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For a given problem, you don't need to know that much, usually —
and, besides, very simple ideas will often work.

Jean-Pierre Serr€L ]






A casual preface

The preface tries to give a non-specialist taste of what Galois theory and this
thesis are about.

81. Galois groups. Suppose one is interested in solving polynomial equations.
Such an equation

(1) aX +a_1 X1+ +a=0,

where the coefficients are rational numbers (fractions), is callsalvable by rad-
icals, if the solutionsx can be obtained from the coefficiegsin a finite sequence

of steps, each of which may involve addition, subtraction, multiplication, division,
or takingn-th roots. For example, if the degree= 2, then

a1 £ ,/a? — 4agay

2a,
Actually, every polynomial equation of degree at most 4 is solvable in radicals, as
there exist similar universal formulas.
A question which puzzled 18th century arithmeticiarts is

Can polynomial equations of degree at least 5 be solved by rad-
icals?

o =

Around 1830, Evariste Galois came up with a theory of polynomial equations
which not only answered this question but in fact introduced new structures that
would revolutionize algebra. Beyond that, he provided mathematics with one of its
most fascinating biographies, by leading a very short but agitated life.

All night long he had spent the fleeting hours feverishly dashing off
his scientific last will and testament, writing against time to glean a
few of the great things in his teeming mind before the dead which he
saw could overtake him. Time after time he broke off to scribble in
the margin “I have not time; | have not time,” and passed on to the
next frantically scrawled outline. What he wrote in those last desperate
hours before the dawn will keep generations of mathematician busy for
hundreds of years. He had found, once and for all, the true solution of a
riddle which had tormented mathematicians for centuries: under what
conditions can an equation be solve@2l, p. 375

IFor an account on the history of this topic and of algebra in general, there i¥\&ag. [
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Thus, at least according to E.T. Bell and mathematical folR|oBalois scrib-
bled down the elements of his theory on the eve of his fatal duel.

Originally, the equation X = —1 had no solution.
Then the two solutions i andi were created.

But there is absolutely no way to tell who is i and whe-is
That is Galois theory.

S.S. AbhyankarAbh]

If we take a polynomial equation (1) with rational coefficients, some solutions
may not be defined over the field of rational numbers itself, but then we can
consider the smallest field which containsQ and all the solutions of (1). Just
like we could replace by —i without making any difference, we obtain a finite
set of symmetries of the fiel& which leaveQ fixed; these symmetries form a
group, called thé&alois group Gal(K /Q). Galois observed that if > 5, then this
group in general does not have a ‘solvable’ structure, which implied that polynomial
equations of degree at least 5 cannot be solved by radicals.

The field Q@ which containsQ and the solutions of all polynomial equations
overQ is called thealgebraic closureof @@, and to this extension we can again as-
sociate an (infinite) group, the absolute Galois grbgp This single group now en-
codes all the information on algebraic extension®ofUnfortunately, its structure
is tremendously complicated and a great deal of modern number theory is directly
related to trying to understand it. One idea is to study it by its action on vector
spaces, i.e. by its linear representations.

82. Galois representations of . Suppose one is interested in the question:
(Fermat’s last theorenb)oes the equation

) X"y =1

have any rational solutions for X and Y, both different from
zero, if the integer n is at lea8P

Around 1637, Pierre de Fermat wrote down this problem in his copy of Diophantos’
Arithmeticae, and went on to say that he could show by a very elegant argument that
no such solutions exist, but that the margin was too narrow to give it. Thus he would
haunt generations and generations of mathematicians, as they would not be able to
find any proof for his so-called ‘Last Theorem’, but beyond their stubbornness, they
loved the problem dearly because all attempts to solve it generated good theories
anyway.

Before Wiles finally did prove, in 1994, that there are no such solutions, it was
already known, by another theory, that there could be at most a finite humber of
solutions. If one considers the equation (2) over the complex numbers, then the
solutions form a real surface. In 1984, Faltings proved:

25ee Rot] for a demystified account.
3Those also interested in the story surrounding the question shouldSegd [
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(Mordell conjecture)The number of rational solutions of any
system of polynomial equations whose complex solutions form
a surface with at least 2 handles, is finite.

If one considers the equation (2) over the complex numbers, then the solutions form
a surface indeed, and the number of handles equals

(n—1(n-2)/2,

so this theorem appliesiif > 4 (Forn = 3, Fermat’s last theorem can be proved by
an straightforward number theory argument).

