setminus \text{int } C$, then $0 \notin \text{int } (C - x_0)$. So it follows from Theorem 1.2.9 that there exists $z \in \mathbb{R} \setminus \{0\}$ such that $\inf_{x \in C} \langle x, z \rangle \ge \langle x_0, z \rangle$, proving the corollary. \Box

Corollary 1.2.12 Let C be a non-empty convex subset of \mathbb{R}^d . Then int $C = \operatorname{int} \operatorname{cl} C$.

Proof. It is enough to show that $\operatorname{int} \operatorname{cl} C \subseteq \operatorname{int} C$. To do that we assume $x_0 \notin \operatorname{int} C$. Then it follows from Theorem 1.2.9 that there exists $z \in \mathbb{R}^d \setminus \{0\}$ such that

$$\inf_{x \in C} \langle x, z \rangle \ge \langle x_0, z \rangle.$$

It follows that

$$\inf_{x \in \mathrm{cl}\,C} \langle x, z \rangle \ge \langle x_0, z \rangle$$

which implies $x_0 \notin \operatorname{int} \operatorname{cl} C$. This proves the corollary.

Corollary 1.2.13 Let C be a dense convex subset of \mathbb{R}^d . Then $C = \mathbb{R}^d$.

Proof. By Corollary 1.2.12, one has int $C = \operatorname{int} \operatorname{cl} C = \mathbb{R}^d$.

Theorem 1.2.14 (Proper separation)

Let C, D be non-empty convex subsets of \mathbb{R}^d . Then there exists $z \in \mathbb{R}^d$ satisfying

$$\inf_{x \in C} \langle x, z \rangle \ge \sup_{y \in D} \langle y, z \rangle \quad and \quad \sup_{x \in C} \langle x, z \rangle > \inf_{y \in D} \langle y, z \rangle \tag{1.2.7}$$

if and only if $0 \notin \operatorname{ri}(C - D)$.

Proof. To show the "only if" direction, let us assume there exists a $z \in \mathbb{R}^d$ satisfying (1.2.7) and $0 \in \operatorname{ri}(C-D)$. Then the affine hull M of C-D is a subspace. Decompose $z = z_1 + z_2$ such that $z_1 \in M$ and $z_2 \in M^{\perp}$. Then

$$\inf_{x \in C-D} \langle x, z_1 \rangle \ge 0 \quad \text{and} \quad \sup_{x \in C-D} \langle x, z_1 \rangle > 0.$$

But this contradicts $0 \in \operatorname{ri}(C - D)$.

To show the "if" direction, assume $0 \notin \operatorname{ri}(C-D)$. If $0 \notin M$, then $0 \notin \operatorname{cl}(C-D)$, and (1.2.7) follows from Theorem 1.2.2. If $0 \in M$, one can without loss of generality assume that $M = \mathbb{R}^d$. But then $0 \notin \operatorname{int}(C-D)$, and one obtains from Theorem 1.2.9 that there exists $z \in \mathbb{R}^d \setminus \{0\}$ such that

$$\inf_{x \in C-D} \left\langle x, z \right\rangle \ge 0$$

Moreover, there must exist an $x \in C - D$ satisfying $\langle x, z \rangle > 0$. Otherwise, one would have $\langle x, z \rangle = 0$ for all $x \in C - D$, contradicting $M = \mathbb{R}^d$.

1.3 Linear, affine and convex functions

Definition 1.3.1 A function $f : \mathbb{R}^d \to \mathbb{R}^k$ is linear if

$$f(\lambda x + y) = \lambda f(x) + f(y)$$
 for all $x, y \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}$.

f is affine if

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y) \quad \text{for all } x, y \in \mathbb{R}^d \text{ and } \lambda \in \mathbb{R}.$$

Exercise 1.3.2 Let $f : \mathbb{R}^d \to \mathbb{R}^k$ be an affine function and $v \in \mathbb{R}^k$.

- **1.** Show that f + v is affine.
- **2.** Show that f f(0) is linear.
- **3.** Show that f(x) = Ax + f(0) for some $k \times d$ -matrix A.

Proposition 1.3.3 Every affine function $f : \mathbb{R}^d \to \mathbb{R}^k$ is Lipschitz-continuous.

Proof. It is enough to show that f - f(0) is Lipschitz-continuous. So one can assume that f is linear. But then there exists a $k \times d$ -matrix A such that f(x) = Ax, and one has

$$||f|| := \sup_{||x|| \le 1} ||f(x)|| \le \sup_{||x|| \le 1} \left(\sum_{i=1}^k \left(\sum_{j=1}^d A_{ij} x_j \right)^2 \right)^{1/2} \le \left(\sum_{ij} A_{ij}^2 \right)^{1/2}$$

So

$$|f(x) - f(y)|| \le ||f|| \, ||x - y|| \quad \text{for all } x, y \in \mathbb{R}^d.$$

Definition 1.3.4 A function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex if

$$(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 for all $x, y \in \mathbb{R}$ and $\lambda \in (0, 1)$

and quasi-convex if

f

$$f(\lambda x + (1 - \lambda)y) \le f(x) \lor f(y)$$
 for all $x, y \in \mathbb{R}$ and $\lambda \in (0, 1)$.

A function $f : \mathbb{R}^d \to \mathbb{R} \cup \{-\infty\}$ is (quasi-) concave if -f is (quasi-) convex.

The effective domain of a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ or $f : \mathbb{R}^d \to \mathbb{R} \cup \{-\infty\}$ is the set

dom
$$f := \left\{ x \in \mathbb{R}^d : f(x) \in \mathbb{R} \right\}.$$

Exercise 1.3.5 Show that a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is quasi-convex if and only if all the sublevel sets

$$\left\{x \in \mathbb{R}^d : f(x) \le y\right\}, \quad y \in \mathbb{R},$$

are convex.

Exercise 1.3.6 Let $f, g : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be convex functions and $\lambda > 0$. Show that $\lambda f + g$ is convex.

Definition 1.3.7 We say a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ is quasi-convex if all sub-level sets $\{x \in \mathbb{R}^d : f(x) \leq y\}, y \in \mathbb{R}$, are convex. We say f is quasi-concave if -f is quasi-convex.

Exercise 1.3.8

1. Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ be quasi-convex and $h : \mathbb{R} \cup \{\pm \infty\} \to \mathbb{R} \cup \{\pm \infty\}$ non-decreasing. Show that $h \circ f$ is quasi-convex.

2. Give an example of a convex function $f : \mathbb{R}^d \to \mathbb{R}$ and a non-decreasing function $h : \mathbb{R} \to \mathbb{R}$ such that $h \circ f$ is not convex.

3. Let $f_i : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}, i \in I$, be a family of quasi-convex functions. Show that $\sup_{i \in I} f_i$ is quasi-convex.

Definition 1.3.9 The epigraph of a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ is the set

 $\operatorname{epi} f := \left\{ (x, y) \in \mathbb{R}^d \times \mathbb{R} : f(x) \le y \right\}.$

The hypograph of f is given by

hypo
$$f := \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : f(x) \ge y\}.$$

Exercise 1.3.10 Show that a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex if and only if epi f is convex.

Definition 1.3.11 We say a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ is convex if epi f is a convex subset of \mathbb{R}^{d+1} . A convex function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ is said to be proper convex if $f(x) > -\infty$ for all $x \in \mathbb{R}^d$ and $f(x) < +\infty$ for at least one $x \in \mathbb{R}^d$. We say f is concave if -f is convex and proper concave if -f is proper convex.

Exercise 1.3.12

1. Show that for a convex function $f : \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ and $x_0 \in \mathbb{R}$ such that $f(x_0) \in \mathbb{R}$,

$$\frac{f(x_0+\varepsilon)-f(x_0)}{\varepsilon}$$

is non-decreasing in $\varepsilon \in \mathbb{R} \setminus \{0\}$

2. Show that for a convex function $f : \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ and $x_0 \in \mathbb{R}$ such that $f(x_0) \in \mathbb{R}$,

$$f'_{+}(x_0) := \lim_{\varepsilon \downarrow 0} \frac{f(x_0 + \varepsilon) - f(x_0)}{\varepsilon} \quad \text{and} \quad f'_{-}(x_0) := \lim_{\varepsilon \downarrow 0} \frac{f(x_0) - f(x_0 - \varepsilon)}{\varepsilon}$$

exist and $f'_{-}(x) \leq f'_{+}(x)$.

3. Let $f_i : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}, i \in I$, be a family of convex functions. Show that $\sup_{i \in I} f_i$ is convex.

4. Show that every function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ has a greatest convex minorant.

Definition 1.3.13 We denote the greatest convex minorant of a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ by conv f and call it the convex hull of f.

Theorem 1.3.14 Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ be a convex function and $x_0 \in \mathbb{R}^d$ such that $f(x_0) \in \mathbb{R}$. Assume there exists a neighborhood U of x_0 such that $f(x) < +\infty$ for all $x \in U$. Then f is proper convex and continuous at x_0 .

Proof. There is an $\varepsilon > 0$ such that $m := \max_i f(x_0 \pm \varepsilon e_i) < +\infty$. By convexity, one has $f(x) \le m$ for all $x \in x_0 + V$, where $V := \left\{ x \in \mathbb{R}^d : \sum_{i=1}^d |x_i| \le \varepsilon \right\}$. Since

 $f(x_0) \in \mathbb{R}$ and $x_0 + V$ is a neighborhood of x_0 , one obtains $f(x) > -\infty$ for all $x \in \mathbb{R}^d$. In particular, f is proper convex. Now choose $x \in V$ and $0 < \lambda \leq 1$. Then

$$f(x_0 + \lambda x) = f(\lambda(x_0 + x) + (1 - \lambda)x_0) \le \lambda f(x_0 + x) + (1 - \lambda)f(x_0),$$

and therefore,

$$f(x_0 + \lambda x) - f(x_0) \le \lambda [f(x_0 + x) - f(x_0)] \le \lambda (m - f(x_0)).$$

On the other hand,

$$x_0 = \frac{1}{1+\lambda}(x_0 + \lambda x) + \frac{\lambda}{1+\lambda}(x_0 - x).$$

So

$$f(x_0) \le \frac{1}{1+\lambda} f(x_0 + \lambda x) + \frac{\lambda}{1+\lambda} f(x_0 - x),$$

from which one obtains

$$f(x_0) - f(x_0 + \lambda x) \le \lambda [f(x_0 - x) - f(x_0)] \le \lambda (m - f(x_0)).$$

Hence, we have shown that

$$|f(x) - f(x_0)| \le \lambda (m - f(x_0)) \quad \text{for all } x \in x_0 + \lambda V,$$

which proves the theorem.

Corollary 1.3.15 A convex function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is continuous on int dom f.

Proof. If $x_0 \in \text{int dom } f$, there exists a neighborhood U of x_0 such that $f(x) < +\infty$ for all $x \in U$. Now the corollary follows from Theorem 1.3.14.

Definition 1.3.16 A function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ is said to be positively homogeneous if $f(\lambda x) = \lambda f(x)$ for all $x \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}_{++}$. If f is convex and positively homogeneous, it is called sub-linear.

Exercise 1.3.17

1. Show that a positively homogeneous function $f : \mathbb{R}^d \to \mathbb{R}$ satisfies f(0) = 0.

2. Show that a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ is positively homogeneous if and only if epi f is a cone in \mathbb{R}^{d+1} .

3. Show that a positively homogeneous function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex if and only if $f(x+y) \leq f(x) + f(y), x, y \in \mathbb{R}^d$.

Corollary 1.3.18 (Hahn–Banach extension theorem in finite dimensions) Let $g : \mathbb{R}^d \to \mathbb{R}$ be a sub-linear function and $f : M \to \mathbb{R}$ a linear function on a subspace M of \mathbb{R}^d such that $f(x) \leq g(x)$ for all $x \in M$. Then there exists a linear extension $F : \mathbb{R}^d \to \mathbb{R}$ of f such that $F(x) \leq g(x)$ for all $x \in \mathbb{R}^d$.

Proof. epi $g = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : g(x) \leq y\}$ is a non-empty convex cone in \mathbb{R}^{d+1} and graph $f := \{(x, f(x)) : x \in M\}$ a subspace. Since epi g – graph f is a cone that does not contain (0, -1), the point (0, 0) cannot be in the interior of epi g – graph f. By Theorem 1.2.9, there exists $(z, v) \in \mathbb{R}^d \times \mathbb{R} \setminus \{0\}$ such that

$$\inf_{(x,y)\in \operatorname{epi} g} (\langle x,z\rangle + yv) \ge \sup_{x\in M} (\langle x,z\rangle + f(x)v).$$

It follows that v > 0, and by rescaling, one can assume v = 1. Since M is a subspace, one must have $f(x) = \langle x, -z \rangle$, $x \in M$, and therefore, $\langle x, z \rangle + g(x) \ge 0$, $x \in \mathbb{R}^d$. This shows that $F(x) = \langle x, -z \rangle$ has the desired properties.

1.4 Derivatives, directional derivatives and subgradients

Definition 1.4.1 Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ and $x_0 \in \mathbb{R}^d$ such that $f(x_0) \in \mathbb{R}$. If there exists $z \in \mathbb{R}^d$ such that

$$\lim_{x \neq 0, x \to 0} \frac{f(x_0 + x) - f(x_0) - \langle x, z \rangle}{||x||} = 0,$$

then f is said to be differentiable at x_0 with gradient $\nabla f(x_0) = z$ (or derivative $Df(x_0) = z$).

Definition 1.4.2 Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ and $x_0 \in \mathbb{R}^d$ such that $f(x_0) \in \mathbb{R}$. If the limit

$$f'(x_0;x) := \lim_{\varepsilon \downarrow 0} \frac{f(x_0 + \varepsilon x) - f(x_0)}{\varepsilon}$$

exists (it is allowed to be $+\infty$ or $-\infty$), we call it the directional derivative of f at x_0 in the direction x.

Note that if f is differentiable at x_0 , then

$$f'(x_0; x) = \langle x, \nabla f(x_0) \rangle.$$

is linear in x.

Definition 1.4.3 Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ and $x_0 \in \mathbb{R}^d$ such that $f(x_0) \in \mathbb{R}$. $z \in \mathbb{R}^d$ is a sub-gradient of f at x_0 if

$$f(x_0 + x) - f(x_0) \ge \langle x, z \rangle$$
 for all $x \in \mathbb{R}^d$.

The set of all sub-gradients of f at x_0 is denoted by $\partial f(x_0)$ and called sub-differential of f at x_0 .

Exercise 1.4.4 Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ be a convex function and $x_0 \in \mathbb{R}^d$ such that $f(x_0) \in \mathbb{R}$. Show the following: **1.**

$$f'(x_0; x) = \inf_{\varepsilon > 0} \frac{f(x_0 + \varepsilon x) - f(x_0)}{\varepsilon}$$

In particular, $f'(x_0; x)$ exists for all $x \in \mathbb{R}^d$.

- **2.** $f'(x_0, .)$ is sub-linear.
- **3.** If $x_0 \in \text{int} \{x \in \mathbb{R}^d : f(x) \in \mathbb{R}\}$, then $f'(x_0; x) \in \mathbb{R}$ for all $x \in \mathbb{R}^d$.
- 4. The following are equivalent:
 - (i) $f(x_0) = \min_x f(x)$
 - (ii) $0 \in \partial f(x_0)$
- (iii) $f'(x_0; x) \ge 0$ for all $x \in \mathbb{R}^d$.
- **5.** The sub-differential $\partial f(x_0)$ is a closed convex subset of \mathbb{R}^d .
- **6.** $\partial f(x_0) = \partial g(0)$, where $g(x) := f'(x_0; x)$.
- 7. If f is differentiable at x_0 , then $\partial f(x_0) = \{\nabla f(x_0)\}$.
- 8. The following are equivalent:

(i)
$$z \in \partial f(x_0)$$

(ii) (-z, 1) supports epi f at $(x_0, f(x_0))$.

Theorem 1.4.5 Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a convex function and $x_0 \in \operatorname{ridom} f$. Then $\partial f(x_0) \neq \emptyset$.

Proof. Since $(x_0, f(x_0) + 1) \in \text{epi } f$, the point $(x_0, f(x_0))$ is not in riepi f. By Theorem 1.2.14, there exists $(z, v) \in \mathbb{R}^d \times \mathbb{R}$ such that

$$\inf_{(x,y)\in\operatorname{epi} f} (\langle x, -z \rangle + vy) \ge \langle x_0, -z \rangle + vf(x_0)$$
(1.4.8)

and

$$\sup_{(x,y)\in \operatorname{epi} f} (\langle x, -z \rangle + vy) > \langle x_0, -z \rangle + vf(x_0)$$
(1.4.9)

It follows from (1.4.8) that $v \ge 0$. Now assume that v = 0. Then, since $x_0 \in$ ridom f, (1.4.9) contradicts (1.4.8). So v > 0, and by scaling, one can assume v = 1. Then (-z, 1) supports epi f at $(x_0, f(x_0))$, which by Exercise 1.4.4.8, proves that $z \in \partial f(x_0)$.

Definition 1.4.6 A function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ is lower semi-continuous (lsc) at $x_0 \in \mathbb{R}^d$ if $f(x_0) \leq \liminf_{x \to x_0} f(x)$. f is lsc if it is lsc everywhere. f is upper semicontinuous (usc) at x_0 if $f(x_0) \geq \limsup_{x \to x_0} f(x)$. f is usc if it is usc everywhere. By f, we denote the function given by

$$\underline{f}(x) := \liminf_{y \to x} f(y)$$

and call it lsc hull of f. By conv f we denote the lsc hull of conv f and call it lsc convex hull of f.

Exercise 1.4.7

Consider a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}.$

1. Show that the following are equivalent:

- (i) f is lsc
- (ii) All sub-level sets $\{x \in \mathbb{R}^d : f(x) \leq y\}, y \in \mathbb{R}$, are closed
- (iii) epi f is closed

2. Show that the epigraph of \underline{f} is the closure of epi f and \underline{f} is the greatest lsc minorant of f.

3. Show that if f is convex, then so is f.

4. Show that $\underline{\operatorname{conv}} f$ is the greatest lsc convex minorant of f.

5. Let $f_i : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}, i \in I$, be a family of lsc functions. Show that $\sup_{i \in I} f_i$ is lsc.

Lemma 1.4.8 Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ be a lsc convex function and $x_0 \in \mathbb{R}^d$ such that $f(x_0) \in \mathbb{R}$. Then f is proper convex.