Not only are Faltings’s and Wiles’s theorems two landmarks of 20th century
mathematics, they also illustrate perfectly the prominence of Galois theory. They
study linear representations of the absolute Galois group, i.e. the actian of
certain vector spaces (over the fieldéedic numbers). In other words, they con-
sider systems of polynomial equations which arise from algebro-geometric objects
(elliptic curves, abelian varieties) and which carry a linear structure. The above
two problems can be reformulated into equivalent statements on the representation-
theoretical properties of thesgalois representations(the Tate conjecturedS],
resp. the Taniyama-Weil conjectu@$9).

Anyway, the excitement about Wiles’s proof that was still in the air certainly
boosted my motivation when | started my Ph.D. research on Galois representations.
A second good excuse for bringing up Faltings’ theorem here, is that some of the
essential ideas of its proof had been developed in Zarhin’s work orftadi€) Tate
conjectures over function fields of finite characteristic, i.e. finite extensions of the
fieldFp(t) of rational functions in one variable over the finite figlg of p elements.

This and many other examples of ‘transplantation’ of pieces of theory motivate why
one would want to do number theory without dealing with numbers: the function
field case often serves as a terrific analogue for the numbe(i€ldhis thesis will

be a study of Galois representations over function fields.

83. Galois representations associated to-sheaves.Let p be a prime num-
ber andK a field of characteristip, i.e. wherep times 1 equals 0. For such a field,
we have the identity

3) (X+Y)P=XP4YP,

The field K®¢P which containsKk and the roots of all polynomials ové¢ whose
derivative is nonzero is called the separable closur& of The absolute Galois
groupI'k is defined as the group of symmetrieskot®Pwhich leaveK invariant.

Take an invertible x r matrix A with coefficientsa;j lying in K, and look at
the following system of algebraic equations invariablesXy, ..., X;:

XP =ap1 Xy +aXo + - +a X
X5 = a1aX1 + apXo + - - + a2 Xy

XP = ag X1+ ax Xo + -+ an Xy
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or, for short:
(4) XP L XPy=(Xe, ..., X)) - A

By the identity (3), the seW(A) of solutions(X1, ..., X;) € (KS®P' for (4) is
a vector space over the finite fidly, with p elements, and one proves that it has
dimensiorr. The absolute Galois groufx permutes these solutions, so we obtain
an action ofC’x on W. Thus, in finite characteristic, Galois representations can be
obtained from such a matri&; the converse is true as well.

Consider the power series ritg*¢H[t]], consisting of infinite power series

o
S:=) st =so+sit+st*+...
i=0
with coefficientss lying in K5€P. We define an operatian on it as follows:

o .
°S:= qut'.
i—0

Choose an invertible matri with entries in the power series ring[[t]]. For
power seriesS; = Y 2y sjt' € KS®A[t]], we look at the equation

5) ‘S,....79)=(8,....8) A

This equation actually involves an infinite number of polynomial equations in the
infinite number of variables; . The sefl; (A) of solutions

(St ..., §) € KA

is again endowed with a linear structure and an action of the Galois @houp

Finally, suppose we have a matrixdefined overK[t]. We can then, analo-
gously toT,(A) in the above, construct a ‘Galois module’(A), for all irreducible
polynomials¢ in Fp[t], and thus obtain aystemof Galois representations. We
can rephrase this in a more intrinsic way by introducing Drinfetdimodule$. A
r-moduleM over K[t] is a free module over the rini [t], together with ao-
semilinear magr (o acts trivially ont and by raising-to-thg-th-power onK). If
we denote byA the matrix representingwith respect to some basis fbf, then we
can associate tM a system of Galois representationgM) as before.

The first part of this thesis deals with properties of these systems associated to
at-module. Consider the set of equations (5) in an infinite number of variq@es
which defineT; (M), and, at the same time, consider analogous sets of equations in
variablesq(je) for the otherT,(M). A question one would like to answer is to give
a gqualitative description of the (infinite) Galois group corresponding to the field
extension defined by the solutions of these equations. A naive formulation of the
so-called adelic Mumford-Tate conjecture is that, under certain conditions on the
-moduleM (more precisely, no nontrivial endomorphisms plus a condition on the
determinant module),

4Using more efficient language, we will actually, instead ehodules, consider-sheaves.



Every permutation of the solutions of these equations that
- respects all the linear relations and

- leaves a particular finite set of variable#lsinvariant
is a Galois symmetry.

On the other hand, and on a deeper levesheaves are also closely related to
abeliant-modules and Andersontsmotives, basic structures in the arithmetic of
function fields. These offer a striking, even if poorly understood, counterpart for
motives in algebraic geometry. In the second part of this thesis, we will explain
how general results onrsheaves and Galois representations shed new light on the
structure ott-motives.

Und so hat es auch schon damals, als Ulrich Mathematiker wurde,
Leute gegeben, die den Zusammenbruch der Eisopén Kultur voraussagten,
weil kein Glaube, keine Liebe, keine Einfalt, keinet&mehr
im Menschen wohne, und bezeichnenderweise sind sie alle
in ihrer Jugend- und Schulzeit schlechte Mathematiker gewesen.
Robert Musil Mus] | 811 p. 40

Sin more cryptic terms: the image of the Galois representation is almost as large as ‘possible’. See
the artist’s impression on page V!
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Introduction

First, we state definitions and fix notations for the central objects considered:
Drinfeld’s t-sheaves and Andersortamotives, with their associated systems of
Galois representations. In sectitln we give a concise overview of the present
work, its evolution and its main results. Sectidin contains a survey in Dutch.

|. T-Sheaves and-motives

81. Algebraicz-sheaves.

1. r-Modules. Let R be a commutative ring angdan endomorphism aR. For
an R-moduleM, we define theR-module

o*M = R, ®r M,
whereR; is the ringR, viewed as arR-algebra viar. Any R-linear homomorphism
T:0°M - M
can be regarded as a mEp— M which iso-semi-linear, i.e.
r-my= o - (M)
forr e Randm e M.
DEFINITION 0.1.

i) A t-module (M, 1) (for short: M) over R is a finitely generated projec-
tive R-module endowed with an injective morphism

T:0*M — M.

i) A morphism of t-modulesis an R-linear morphism respecting the ac-
tion of . An isogenybetweenr-modules is an injective morphism of
r-modules whose cokernel is a torsiBimodule.

iii) The tensor product M1 ® My of two t-modules hadM; ®r M> as the
underlyingR-module and a-action defined by

(M M) =1tmM & Ty
form; € M.
iv) A r-module is calledsmoothif ¢ is an isomorphism. It is callettiv-

ial if it is isomorphic to a direct sum of copies of themodule whose
underlyingR-module isR itself and where

T:Ry, > R:1~ 1.
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v) If all nontrivial sub<-modules of a giverr-moduleM are isogenous to
M, thenM is calledsimple.

2. -SheaveslLet Fq be a finite field withq elements, and lep denote its
characteristic. We fix an absolutely irreducible affine smooth c@rwéth constant
field Fq, called the base curve. We denote its function fieldsgnd put

A:=H%e, 0¢).
For anyFq-schemeX, the coefficient scheme, we consider the product
Cx = C xp, X.

If X is an affine scheme Sp&; we also writeCg := Cx.
Denote byy : X — X the Frobenius morphism defined by the map

X > #x = x4

on Ox. We then endow the schen@ with the endomorphisra :=id x ¢. The
following object, closely related to Drinfeld’s shtukas aRetrystals, often appears
under the namey-sheaf’ as well (cf. TW]):

DEFINITION 0.2. (Drinfeld) Az-sheaf(M, t) (for short: M) of rank r > 1,
defined onCx, is a locally free®e,-module of finite rankr, endowed with an
injective morphism

7:0"M — M.
A morphism of r-sheavess a®e, -linear morphism which respects the actiorrof

ExAMPLE 0.3. The most elementary example is given by puttihg= A%,
and, for some fieldK containingFg, settingX := SpecK. We will identify the
r-sheafM with its module of global sections, a frd€[t]-module of finite rank
endowed with a -semi-linear injective morphism, where the endomorphisatts
as Frobenius oK and trivially ont.

Let us fix a basis foM. We express with respect to this basis by means of
a matrix A in Mat, .., (K[t]), the ring ofr by r matrices oveK[t]. If we write
m := (mq, ..., M), thenA is determined by

T(m) =m- A.
If we replacem by another basis’ = m - U, with U € GL,(K[t]), thent is
represented by

ut.acu,
where the matriXU is obtained by applying to the entries obJ.

REMARK 0.4. As is explained inTW], if Cx is affine, every locally free
sheafM on Gy injects into a free shedfle of finite rank as a direct factor:

Me = M & Mg.
We then define a (noninjectived)e, -linear homomorphismie : 6*Me — Me by
Te:=17®0.

The pair(Meg, t) (which is not ar-sheaf in our terminology) is called dree ex-
tension by zeroof M.
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3. Characteristic. For at-sheafM on Cx, the cokernel coker of 7 is sup-
ported on a closed subscheme of codimension at leastk pasz is an injective
morphism.

DEFINITION 0.5. Consider a morphism X — € and its grapH () in Cx.

i) We say that ar-sheafM on Cx hascharacteristic ¢, if cokert is sup-
ported on the grapli(¢) and if the restriction coker|r(, is a locally free
Or-module of a constant rark which is called thelimensionof M.

ii) ForafieldK containingFq, consider a morphism: SpecK — €. If the
image of the generic poimtof SpecK via is the generic point of, then
we say that the characteristicgeneric and it is calledspecialotherwise.

iii) Finally, consider a morphism: SpecK — € and letX be a connected
Fq-scheme with function field. We then call a closed point of X
(or its associated valuation, onK) finite if : extends to a morphism
t: X — @, andinfinite if not. If x is finite, then we call(x) theresidual
characteristic point at x.