Proof. Assume there exists $x_1 \in \mathbb{R}^d$ such that $f(x_1) = -\infty$. Then $f(\lambda x_0 + (1 - \lambda)x_1) = -\infty$ for all $\lambda \in [0, 1)$. But since f is lsc, one must have $f(x_0) = -\infty$, a contradiction.

Lemma 1.4.9 Let f be a proper convex function on \mathbb{R}^d and $x_0 \in \text{dom } f$ such that $\partial f(x_0) \neq \emptyset$. Then $f(x_0) = \underline{f}(x_0)$ and $\partial f(x_0) = \partial \underline{f}(x_0)$.

Proof. Choose $z \in \partial f(x_0)$. The affine function $g(x) = f(x_0) + \langle x - x_0, z \rangle$ minorizes f and equals f at x_0 . So g also minorizes \underline{f} and equals \underline{f} at x_0 . This shows $f(x_0) = g(x_0) = \underline{f}(x_0)$ and $\partial f(x_0) \subseteq \partial \underline{f}(x_0)$. $\partial f(\overline{x_0}) \supseteq \partial \underline{f}(x_0)$ follows since $f(x_0) = \underline{f}(x_0)$ and $f \geq \underline{f}$.

Corollary 1.4.10 Let f be a proper convex function on \mathbb{R}^d . Then so is \underline{f} . Moreover, $f(x) = \underline{f}(x)$ for all $x \in \operatorname{ridom} f \cup (\operatorname{cldom} f)^c$ and $\partial f(x) = \partial \underline{f}(x)$ for all $x \in \operatorname{ridom} f$ *Proof.* We already know that \underline{f} is convex, and it is clear that it cannot be identically equal to $+\infty$. By Corollary 1.1.13, ridom f is not empty. Choose $x \in \text{ridom } f$. By Theorem 1.4.5, there exists $z \in \partial f(x)$. So one obtains from Lemma 1.4.9 that $f(x) = \underline{f}(x)$ and $\partial f(x) = \partial \underline{f}(x)$, which implies that \underline{f} is proper. Finally, note that dom $\underline{f} \subseteq \text{cl dom } f$. So if $x \notin \text{cl dom } f$, then $f(x) = \underline{f}(x) = +\infty$.

Theorem 1.4.11 A lsc convex function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ equals the point-wise supremum of all its affine minorants.

Proof. If f is constantly equal to $+\infty$, the theorem is clear. So we can assume dom $f \neq \emptyset$. Choose a pair $(x_0, w) \in \mathbb{R}^d \times \mathbb{R}$ that does not belong to epi f. By Corollary 1.2.5, there exists $(z, v) \in \mathbb{R}^d \times \mathbb{R}$ such that

$$m := \inf_{(x,y) \in \operatorname{epi} f} (\langle x, z \rangle + yv) > \langle x_0, z \rangle + wv.$$

It follows that $v \ge 0$. If v > 0, one can scale and assume v = 1. Then $m - \langle x, z \rangle$ is an affine minorant of f whose epigraph does not contain (x_0, w) . If v = 0, set $\lambda := m - \langle x_0, z \rangle > 0$ and choose $x_1 \in \text{dom } f$. Since $(x_1, f(x_1) - 1)$ is not in epi f, there exists $(z', v') \in \mathbb{R}^d \times \mathbb{R}$ such that

$$m' := \inf_{(x,y)\in \operatorname{epi} f} (\langle x, z' \rangle + yv') > \langle x_1, z' \rangle + (f(x_1) - 1)v'.$$

Since $x_1 \in \text{dom } f$, one must have v' > 0. So by scaling, one can assume v' = 1. Now choose

$$\delta > \frac{1}{\lambda} (w + \langle x_0, z' \rangle - m')^+$$

and set $z'' := \delta z + z'$. Then

$$m'' := \inf_{(x,y)\in \text{epi}\,f} (\langle x, z'' \rangle + y) \ge \delta m + m'$$
$$= \delta \lambda + \delta \langle x_0, z \rangle + m' > \langle x_0, z'' \rangle + w$$

So $m'' - \langle x, z'' \rangle$ is an affine minorant of f whose epigraph does not contain (x_0, w) . This completes the proof of the theorem.

1.5 Convex conjugates

Definition 1.5.1 The convex conjugate of a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ is the function $f^* : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ given by

$$f^*(z) := \sup_{x \in \mathbb{R}^d} \left\{ \langle x, z \rangle - f(x) \right\}.$$

Exercise 1.5.2

Consider functions $f, g : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$. Show that ...

- 1. f^* is convex and lsc.
- **2.** $f \ge f^{**}$
- **3.** $f \leq g$ implies $f^* \geq g^*$

4.
$$f^{***} = f^*$$

Exercise 1.5.3 Calculate f^* in the cases

1. $f(x) = \sum_{i=1}^{d} |x_i|^p$ for $p \ge 1$ 2. $f(x) = \exp(\lambda x)$ for $\lambda \in \mathbb{R}$

Definition 1.5.4 Let C be a subset of \mathbb{R}^d . The indicator function $\delta_C : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is defined to be 0 on C and $+\infty$ outside of C. The convex conjugate δ_C^* is called support function of C.

Exercise 1.5.5 Let $f : \mathbb{R}^d \to \mathbb{R}$ be an affine function of the form $f(x) = \langle x, z \rangle - v$ for a pair $(z, v) \in \mathbb{R}^d \times \mathbb{R}$. Show that $f^* = v + \delta_z$ and $f^{**} = f$.

Exercise 1.5.6 Consider a function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$.

1. Show that the Young–Fenchel inequality holds:

 $f^*(z) \ge \langle x, z \rangle - f(x)$ for all $x, z \in \mathbb{R}^d$.

2. Show that if $f(x_0) \in \mathbb{R}$, the following are equivalent

- (i) $z \in \partial f(x_0)$
- (ii) $\langle x, z \rangle f(x)$ achieves its supremum in x at $x = x_0$
- (iii) $f(x_0) + f^*(z) = \langle x_0, z \rangle$

3. Show that if $f(x_0) = f^{**}(x_0) \in \mathbb{R}$, the following conditions are equivalent to (i)–(iii)

- (iv) $x_0 \in \partial f^*(z)$
- (v) $\langle x_0, v \rangle f^*(v)$ achieves its supremum in v at v = z

(vi)
$$z \in \partial f^{**}(x_0)$$

Theorem 1.5.7 (Fenchel–Moreau Theorem)

Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a function whose lsc convex hull <u>conv</u> f does not take the value $-\infty$. Then <u>conv</u> $f = f^{**}$. In particular, if f is lsc and convex, then $f = f^{**}$.

Proof. We know that $f \ge f^{**}$. Since f^{**} is lsc and convex, one has $\underline{\operatorname{conv}} f \ge f^{**}$. Now let h be an affine minorant of $\underline{\operatorname{conv}} f$. Then it is also an affine minorant of f. So one has $h = h^{**} \le f^{**}$. Since by Theorem 1.4.11, $\underline{\operatorname{conv}} f$ is the point-wise supremum of its affine minorants, it follows that $\underline{\operatorname{conv}} f \le f^{**}$. \Box

Corollary 1.5.8 If f is a proper convex function on \mathbb{R}^d , then f^* is lsc proper convex.

Proof. f^* is lsc convex for every function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$. If f is proper convex, one obtains from Corollary 1.4.10 that so is \underline{f} , and it follows from Theorem 1.5.7 that $f = f^{**}$. This implies that f^* is proper convex.

Corollary 1.5.9 Let C be a non-empty subset of \mathbb{R}^d with closed convex hull D. Then $\delta^*_C(z) = \sup_{x \in D} \langle x, z \rangle$ and $\delta^{**}_C = \delta_D$.

Proof. $\delta_C^{**} = \delta_D$ follows from Theorem 1.5.7 since δ_D is the lsc convex hull of δ_C . Now one obtains $\delta_C^* = \delta_C^{***} = \delta_D^*$, and the proof is complete.

Corollary 1.5.10 Let f be a lsc proper sub-linear function on \mathbb{R}^d . Then $f = \delta^*_{\partial f(0)}$ and $f^* = \delta_{\partial f(0)}$. In particular, f(0) = 0 and $\partial f(0) \neq \emptyset$.

Proof. It can easily be checked that $f^* = \delta_C$ for the set

$$C = \left\{ z \in \mathbb{R}^d : \langle x, z \rangle \le f(x) \text{ for all } x \in \mathbb{R}^d \right\}.$$

By Theorem 1.5.7, one has $f = \delta_C^*$. It follows that C is non-empty, which implies f(0) = 0 and $\partial f(0) = C$.

Exercise 1.5.11 Calculate f^* for

$$f(x) = ||x||_p := \left(\sum_{i=1}^d |x_i|^p\right)^{1/p} \text{ for } p \ge 1.$$

Corollary 1.5.12 Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ be a convex function and $x_0 \in \mathbb{R}^d$ such that $f(x_0) \in \mathbb{R}$. Assume there exists a neighborhood U of x_0 and a constant $M \in \mathbb{R}_+$ such that

$$f(x) - f(x_0) \ge -M||x - x_0||$$
 for all $x \in U$. (1.5.10)

Then f has a sub-gradient z at x_0 such that $||z|| \leq M$.

Proof. Denote by $h : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ the lsc hull of the directional derivative $g(x) = f'(x_0; x)$. It follows from (1.5.10) that $h(x) \ge -M||x||$. In particular, h(0) = 0. h is a lsc sublinear function satisfying $\partial h(0) \subseteq \partial f(x_0)$. So it is enough to

show that h has a sub-gradient z at x_0 such that $||z|| \leq M$. It follows from Corollary 1.5.10 that $\partial h(0)$ is non-empty and

$$h(x) = \sup_{z \in \partial h(0)} \langle x, z \rangle.$$

Now assume that $\partial h(0) \cap B_M(0) = \emptyset$. Since $\partial h(0)$ is closed and convex, there exists an x such that

$$h(x) = \sup_{z \in \partial h(0)} \langle x, z \rangle < \inf_{z \in B_M(0)} \langle x, z \rangle = -M||x||,$$

a contradiction.

Theorem 1.5.13 Let f be a proper convex function on \mathbb{R}^d and $x_0 \in \text{ridom } f$. Then

$$f'(x_0; x) = \sup_{z \in \partial f(x_0)} \langle x, z \rangle, \quad x \in \mathbb{R}^d.$$
(1.5.11)

Proof. Consider the sub-linear function $g(x) = f'(x_0; x)$. It follows from Theorem 1.4.5 that $\partial g(0) = \partial f(x_0) \neq \emptyset$. So g is proper convex with dom g = aff dom $f - x_0$. In particular, dom g is closed, and g restricted to dom g is a real-valued convex function. It follows from Corollary 1.3.15 that g is continuous on dom g, and therefore lsc on \mathbb{R}^d . So one obtains from Corollary 1.5.10 that $g = \delta_C^*$ for $C = \partial g(0) = \partial f(x_0)$. This proves the theorem.

Theorem 1.5.14 Let f be a proper convex function on \mathbb{R}^d and $x_0 \in \text{dom } f$. Then $\partial f(x_0)$ is non-empty and bounded if and only if $x_0 \in \text{int dom } f$.

Proof. Let us first assume that $x_0 \in \text{int dom } f$. Then it follows from Theorem 1.4.5 that $\partial f(x_0) \neq \emptyset$. If there exists a sequence (z_n) in $\partial f(x_0)$ such that $||z_n|| \ge n$, then one has for every ε ,

$$f(x_0 + \varepsilon z_n / ||z_n||) \ge f(x_0) + \varepsilon \langle z_n / ||z_n||, z_n \rangle = f(x_0) + \varepsilon ||z_n|| \ge f(x_0) + \varepsilon n.$$

That is, f is unbounded from above on every neighborhood of x_0 , and it follows from Corollary 1.3.15 that $x_0 \notin \text{int dom } f$, a contradiction. So $\partial f(x_0)$ must be bounded.

Now we assume that $\partial f(x_0)$ is non-empty and bounded but $x_0 \notin$ int dom f. Define $g(x) := f'(x_0; x)$. By Corollary 1.2.11, there exists a $z \in \mathbb{R}^d \setminus \{0\}$ such that

dom
$$f \subseteq \{x \in \mathbb{R} : \langle x, z \rangle \ge \langle x_0, z \rangle \}$$
.

It follows that

$$\underline{g} = +\infty \quad \text{on the set } \{ x \in \mathbb{R}^d : \langle x, z \rangle < 0 \}.$$
(1.5.12)

Since $\partial f(x_0) = \partial g(0)$ is not empty, it follows from Lemma 1.4.9 that $\underline{g}(0) = g(0) = 0$ and $\partial \underline{g}(0) = \partial g(0) = \partial f(x_0)$. In particular, \underline{g} is a lsc proper sub-linear function, and one obtains from Corollary 1.5.10 that

$$\underline{g}(x) = \sup_{z \in \partial f(x_0)} \langle x, z \rangle \,,$$

contradicting (1.5.12). This shows that $x_0 \in \operatorname{int} \operatorname{dom} f$.

Theorem 1.5.15 Let f be a proper convex function on \mathbb{R}^d and $x_0 \in \text{dom } f$ such that $\partial f(x_0) = \{z\}$ for some $z \in \mathbb{R}^d$. Then f is differentiable at x_0 with $\nabla f(x_0) = z$.

Proof. It follows from Theorems 1.5.14 and 1.5.13 that $x_0 \in \text{int dom } f$ and $f'(x_0; x) = \langle x, z \rangle, x \in \mathbb{R}^d$. So for given $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$f(x_0 + \lambda e_i) - f(x_0) - \langle \lambda e_i, z \rangle \le \varepsilon |\lambda|, \qquad (1.5.13)$$

for all i = 1, ..., d and $\lambda \in [-\delta, \delta]$. Now choose $x \in \mathbb{R}^d$ such that

$$||x||_1 := \sum_{i=1}^d |x_i| \in (0, \delta].$$

By convexity of the function $g(x) := f(x_0 + x) - f(x_0) - \langle x, z \rangle$, one obtains from (1.5.13) that

$$g(x) = \sum_{i=1}^{d} g\left(||x||_1 \frac{\sum_i |x_i| \operatorname{sign}(x_i) e_i}{||x||_1} \right) \le \sum_{i=1}^{d} \frac{|x_i|}{||x||_1} g(||x||_1 \operatorname{sign}(x_i) e_i) \le \varepsilon ||x||_1.$$

Since

 $f(x_0 + x) - f(x_0) \ge \langle x, z \rangle$ for all $x \in \mathbb{R}^d$,

and all norms on \mathbb{R}^d are equivalent, one obtains

$$\lim_{x \neq 0, x \to 0} \frac{f(x_0 + x) - f(x_0) - \langle x, z \rangle}{||x||} = 0.$$

- 6	-	۱.

The following example shows that Theorem 1.5.15 does not hold for non-convex functions.

Example 1.5.16 The function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) := \begin{cases} e^{x+1} & \text{for } x < -1 \\ |x| & \text{for } -1 \le x \le 1 \\ e^{1-x} & \text{for } 1 \le x \end{cases}$$

is not differentiable at 0. But $\partial f(0) = \{0\}$.

1.6 Inf-convolution

Definition 1.6.1 Consider functions $f_j : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}, j = 1, ..., n$. The inf-convolution of f_1 and f_2 is given by

$$f_1 \Box f_2(x) := \inf_{y \in \mathbb{R}^d} (f_1(x - y) + f_2(y)) = \inf_{x_1 + x_2 = x} (f(x_1) + f(x_2)).$$

The inf-convolution of f_j , j = 1, ..., n, is the function

$$\Box_{j=1}^{n} f_{j}(x) := \inf_{x_{1} + \dots + x_{n} = x} \sum_{j=1}^{n} f_{j}(x_{j}).$$

The inf-convolution is said to be exact if the infimum is attained.

Lemma 1.6.2 Let $f_j : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}, j = 1, ..., n, be convex functions. Then <math>f = \Box_{j=1}^n f_j$ is convex.

Proof. If $f \equiv +\infty$, the lemma is clear. Otherwise, let $(x, v), (y, w) \in \text{epi } f, \lambda \in (0, 1)$ and $\varepsilon > 0$. There exist x_j and $y_j, j = 1, \ldots, n$, such that $\sum_{j=1}^n x_j = x$, $\sum_{j=1}^n f(x_j) \leq v + \varepsilon, \sum_{j=1}^n y_j = y$ and $\sum_{j=1}^n f(y_j) \leq w + \varepsilon$. Set $z_j = \lambda x_j + (1 - \lambda)y_j$. Then $z := \sum_{j=1}^n z_j = \lambda x + (1 - \lambda)y$ and

$$f(z) \le \sum_{j=1}^n f_j(z_j) \le \sum_{j=1}^n \lambda f_j(x_j) + (1-\lambda)f(y_j) \le \lambda v + (1-\lambda)w + \varepsilon.$$

It follows that $f(z) \leq \lambda v + (1 - \lambda)w$, which shows that epi f and f are convex. \Box

Lemma 1.6.3 Let f_j , j = 1, ..., n, be proper convex functions on \mathbb{R}^d and denote $f = \Box_{j=1}^n f_j$. Assume $f(x_0) = \sum_j f_j(x_j) < +\infty$ for some x_j summing up to x_0 and $f_1(x) < +\infty$ for all x in some neighborhood of x_1 . Then f is a proper convex function, $x_0 \in \text{int dom } f$ and f is continuous on int dom f.

Proof. By definition of f, one has

$$f(x_0 + x) - f(x_0) \le f_1(x_1 + x) + \sum_{j=2}^n f_j(x_j) - \sum_{j=1}^n f_j(x_j) = f_1(x_1 + x) - f_1(x_1)$$

for all $x \in \mathbb{R}^d$. Therefore, $f(x) < +\infty$ for all x in some neighborhood of x_0 . Since by Lemma 1.6.2, f is convex, the result follows from Theorem 1.3.14.

Lemma 1.6.4 Consider functions $f_j : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}, j = 1, ..., n, and denote <math>f = \Box_{j=1}^n f_j$. Assume $f(x_0) = \sum_{j=1}^n f_j(x_j) < +\infty$ for some x_j summing up to x_0 . Then $\partial f(x_0) = \bigcap_{j=1}^n \partial f_j(x_j)$.

Proof. Assume $z \in \partial f(x_0)$ and $x \in \mathbb{R}^d$. Then

$$f_1(x_1+x) - f_1(x_1) = f_1(x_1+x) + \sum_{j=2}^n f_j(x_j) - \sum_{j=1}^n f_j(x_j) \ge f(x_0+x) - f(x_0) \ge \langle x, z \rangle.$$

Hence $z \in \partial f_1(x_1)$, and it follows by symmetry that $\partial f(x_0) \subseteq \bigcap_{j=1}^n \partial f_j(x_j)$. On the other hand, if $z \in \bigcap_{j=1}^n \partial f_j(x_j)$ and $x \in \mathbb{R}^d$, choose y_j such that $\sum_{j=1}^n y_j = x_0 + x$. Then

$$\sum_{j=1}^{n} f_j(y_j) \ge \sum_{j=1}^{n} f_j(x_j) + \langle y_j - x_j, z \rangle = \sum_{j=1}^{n} f_j(x_j) + \langle x, z \rangle$$

So $f(x_0 + x) - f(x_0) \ge \langle x, z \rangle$, and the lemma follows.

Lemma 1.6.5 Let f_j , j = 1, ..., n, be proper convex functions on \mathbb{R}^d and denote $f = \Box_{j=1}^n f_j$. Assume $f(x_0) = \sum_j f_j(x_j) < +\infty$ for some x_j summing up to and f_1 is differentiable at x_1 . Then f is differentiable at x_0 with $\nabla f(x_0) = \nabla f_1(x_1)$.

Proof. One has

$$f(x_0 + x) - f(x_0) \le f_1(x_1 + x) + \sum_{j=2}^n f_j(x_j) - \sum_{j=1}^n f_j(x_j) = f_1(x_1 + x) - f_1(x_1)$$

for all $x \in \mathbb{R}^d$. It follows that the directional derivative $g(x) := f'(x_0; x)$ satisfies

$$g(x) \le f_1'(x_1; x) = \langle x, \nabla f_1(x_1) \rangle$$

for all $x \in \mathbb{R}^d$. But by Lemma 1.6.2, f is convex. So g is sub-linear, and it follows that $g(x) = \langle x, \nabla f_1(x_1) \rangle$. This implies that $\partial f(x_0) = \partial g(0) = \{\nabla f_1(x_1)\}$, and the lemma follows from Theorem 1.5.15.

Lemma 1.6.6 Consider functions $f_j : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}, j = 1, ..., n$, none of which is identically equal to $+\infty$. Then $\left(\Box_{j=1}^n f_j\right)^* = \sum_{j=1}^n f_j^*$.

Proof.

$$\left(\Box_{j=1}^{n}f_{j}\right)^{*}(z) = \sup_{x}(\langle x, z \rangle - \Box_{j=1}^{n}f_{j}(x)) = \sup_{x_{1},\dots,x_{n}}\sum_{j=1}^{n}(\langle x_{j}, z \rangle - f_{j}(x_{j})) = \sum_{j=1}^{n}f_{j}^{*}(z).$$

Corollary 1.6.7 Let f_j , j = 1, ..., n, be lsc proper convex functions on \mathbb{R}^d . Then $(\sum_{j=1}^n f_j)^* = \Box_{j=1}^n f_j^*$.

Proof. We know from Corollary 1.5.8 that f_j^* , i = 1, ..., n, are lsc proper convex. So one obtains from Theorem 1.5.7 and Lemma 1.6.6 that

$$\sum_{j=1}^{n} f_j = \sum_{j=1}^{n} f_j^{**} = \left(\Box_{j=1}^{n} f_j^* \right)^*,$$

and therefore, $(\sum_{j=1}^{n} f_j)^* = \Box_{j=1}^{n} f_j^*$.

Chapter 2 General Vector Spaces

2.1 Definitions

A general vector space is a set whose elements can be added and multiplied with scalars. It can be defined over a general field of scalars. But here we just consider vector spaces over \mathbb{R} . The precise definition is as follows:

Definition 2.1.1 A vector space is a non-empty set X with an addition

$$(x,y) \in X \times X \mapsto x + y \in X$$

and a scalar multiplication

$$(\lambda, x) \in \mathbb{R} \times X \mapsto \lambda x \in X$$

satisfying the following properties:

- 1. (x + y) + z = x + (y + z) for all $x, y, z \in X$
- 2. x + y = y + x for all $x, y \in X$
- 3. There exists an element $0 \in X$ such that x + 0 = x for all $x \in X$.
- 4. For every $x \in X$ there exists $-x \in X$ such that x + (-x) = 0
- 5. $\lambda(x+y) = \lambda x + \lambda y$ for all $\lambda \in \mathbb{R}$ and $x, y \in X$
- 6. $(\lambda + \mu)x = \lambda x + \mu x$ for all $\lambda, \mu \in \mathbb{R}$ and $x \in X$
- 7. $\lambda(\mu x) = (\lambda \mu)x$
- 8. 1x = x

Exercise 2.1.2

1. Show that there exists only one element $0 \in X$ satisfying 3. It is called zeroelement or neutral element of the addition.

2. Show that 0x = 0 for all $x \in X$.

3. Show that for given $x \in X$, there exists only one $-x \in X$ satisfying 4. It is called the negative or additive inverse of x.

4. Show that (-1)x = -x.

Examples 2.1.3 The following are vector spaces:

- **1.** {0}
- 2. \mathbb{R}^d
- **3.** The set of all linear functions $f : \mathbb{R}^d \to \mathbb{R}^k$.

4. The set of all functions $f: X \to Y$, where X is an arbitrary set and Y a vector space.

- **5.** All polynomials on \mathbb{R}^d .
- **6.** All real sequences.
- 7. All real sequences that converge.
- 8. $L^p(\Omega, \mathcal{F}, \mu)$, where $(\Omega, \mathcal{F}, \mu)$ is a measure space.
- **9.** The product $X \times Y$ of two vector spaces X and Y.

10. The quotient X/Y if Y is a subspace of X. (In X/Y, x and x' are identified if $x - x' \in Y$.)

Definition 2.1.4 Let Y be a subset of a vector space X.

- Y is said to be linearly independent if for every non-empty finite subset {y₁,..., y_k} of Y, (0,...,0) is the only vector λ in ℝ^k such that λ₁y₁ + ··· + λ_ky_k = 0.
- If Y is linearly independent and for every $x \in X$, there exists a finite subset $\{y_1, \ldots, y_k\}$ of Y and $\lambda \in \mathbb{R}^k$ such that $x = \lambda_1 x_1 + \cdots + \lambda_k x_k$, then Y is called a Hamel basis of X.

Exercise 2.1.5

1. Let Y be a Hamel basis of a vector space X. Show that the representation of points $x \in X$ as linear combinations of elements in Y is unique.

2. Show that $1, \cos(2\pi nx), \sin(2\pi nx), n = 1, 2, \ldots$ are linearly independent in $L^{2}[0, 1]$.

Definition 2.1.6 Let C be a subset of \mathbb{R}^d . C is a subspace of \mathbb{R}^d if

 $\lambda x + y \in C$ for all $x, y \in C$ and $\lambda \in \mathbb{R}$.

C is an affine set if

 $\lambda x + (1 - \lambda)y \in C$ for all $x, y \in C$ and $\lambda \in \mathbb{R}$.

C is a convex set if

$$\lambda x + (1 - \lambda)y \in C$$
 for all $x, y \in C$ and $\lambda \in [0, 1]$.

C is a cone if

$$\lambda x \in C$$
 for all $x \in C$ and $\lambda \in \mathbb{R}_{++}$.

Exercise 2.1.7 Show that the statements of Exercise 1.1.2 hold for non-empty subsets C, D of a vector space.

Definition 2.1.8 If C is a non-empty subset of a vector space, we denote by $\lim C$, aff C, conv C, cone C the smallest subspace, affine set, convex set, cone containing C, respectively.

Definition 2.1.9 A function $f: X \to Y$ between vector spaces is linear if

 $f(\lambda x + y) = \lambda f(x) + f(y)$ for all $\lambda \in \mathbb{R}$ and $x, y \in X$,

and affine if

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$$
 for all $\lambda \in \mathbb{R}$ and $x, y \in X$.

Definition 2.1.10 The algebraic dual X' of a vector space X is the vector space of all linear functions $f : X \to \mathbb{R}$. Elements of X' are usually called linear functionals.

Definition 2.1.11 A function $f: X \to \mathbb{R} \cup \{\pm \infty\}$ on a vector space X is ...

- quasi-convex if all sub-level sets $\{x \in X : f(x) \le y\}, y \in \mathbb{R}$, are convex.
- quasi-concave if all super-level sets $\{x \in X : f(x) \ge y\}, y \in \mathbb{R}$, are convex.
- convex if epi $f := \{(x, y) \in X \times \mathbb{R} : f(x) \le y\}$ is convex.
- proper convex if it is convex, $f(x) > -\infty$ for all $x \in X$ and $f(x) < +\infty$ for at least one $x \in X$.
- concave if -f is convex.
- proper concave if -f is proper concave.
- positively homogeneous if epi f is a cone.
- sub-linear if epi f is a convex cone.

Exercise 2.1.12 Let X be a vector space. Show the following:

- **1.** The pointwise supremum of quasi-convex functions on X is quasi-convex.
- 2. The point wise supremum of convex functions on X is convex.
- **3.** A positively homogeneous function $f: X \to \mathbb{R}$ satisfies f(0) = 0.

4. A positively homogeneous function $f : X \to \mathbb{R} \cup \{+\infty\}$ is convex if and only if $f(x+y) \leq f(x) + f(y)$ for all $x, y \in X$.

2.2 Zorn's lemma and extension results

Definition 2.2.1 A binary relation on a non-empty set X is a subset R of $X \times X$. One usually writes xRy instead of $(x, y) \in R$. R is said to be ...

- reflexive if xRx for all $x \in X$.
- symmetric if xRy implies yRx.
- antisymmetric if xRy and yRx imply x = y.
- transitive if xRy and yRz imply xRz.
- total if for all $x, y \in X$, one has xRy, yRx or both.
- an equivalence relation if it is reflexive, symmetric and transitive.
- a preorder if it is reflexive and transitive.
- a partial order if it is an antisymmetric preorder.
- a total order (or linear order) if it is a total partial order.

Definition 2.2.2 *Let* V *be a subset of a partially ordered set* (X, \geq) *.*

- V is called a chain if (V, \geq) is totally ordered.
- An upper (lower) bound of V is an element $x \in X$ such that $x \ge v$ ($x \le v$) for all $v \in V$.
- If $x \in V$ is an upper (lower) bound of V, it is called largest (smallest) element of V.
- An element $x \in V$ is called maximal (minimal) if there is no element $y \in V \setminus \{x\}$ such that $x \leq y$ ($x \geq y$).

Zorn's lemma is equivalent to the axiom of choice. We use it as an axiom.

Zorn's lemma

Let X be a partially ordered set in which every chain has an upper bound. Then X has a maximal element.

Theorem 2.2.3 Every vector space has a Hamel basis.

Proof. Let X be a vector space and denote by W be the set of all linearly independent subsets Y of X. $Y_1 \ge Y_2 \iff Y_1 \supseteq Y_2$ defines a partial order on W. If V is a chain in W, then $\bigcup_{Y \in V} Y$ is an upper bound of V. So it follows from Zorn's lemma that there exists a maximal element $Y \in W$. Y is a Hamel Basis of X. \Box

Exercise 2.2.4 Let Y be subspace of a vector space X.

1. Show that there exist subsets $V \subseteq Y$ and $W \subseteq X$ such that V is a Hamel Basis of Y and $V \cup W$ is a Hamel basis of X.

2. Show that every linear function $f: Y \to \mathbb{R}$ has a linear extension $F: X \to \mathbb{R}$.

Theorem 2.2.5 (Hahn–Banach extension theorem)

Let $g: X \to \mathbb{R}$ be a sub-linear function on a vector space X and $f: Y \to \mathbb{R}$ a linear function on a subspace Y of X such that $f(x) \leq g(x)$ for all $x \in Y$. Then there exists a linear extension $F: X \to \mathbb{R}$ of f such that $F(x) \leq g(x)$ for all $x \in X$.

Proof. If $Y \neq X$, choose $z \in X \setminus Y$ and set $\hat{Y} := \{y + \lambda z : y \in Y, \lambda \in \mathbb{R}\}$. For all $x, y \in Y$, one has

$$f(x) + f(y) = f(x+y) \le g(x+y) \le g(x-z) + g(y+z).$$

So there exists a number $\beta \in \mathbb{R}$ such that

$$\sup_{x \in Y} \left\{ f(x) - g(x - z) \right\} \le \beta \le \inf_{y \in Y} \left\{ -f(y) + g(y + z) \right\}.$$

Hence, if f is extended to \hat{Y} by setting

$$f(y + \lambda z) = f(y) + \lambda\beta,$$

it stays dominated by q.

Now let W be the set of all pairs (V, F), where V is a subspace of X containing Y and $F: V \to \mathbb{R}$ a linear extension of f that is dominated by g on V. Write $(V_1, F_1) \ge (V_2, F_2)$ if $V_1 \supseteq V_2$ and $F_1 = F_2$ on V_2 . If U is a chain in $W, \hat{V} = \bigcup_{V \in U} V$ is a vector space and $\hat{F}(x) := F(x)$ if $x \in V$ for some $(V, F) \in U$, defines a linear function $\hat{F}: \hat{V} \to \mathbb{R}$ such that (\hat{V}, \hat{F}) is an upper bound of W. So it follows from Zorn's lemma that W has a maximal element (V, F). But this means V = X. Otherwise, there would exist a $z \in X \setminus V$ and F could be extended to $\lim (V \cup \{z\})$ while staying dominated by g, a contradiction to the maximality of (V, F).

Remark 2.2.6 If $g: X \to \mathbb{R}$ is a sub-linear function on a vector space X, then g(0) = 0. Since $\{0\}$ is a subspace of X, and f(0) = 0 is a linear function on $\{0\}$, one obtains from the Hahn–Banach extension theorem that there exists a linear function $F: X \to \mathbb{R}$ dominated by g.

Theorem 2.2.7 (Mazur–Orlicz)

Let $g: X \to \mathbb{R}$ be a sub-linear function on a vector space X and C a non-empty convex subset of X. Then there exists a linear function $f: X \to \mathbb{R}$ that is dominated by g and satisfies

$$\inf_{x \in C} f(x) = \inf_{x \in C} g(x).$$

Proof. If $\alpha := \inf_{x \in C} g(x) = -\infty$, choose any $f \in X'$ that is dominated by g (such an f exists by Hahn–Banach). Then $\inf_{x \in C} f(x) = \inf_{x \in C} g(x) = -\infty$. If $\alpha \in \mathbb{R}$, define

$$h(x) := \inf_{y \in C, \lambda > 0} \left\{ g(x + \lambda y) - \lambda \alpha \right\}.$$

Since $\alpha \leq g(y)$, one has

$$g(x + \lambda y) - \lambda \alpha \ge g(x + \lambda y) - \lambda g(y) = g(x + \lambda y) - g(\lambda y) \ge -g(-x),$$

which shows that h(x) is real-valued on \mathbb{R} . It is clear that h is positively homogeneous. Moreover, if $x_1, x_2 \in \mathbb{R}$, one has for all $y_1, y_2 \in C$ and $\lambda_1, \lambda_2 > 0$,

$$g\left(x_1 + x_2 + (\lambda_1 + \lambda_2)\frac{\lambda_1y_1 + \lambda_2y_2}{\lambda_1 + \lambda_2}\right) - (\lambda_1 + \lambda_2)\alpha$$

= $g(x_1 + x_2 + \lambda_1y_1 + \lambda_2y_2) - (\lambda_1 + \lambda_2)\alpha$
 $\leq g(x_1 + \lambda_1y_1) - \lambda_1\alpha + g(x_2 + \lambda_2y_2) - \lambda_2\alpha,$

which shows that $h(x_1 + x_2) \leq h(x_1) + h(x_2)$. From the Hahn-Banach extension theorem one obtains an $f \in X'$ that is dominated by h. Note that

$$f(x) \le h(x) \le \inf_{y \in C} \{g(x+y) - \alpha\} \le \inf_{y \in C} \{g(x) + g(y) - \alpha\} = g(x) \text{ for all } x \in X.$$

In particular, $\inf_{x \in C} f(x) \leq \inf_{x \in C} g(x)$. On the other hand,

$$-f(y) = f(-y) \le h(-y) \le g(-y+y) - \alpha = -\alpha \quad \text{for all } y \in C,$$

and it follows that $\inf_{x \in C} f(x) \ge \alpha = \inf_{x \in C} g(x)$.

Corollary 2.2.8 Let $g: X \to \mathbb{R}$ be a sub-linear function on a vector space X and $x_0 \in X$. Then there exists an $f \in X'$ that is dominated by g such that $f(x_0) = g(x_0)$.

Proof. Apply Mazur–Orlicz with $C = \{x_0\}$.

2.3 Algebraic interior and separation results

Definition 2.3.1 Let C be a subset of a vector space X.

• The algebraic interior, core C, of C consists of all points $x_0 \in C$ with the property that for every $x \in X$, there exists $\lambda_x > 0$ such that

$$x_0 + \lambda x \in C$$
 for all $\lambda \in [0, \lambda_x]$.

- If $x_0 \in \operatorname{core} C$, we call C an algebraic neighborhood of x_0 .
- If $0 \in \operatorname{core} C$, we call C absorbing.

Lemma 2.3.2 Let C be a convex subset of a vector space X such that core $C \neq \emptyset$. Then

$$\lambda \operatorname{core} C + (1 - \lambda)C \subseteq \operatorname{core} C \tag{2.3.1}$$

for all $\lambda \in (0, 1]$. In particular, core C is convex.

Proof. Let $x \in \operatorname{core} C$, $y \in C$, $\lambda \in (0, 1]$ and $z \in X$. There exists $\mu_z > 0$ such that $x + \mu z \in C$ for all $\mu \in [0, \mu_z]$. So one has

$$\lambda x + (1 - \lambda)y + \lambda \mu z = \lambda (x + \mu z) + (1 - \lambda)y \in C$$

for all $\mu \in [0, \mu_z]$.

Definition 2.3.3 Let C be a non-empty subset of a vector space X. The Minkowski functional $\mu_C : X \to [0, +\infty]$ is given by

$$\mu_C(x) := \inf \left\{ \lambda > 0 : x \in \lambda C \right\},$$

where $\inf \emptyset$ is understood as $+\infty$.