ExaMPLE 0.6. In the context of example 0.3, the determinant of a matrix
representing is independent of the choice of a basiaup to a unit inK. Given a
morphism : SpecK — Al induced by a map

K Fgltl > Kt 6,
therz-moduleM has characteristicif the determinant ofA equals
h- -0
whereh is a unit inK andd the dimension oM. The characteristic is generic if

and only ifg is transcendental ovéiy. A valuationv is finite with respect to if
and only ifv(@) > 0.

§2. Galois representations.

1. ¢-Adic T-sheaveslet £ be a closed point o and X anFg-scheme. We
denote byA, the completion with respect to thileadic topology of the local ring
at ¢ of regular functions or@, and byF; its field of fractions. Also, lek, be the
residue field ofA,.

For a closed point of ¢ and anFq-schemeX, we Ietéx,g be the formal
completion ofC xp, X along{¢} x X andOéXl its structure ring. The Frobenius

morphismy on X induces the endomorphistn:= id x ¢ on éx,@.
Let 1 (X) denote the arithmetic fundamental groupXofcf. [SGA1] Expos
No. 5). We have the following fundamental correspondence:

PropPosITION 0.7 (Drinfeld, [TW] Prop. 6.2). The category of smooth-
sheaves of rank r o@x , is antiequivalent to the category of X-schemes of free
A¢-modules of rank r with continuous (X)-action.

We now recall the definition of the functdr establishing this antiequivalence
(cf. [TW] 86). LetN be a locally free9x-module endowed with a morphism

7:90*N — N.
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For every X-schemeX’, we define theX’-valued points of the scheme &-
modulesT (N) by

(6) T(N)(X') := {f € Homp, (N, Ox); fot=go f}.

Foreveryn > 1, letcy , denote ther-th formal neighborhood of. We denote
the closed embedding

@9(’@ — éx’g
byi; and the morphisn®} , — X by jn. For an¢-adicr-sheafM,, we set
(7 M7 = (jn)«( ) * M,
a locally free@x-module endowed with a morphism
T:9*M] — M}
We thus obtain an injective systemmwfmodulesM;' on X, which yields a projective
systemT(Mg‘) of schemes o g-modules. We put
T(M) := lim T(M{).

This moduleT (My) naturally carries the structure of a schemeAgfmodules of
some rank’ < r, with equality holding if and only itM; is smooth.

2. Tate modulesFor a fieldK containingFq, let KS*Pbe the separable closure
of K andI'k the absolute Galois group

Gal(K®F/K) = 71 (SpecK)

of K. The functorT associates to eadhadic t-sheafM, over Gk, the scheme
T (M) of free A,-modules of finite rank with continuousg -action. LetM be a
t-sheaf onCx. We can associate td an¢-adict-sheaf onCx ¢ via

(8) Mg := (Déx,l ®(9@X M.

DEFINITION 0.8. LetK be a fieldK containingFq. Consider ar-sheafM
overCk and a closed point of C.

i) For a closed point of G, then theA,[T"k ]-module
Te(M) == T(M)(SpecK 5eP

is called theTate module of M at ¢. Its A,-rank equals the rank dﬁg if
and only if the latter is smooth. We also consider the dudl"k ]-module
H¢(M) := Homa, (Te(M), Ag).

i) Recall thatk, denotes the residue field at the closed péiof C. With
the notations of (7), we define thetorsion module as the continuous
k¢[Tk ]-module

(9) W, (M) := T(M2})(SpecK s¢P).
iii) We define anF;[I'k ]-module associated td as follows
(10) Ve(M) := Fe ®a, Te(M).
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REMARK 0.9. By the injectivity oft on M, the codimension of the support
onCx of its cokernel is at least 1. We remark that it follows from this that, if
X = SpecK, for a field K containingFq, then M, is smooth for all but a finite
number of closed pointsof €. If X has generic characteristi,dhenl\?lg is smooth
for all £.

ExamPLE 0.10. We take up Example 0.3. Lébe the point of® correspond-
ing to the idealt). The ringA, is then isomorphic to the power series rifigj[t]].
The Tate moduld, (M) can be computed as follows: It is tifg[[t]]-module con-
sisting of vectorg Xy, ..., X;) € KSeA[t]]®" satisfying

(11) X1, X)) = (Xe, ..., Xe) - AL

The ¢-adic r-module M, is smooth if detA € K[t] is not divisible byt, and then
T¢(M) has full rankr .

REMARK 0.11. TheF;[I"k ]-modulesV,(M) give rise to continuous represen-
tations

pe : Tk = Autg, (Ve(M)).
These representations form a strictly compatible system of Galois representations

(cf. Thm. 3.3) in the sense of Serr&f1) and, by work of Tamagawa, also the Tate
and semisimplicity conjectures (cf. Thm. 3.7) are known to hold.

For any subseA of closed points of, we consider the rings

KA ‘= l_[K@

e
/

andF, := ]_[ Fo,
leA

where the prime indicates that,Af is infinite, then we consider the restricted prod-
uct, i.e.F, is the subring of [,., F¢ consisting of elemeni®,), such thag, € A,
for almost all¢ in A. We put:

(12)

Wa (M) := [ Twe(M)

(13) -
andVa(M) := [ | Ve(M).
leA
If A contains all closed points @, then we setaq:= k4 and
(14) Wad(M) := Wi (M);
idem for Fag andVag(M).

83. Andersont-motives. We now review Anderson’s definition of abelian
modules and-motives (Anl], 81). When speaking dfmotives, we will, as was
done by Anderson himself, restrict ourselves to the @ase Al, the affine line
overFq. There should be no obstacles to generalize to the case whisrequal
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to @\{oo}, where€ is an absolutely irreducible smooth projective curve with con-
stant fieldFq andoo a closed point of2. We fix a ring isomorphism

A =HO%AL 041) = Fylt].

1. t-modules.Let K be a field containing’q. The ring En@‘q(Ga,K) of Fg-
linear endomorphisms dk4 k is isomorphic toK [¢], the skew polynomial ring
generated by the Frobenius morphigm: « — «9 and with the commutation
relationg - k = k9 - ¢, for all k € K. The ring En@q(Gf,‘f() can then be identified
with the matrix ring Mag«q(K[¢]).

DEFINITION 0.12. LetK be a field containingq.

i) A d-dimensionalt-module (E, ¢g) (for short: E) defined overK is
an algebraic groujg isomorphic toGgii endowed with an injectivéy-
algebra morphism

¢ : A — Enqu(E),

i) A morphism of t-modulesis a morphism of the underlying algebraic
groups which commutes with the action/of

iii) For a given ring morphism* : A — K, we say that an-moduleE de-
fined overK hascharacteristic .* if, for everya € A, the endomorphism
on Lie(E) induced byge (a) has single eigenvalué(a).

To a d-dimensionakt-module E defined overK, we associate th&-vector
space
M(E) := Homg, (E, Gak)
of Fq-linear algebraic homomorphisnis — Ga k. The action ofA on E induces
ant-module structure oM (E) via

a-m:=moa,

form € M(E) anda € A. This action commutes with the actionléf and therefore
we can sedVl (E) as a module oveK ®r, A = K[t].

If M(E) isfinitely generated ove[t], it is automatically free of finite rank, by
[Anl], Lemma 1.4.5. The Frobenius endomorphisran G, k yields an injective
K[t]-linear map

o*M(E) - M(E),
which endowsaM (E) with the structure of a-module overK [t].
We fix a characteristic morphism SpecK — A, defined by a map

A —> K
(cf. Example 0.6). Remark that themoduleM (E) has characteristicif and only
if E has characteristi¢. Finally, we define

DEFINITION 0.13. (Anderson)
Let E be ad-dimensionat-module oveK with characteristic*. If M(E) is finitely
generated oveK [t] (hence free, of some rank, and M (E) has characteristig
thenE is called arabeliant-module and ther-moduleM (E) overK[t] (or, equiv-
alently, the associated-sheaf onAt) is called at-motive, of dimensiond and
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rankr. A 1-dimensional abeliabrmodule is called ®rinfeld module (see Drl],
[AIB], [Go04], etc.).

Any morphisme : E — E’ of abeliant-modulesE, E’ induces a morphism
e :M(E)— ME):m—~ moe
of the associatettmotives. We then have:

PrRoOPOSITIONO.14 (Anderson @nl] 81)). The categories of abelian t-mod-
ules and t-motives are antiequivalent.

2. Purity. Let oo be the point at infinity of the projective lirfg overFg such
thatP! = Al U {oo}. We consider the formal completion

ol
PK,oo

of PL along{oco} x SpecK and its structure i@, . Fora sheaM onP%, we
set '

~ ~

Moo = (9[@,]}_()00 ®(9]1le M.

DEFINITION 0.15 (Anderson @n1] §1.9)). Az-sheafM onAl is calledpure
(of weight w) if there exists € N, and an extensioM of M to P} such that

3((0%)*Mgo) = t% - Moo

PROPOSITIONO.16 (Anderson @n1], Prop. 1.9.2)) Let M be ar-sheaf o
with characteristia and dimension d. If M is pure of weight, then there exists an
abelian t-module E of dimension d, defined over a finite inseparable extension K
of K, such that M = M(E). Ifr denotes the rank of M, therur = d.