Lemma 2.3.4 Let C be an absorbing convex subset of a vector space X. Then the Minkowski functional μ_C has the following properties:

- (i) μ_C is real-valued and sub-linear
- (ii) $\mu_C(x) < 1$ if $x \in \operatorname{core} C$, $\mu_C(x) \leq 1$ if $x \in C$ and $\mu_C(x) \geq 1$ if $x \notin \operatorname{core} C$.

Proof. It is clear that μ_C is real-valued and positively homogeneous. Moreover, if $x, y \in X$ and $\lambda, \mu > 0$ are such that $x \in \lambda C$ and $y \in \mu C$. Then $x + y \in \lambda C + \mu C = (\lambda + \mu)C$ (the inclusion \subseteq holds because C is convex). This shows that $\mu_C(x+y) \leq \mu_C(x) + \mu_C(y)$. So μ_C is sub-linear. The first two statements of (ii) are obvious. To show that last one, assume $\mu_C(x) < 1$. Then there exists a $\mu > 1$ such that $\mu x \in C$. Since $0 \in \operatorname{core} C$, it follows from Lemma 2.3.2 that $x \in \operatorname{core} C$. So if $x \notin \operatorname{core} C$, then $\mu_C(x) \geq 1$.

Theorem 2.3.5 (Algebraic weak separation)

Let C and D be non-empty convex subsets of a vector space X such that core $D \neq \emptyset$. Then there exists $f \in X' \setminus \{0\}$ such that

$$\inf_{x \in C} f(x) \ge \sup_{y \in D} f(y)$$

if and only if $C \cap \operatorname{core} D = \emptyset$.

Proof. The "only if" direction is clear. To show the "if" direction, we assume that $C \cap \operatorname{core} D = \emptyset$. Choose $x_0 \in \operatorname{core} D$. Then $A = C - x_0$ and $B = D - x_0$ are non-empty convex sets such that $A \cap \operatorname{core} B = \emptyset$ and B is absorbing. Therefore, the Minkowski functional μ_B is real-valued and sub-linear. It follows from Mazur–Orlicz that there exists an $f \in X'$ satisfying

$$f \le \mu_B$$
 on X and $\inf_{x \in A} f(x) = \inf_{x \in A} \mu_B(x).$

By Lemma 2.3.2, one has $\mu_B \leq 1$ on B. On the other hand, $\mu_B \geq 1$ on $X \setminus \operatorname{core} B$, and therefore, $\inf_{x \in A} \mu_B(x) \geq 1$. So one obtains

 $f(x) \ge 1 \ge f(y)$ for all $x \in A$ and $y \in B$.

In particular, $f \in X' \setminus \{0\}$ and

$$f(x) \ge 1 + f(x_0) \ge f(y)$$
 for all $x \in C$ and $y \in D$.

Theorem 2.3.6	Algebraic strong	separation)
---------------	------------------	-------------

Let C and D be non-empty convex subsets of a vector space X. Then there exists $f \in X'$ such that

$$\inf_{x \in C} f(x) > \sup_{y \in D} f(y)$$
(2.3.2)

if and only if there exists a convex absorbing set U such that $C \cap (D + U) = \emptyset$.

Proof. If there exists $f \in X'$ such that (2.3.2) holds, set

$$\beta := \inf_{x \in C} f(x) - \sup_{y \in D} f(y) > 0$$

The set $U := \{x \in X : f(x) < \beta\}$ is convex absorbing, and C does not intersect D + U. This shows the "only if" direction.

For the "if" direction, assume there exists a convex absorbing set U such that $C \cap (D+U) = \emptyset$. Then $0 \notin D + U - C$. Since core $(D+U-C) \neq \emptyset$, one obtains from Theorem 2.3.5 an $f \in X' \setminus \{0\}$ such that

$$0 \ge \sup_{x \in D+U-C} f(x),$$

or equivalently,

$$\inf_{x \in C} f(x) \ge \sup_{y \in D} f(y) + \sup_{u \in U} f(u).$$

Since U is absorbing, there exists $u \in U$ such that f(u) > 0, and it follows that

$$\inf_{x \in C} f(x) > \sup_{y \in D} f(y)$$

2.4 Directional derivatives and sub-gradients

Definition 2.4.1 Let $f : X \to \mathbb{R} \cup \{\pm \infty\}$ be a function on a vector space X and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. If the limit

$$f'(x_0; x) := \lim_{\varepsilon \downarrow 0} \frac{f(x_0 + \varepsilon x) - f(x_0)}{\varepsilon}$$

exists (it is allowed to be $+\infty$ or $-\infty$), we call it the directional derivative of f at x_0 in the direction x.

If there exists $x' \in X'$ such that $f'(x_0; x) = x'(x)$ for all $x \in X$, x' is called algebraic Gâteaux derivative of f at x_0 .

Definition 2.4.2 Let $f : X \to \mathbb{R} \cup \{\pm \infty\}$ be a function on a vector space X and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. $x' \in X'$ is an algebraic sub-gradient of f at x_0 if

$$f(x_0 + x) - f(x_0) \ge x'(x) \quad \text{for all } x \in X.$$

We denote the set of all algebraic sub-gradients of f at x_0 by $\partial_a f(x_0)$ and call it algebraic sub-differential of f at x_0 .

Definition 2.4.3 The effective domain of a function $f : X \to \mathbb{R} \cup \{+\infty\}$ or $f : X \to \mathbb{R} \cup \{-\infty\}$ on a set X is

$$\operatorname{dom} f := \{ x \in X : f(x) \in \mathbb{R} \}.$$

Exercise 2.4.4 Let $f : X \to \mathbb{R} \cup \{\pm \infty\}$ be a convex function on a vector space and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. Show the following:

$$f'(x_0; x) = \inf_{\varepsilon > 0} \frac{f(x_0 + \varepsilon x) - f(x_0)}{\varepsilon}$$

In particular, $f'(x_0; x)$ exists for all $x \in \mathbb{R}^d$.

- **2.** $f'(x_0, .)$ is sub-linear.
- **3.** If $x_0 \in \text{core } \{x \in X : f(x) \in \mathbb{R}\}$, then $f'(x_0; x) \in \mathbb{R}$ for all $x \in X$.
- 4. The following are equivalent:

- (i) $f(x_0) = \min_x f(x)$
- (ii) $0 \in \partial_a f(x_0)$
- (iii) $f'(x_0; x) \ge 0$ for all $x \in X$.
- **5.** $\partial_a f(x_0)$ is a convex subset of X'.
- **6.** $\partial_a f(x_0) = \partial_a g(0)$, where $g(x) := f'(x_0; x)$.
- 7. The following are equivalent:
 - (i) $z \in \partial f_a(x_0)$
 - (ii) (-z, 1) supports epi f at $(x_0, f(x_0))$.

Lemma 2.4.5 Let $f: X \to \mathbb{R} \cup \{\pm \infty\}$ be a convex function on a vector space X such that $f(x_0) \in \mathbb{R}$. Assume there exists an algebraic neighborhood U of x_0 such that $f(x) < +\infty$ for all $x \in U$. Then $f(x) > -\infty$ for all $x \in X$.

Proof. Assume there exists $x_1 \in X$ such that $f(x_1) = -\infty$. Then there exists $x_2 \in U$ and $\lambda \in (0, 1)$ such that $x_0 = \lambda x_1 + (1 - \lambda)x_2$. It follows that $f(x_0) = -\infty$, a contradiction.

Theorem 2.4.6 Let f be a proper convex function on a vector space X and $x_0 \in X$. Assume there exists an algebraic neighborhood U of x_0 such that $f(x) < +\infty$ for all $x \in U \cap \text{aff dom } f$. Then $\partial_a f(x_0) \neq \emptyset$.

Proof. The restriction of the directional derivative $g(x) := f'(x_0, x)$ to the subspace $Y = \text{aff dom } f - x_0$ is sub-linear and real-valued because $f(x) < +\infty$ for all $x \in U \cap \text{aff dom } f$. So it follows from the Hahn–Banach extension theorem that there exists a $y' \in Y'$ such that $y'(y) \leq g(y), y \in Y$. By Exercise 2.2.4, y' has a linear extension $x' \in X'$, and since $g(x) = +\infty$ for $x \in X \setminus Y$, one has $x'(x) \leq g(x), x \in X$. This shows that $x' \in \partial_a g(0) = \partial f_a(x_0)$.

Chapter 3

Topological Vector Spaces

3.1 Topological spaces

Definition 3.1.1 A topological space is a non-empty set X with a family τ of subsets of X satisfying:

- (i) $\emptyset, X \in \tau$
- (ii) $\bigcup_{V \in \eta} V \in \tau$ for every non-empty subset $\eta \subseteq \tau$
- (iii) $\bigcap_{i=1}^{k} V_i \in \tau$ for every finite subset $\{V_1, \ldots, V_k\}$ of τ .

 τ is called a topology and the members of τ open sets. A set $V \subseteq X$ is called closed if $X \setminus V$ is open. The interior int C of a set $C \subseteq X$ is the largest open set contained in C. The closure cl C is the smallest closed set containing C. The boundary bd Cof C is the set $cl C \setminus int C$. C is dense in X if cl C = X. (X, τ) is separable if it contains a countable dense subset.

Definition 3.1.2 A filter on a non-empty set X is a family \mathcal{V} of subsets satisfying

- (i) $\emptyset \notin \mathcal{V}$ and $X \in \mathcal{V}$.
- (ii) If $U, V \in \mathcal{V}$, then $U \cap V \in \mathcal{V}$.
- (iii) If $U \in \mathcal{V}$ and $U \subseteq V$, then $V \in \mathcal{V}$.

Definition 3.1.3 A subset U of a topological space (X, τ) is a neighborhood of a point $x \in X$ if $x \in \text{int } U$. The neighborhood filter τ_x of x is the family of all neighborhoods of x. A subset \mathcal{B}_x of τ_x is called a neighborhood base of x if for every $U \in \tau_x$ there exists a $V \in \mathcal{B}_x$ such that $V \subseteq U$. (X, τ) is called first countable if every $x \in X$ has a countable neighborhood base. The neighborhood system of the topology τ consists of all neighborhood filters τ_x , $x \in X$. (X, τ) is said to be Hausdorff (or separated) if any two different points have disjoint neighborhoods. **Exercise 3.1.4** Show that every point in a Hausdorff topological space is closed.

Exercise 3.1.5 Let (X, τ) be a topological space and $x \in X$. Show the following:

1. τ_x is a filter on X such that each $U \in \tau_x$ contains x.

2. Each $U \in \tau_x$ contains a $V \in \tau_x$ such that $U \in \tau_y$ for all $y \in V$.

Exercise 3.1.6 Let X be a non-empty set and \mathcal{N}_x , $x \in X$, a collection of filters on X satisfying 1. and 2. of Exercise 3.1.5. Show that the collection of all sets $V \subseteq X$ satisfying $V \in \mathcal{N}_x$ for every $x \in V$, forms a topology τ on X such that $\tau_x = \mathcal{N}_x$ for all $x \in X$.

Hint: The proof of the inclusion $\tau_x \subseteq \mathcal{N}_x$ is straight-forward. To show the other inclusion, let $U \in \mathcal{N}_x$ and note that $x \in V := \{y \in U : U \in \mathcal{N}_y\}$. If it can be shown that V belongs to τ , it follows that $U \in \tau_x$.

Definition 3.1.7 A directed set is a non-empty set A with a preorder \geq such that for every pair $(a, b) \in A^2$ there exists $a \ c \in A$ such that $c \geq a$ and $c \geq b$.

A net in a set X is a family $(x_a)_{a \in A}$ of elements in X indexed by a directed set A.

A net $(x_a)_{a \in A}$ in a topological space (X, τ) is said to converge to a point $x \in X$ if for every neighborhood U of x there exists an $a_0 \in A$ such that $x_a \in U$ for all $a \ge a_0$.

Exercise 3.1.8 Let C be a non-empty subset of a topological space X and $x \in X$. Show that the following are equivalent:

- (i) $x \in \operatorname{cl} C$;
- (ii) $C \cap U \neq \emptyset$ for every neighborhood U of x;
- (iii) There exists a net $(x_a)_{a \in A}$ in C converging to x.

Definition 3.1.9 Let (X, τ) be a topological space. A subset Y of X is compact if for every subset η of τ satisfying $\bigcup_{V \in \eta} V \supseteq Y$ there exists a finite subset $\{V_1, \ldots, V_k\}$ of η such that $\bigcup_{i=1}^k V_i \supseteq Y$.

Exercise 3.1.10 Let (X, τ) be a topological space. Show the following:

- (i) Single points in X are compact but not necessarily closed.
- (ii) If (X, τ) is Hausdorff, then compact sets in X are closed.

Definition 3.1.11 Let (X, τ) be a topological space and Y a subset of X. The topology induced by τ on Y is

$$\tau_Y := \{ V \cap Y : V \in \tau \} \,.$$

Members of τ_Y are called relatively open in Y.

Definition 3.1.12 A function $f: (X, \tau) \to (Y, \eta)$ between topological spaces is continuous at a point $x_0 \in X$ if $f^{-1}(U)$ is a neighborhood of x_0 for every neighborhood U of $f(x_0)$. f is said to be continuous if it is continuous at every $x \in X$.

Exercise 3.1.13 Let $f : (X, \tau) \to (Y, \eta)$ be a function between topological spaces. Show the following:

1. f is continuous if and only if $f^{-1}(V) \in \tau$ for every $V \in \eta$.

2. f is continuous at a point $x \in X$ if and only if $f(x_a)$ converges to f(x) for every net $(x_a)_{a \in A}$ in X that converges to x.

3. If (X, τ) is first countable, then f is continuous at a point $x \in X$ if and only if $f(x_n)$ converges to f(x) for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x.

4. If (X, τ) is not first countable, it is possible that f is not continuous at some $x \in X$ but $f(x_n)$ converges to f(x) for every sequence $(x_n)_{n\mathbb{N}}$ that converges to x.

Definition 3.1.14 A function $f: (X, \tau) \to \mathbb{R} \cup \{\pm \infty\}$ on a topological space is lsc at a point $x_0 \in X$ if for every $\varepsilon > 0$ there exists a neighborhood U of x_0 such that $f(x) \ge f(x_0) - \varepsilon$ for all $x \in U$. It is said to be lsc if it is lsc everywhere on X. f is usc at x_0 if -f is lsc at x_0 and usc if -f is lsc. By \underline{f} , we denote the function given by

$$\underline{f}(x_0) := \sup_{U \in \tau_x} \inf_{x \in U} f(x)$$

and call it lsc hull of f.

Exercise 3.1.15

Consider a function $f: X \to \mathbb{R} \cup \{\pm \infty\}$ on a topological vector space.

1. Show that the following are equivalent:

- (i) f is lsc
- (ii) All sub-level sets $\{x \in \mathbb{R}^d : f(x) \leq c\}, c \in \mathbb{R}$, are closed
- (iii) epi f is closed

2. Show that the epigraph of \underline{f} is the closure of epi f and \underline{f} is the greatest lsc minorant of f.

3. Let $f_i: X \to \mathbb{R} \cup \{\pm \infty\}, i \in I$, be a family of lsc functions. Show that $\sup_{i \in I} f_i$ is lsc.

Definition 3.1.16 Let (X_i, τ_i) , $i \in I$, be a family of topological spaces. The product topology on $\prod_{i \in I} X_i$ is the coarsest topology that makes all the projections continuous.

Definition 3.1.17 A pseudo-metric on a non-empty set X is a function $d : X \times X \to \mathbb{R}_+$ with the following three properties:

- (i) d(x, x) = 0 for all $x \in X$.
- (ii) d(x,y) = d(y,x) for all $x, y \in X$.
- (iii) $d(x,y) + d(y,z) \ge d(x,z)$ for all $x, y, z \in X$.
- If in addition to (i)–(iii), d satisfies
- (iv) d(x, y) = 0 implies x = y,

then d is a metric.

Exercise 3.1.18 Let d be a pseudo-metric on a non-empty set X and define

$$B_n(x) := \{y \in X : d(x, y) \le 1/n\}, \quad x \in X, n \in \mathbb{N}$$

Show that

$$\mathcal{B}_x := \{B_n(x) : n \in \mathbb{N}\}, \quad x \in X,$$

define neighborhood bases inducing a first countable topology τ on X, which is separable if and only if d is a metric.

Definition 3.1.19 A semi-norm on a vector space X is a sub-linear function $p: X \to \mathbb{R}_+$ such that

$$p(\lambda x) = |\lambda| p(x)$$
 for all $x \in X$ and $\lambda \in \mathbb{R}$.

If in addition, p(x) = 0 implies x = 0, p is a norm.

Exercise 3.1.20 Let p be a semi-norm on a vector space X. Show that ...

1. d(x,y) := p(x-y) defines a pseudo-metric.

2. if p is a norm, then d is a metric.

Definition 3.1.21 An inner product (or scalar product) on a vector space is a mapping $(x, y) \in X \times X \mapsto \langle x, y \rangle \in \mathbb{R}$ with the properties:

- (i) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$ for all $\lambda \in \mathbb{R}$ and $x, y, z \in X$.
- (ii) $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in X$.
- (iii) $\langle x, x \rangle > 0$ for all $x \in X \setminus \{0\}$.

Exercise 3.1.22 Let $\langle x, x \rangle$ be an inner product on a vector space X. Show that $||x|| := \langle x, x \rangle^{1/2}$ defines a norm.

Definition 3.1.23 A topological vector space is a vector space X with a topology τ such that the operations

$$(x,y) \in X \times X \mapsto x + y \in X$$
 and $(\lambda, x) \in \mathbb{R} \times X \mapsto \lambda x \in X$

are continuous with respect to the product topologies on $X \times X$ and $\mathbb{R} \times X$, respectively, where \mathbb{R} is endowed with the usual topology induced by d(x, y) = |x - y|.

X is said to be locally convex if 0 has a neighborhood base consisting of convex sets.

Exercise 3.1.24 Show that for a vector space X the following hold:

1. A norm on X induces a topology under which X is a locally convex topological vector space.

2. For every $x' \in X'$, |x'(x)| defines a semi-norm on X.

3. Let D be a non-empty subset of X'. Write neighborhood bases of the coarsest topology on X making every $x' \in D$ continuous.

Remark 3.1.25

1. Let X be a topological vector space. Since the addition is continuous, the translation $x \mapsto x + x_0$ is a homeomorphism for each x_0 with inverse $x \mapsto x - x_0$. Therefore, a subset $V \subseteq X$ is open/closed/a neighborhood of 0 if and only if $V + x_0$ is open/closed/a neighborhood of x_0 , respectively.

2. The multiplication with real numbers is also continuous. Therefore, for every $\lambda \in \mathbb{R} \setminus \{0\}$, the mapping $x \mapsto \lambda x$ is a homeormorphism with inverse $x \mapsto x/\lambda$. So a subset $V \subseteq X$ is open/closed/a neighborhood of 0 if and only if λV is open/closed/a neighborhood of 0, respectively.

Lemma 3.1.26 Let C be subset of a topological vector space X. Then int $C \subseteq$ core C. In particular, every 0-neighborhood in X is absorbing.

Proof. Let $x \in \text{int } C$ and $y \in X$. Since the vector space operations are continuous, there exists a $\varepsilon > 0$ such that $x + \lambda y \in C$ for all $0 \le \lambda \le \varepsilon$. Hence, $x \in \text{core } C$. If U is a 0-neighborhood in X, then $0 \in \text{int } U$, and therefore, U is absorbing. \Box

Lemma 3.1.27 Let C be a convex subset of a topological vector space X. Then the following hold:

- (i) If int $C \neq \emptyset$, then λ int $C + (1 \lambda) \operatorname{cl} C \subseteq \operatorname{int} C$ for all $\lambda \in (0, 1]$.
- (ii) int C and $\operatorname{cl} C$ are convex.
- (iii) If int $C \neq \emptyset$, then int $C = \operatorname{core} C$.

Proof. (i) Let $x \in \operatorname{int} C$, $y \in \operatorname{cl} C$ and $\lambda \in (0, 1]$. There exists a neighborhood U of 0 in X such that $x + U \subseteq C$. Since the vector space operations are continuous, there exist neighborhoods V and W of 0 in X such that

$$\frac{(1-\lambda)}{\lambda}V + \frac{1}{\lambda}W \subseteq U.$$

Moreover, there is a $z \in C$ such that $y - z \in V$. So one has

$$\lambda x + (1 - \lambda)y + w = \lambda \left(x + \frac{(1 - \lambda)}{\lambda}(y - z) + \frac{1}{\lambda}w \right) + (1 - \lambda)z \in C$$

for all $w \in W$. This proves (i).

(ii) That int C is convex is a consequence of (i). If $x, y \in \operatorname{cl} C$, there exist nets $(x_a)_{a \in A}$ and $(y_a)_{a \in A}$ converging to x and y, respectively. But then $\lambda x_a + (1 - \lambda)y_a \rightarrow \lambda x + (1 - \lambda)y$ for every $0 < \lambda < 1$, and it follows that $\operatorname{cl} C$ is convex.

(iii) We know from Lemma 3.1.26 that int $C \subseteq \operatorname{core} C$. On the other hand if $x \in \operatorname{core} C$ and there exist a $y \in \operatorname{int} C$, there is a $z \in C$ such that $x = \lambda y + (1 - \lambda)z$ for some $\lambda \in (0, 1]$. So it follows from (i) that $x \in \operatorname{int} C$.

Exercise 3.1.28 Let $f : X \to \mathbb{R} \cup \{\pm \infty\}$ be a convex function on a topological vector space. Show that f is still convex.

Definition 3.1.29 We call a subset C of a vector space X balanced if $\lambda C \subseteq C$ for all $\lambda \in [-1, 1]$.

Lemma 3.1.30 Let X be a topological vector space. Then 0 has a neighborhood base consisting of open balanced sets. If X is locally convex, 0 has a neighborhood base consisting of convex open balanced sets.

Proof. Let U be a 0-neighborhood in X. Then there exists an open 0-neighborhood V in X and $\varepsilon > 0$ such that $\lambda x \in U$ for all $\lambda \in [-\varepsilon, \varepsilon]$ and $x \in V$. $W = \varepsilon V$ is still an open 0-neighborhood in X and $\bigcup_{-1 \leq \lambda \leq 1} \lambda W$ is an open balanced 0-neighborhood contained in U.

If X is locally convex, there exists a convex 0-neighborhood V contained in U. $W = \operatorname{int} V$ is a convex open neighborhood of 0 contained in U and $W \cap (-W)$ a convex open balanced neighborhood of 0 contained in U.

3.2 Continuous linear functionals and extension results

Theorem 3.2.1 Let X be a topological vector space and $f \in X' \setminus \{0\}$. Then the following are equivalent:

(i) f is continuous;

- (ii) f is continuous at 0;
- (iii) $f^{-1}(0)$ is closed;
- (iv) $f^{-1}(0)$ is not dense in X;
- (v) f is bounded on some 0-neighborhood U in X;
- (vi) There exists a non-empty open subset V of X such that $f(V) \neq \mathbb{R}$.

Proof. It is clear that (i) implies (ii) and (iii). (ii) \Rightarrow (i) follows since for every $x \in X$, U is a 0-neighborhood if and only if x + U is an x-neighborhood. (iii) \Rightarrow (iv) follows since $f^{-1}(0) \neq X$. (iv) \Rightarrow (v): If $f^{-1}(0)$ is not dense in X, it follows from Lemma 3.1.30 that there exist $x \in X$ and a balanced 0-neighborhood U such that $(x + U) \cap f^{-1}(0) = \emptyset$. This implies that f is bounded on U. (v) \Rightarrow (ii): If U is a 0-neighborhood on which f is bounded by m > 0, then $|f(x)| \leq m/n$ for all all $x \in U/n$, which shows (ii). (v) \Rightarrow (vi): If f is bounded on a 0-neighborhood U in X, then $V = \operatorname{int} U$ is a non-empty open set such that $f(V) \neq \mathbb{R}$. (vi) \Rightarrow (iv): If $V \subseteq X$ satisfies (vi), there exists $a \in \mathbb{R}$ such that $V \cap f^{-1}(a) = \emptyset$. Since f is non-trivial, there exists a $x \in f^{-1}(a)$. Then V - x is a non-empty open set that does not intersect $f^{-1}(0)$. It follows that $f^{-1}(0)$ is not dense in X.

Remark 3.2.2 Theorem 3.2.1 shows that for a non-zero linear functional $f: X \to \mathbb{R}$ on a topological vector space one of the following holds:

- (i) $f^{-1}(0)$ is a proper closed subspace of X and f is continuous.
- (ii) $f^{-1}(0)$ is dense in X and f is not continuous.

Corollary 3.2.3 Let $f : X \to \mathbb{R}$ be a linear function on a topological vector space X that is dominated by a sub-linear function $g : X \to \mathbb{R}$ which is continuous at 0. Then f is continuous.

Proof. It follows from Lemma 3.1.30 that for given $\varepsilon > 0$, there exists a balanced 0-neighborhood U in X such that $|g(x)| \leq \varepsilon$ for all $x \in U$. Hence, $f(x) \leq g(x) \leq \varepsilon$ and $-f(x) = f(-x) \leq g(-x) \leq \varepsilon$ for all $x \in U$. This shows that f is continuous at 0, which by Theorem 3.2.1 implies that it is continuous everywhere.

Theorem 3.2.4 (Hahn–Banach topological extension theorem)

Let $g: X \to \mathbb{R}$ be a sub-linear function on a topological vector space that is continuous at 0 and $f: Y \to \mathbb{R}$ a linear function on a subspace Y of X such that $f(x) \leq g(x)$ for all $x \in Y$. Then there exists a continuous linear extension $F: X \to \mathbb{R}$ of f such that $F(x) \leq g(x)$ for all $x \in X$.

Proof. We know from the algebraic version of Hahn–Banach that there exists a linear extension $F: X \to \mathbb{R}$ of f that is dominated by g. By Corollary 3.2.3, F is continuous.

Theorem 3.2.5 (Topological version of Mazur–Orlicz)

Let $g: X \to \mathbb{R}$ be a sub-linear function on a topological vector space X that is continuous at 0 and C a non-empty convex subset of X. Then there exists a continuous linear function $f: X \to \mathbb{R}$ that is dominated by g and satisfies

$$\inf_{x \in C} f(x) = \inf_{x \in C} g(x).$$
(3.2.1)

Proof. From the algebraic version of Mazur–Orlicz we know that there exist a linear function $f: X \to \mathbb{R}$ that is dominated by g and satisfies (3.2.1). By Corollary 3.2.3, f is continuous.

Definition 3.2.6 The topological dual of a topological vector space X consists of the vector space

$$X^* := \{ x' \in X' : x' \text{ is continuous} \}.$$

Remark 3.2.7 Every linear functional on \mathbb{R}^d is continuous and can be represented by a vector $z \in \mathbb{R}^d$. Hence, $(\mathbb{R}^d)^* = (\mathbb{R}^d)' = \mathbb{R}^d$.

Remark 3.2.8 For a general topological vector space X, the topological dual X^* depends on the topology. But it is possible that there exist different topologies inducing the same space X^* of continuous linear functionals.

3.3 Separation with continuous linear functionals

Theorem 3.3.1 (Topological weak separation)

Let C and D be non-empty convex subsets of a topological vector space X such that int $D \neq \emptyset$. Then there exists an $f \in X^* \setminus \{0\}$ such that

$$\inf_{x \in C} f(x) \ge \sup_{y \in D} f(y) \tag{3.3.2}$$

if and only if $C \cap \operatorname{int} D = \emptyset$.

Proof. We know from Lemma 3.1.27 that int $C = \operatorname{core} C$. So the "only if" direction is clear. On the other hand, if $C \cap \operatorname{int} D = \emptyset$, it follows from algebraic weak separation that there exists an $f \in X' \setminus \{0\}$ satisfying (3.3.2). But then $\operatorname{int} D$ is a non-empty open subset of X such that $f(\operatorname{int} D) \neq \mathbb{R}$. Thus one obtains from Theorem 3.2.1 that f is continuous.

The following is an immediate consequence of Theorem 3.3.1:

Corollary 3.3.2 Let C be a closed convex subset of a topological vector space. If C has non-empty interior, then it is supported at every boundary point by a non-trivial continuous linear functional.

Another consequence of Theorem 3.3.1 is:

Corollary 3.3.3 Let X be a topological vector space. Then $X^* \neq \{0\}$ if and only if 0 has a convex neighborhood different from X.

Proof. If there exists $f \in X^* \setminus \{0\}$, then $\{x \in X : f(x) < 1\}$ is a convex 0-neighborhood different from X. On the other hand, if U is such a neighborhood, there exists $x \in X \setminus U$. Since $\operatorname{int} U \neq \emptyset$ and $\{x\} \cap \operatorname{int} U = \emptyset$, the existence of an $f \in X^* \setminus \{0\}$ follows from Theorem 3.3.1.

Lemma 3.3.4 Let C and D be non-empty disjoint subsets of a topological vector space X such that C is closed and D compact. Then there exists a neighborhood U of 0 in X such that $C \cap (D + U) = \emptyset$.

Proof. For every $x \in D$ there exists a neighborhood V_x of 0 in X such that $C \cap (x + V_x) = \emptyset$. Since the vector space operations are continuous, there is an open neighborhood U_x of 0 in X satisfying $U_x + U_x \subseteq V_x$. Due to compactness, there are finitely many $x_1, \ldots, x_n \in D$ such that $D \subseteq \bigcup_{i=1}^n (x_i + U_{x_i})$. $U = \bigcap_{i=1}^n U_{x_i}$ is again a 0-neighborhood, and for every $x \in D$ there exists an *i* such that $x = x_i + u_i$ for some $u_i \in U_{x_i}$. So for all $u \in U$, one has

$$x + u = x_i + u_i + u \subseteq x_i + U_{x_i} + U_{x_i} \subseteq x_i + V_{x_i},$$

and therefore, $C \cap (x + U) = \emptyset$.

Theorem 3.3.5 (Topological strong separation)

Let C and D be non-empty disjoint convex subsets of a locally convex topological vector space X such that C is closed and D is compact. Then there exists an $f \in X^* \setminus \{0\}$ such that

$$\inf_{x \in C} f(x) > \sup_{y \in D} f(y).$$
(3.3.3)

Proof. We know from Lemma 3.3.4 that there exists a neighborhood U of 0 in X such that $C \cap (D+U) = \emptyset$. Since X is locally convex, there exists a convex neighborhood V of 0 with the same property. D + V is a convex set satisfying int $(D + V) \neq \emptyset$ and $C \cap \text{int} (D + V) = \emptyset$. So it follows from Theorem 3.3.1 that there exists an $f \in X^* \setminus \{0\}$ such that

$$\inf_{x \in C} f(x) \ge \sup_{y \in D+V} f(y).$$

But, by By Lemma 3.1.26, V is absorbing, and one obtains (3.3.3).

Remark 3.3.6 Note that in Theorem 3.3.5 we did not assume X to by Hausdorff or D to be closed.

Corollary 3.3.7 Let C be a non-empty closed convex subset of a locally convex topological vector space X and $x_0 \in X \setminus C$. Then there exists an $f \in X^* \setminus \{0\}$ such that

$$\inf_{x \in C} f(x) > f(x_0).$$

Proof. The corollary is a consequence of Theorem 3.3.5 since $\{x_0\}$ is compact. \Box

As an immediate consequence one obtains the following:

Corollary 3.3.8 Let C be a proper non-empty closed convex subset of a locally convex topological vector space X. Then

$$C = \bigcap \{ H(x^*, c) : x^* \in X^*, \, c \in \mathbb{R}, \, C \subseteq H(x^*, c) \} \,,$$

where

$$H(x^*, c) := \{x \in X : x^*(x) \ge c\}.$$

Corollary 3.3.9 Let X be a locally convex topological vector space. Then the following two are equivalent:

- (i) X is Hausdorff.
- (ii) For any two different points $x, y \in X$, there exists an $f \in X^*$ such that $f(x) \neq f(y)$.

Proof. If X is Hausdorff, then single points are closed. So one obtains from Corollary 3.3.7 that different points can be separated with continuous linear functionals.

On the other hand, if there exists an $f \in X^*$ such that f(x) < f(y), set m := (f(x) + f(y))/2. Then $\{z \in X : f(z) < m\}$ is an x-neighborhood that does not intersect the y-neighborhood $\{z \in X : f(z) > m\}$.

Definition 3.3.10 The topological dual cone of a non-empty subset C of a topological vector space X is given by

$$C^* := \{x^* \in X^* : x^*(x) \ge 0 \text{ for all } x \in C\}.$$

Exercise 3.3.11 Let C be a non-empty subset of a locally convex topological vector space X. Show the following:

1. C^* is a convex cone in X^* that is closed with respect to $\sigma(X^*, X)$ (the coarsest topology on X^* such that all x, viewed as linear functionals on X^* , are continuous).

2. The set

$$\{x \in X : x^*(x) \ge 0 \text{ for all } x^* \in C^*\}$$

is the smallest closed convex cone in X that contains C.

3.4 Continuity of convex functions

Theorem 3.4.1 Let $f : X \to \mathbb{R} \cup \{\pm \infty\}$ be a convex function on a topological vector space X and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. Assume there exists a neighborhood U of 0 such that $\sup_{x \in U} f(x_0 + x) < +\infty$. Then f is proper convex, $x_0 \in \text{int dom } f$ and f is continuous on int dom f.

Proof. Since $x_0 \in \text{core}(x_0 + U)$, it follows from the convexity of f that $f(x) > -\infty$ for all $x \in X$. Hence f is proper convex, and $x_0 \in \text{int dom } f$.

Now choose a balanced 0-neighborhood V contained in U and set

$$m := \sup_{x \in V} f(x) \in \mathbb{R}.$$

Then for $x \in V$ and $0 < \lambda \leq 1$, one has

$$f(x_0 + \lambda x) = f(\lambda(x_0 + x) + (1 - \lambda)x_0) \le \lambda f(x_0 + x) + (1 - \lambda)f(x_0),$$

and therefore,

$$f(x_0 + \lambda x) - f(x_0) \le \lambda [f(x_0 + x) - f(x_0)] \le \lambda (m - f(x_0)).$$

On the other hand,

$$x_0 = \frac{1}{1+\lambda}(x_0 + \lambda x) + \frac{\lambda}{1+\lambda}(x_0 - x).$$

So

$$f(x_0) \le \frac{1}{1+\lambda} f(x_0 + \lambda x) + \frac{\lambda}{1+\lambda} f(x_0 - x),$$

from which one obtains

$$f(x_0) - f(x_0 + \lambda x) \le \lambda [f(x_0 - x) - f(x_0)] \le \lambda (m - f(x_0)).$$

Hence, we have proved that

$$|f(x) - f(x_0)| \le \lambda (m - f(x_0))$$
 for all $x \in x_0 + \lambda V_1$

showing that f is continuous at x_0 .

Finally, let $x_1 \in \text{int dom } f$. Then there exists a $\mu > 1$ such that

$$x_0 + \mu(x_1 - x_0) \in \operatorname{dom} f.$$

So one has for all $x \in V$

$$f(x_1 + (1 - 1/\mu)x) = f(x_1 - (1 - 1/\mu)x_0 + (1 - 1/\mu)(x_0 + x))$$

$$\leq \frac{1}{\mu}f(x_0 + \mu(x_1 - x_0)) + \left(1 - \frac{1}{\mu}\right)f(x_0 + x)$$

$$\leq \frac{1}{\mu}f(x_0 + \mu(x_1 - x_0)) + \left(1 - \frac{1}{\mu}\right)m.$$

This shows that f is bounded above on $x_1 + (1 - 1/\mu)V$, and it follows as above that f is continuous at x_1 .

Corollary 3.4.2 Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a convex function on a topological vector space. Then the following are equivalent:

- (i) int dom f is not empty, and f is continuous on int dom f.
- (ii) int epi f is not empty.

Proof. (i) \Rightarrow (ii): If (i) holds, there exists a neighborhood U of some $x_0 \in X$ and a $y \in \mathbb{R}$ such that $f(x) \leq y$ for all $x \in U$. It follows that $U \times [b, +\infty) \subseteq \operatorname{epi} f$, which implies (ii).

(ii) \Rightarrow (i): If $(x_0, y_0) \in$ interpret f, there exists a neighborhood U of x_0 in X and an $\varepsilon > 0$ such that $U \times [y_0 - \varepsilon, x_0 + \varepsilon] \subseteq \operatorname{epr} f$. In particular, $f(x_0) \in \mathbb{R}$ and $\sup_{x \in U} f(x) < +\infty$. So (ii) follows from Theorem 3.4.1.