3. Drinfeld modules.

DEFINITION 0.17 (Drinfeld (DPr1], [AIB], [Go4], etc.)). LetC = C\ {00},
whereC is an absolutely irreducible smooth projective curve with constantfigld
andoo a closed point 0. Put

A :=H%e, 00),

and, for a fieldK containingFq, let:* : A — K be a ring morphism. Mrinfeld
A-module ¢ defined oveK is a 1-dimensionah-module

¢ : A — Endy, (Gak)
such that the induced acti@® : A — EndLie(E)) on the Lie algebra Li&Ga k)
is given by:*, but¢ 2 9¢.

REMARK 0.18. Prop. 0.16 implies, in particular, that any pursheafM
on AlK with dimension 1, corresponds, over a finite inseparable extension, to a Drin-
feld module. Conversely, titemotive M (¢) corresponding to a Drinfeld modude
is always pure (cf.An1] Prop. 4.1.1)
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4. Tate modulesFor at-moduleE over K, one associates to every nonzero
ideal? of A, with generatoh the ¢-torsion module

E[€] = ker(gg (1)) (K).

It is a finite A/¢-module endowed with a continuous actionIof. For every
nonzero maximal idedl, we consider the system of morphisms

o™ : E[£™] — E["].
DEFINITION 0.19. The inverse limit
T¢(E) := lim E[£"]

is the¢-adic Tate module of E.

If E is abelian with associatddmotive M and the characteristic is generic (to
assure tha, is smooth for every), then we have an isomorphism

(15) To(E) = T,(M)

of A¢[T'k ]-modules by An1], prop. 1.8.3 (cf. Tag3] as well).

5. What’s in a name?The category—Motg of t-motives oveKK is an additive
tensor category. In Def. 0.8, we defined, for every closed gamti!, a contravari-
ant functorV, fromt—Motk to the category of finite dimensionB}-vector spaces
with a continuous action dfk . This can be considered as thadic realization for
t-motives.

Anderson, Gekeler etc. (se@¢2]) developed a ‘de Rham'’ realization, a func-
tor Vyr from t—Motk to the category of finite dimension&l,.-vector spaces,
whereF4 is the completion of9p: at oo. For uniformizable-motives (cf. 5.2),
there is also the notion of a Betti realization, given by the corresponding lattice.
Further, as we just saw, Anderson gave a definition of purity.

Thus, judging from its formal properties which compare very well with that of
classical motives from algebraic geometry (as discusse®df and [Seq e.g.), the
categoryt-motives have a very ‘motivic’ nature indeed. However, nothing seems to
be known yet about the relation with cohomology of algebraic varieties in charac-
teristic p.
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Il. Abird’s eyes’ view

81. The starting poirﬁfor this research project was given by Serre’s famous
theorem on the image of the absolute Galois group of a number field on the Tate
modules of an elliptic curve:

THEOREM 0.20 (Serre $ed, 1972)). Let E be an elliptic curve without po-
tential” complex multiplication defined over a number field K with absolute Galois
groupT'k . For any prime number p, consider the Tate moduyéH) of E at p and
the associate@p[I"'k ]-module

Vp(E) :=Qp ® Tp(E).

The image of the ‘adelic’ representationIdg on the restricted product

Vad(E) := [ Vo(E)
p

is open inGL2(]T,Qp), for the adelic topology.

Roughly speaking, the main ingredients of its proof include:

i) the fact that the"x -modulesVp(E) form a strictly compatible system of
Galois representations and satisfy the Tate and semisimplicity conjecture;

i) an application of the theory gb-adic Lie groups to show that, E has no
potential complex multiplication, the image of the representation

pp: 'k — GL2(Qp),

given by the continuouB -action onVp(E), is open for allp;

i) the study of the action of tame inertia & (E);

iv) the construction of compatible systems of 1-dimensional Galois represen-
tations associated to Hecke characters @&1)).

Combining results i), iii) and iv) with a classification of maximal subgroups of
GL2(Fp), Serre first proves: IE has no potential complex multiplication, then
the Galois representation

Pp: Tk — GLo(Fp)

given by theFp[I'k -modulesE[ p] of p-torsion points is surjective for almost all
primesp. Thm. 0.20 follows from this by ii) and some group theory.

§2. Consider an affine, smooth, absolutely irreducible cueweith field of
constantdy en denote by the ring of global functions. Analogously to Thm. 0.20,
there is an ‘adelic Mumford-Tate conjecture’ on the image of the adelic representa-
tion associated to Drinfeld modules (cf. Conj. 3.17 as well):

8 want to thank G. Cornelissen, J. Top, M. van der Put and J. Van Geel for suggesting this topic
for my FWO research project.