Definition 3.4.3 Let C be a subset of a topological vector space X.

- C is called a barrel if it is closed, convex, balanced and absorbing.
- X is called a barreled space if it is locally convex and every barrel is a neighborhood of 0.

Remark 3.4.4 It can be shown that every Banach space is barreled. But there exist normed vector spaces that are not barreled.

Corollary 3.4.5 Let f be a lsc proper convex function on a barreled space X. Then f is continuous on int dom f.

Proof. Let us suppose that int dom f is not empty. Then we can assume without loss of generality that $0 \in \operatorname{int} \operatorname{dom} f$. Choose a number m > f(0). Then

 $U := \{x \in X : f(x) \le m \text{ and } f(-x) \le m\}$

is closed, convex and balanced. Next, note that for every $x \in X$, the function $f^x(\lambda) := f(\lambda x)$ is a proper convex function on \mathbb{R} with $0 \in \operatorname{int} \operatorname{dom} f^x$. It follows that f^x is continuous at 0. So there exists an $\varepsilon > 0$ such that $f(\lambda x) \leq m$ for all $\lambda \in [-\varepsilon, \varepsilon]$. This shows that U is absorbing and therefore, a barrel. Since X is barreled, U is a 0-neighborhood. Now the corollary follows from Theorem 3.4.1. \Box

3.5 Derivatives and sub-gradients

Definition 3.5.1 Let $f: X \to \mathbb{R} \cup \{\pm \infty\}$ be a function on a normed vector space and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. A Fréchet derivative of f at x_0 is a continuous linear functional $x^* \in X^*$ satisfying

$$\lim_{x \neq 0, ||x|| \to 0} \frac{f(x_0 + x) - f(x_0) - x^*(x)}{||x||} = 0 \quad \text{for all } x \in X.$$

Definition 3.5.2 Let $f: X \to \mathbb{R} \cup \{\pm \infty\}$ be a function on a topological vector space and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. A Gâteaux-derivative of f at x_0 is a continuous linear functional $x^* \in X^*$ satisfying $x^*(x) = f'(x_0; x)$ for all $x \in X$.

Definition 3.5.3 Let $f : X \to \mathbb{R} \cup \{\pm \infty\}$ be a function on a topological vector space and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. The sub-differential of f at x_0 is the set $\partial f(x_0) := \partial_a f(x_0) \cap X^*$. Elements of $\partial f(x_0)$ are called sub-gradients of f at x_0 .

Exercise 3.5.4 Let $f: X \to \bigcup \{\pm \infty\}$ be a convex function on a topological vector space and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. Show the following:

- **1.** $\partial f(x_0)$ is a $\sigma(X^*, X)$ -closed convex subset of X^* .
- **2.** If the function $g(x) := f'(x_0; x)$ is continuous at x = 0, then

$$\partial f(x_0) = \partial_a f(x_0) = \partial g(0) = \partial_a g(0).$$

Theorem 3.5.5 Let $f : X \to \mathbb{R} \{\pm \infty\}$ be a convex function on a topological vector space and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. If f is continuous at x_0 , then $\partial f(x_0) \neq \emptyset$.

Proof. It follows from Theorem 3.4.1 that f is proper convex, and x_0 has a neighborhood U on which f is bounded from above. So one obtains from Theorem 2.32 that there exists $x' \in \partial_a f(x_0)$. It follows that x' is bounded from above on $U - x_0$, which by Theorem 3.2.1, implies that it is continuous.

Lemma 3.5.6 Let $f : X \to \mathbb{R} \cup \{\pm \infty\}$ be a lsc convex function on a topological vector space and $x_0 \in X$ such that $f(x_0) \in \mathbb{R}$. Then f is proper convex.

Proof. Assume there exists $x_1 \in X$ such that $f(x_1) = -\infty$. Then $f(\lambda x_0 + (1 - \lambda)x_1) = -\infty$ for all $\lambda \in [0, 1)$. Since $\lambda x_0 + (1 - \lambda)x_1$ converges to x_0 for $\lambda \to 1$, one obtains $f(x_0) = -\infty$, which contradicts the assumption.

Lemma 3.5.7 Let f be a proper convex function on X and $x_0 \in \text{dom } f$ such that $\partial f(x_0) \neq \emptyset$. Then $f(x_0) = \underline{f}(x_0)$ and $\partial f(x_0) = \partial \underline{f}(x_0)$. In particular, \underline{f} is proper convex.

Proof. Choose $x^* \in \partial f(x_0)$. The affine function $g(x) = f(x_0) + x^*(x - x_0)$ minorizes f and equals f at x_0 . So g also minorizes \underline{f} and equals \underline{f} at x_0 . This shows $f(x_0) = g(x_0) = \underline{f}(x_0)$ and $\partial f(x_0) \subseteq \partial \underline{f}(x_0)$. $\partial f(x_0) \supseteq \partial \underline{f}(x_0)$ follows since $f(x_0) = \underline{f}(x_0)$ and $f \geq \underline{f}$.

Theorem 3.5.8 A lsc convex function $f : X \to \mathbb{R} \cup \{+\infty\}$ on a locally convex topological vector space equals the point-wise supremum of all its continuous affine minorants.

Proof. If f is constantly equal to $+\infty$, the theorem is clear. So we can assume dom $f \neq \emptyset$. Choose a pair $(x_0, w) \in X \times \mathbb{R}$ that does not belong to epi f. By Corollary 3.3.9, there exists $(x^*, v) \in X^* \times \mathbb{R}$ such that

$$m := \inf_{(x,y) \in epi f} (x^*(x) + yv) > x^*(x_0) + wv.$$

It follows that $v \ge 0$. If v > 0, one can scale and assume v = 1. Then $m - x^*(x)$ is an affine minorant of f whose epigraph does not contain (x_0, w) . If v = 0, set $\lambda := m - x^*(x_0) > 0$ and choose $x_1 \in \text{dom } f$. Since $(x_1, f(x_1) - 1)$ is not in epi f, there exists $(y^*, v') \in X^* \times \mathbb{R}$ such that

$$m' := \inf_{(x,y) \in \text{epi}\,f} (y^*(x) + yv') > y^*(x_1) + (f(x_1) - 1)v'.$$

Since $x_1 \in \text{dom } f$, one must have v' > 0. So by scaling, one can assume v' = 1. Now choose

$$\delta > \frac{1}{\lambda} (w + y^*(x_0) - m')^+$$

and set $z^* := \delta x^* + y^*$. Then

$$m'' := \inf_{(x,y)\in epi f} (z^*(x) + y) \ge \delta m + m' = \delta \lambda + \delta x^*(x) + m' > z^*(x_0) + w.$$

So $m'' - z^*(x)$ is an affine minorant of f whose epigraph does not contain (x_0, w) . This completes the proof of the theorem.

3.6 Dual pairs

Definition 3.6.1 Two vector spaces X and Y together with a bilinear function $\langle ., . \rangle : X \times Y \to \mathbb{R}$ form a dual pair if the following hold:

- (i) For every $x \in X \setminus \{0\}$ there exists a $y \in Y$ such that $\langle x, y \rangle \neq 0$;
- (ii) For every $y \in Y \setminus \{0\}$ there exists a $x \in X \langle x, y \rangle \neq 0$.

 $\sigma(X, Y)$ is the coarsest topology on X making all $y \in Y$ continuous. It is called weak topology induced by Y. A locally convex topology τ on X is said to be consistent with Y if $(X, \tau)^* = Y$. Analogously, the weak topology $\sigma(Y, X)$ is the coarsest topology on Y such that all $x \in X$ are continuous. A locally convex topology τ on Y is consistent with X if $(Y, \tau)^* = X$.

Exercise 3.6.2 Show that the following are dual pairs:

1.
$$X = Y = \mathbb{R}^d$$
, $\langle x, y \rangle = \sum_{i=1}^d x_i y_i$;

2. X = Y = H if H is a vector space with an inner product $\langle ., . \rangle$;

3. Y = X' for a vector space X with $\langle x, y \rangle = y(x)$;

4. $Y = X^*$ for a Hausdorff locally convex topological vector space X with $\langle x, y \rangle = y(x)$; e.g., X could be a normed vector space;

5. $X = L^p(\Omega, \mathcal{F}, \mu), Y = L^q(\Omega, \mathcal{F}, \mu)$ with $\langle x, y \rangle = \int xy d\mu$, where $(\Omega, \mathcal{F}, \mu)$ is a measure space and 1/p + 1/q = 1.

Exercise 3.6.3 Let (X, Y) be a dual pair. Show the following:

1. For each $y \in Y$,

$$U(y) := \{ x \in X : |\langle x, y \rangle| \le 1 \}$$

is a convex balanced neighborhood of 0 in X with respect to $\sigma(X, Y)$.

2.

$$\mathcal{U} := \{ U(y_1) \cap \cdots \cap U(y_n) : n \in \mathbb{R}, y_1, \dots, y_n \in Y \}$$

is a neighborhood base of 0 in X with respect to $\sigma(X, Y)$.

3. X with the topology $\sigma(X, Y)$ is a Hausdorff locally convex topological vector space.

Exercise 3.6.4 Let H be a Hilbert space. Show the following:

- (i) $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$ for all $x, y \in H$.
- (ii) If C is a non-empty closed convex subset of H, there exists a unique $x_0 \in C$ such that

$$||x_0|| = \inf_{x \in C} ||x||.$$

(iii) If D is a non-empty closed subspace of H and $x \in H$, there exists a unique $y \in D$ such that

$$||x - y|| = \inf_{v \in D} ||x - v||.$$

This $y \in D$ satisfies

$$\langle x - y, v \rangle = 0$$
 for all $v \in D$.

In particular, $H = D + D^{\perp}$ and $D \cap D^{\perp} = \{0\}$.

(iv) If $f: H \to \mathbb{R}$ is a continuous linear functional, $f^{-1}(0)$ is a closed linear subspace of H. Show that there exists a $z \in H$ such that $f^{-1}(0)^{\perp} = \{\lambda z : \lambda \in \mathbb{R}\}$. It follows that there exists a $y \in H$ such that $f(x) = \langle x, y \rangle$ for all $x \in X$. This shows that H^* can be identified with H.

Theorem 3.6.5 (Fundamental theorem of duality)

Let X be a vector space and $x'_0, \ldots, x'_n \in X'$. Then the following are equivalent:

(i) $x'_0 = \sum_{i=1}^n \lambda_i x'_i$ for some $\lambda \in \mathbb{R}^n$

(ii) $\bigcap_{i=1}^{n} x_i^{\prime-1}(0) \subseteq x_0^{\prime-1}(0).$

Proof. (i) \Rightarrow (ii) is clear. To show (ii) \Rightarrow (i), define a linear function $f: X \to \mathbb{R}^n$ by $f(x) := (x'_1(x), \ldots, x'_n(x))$. Due to (ii), there exists a linear function $g: f(X) \to \mathbb{R}$ such that $x'_0(x) = g \circ f(x)$ for all $x \in X$. g can be extended to a linear function $G: \mathbb{R}^n \to \mathbb{R}$, and G has a representation of the form $G(x) = \lambda^T x$ for some $\lambda \in \mathbb{R}^n$. This shows (i).

Theorem 3.6.6 (Duality theorem for dual pairs)

Let (X, Y) be a dual pair of vector spaces. Then $(X, \sigma(X, Y))^* = Y$ and $(Y, \sigma(Y, X))^* = X$.

Proof. First note that it follows from Definition 3.6.1 that two different elements $y_1, y_2 \in Y$ induce different continuous linear functionals on $(X, \sigma(X, Y))$.

Now pick a $x' \in X'$ that is continuous with respect to $\sigma(X, Y)$. Then there exist $y_1, \ldots, y_n \in Y$ such that

$$\{x \in X : |\langle x, y_i \rangle| \le 1 \text{ for all } i = 1, \dots, n\} \subseteq \{x \in X : |x'(x)| \le 1\},\$$

implying that

$$\bigcap_{i=1}^{n} y_i^{-1}(0) \subseteq x'^{-1}(0).$$

By Theorem 3.6.5, there exists $\lambda \in \mathbb{R}^n$ such that $x' = \sum_{i=1}^n \lambda_i y_i$, implying that $x' \in Y$. This shows $(X, \sigma(X, Y))^* = Y$. $(Y, \sigma(Y, X))^* = X$ follows by symmetry. \Box

Remark 3.6.7 Let X be a Hausdorff locally convex topological vector space. It follows from Theorem 3.6.6 that $(X, \sigma(X, X^*))^* = X^*$ and $(X^*, \sigma(X^*, X))^* = X$. $\sigma(X, X^*)$ is called the weak topology on X and $\sigma(X^*, X)$ the weak* topology on X^* .

For $1 < p, q < \infty$ such that 1/p + 1/q one has $(L^p, ||.||_p)^* = L^q$ and $L^p = (L^q, ||.||_q)^*$. But $(L^1, ||.||_1)^* = L^\infty$ and $(L^\infty, ||.||_\infty)^* = ba$, which is strictly larger than L^1 .

Theorem 3.6.8 (Closed convex sets in dual pairs)

Let (X, Y) be a dual pair of vector spaces. Then all locally convex vector space topologies on X consistent with Y have the same collection of closed convex sets in X.

Proof. By Corollary 3.3.8, every proper closed convex subset C of X equals the intersection of all closed half-spaces containing C. But this intersection depends only on Y.

Corollary 3.6.9 Let (X, Y) be a dual pair of vector spaces. Then all locally convex vector space topologies on X consistent with Y have the same collections of lsc convex functions $f: X \to \mathbb{R} \cup \{\pm \infty\}$ and lsc quasi-convex functions $f: X \to \mathbb{R} \cup \{\pm \infty\}$.

Proof. A function $f : X \to \mathbb{R} \cup \{\pm \infty\}$ is lsc if and only if all sub-level sets $\{x \in X : f(x) \leq c\}, c \in \mathbb{R}$, are closed. If f is (quasi-)convex, its sub-level sets are convex. So the corollary follows from Theorem 3.6.8.

3.7 Convex conjugates

In this whole subsection, (X, Y) is dual pair of vector spaces. X is endowed with the topology $\sigma(X, Y)$ and Y with $\sigma(Y, X)$. For instance, X could be a normed vector space and $Y = X^*$, or more generally, X could be a Hausdorff locally convex topological vector space and $Y = X^*$.

Definition 3.7.1 The convex conjugate of a function $f : X \to \mathbb{R} \cup \{\pm \infty\}$ is the function $f^* : Y \to \mathbb{R} \cup \{\pm \infty\}$ given by

$$f^*(y) := \sup_{x \in X} \left\{ \langle x, y \rangle - f(x) \right\}.$$

The convex conjugate of a function $h: Y \to \mathbb{R} \cup \{\pm \infty\}$ is the function $h^*: X \to \mathbb{R} \cup \{\pm \infty\}$ given by

$$h^*(x) := \sup_{y \in Y} \left\{ \langle x, y \rangle - h(y) \right\}.$$

Exercise 3.7.2

Consider functions $f, g: X \to \mathbb{R} \cup \{\pm \infty\}$. Show that ...

- **1.** f^* is convex and lsc.
- **2.** $f \ge f^{**}$
- **3.** $f \leq g$ implies $f^* \geq g^*$

4. $f^{***} = f^*$.

Definition 3.7.3 Let C be a subset of X. The indicator function $\delta_C : X \to \mathbb{R} \cup \{+\infty\}$ is defined to be 0 on C and $+\infty$ outside of C. The convex conjugate δ_C^* is called support function of C.

Exercise 3.7.4 Let $f: X \to \mathbb{R}$ be a continuous affine function of the form $f(x) = \langle x, y \rangle - v$ for a pair $(y, v) \in Y \times \mathbb{R}$. Show that $f^* = v + \delta_y$ and $f^{**} = f$.

Exercise 3.7.5 Consider a function $f: X \to \mathbb{R} \cup \{\pm \infty\}$.

1. Show that the Young–Fenchel inequality holds:

$$f^*(y) \ge \langle x, y \rangle - f(x)$$
 for all $(x, y) \in X \times Y$.

- **2.** Show that if $f(x_0) \in \mathbb{R}$, the following are equivalent
 - (i) $y \in \partial f(x_0)$
 - (ii) $\langle x, y \rangle f(x)$ achieves its supremum in x at $x = x_0$
- (iii) $f(x_0) + f^*(y) = \langle x_0, y \rangle$

3. Show that if $f(x_0) = f^{**}(x_0) \in \mathbb{R}$, the following conditions are equivalent to (i)–(iii)

- (iv) $x_0 \in \partial f^*(y)$
- (v) $\langle x_0, v \rangle f^*(v)$ achieves its supremum in v at v = y
- (vi) $y \in \partial f^{**}(x_0)$

Theorem 3.7.6 (Fenchel–Moreau Theorem)

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function whose lsc convex hull <u>conv</u> f does not take the value $-\infty$. Then <u>conv</u> $f = f^{**}$. In particular, if f is lsc and convex, then $f = f^{**}$.

Proof. We know that $f \ge f^{**}$. Since f^{**} is lsc and convex, one obtains <u>conv</u> $f \ge f^{**}$. Now let h be a continuous affine minorant of <u>conv</u> f. Then it also minorizes f. So one has $h = h^{**} \le f^{**}$. But by Theorem 3.5.8, <u>conv</u> f is the point-wise supremum of its continuous affine minorants. So one gets <u>conv</u> $f \le f^{**}$.

Corollary 3.7.7 If f is a lsc proper convex function on X, then f^* is lsc proper convex.

Proof. f^* is lsc convex for every function $f : X \to \mathbb{R} \cup \{\pm \infty\}$. If f is lsc proper convex, one obtains from Theorem 3.7.6 that $f = f^{**}$, and it follows that f^* is proper convex.

Corollary 3.7.8 Let C be a non-empty subset of X with closed convex hull D. Then $\delta_C^*(y) = \sup_{x \in D} \langle x, y \rangle$ and $\delta_C^{**} = \delta_D$.

Proof. $\delta_C^{**} = \delta_D$ follows from Theorem 3.7.6 since δ_D is the lsc convex hull of δ_C . Now one obtains $\delta_C^* = \delta_C^{***} = \delta_D^*$, and the corollary follows.

Corollary 3.7.9 Let f be a lsc proper sub-linear function on X. Then $f = \delta^*_{\partial f(0)}$ and $f^* = \delta_{\partial f(0)}$. In particular, f(0) = 0 and $\partial f(0) \neq \emptyset$.

Proof. It can easily be checked that $f^* = \delta_C$ for the set

$$C = \{ y \in Y : \langle x, y \rangle \le f(x) \text{ for all } x \in X \}.$$

By Theorem 3.7.6, one has $f = \delta_C^*$. In particular, C is non-empty, f(0) = 0 and $\partial f(0) = C$.

Corollary 3.7.10 Let $f: X \to \mathbb{R} \cup \{\pm \infty\}$ be a convex function on a normed vector space and $x_0 \in \mathbb{R}^d$ such that $f(x_0) \in \mathbb{R}$. Assume there exists a neighborhood U of x_0 and a constant $M \in \mathbb{R}_+$ such that

$$f(x) - f(x_0) \ge -M||x - x_0||$$
 for all $x \in U$. (3.7.4)

Then $\partial f(x_0) \neq \emptyset$.

Proof. It follows from condition (3.7.4) that $g(x) := f'(x_0; x) \ge -M||x||$, and therefore, $\underline{g}(x) \ge -M||x||$ for all $x \in X$. So one obtains from Corollary 3.7.9 that $\underline{g}(0) = 0 = \overline{g}(0)$ and $\partial \underline{g}(0) \neq \emptyset$, which implies that $\partial f(x_0) = \partial g(0) \neq \emptyset$. \Box

Theorem 3.7.11 Let f be a proper convex function on X and $x_0 \in \text{dom } f$. If f is continuous at x_0 , then

$$f'(x_0; x) = \sup_{y \in \partial f(x_0)} \langle x, y \rangle, \quad x \in X.$$
(3.7.5)

Proof. Consider the sub-linear function $g(x) = f'(x_0; x)$. It follows from Theorem 3.5.5 that $\partial g(0) = \partial f(x_0) \neq \emptyset$. Since g is bounded above on a neighborhood of 0, one obtains from Theorem 3.4.1 that g is continuous on X. So it follows from Corollary 3.7.9 that $g = \delta_C^*$ for $C = \partial g(0) = \partial f(x_0)$, which proves the theorem. \Box

3.8 Inf-convolution

Definition 3.8.1 Let $f_j : X \to \mathbb{R} \cup \{+\infty\}$, j = 1, ..., n, be functions on a vector space. The inf-convolution of f_j , j = 1, ..., n, is the function

$$\Box_{j=1}^{n} f_{j}(x) := \inf_{x_{1} + \dots + x_{n} = x} \sum_{j=1}^{n} f_{j}(x_{j}).$$

The inf-convolution is said to be exact if the infimum is attained.

Lemma 3.8.2 Let $f_j : X \to \mathbb{R} \cup \{+\infty\}, j = 1, ..., n$, be convex functions on a vector space X. Then $f = \Box_{i=1}^n f_j$ is convex.

Proof. If $f \equiv +\infty$, it is convex. If not, let $(x, v), (y, w) \in \text{epi } f, \lambda \in (0, 1)$ and $\varepsilon > 0$. There exist x_j and $y_j, j = 1, \ldots, n$, such that $\sum_{j=1}^n x_j = x, \sum_{j=1}^n f(x_j) \leq v + \varepsilon$, $\sum_{j=1}^n y_j = y$ and $\sum_{j=1}^n f(y_j) \leq w + \varepsilon$. Set $z_j = \lambda x_j + (1 - \lambda)y_j$. Then $z := \sum_{j=1}^n z_j = \lambda x + (1 - \lambda)y$ and

$$f(z) \le \sum_{j=1}^{n} f_j(z_j) \le \sum_{j=1}^{n} \lambda f_j(x_j) + (1-\lambda)f(y_j) \le \lambda v + (1-\lambda)w + \varepsilon.$$

It follows that $f(z) \leq \lambda v + (1 - \lambda)w$, which shows that epi f and f are convex. \Box

Lemma 3.8.3 Let f_j , j = 1, ..., n, be proper convex functions on a topological vector space X and denote $f = \Box_{j=1}^n f_j$. Assume $f(x_0) = \sum_j f_j(x_j) < +\infty$ for some x_j summing up to x_0 and f_1 is bounded from above on a neighborhood of x_1 . Then f is a proper convex function, $x_0 \in int \text{ dom } f$ and f is continuous on int dom f.

Proof. By definition of f, one has

$$f(x_0 + x) - f(x_0) \le f_1(x_1 + x) + \sum_{j=2}^n f_j(x_j) - \sum_{j=1}^n f_j(x_j) = f_1(x_1 + x) - f_1(x_1)$$

for all $x \in X$. It follows that f is bounded from above on a neighborhood of x_0 . Now the lemma is a consequence of Theorem 3.4.1.

Lemma 3.8.4 Consider functions $f_j : X \to \mathbb{R} \cup \{+\infty\}, j = 1, ..., n$, on a topological vector space and denote $f = \Box_{j=1}^n f_j$. Assume $f(x_0) = \sum_{j=1}^n f_j(x_j) < +\infty$ for some x_j summing up to x_0 . Then $\partial f(x_0) = \bigcap_{j=1}^n \partial f_j(x_j)$.

Proof. Assume $x^* \in \partial f(x_0)$ and $x \in X$. Then

$$f_1(x_1+x) - f_1(x_1) = f_1(x_1+x) + \sum_{j=2}^n f_j(x_j) - \sum_{j=1}^n f_j(x_j) \ge f(x_0+x) - f(x_0) \ge x^*(x).$$

Hence $x^* \in \partial f_1(x_1)$, and it follows by symmetry that $\partial f(x_0) \subseteq \bigcap_{j=1}^n \partial f_j(x_j)$. On the other hand, if $x^* \in \bigcap_{j=1}^n \partial f_j(x_j)$ and $x \in X$, choose y_j such that $\sum_{j=1}^n y_j = x_0 + x$. Then

$$\sum_{j=1}^{n} f_j(y_j) \ge \sum_{j=1}^{n} f_j(x_j) + x^*(y_j - x_j) = \sum_{j=1}^{n} f_j(x_j) + x^*(x).$$

So $f(x_0 + x) - f(x_0) \ge x^*(x)$, and the lemma follows.

Lemma 3.8.5 Let f_j , j = 1, ..., n, be proper convex functions on a topological vector space X and denote $f = \Box_{j=1}^n f_j$. Assume $f(x_0) = \sum_j f_j(x_j) < +\infty$ for some x_j summing up to x_0 and f_1 is Gâteaux-differentiable at x_1 with $f'_1(x_1; x) = x^*(x)$ for some $x^* \in X^*$. Then f is Gâteaux-differentiable at x_0 with $f'(x_0; x) = x^*(x)$. In particular, $\partial f(x_0) = \{x^*\}$.

Proof. One has

$$f(x_0 + x) - f(x_0) \le f_1(x_1 + x) + \sum_{j=2}^n f_j(x_j) - \sum_{j=1}^n f_j(x_j) = f_1(x_1 + x) - f_1(x_1)$$

for all $x \in X$. It follows that the directional derivative $g(x) := f'(x_0; x)$ satisfies

$$g(x) \le f_1'(x_1; x) = x^*(x)$$

for all $x \in X$. But by Lemma 3.8.2, f is convex. So g is sub-linear, and it follows that $g(x) = x^*(x)$.

Lemma 3.8.6 Let (X, Y) be a dual pair of vector spaces and $f_j : X \to \mathbb{R} \cup \{+\infty\}$, $j = 1, \ldots, n$, functions none of which is identically equal to $+\infty$. Then $\left(\Box_{j=1}^n f_j\right)^* = \sum_{j=1}^n f_j^*$.

Proof.

$$\left(\Box_{j=1}^{n}f_{j}\right)^{*}(y) = \sup_{x}(\langle x, y \rangle - \Box_{j=1}^{n}f_{j}(x)) = \sup_{x_{1},\dots,x_{n}}\sum_{j=1}^{n}(\langle x_{j}, y \rangle - f_{j}(x_{j})) = \sum_{j=1}^{n}f_{j}^{*}(y).$$

Chapter 4 Convex Optimization

In this chapter we study the minimization problem

$$\inf_{x \in X} f(x) \tag{P}$$

for a function $f: X \to \mathbb{R} \cup \{\pm \infty\}$ on a vector space. If one wants to constrain x to be in a subset $C \subseteq X$, one can replace f with $f + \delta_C$.

4.1 Perturbation and the dual problem

We assume that there exist vector spaces Y, W, Z such that (X, W) and (Y, Z) are dual pairs. A perturbation of f is a function $F : X \times Y \to \mathbb{R} \cup \{\pm \infty\}$ such that f(x) = F(x, 0). Note that ((X, Y), (W, Z)) is again a dual pair with pairing $\langle (x, y), (w, z) \rangle := \langle x, w \rangle + \langle y, z \rangle$. The value function associated with F is the function $u : Y \to \mathbb{R} \cup \{\pm \infty\}$ given by

$$u(y) := \inf_{x \in X} F(x, y).$$

In particular, $u(0) = \inf_x f(x)$.

The dual problem of (P) is

$$\sup_{z \in Z} -F^*(0, z) = -\inf_{z \in Z} F^*(0, z),$$
 (D)

where F^* is the convex conjugate

$$F^*(w,z) := \sup_{(x,y)\in X\times Y} \left(\langle x,w \rangle + \langle y,z \rangle - F(x,y) \right).$$

The dual value function is the function $v: W \to \mathbb{R} \cup \{\pm \infty\}$, given by

$$v(w) := \sup_{z \in Z} -F^*(w, z) = -\inf_{z \in Z} F^*(w, z).$$

Proposition 4.1.1 (Weak Duality)

One always has $u(0) \ge v(0)$.

Proof. By the Young–Fenchel inequality, one has

$$F^*(w, z) \ge \langle x, w \rangle + \langle y, z \rangle - F(x, y)$$
 for all x, y, w, z .

In particular,

$$F(x,0) \ge -F^*(0,z)$$
 for all x, z

and the proposition follows.

The dual problem of (D) is

$$\sup_{x \in X} -F^{**}(x,0) = -\inf_{x \in X} F^{**}(x,0),$$
(BD).

If $F = F^{**}$, then (BD) is equivalent to (P). In the general case, one obtains from Proposition 4.1.1 applied to (D) and (BD) that

$$\sup_{z} -F^{*}(0,z) = -\inf_{z} F^{*}(0,z) \le \inf_{x} F^{**}(x,0) \le \inf_{x} F(x,0),$$

and both inequalities can be strict. Note that the first term is a "concave max", the third term a "convex min", and the last term a "min" of a general function.

Lemma 4.1.2 If F is convex, then $u: Y \to \mathbb{R} \cup \{\pm \infty\}$ is convex too.

Proof. Assume there exist $(y_1, r_1), (y_2, r_2) \in \text{epi}\, u$. Choose $\lambda \in (0, 1)$ and $\varepsilon > 0$. There are $x_1, x_2 \in X$ such that

$$F(x_i, y_i) \le r_i + \varepsilon, \quad i = 1, 2.$$

 So

$$u(\lambda y_1 + (1 - \lambda)y_2) \le F(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2)$$

$$\le \lambda F(x_1, y_1) + (1 - \lambda)F(x_2, y_2) \le \lambda r_1 + (1 - \lambda)r_2 + \varepsilon,$$

which shows that epi u and u are convex.

Exercise 4.1.3 Show that $u^*(z) = F^*(0, z)$ and $v(0) = u^{**}(0)$. In particular, strong duality u(0) = v(0) is equivalent to $u(0) = u^{**}(0)$.

Definition 4.1.4 Problem (P) is called normal if $u(0) = v(0) \in \mathbb{R}$. It is called stable if it is normal and problem (D) has a solution.

Lemma 4.1.5 Assume that F is convex. Then (P) is normal if and only if $u(0) = \underline{u}(0) \in \mathbb{R}$.

Proof. If (P) is normal, then $u(0) = v(0) = u^{**}(0) \in \mathbb{R}$, which implies $u(0) = \underline{u}(0) \in \mathbb{R}$. On the other hand, we know from Lemma 4.1.2 that u is convex. So if $u(0) = \underline{u}(0) \in \mathbb{R}$, one obtains from Lemma 3.5.6 that \underline{u} is a lsc proper convex function, and it follows from Theorem 3.7.6 that $u(0) = \underline{u}(0) = u^{**}(0) = v(0) \in \mathbb{R}$.

Proposition 4.1.6 (P) is stable if and only if $u(0) \in \mathbb{R}$ and $\partial u(0) \neq \emptyset$.

Proof. If (P) is stable, then there exists z such that $u(0) = v(0) = -F^*(0, z) \in \mathbb{R}$. So one has

$$u(0) = v(0) = \langle 0, z \rangle - u^*(z) \in \mathbb{R},$$

and it follows that $z \in \partial u(0)$. On the other hand, if $u(0) \in \mathbb{R}$ and $z \in \partial u(0)$, then

$$u(0) = \langle 0, z \rangle - u^*(z) = -F^*(0, z),$$

which by weak duality, implies that z is a solution of (D).

Theorem 4.1.7 (Fundamental duality formula of convex analysis)

Assume F is convex and $u(0) \in \mathbb{R}$. Then (P) is stable if one of the following conditions holds:

- (i) There exists a neighborhood U of 0 in Y such that $\sup_{y \in U} u(y) < +\infty$.
- (ii) Y is barreled, u is lsc and $0 \in \operatorname{int} \operatorname{dom} u$;
- (iii) Y is a normed vector space and there exists a constant $M \in \mathbb{R}_+$ such that

$$u(y) - u(0) \ge -M||y||$$

for all y in a neighborhood of 0 in Y;

- (iv) $Y = \mathbb{R}^d$, u does not take the value $-\infty$ and $0 \in \operatorname{ridom} u$;
- (v) $Y = \mathbb{R}^d$, $u(y) < +\infty$ for y in a neighborhood of 0 in Y.

Proof. By Proposition 4.1.6, it is enough to show that $\partial u(0) \neq \emptyset$. We know from Lemma 4.1.2 that u is convex. So $\partial u(0) \neq \emptyset$ follows from each of the conditions (i)–(v).

In the following, consider functions $f: X \to \mathbb{R} \cup \{+\infty\}$ and $g: Y \to \mathbb{R} \cup \{+\infty\}$. Moreover, let $A: X \to Y$ be a continuous linear function and define the adjoint $A^*: Z \to W$ by $\langle x, A^*z \rangle := \langle Ax, z \rangle$. Denote

$$p := \inf_{x \in X} \{ f(x) + g(Ax) \}$$
(P - FR)
$$d := \sup_{z \in Z} \{ -f^*(-A^*z) - g^*(z) \}$$
(D - FR)

As a consequence of Proposition 4.1.1 and Theorem 4.1.7, one obtains the following

Corollary 4.1.8 (Fenchel–Rockafellar duality theorem)

One always has $p \ge d$. Moreover, p = d and (D-FR) has a solution if f and g are convex, $p \in \mathbb{R}$ and one of the following conditions holds:

- (i) The function $h(y) := \inf_x \{f(x) + g(Ax + y)\}$ satisfies $\sup_{y \in U} h(y) < +\infty$ for some neighborhood U of 0 in Y;
- (ii) Y is barreled, h is lsc and $0 \in \operatorname{int} \operatorname{dom} h$;
- (iii) Y is a normed vector space and there exists a constant $M \in \mathbb{R}_+$ such that

$$h(y) - h(0) \ge -M||y||$$

for all y in a neighborhood of 0 in Y;

- (iv) $Y = \mathbb{R}^d$, h does not take the value $-\infty$ and $0 \in \operatorname{ridom} u$;
- (v) $Y = \mathbb{R}^d$, $h(y) < +\infty$ for y in a neighborhood of 0 in Y.

Proof. Define the function $F: X \times Y \to \mathbb{R} \cup \{+\infty\}$ by

$$F(x,y) := f(x) + g(Ax + y)$$

Then

$$F^*(w,z) = \sup_{\substack{x,y \\ x,y}} \{ \langle x,w \rangle + \langle y,z \rangle - f(x) - g(Ax+y) \}$$

=
$$\sup_{\substack{x,y \\ x,y}} \{ \langle x,w \rangle + \langle y - Ax,z \rangle - f(x) - g(y) \}$$

=
$$\sup_{\substack{x,y \\ x,y}} \{ \langle x,w - A^*z \rangle + \langle y,z \rangle - f(x) - g(y) \}$$

=
$$f^*(w - A^*z) + g^*(z).$$

So u(0) = p and v(0) = d, and it follows from Proposition 4.1.1 that $p \ge d$. The rest of the corollary follows from Theorem 4.1.7.

Example 4.1.9 Let A be an $m \times n$ -matrix, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$. Denote by $p \in [-\infty, \infty]$ the value of the primal problem

(P) minimize $c^T x$ subject to Ax = b and $x \ge 0$

and by $d \in [-\infty, \infty]$ the value of the dual problem

(D) maximize $b^T y$ subject to $A^T y \leq c$.

If one sets

$$f(x) = c^T x + \delta_{\mathbb{R}^n_+}(x)$$
 and $g(y) = \delta_b(y),$

then (P) corresponds to the problem (P-FR) and (D) to (D-FR). So one obtains from Proposition 4.1.1 that $p \ge d$.

Corollary 4.1.10 (Sandwich Theorem)

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ and $g: Y \to \mathbb{R} \cup \{+\infty\}$ be convex functions and $A: X \to Y$ a continuous linear function. Assume $f(x) \ge -g(Ax)$ for all $x \in X$ and one of the conditions (i)–(v) of Corollary 4.1.8 holds. Then there exist $z \in Z$ and $r \in \mathbb{R}$ such that

$$f(x) \ge \langle x, A^*z \rangle - r \ge -g(Ax) \quad for all \ x \in X.$$

Proof. It follows from Corollary 4.1.8 that there exists a $z \in Z$ such that

$$0 \le \inf_{x \in X} \left\{ f(x) + g(Ax) \right\} = -f^*(A^*z) - g^*(-z).$$

Choose $r \in \mathbb{R}$ such that $g^*(-z) \leq -r \leq -f^*(A^*z)$. Then

$$f(x) - \langle x, A^*z \rangle \ge -f^*(A^*z) \ge -r$$
 for all $x \in X$,

and

$$\langle y, -z \rangle - g(y) \le g^*(-z) \le -r \quad \text{for all } y \in Y.$$
 (4.1.1)

Choosing y = Ax in (4.1.1) gives

$$\langle Ax, -z \rangle - g(Ax) \le -r,$$

which is equivalent to

$$\langle x, A^*z \rangle - r \ge -g(Ax) \text{ for all } x \in X.$$

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ and $g: Y \to \mathbb{R} \cup \{+\infty\}$ be convex functions and $A: X \to Y$ a continuous linear function. Then

$$\partial f(x) + A^* \partial g(Ax) \subseteq \partial (f + g \circ A)(x) \quad \text{for all } x \in X.$$

Moreover, if $x \in \text{dom } f$ and $\sup_{y \in U} g(y) < +\infty$ for some neighborhood U of Ax, then the inclusion is an equality.