TLetP be a property related to a fiekl. We say that the property holgstentially, if it holds for
some finite extensiok’ of K.
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CONJECTUREQ.21. Let ¢ be a Drinfeld module (Def. 0.13) of rank r, de-
fined over a global function field K, without potential complex multiplication and
of generic characteristic. The image of the representatigrof I'k on the module
V() (see (13)) is open, for any satof closed points of.

Using heavy machinery from the theory of algebraic groups and Serre’s ideas
on Frobenius tori, Pink proved this conjecture Rig] (Thm. 0.1; 1997) in the case
that A is a finite set.

It was not so hard to realize that Serre’s ideas, which deal with 2-dimensional
representations, together with Pink’s result, already allow to prove Conj. 0.21 for
Drinfeld modules of rank at most 2. This line of thought was worked ouGa]].

To deal with the case of general rank, more ideas are needed, in particular on sub-
groups of finite algebraic groups (work of Larsen-Pibl]) and on the absolute
irreducibility of the residual representatiops which will be explained in upcom-

ing work by Pink and Traulsen.

83. The underlying motive in this research project was to generalize the tech-
nigues that are used in the above result from the case Drinfeld modules to arbitrary
t-modules. In the first place, we wanted to study the action of inertia on the Tate
modules associated . If we let K is a valued field containingy, then this re-
quires that we find a suitable mo8édbr the t-module E with coefficients in the
valuation ringR of K whose reduction modulo the maximal ideal®¥ields some
useful information.

For Drinfeld modules, there is a satisfying theory of models (¥agZ], §1).

We know, for example, that, for every Drinfeld moduglethere potentially exists a
‘stable’ model, i.e. a Drinfeld module with coefficients i) isomorphic top and
whose reduction is a Drinfeld module over the residue fielRofvhose rank’ is
possibly smaller than the ramkof ¢. The model is called goodif =r"’.

Assume thatK is complete. Drinfeld’s proposition on Tate uniformization
(Prop. 2.10) then says: There exists a good Drinfeld modulever R and an
A-lattice H in KS€P(cf. Def. 6.15) such that we have an exact sequence

(16) O>H—-¢->9—-0

of rigid analytic spaces endowed with a@action.

As a consequence of this, the inertia grdypacts potentially unipotently on all
of its Tate moduled;(¢), except at the residual characteristic pdin{Def. 0.5.iv),
if it exists. Compare this to the classical monodromy theorem-@ulic representa-
tions, stating that the inertia group of a local field of residual charactepsg€ p
acts potentially unipotently.

Unfortunately, extrapolating this satisfactory situation to general (abetian)
modules is impossible. This is shown by the existence of a ‘nonsemistable’ abelian
t-moduleE (see Prop. 2.11), where the action of inertia on the Tate modul&s
is not always unipotent fot £ ¢'.

8This line of thought was worked out in the project proposal ‘Bad reductiadrneddules’ submit-
ted to the Swiss Science Foundation.
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But, as it turned out (Thm. 6.22), one can reinterpret the analytic structure of a
Drinfeld moduleg (cf. equation (16)) into an exact sequence

(17) 0— N — M(¢) > M(¢') > 0

of z-sheaves ok, seen as a rigid analytic space. H&tép) (resp.M(¢) is the
analytict-sheaf associated to tliemotive of ¢ (resp.¢’). This triggered the idea

to forget about thé-modules (for a while) and concentrate on developing a theory
of models forr-sheaves instead. This strategy proved quite fruitful end allowed us
to get some new insights into the theory of Galois representations associated with
7-sheaves on the one hand, and the arithmetic structurenaitives on the other
hand.

84. Overview. Let us now make a tour through some of the main results in this
thesis. LetX be an irreducible DedekinBy-scheme with function fiel&k andM a
7-sheaf onCk .

Chapter 1.1f X = SpecR, for a discrete valuatiofig-algebraR, then it suf-
fices, in order to define a mods#! for M on Cx (Def. 1.1), to give its stalk at the
generic point of the special fibre. This observation by L. Lafforgue allows us to
show for a giverr-sheafM the existence

- of nondegenerate modelg for M on Cr (Def. 1.6), for a finite separable
extensionR’ of R, en

- of amaximal mode™®*for M (Def. 1.12), which satisfies agMon-type
mapping property.