Proof. That the inclusion holds for all $x \in X$ is straightforward to check. Now assume that $x \in \text{dom } f$ and $\sup_{y \in U} g(y) < +\infty$ for some neighborhood U of Ax. If there exists a $w \in \partial (f + g \circ A)(x)$, then the mapping

$$x' \mapsto f(x') + g(Ax') - \langle x', w \rangle$$

takes its minimum at x' = x, and by shifting f, one can assume that this minimum is 0. Then it follows from the sandwich theorem that there exist $z \in Z$ and $r \in \mathbb{R}$ such that

$$f(x') - \langle x', w \rangle \ge \langle x', A^*z \rangle - r \ge -g(Ax') \quad \text{for all } x' \in X.$$

$$(4.1.2)$$

In particular,

$$f(x) - \langle x, w \rangle = \langle x, A^* z \rangle - r = -g(Ax).$$
(4.1.3)

By subtracting (4.1.3) from (4.1.2), one obtains that $w + A^* z \in \partial f(x)$ and

$$g(Ax') - g(Ax) \ge \langle Ax' - Ax, -z \rangle$$
 for all $x \in X$.

Moreover, it follows from the assumptions that g is proper convex and continuous at Ax. So g'(Ax; y) is a real-valued continuous sub-linear function on Y that dominates $\langle ., -z \rangle$ on the subspace $\{Ax' : x' \in X\}$. By Hahn–Banach, there exists $\tilde{z} \in Z$ such that $\langle Ax', \tilde{z} \rangle = \langle Ax', z \rangle$ for all $x' \in X$ and $g'(Ax; y) \geq \langle y, -\tilde{z} \rangle$ for all $y \in Y$. It follows that $-\tilde{z} \in \partial g(Ax)$ and $A^*\tilde{z} = A^*z$. So $w = w + A^*z - A^*\tilde{z} \in \partial f(x) + A^*\partial g(Ax)$. \Box

Corollary 4.1.12 (Sum Rule)

Let $f, g: X \to \mathbb{R} \cup \{+\infty\}$ be convex functions. Then

$$\partial f(x) + \partial g(x) \subseteq \partial (f+g)(x) \quad \text{for all } x \in X.$$

Moreover, if $x \in \text{dom } f$ and $\sup_{y \in U} g(y) < +\infty$ for some neighborhood U of x, then the inclusion is an equality.

Proof. Choose X = Y and A = id in Corollary 4.1.11.

Corollary 4.1.13 (Chain Rule)

Let $g: Y \to \mathbb{R} \cup \{+\infty\}$ be a convex function and $A: X \to Y$ a continuos linear function. Then

$$A^* \partial g(Ax) \subseteq \partial (g \circ A)(x) \quad for \ all \ x \in X.$$

Moreover, if $\sup_{y \in U} g(y) < +\infty$ for some neighborhood U of Ax, then the inclusion is an equality.

Proof. Choose $f \equiv 0$ in Corollary 4.1.11.

Corollary 4.1.14 Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a convex function and C a non-empty convex subset of X. If $0 \in \partial f(x_0) + \partial \delta_C(x_0)$ for some $x_0 \in C$, then x_0 solves the optimization problem

$$\min_{x \in \mathcal{C}} f(x). \tag{4.1.4}$$

On the other hand, if $x_0 \in C$ solves (4.1.4) and $\sup_{x \in U} f(x) < +\infty$ for a neighborhood U of x_0 , then $0 \in \partial f(x_0) + \partial \delta_C(x_0)$.

Proof. The minimization problem (4.1.4) is equivalent to

$$\min_{x \in X} \{ f(x) + \delta_C(x) \}, \qquad (4.1.5)$$

and $x_0 \in C$ solves (4.1.5) if and only if $0 \in \partial (f + \delta_C)(x_0)$, which by Corollary 4.1.12 follows if $0 \in \partial f(x_0) + \partial \delta_C(x_0)$. Moreover, if $\sup_{x \in U} f(x) < +\infty$ for a neighborhood U of x_0 , one obtains from Corollary 4.1.12 that $\partial f(x_0) + \partial \delta_C(x_0) = \partial (f + \delta_C)(x_0)$.

4.2 Lagrangians and saddle points

Definition 4.2.1 A saddle point of a function $L: X \times Z \to \mathbb{R} \cup \{\pm \infty\}$ is a pair $(\bar{x}, \bar{z}) \in X \times Z$ satisfying

$$\sup_{z} L(\bar{x}, z) \le L(\bar{x}, \bar{z}) \le \inf_{x} L(x, \bar{z}).$$

Lemma 4.2.2 For every function $L: X \times Z \to \mathbb{R} \cup \{\pm \infty\}$, one has

$$\sup_{z} \inf_{x} L(x, z) \le \inf_{x} \sup_{z} L(x, z), \tag{4.2.6}$$

and if L has a saddle point (\bar{x}, \bar{z}) , then

$$\sup_{z} \inf_{x} L(x, z) = L(\bar{x}, \bar{z}) = \inf_{x} \sup_{z} L(x, z).$$

Proof. For every x', one has

$$\sup_{z} \inf_{x} L(x, z) \le \sup_{z} L(x', z),$$

and one obtains (4.2.6). If (\bar{x}, \bar{z}) is a saddle point of L, then

$$\inf_{x} \sup_{z} L(x,z) \le \sup_{z} L(\bar{x},z) \le L(\bar{x},\bar{z}) \le \inf_{x} L(x,\bar{z}) \le \sup_{z} \inf_{x} L(x,z)$$

and the lemma follows.

Now we assume that -L is the *y*-conjugate of a function $F: X \times Y \to \mathbb{R} \cup \{\pm \infty\}$:

$$L(x, z) = \inf_{y \in Y} \{ F(x, y) - \langle y, z \rangle \}.$$
 (4.2.7)

Then L is called the Lagrangian of the problem (P) related to the perturbation F.

Lemma 4.2.3 If L is of the form (4.2.7), then it is concave and usc in z. If moreover, F is convex, then L is convex in x.

Proof. That L is concave and use in z is clear. That L is convex in x if F is convex, follows as in the proof of Lemma 4.1.2. \Box

Lemma 4.2.4 Assume L is of the form (4.2.7). Then

$$F^*(w,z) = \sup_x \left\{ \langle x, w \rangle - L(x,z) \right\}.$$

In particular,

$$\sup_{z} -F^*(0,z) = \sup_{z} \inf_{x} L(x,z)$$

Proof.

$$F^*(w,z) = \sup_{x,y} \{ \langle x, w \rangle + \langle y, z \rangle - F(x,y) \}$$

=
$$\sup_x \{ \langle x, w \rangle - L(x,z) \}.$$

Lemma 4.2.5 If L is of the form (4.2.7) for a lsc convex function $F : X \times Y \rightarrow \mathbb{R} \cup \{+\infty\}$, then

$$F(x,y) = \sup_{z} \left\{ \langle y, z \rangle + L(x,z) \right\}$$

In particular,

$$\inf_{x} F(x,0) = \inf_{x} \sup_{z} L(x,z).$$

Proof. For fixed x, F(x, .) is identically equal to $+\infty$ or lsc proper convex. So one obtains from Theorem 3.7.6 that

$$F(x,y) = \sup_{z} \left\{ \langle y, z \rangle + L(x,z) \right\}.$$

Lemma 4.2.6 Let L be of the form (4.2.7) for a lsc convex F and $(\bar{x}, \bar{z}) \in X \times Z$. Then the following two are equivalent:

- (i) (\bar{x}, \bar{z}) is a saddle point of L
- (ii) x̄ is a solution of the primal problem (P), z̄ is a solution of the dual problem (D), and both problems have the the same value.
- If (i)–(ii) hold, then the value of (P) and (D) is equal to $L(\bar{x}, \bar{z})$.

Proof. By Lemmas 4.2.2, 4.2.4 and 4.2.5, one has

$$\inf_{x} F(x,0) = \inf_{x} \sup_{z} L(x,z) \ge \sup_{z} \inf_{x} L(x,z) = \sup_{z} -F^{*}(0,z).$$
(4.2.8)

If (\bar{x}, \bar{z}) is a saddle point of L, one obtains from Lemmas 4.2.2, 4.2.4 and 4.2.5 that

$$F(\bar{x}, 0) = L(\bar{x}, \bar{z}) = -F^*(0, \bar{z}).$$

On the other hand, if (ii) holds, one obtains from (4.2.8) that

$$\sup_{z} L(\bar{x}, z) = \inf_{x} L(x, \bar{z}),$$

which implies that (\bar{x}, \bar{z}) is a saddle point of L.

Proposition 4.2.7 Let L be of the form (4.2.7) for a lsc convex F and assume the primal problem (P) is stable. Then for fixed $\bar{x} \in X$, the following two are equivalent:

- (i) \bar{x} is a solution of the primal problem (P);
- (ii) There exists a $\overline{z} \in Z$ such that $(\overline{x}, \overline{z})$ is a saddle point of L.

Proof. (i) \Rightarrow (ii) follows from stability and Lemma 4.2.6. (ii) \Rightarrow (i) is a consequence of Lemma 4.2.6.

Karush–Kuhn–Tucker-type conditions 4.3

Let $f, g_1, \ldots, g_m : X \to \mathbb{R} \cup \{\pm \infty\}$ be functions and C a non-empty subset of X such that

$$f(x), g_1(x), \ldots, g_m(x) \in \mathbb{R}$$
 for all $x \in C$.

We consider the constraint minimization problem:

inf
$$f(x)$$
 subject to $x \in C$ and $g_i(x) \le 0$ for all $i = 1, ..., m$. (CP)

Let us define the Lagrange functions

$$L: C \times \mathbb{R}^m_+ \to \mathbb{R} \quad \text{and} \quad M: C \times \mathbb{R}^{m+1}_+ \to \mathbb{R}$$

by

$$L(x, z) = f(x) + z^T g(x)$$
 and $M(x, z_0, z) = z_0 f(x) + z^T g(x)$,

where $z = (z_1, \ldots, z_m) \in \mathbb{R}^m_+$ and $z_0 \in \mathbb{R}_+$. We call $(\bar{x}, \bar{z}) \in C \times \mathbb{R}^m_+$ a saddle point of L on $C \times \mathbb{R}^m_+$ if

$$L(\bar{x}, z) \le L(\bar{x}, \bar{z}) \le L(x, \bar{z})$$
 for all $(x, z) \in C \times \mathbb{R}^m_+$.

The following is called Slater condition:

(SC) There exists $x_0 \in C$ such that $g_i(x_0) < 0$ for all $i = 1, \ldots, m$.

For given $\bar{x} \in C$ we consider the following conditions:

- (S) \bar{x} is a solution of (CP);
- (SP) There exists $\bar{z} \in \mathbb{R}^m_+$ such that (\bar{x}, \bar{z}) is a saddle point of L on $C \times \mathbb{R}^m_+$;
- (L) There exists $\bar{z} \in \mathbb{R}^m_+$ such that the following hold:
 - (i) $L(\bar{x}, \bar{z}) = \min_{x \in C} L(x, \bar{z})$ (ii) $g_i(\bar{x}) \leq 0$ and $\bar{z}_i g_i(\bar{x}) = 0$ for all $i = 1, \ldots, m$;
- (M) There exists $(\bar{z}_0, \bar{z}) \in \mathbb{R}^{m+1} \setminus \{0\}$ such that the following hold:
 - (i) $M(\bar{x}, \bar{z}_0, \bar{z}) = \min_{x \in C} M(x, \bar{z}_0, \bar{z})$
 - (ii) $g_i(\bar{x}) \leq 0$ and $\bar{z}_i g_i(\bar{x}) = 0$ for all $i = 1, \ldots, m$.

Theorem 4.3.1 Let $\bar{x} \in C$. Then one has

- (i) $(SP) \Leftrightarrow (L) \Rightarrow (S);$
- (ii) If C, f, g_1, \ldots, g_m are convex, then (S) \Rightarrow (M);
- (iii) If C, f, g_1, \ldots, g_m are convex and (SC) holds, then (SP) \Leftrightarrow (L) \Leftrightarrow (S) \Leftrightarrow (M).

Proof. (i) First, assume that (\bar{x}, \bar{z}) is a saddle point of L on $C \times \mathbb{R}^m_+$. Then $L(\bar{x}, \bar{z}) = \min_{x \in C} L(x, \bar{z}) \in \mathbb{R}$. Therefore, one obtains from $\max_{z \in \mathbb{R}^m_+} L(\bar{x}, z) = L(\bar{x}, \bar{z})$ that $g_i(\bar{x}) \leq 0$ and $\bar{z}_i g_i(\bar{x}) = 0$ for all $i = 1, \ldots, m$.

On the other hand, if (L) holds, then $L(\bar{x}, \bar{z}) \leq L(x, \bar{z})$ for all $x \in C$, and $L(\bar{x}, z) = f(\bar{x}) + z^T g(\bar{x}) \leq f(\bar{x}) + \bar{z}^T g(\bar{x}) = L(\bar{x}, \bar{z})$. This shows that (\bar{x}, \bar{z}) is a saddle point. Moreover, it follows from (L) that $f(\bar{x}) = L(\bar{x}, \bar{z}) \leq L(x, \bar{z}) \leq f(x)$ for all $x \in C$ satisfying $g_i(x) \leq 0$ for all $i = 1, \ldots, m$.

To show (ii), assume that C, f, g_1, \ldots, g_m are convex. Denote

$$K := \operatorname{conv} \{ (f(x) - f(\bar{x}), g_1(x), \dots, g_m(x)) : x \in D \} \subseteq \mathbb{R}^{m+1}.$$

Condition (S) implies $K \cap \operatorname{int} \mathbb{R}^{m+1}_{-} = \emptyset$. Indeed, otherwise there would exist $x_1, \ldots, x_n \in C$ and $\lambda_1, \ldots, \lambda_n \geq 0$ such that $\sum_j \lambda_j = 1$ and

$$\sum_{j=1}^n \lambda_j(f(x_j) - f(\bar{x}), g_1(x_j), \dots, g_m(x_j)) \in \operatorname{int} \mathbb{R}^{m+1}_-$$

But this would imply $\sum_{j} \lambda_{j} x_{j} \in C$, $f(\sum_{j} \lambda_{j} x_{j}) \leq \sum_{j} \lambda_{j} f(x_{j}) < f(\bar{x})$ and $g_{i}(\sum_{j} \lambda_{j} x_{j}) \leq \sum_{j} \lambda_{j} g_{i}(x_{j}) \leq 0$, a contradiction to (S). Therefore there exists $(\bar{z}_{0}, \bar{z}) \in \mathbb{R}^{m+1} \setminus \{0\}$ such that

$$\inf_{v \in K} \left\langle v, (\bar{z}_0, \bar{z}) \right\rangle \ge \sup_{w \in \mathbb{R}^{m+1}_{-}} \left\langle w, \bar{z} \right\rangle.$$

It follows that $(\bar{z}_0, \bar{z}) \in \mathbb{R}^{m+1}_+ \setminus \{0\}$ and

$$\bar{z}_0 f(x) + \bar{z}^T g(x) \ge \bar{z}_0 f(\bar{x}) \quad \text{for all } x \in C.$$

In particular,

$$\bar{z}_0 f(\bar{x}) + \bar{z}^T g(\bar{x}) \ge \bar{z}_0 f(\bar{x}) \ge \bar{z}_0 f(\bar{x}) + \bar{z}^T g(\bar{x}).$$

So $\bar{z}_i g_i(\bar{x}) = 0$ for all i and $M(\bar{x}, \bar{z}_0, \bar{z}) \leq M(x, \bar{z}_0, \bar{z})$ for all $x \in C$.

(iii) We show that if C, f, g_1, \ldots, g_m are convex and (SC) holds, then (M) \Rightarrow (L). So assume (M) holds for some $(\bar{z}_0, \bar{z}) \in \mathbb{R}^{m+1}_+ \setminus \{0\}$. If $\bar{z}_0 = 0$, one has

$$0 > \bar{z}^T g(x_0) = M(x_0, \bar{z}_0, \bar{z}) \ge M(\bar{x}, \bar{z}_0, \bar{z}) = \bar{z}^T g(\bar{x}) = 0,$$

a contradiction. So $\bar{z}_0 > 0$. By rescaling, one can assume $\bar{z}_0 = 1$. Then (L) holds.

Now for given $\bar{x} \in C$, consider the Karush–Kuhn–Tucker condition:

(KKT) There exists $\bar{z} \in \mathbb{R}^m_+$ such that the following hold:

- (i) $0 \in \partial f(\bar{x}) + \sum_{i=1}^{m} \bar{z}_i \partial g_i(\bar{x}) + \partial \delta_C(\bar{x})$
- (ii) $g_i(\bar{x}) \leq 0$ and $\bar{z}_i g_i(\bar{x}) = 0$ for all $i = 1, \dots, m$;

Theorem 4.3.2 Assume C, f, g_1, \ldots, g_m are convex and let $\bar{x} \in C$. Then the following hold:

- (i) (KKT) \Rightarrow (S);
- (ii) If f, g_1, \ldots, g_m are continuous at \bar{x} and (SC) is satisfied, then (KKT) \Leftrightarrow (S).

Proof. (i) If (KKT) holds, it follows from Corollary 4.1.14 that \bar{z} satisfies (L), which by Theorem 4.3.1, implies (S).

(ii) We know that under (SC), (S) implies (L). So there exists $\bar{z} \in \mathbb{R}^m_+$ such that $0 \in \partial (f + \bar{z}^T g + \delta_C)(\bar{x})$. But if f, g_1, \ldots, g_m are continuous at \bar{x} , one obtains from Corollary 4.1.12 that $\partial (f + \bar{z}^T g + \delta_C)(\bar{x}) = \partial f(\bar{x}) + \sum_{i=1}^m \bar{z}_i \partial g_i(\bar{x}) + \partial \delta_C(\bar{x})$. So (KKT) holds.