Suppose thaK = SpecR, whereR is now a complete discrete valuatiég-
algebra whose residue field is algebraic olgr If we have ar-sheafm with
nondegenerate reduction, then we prove that it is possible to lift this redwation
alytically to an analytic sub—sheafN of M with good reduction, at least upon
replacingC by an open subscheme. As a consequence, we obtain:

THEOREM 1.26. For every analyticr-sheafM on Gk, there exists

e a nonempty open subsche®ec G,
e afinite extension Rof R, with fraction field K, and
e afiltration

(18) Ozﬁocﬁlcmcﬁnzl\m@k/
by saturated analytic sub-sheaves o/,
such that the subquotientd; := Ni /Ni_1 have good models over,.
This generalizes the result (17) on Drinfeld modules.

Chapter 2. By the correspondence betwegadict-sheaves and Galois repre-
sentations, one immediately deduces from Thm. 1.26 that, festzeafM on Ck,
the action of inertia acts potentially unipotently on the Tate modulél!), for all
but a finite number of closed pointf € (Thm. 2.4).
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Assuming thaK is a valued field containin§ := QuotA), we deal with fur-
ther essential questions concerning the action of inertia on the Tate mddulés
of ar-sheafM with a good model and characteristicSpecK — €:

i) a description of the action of tame inertia, in terms of fundamental char-
acters (Thm. 2.14);

i) a description of the image of wild inertia (Cor. 2.24), fersheaves of
dimension 1.

Chapter 3. With these results, we can now turn back to our original problem.
We give a proof (Thm. 3.13) of the following conjecture in the case where tharank
of M is at most 2:

CoNJECTURE3.1. Let K be a finite extension of F, the function fieldcof
and M ar-sheaf overCk with characteristicc : SpecKk — €, dimensionl and
absolute endomorphism rifg. The image of the representatipgy on thexad[ Tk 1-
module Wy(M) (cf. (14))is open inGL; (kad)-

Our theorem applies in particular to Drinfeld modules without complex multi-
plication of rank 2 (see paragragR). However, we were determined to avoid any
‘purity’ assumption, as it seems a better idea to exploit directly the natural relation
betweent-sheaves and Galois representations. Here again, just as in the quest for
models (cf. paragrap3), it seems to be nothing but a diversion to assume that we
are dealing with structures relatedttonodules!

For Drinfeld modules, we obtain Conj. 0.21 as a consequence of this Conj. 3.1
using [Pi2]; this provides us with a proof if < 2 (Thm. 3.20).

Chapter 4. Let R be a discrete valuation ring with function field. We give a
general analog of the classicalekbn-Ogg-Shafaregigood reduction criterion on
abelian varieties:

THEOREM 4.1. Let M be ar-sheaf onCk with a characteristicc and ¢ a
closed point of2 such thatM, is smooth. If the inertia groupkl of K acts trivially
on T;(M), then there exists a good mod#l over Cr for M.

As a consequence, we derive a criterion for trivial reduction (Thm. 4.8). Also,
we relate thd_-factor of M at a place of bad reduction to the action of Frobenius on
the Tate moduld, (M) (Thm. 4.12).

Chapter 5. The Galois criterion for trivial reduction can now be applied to shed
some new light on uniformizability. Putting = A, let K be a discretely valued
field containingF and with finite residue fiel#, such that its valuation is infinite
with respect to the characteristic Speck — Al. Extending results by Anderson
([An1], Thm. 4) and Pink, we prove

THEOREM5.138IS. For an abelian t-module E with t-motive M, the following
statements are all equivalent:

i) the abelian t-module E is uniformizable;
ii) the uniformization lattice H ha&-rank r, the rank of E;
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iiiy the analyticz-sheafM on Akl( associated to M potentially contains a
trivial sub-r-sheaf of full rank;
iv) thet-sheaf M potentially has a good mod#l with trivial reduction;
v) theo-bundle associated to M on the punctured open unit disk arawnd
is trivial;
vi) the semistable filtration (cf. (42)) &fi is defined on the whole @flK and
each of its subquotients has trivial reduction;
vii) the action ofl'k on the Tate module,{M) is potentially trivial, for all
closed pointg of C; and, last but not least,
viii) there exists a closed poidtof € such that the action df k on the Tate
module T(M) is potentially trivial.

Chapter 6. Coming back to equation (16), we recall that the correspondence
between Tate uniformization and the analytic ‘semistable’ filtration (17) for a Drin-
feld module was crucial in developing a reduction theoryfesheaves. We can
extend this correspondence to higher dimensional abelatives in the follow-
ing way:

THEOREM6.3B1S. Let K be a complete valued field containing F, whose val-
uation is finite with respect to the characteristic SpecKk — Al. There exists
an antiequivalence between the categories of pure abelian t-modules over K and
of pure t-motives ovehl , where both categories are endowed with analytic mor-
phismgDef. 6.1 & 6.2).

The arguments for this theorem rely on asymptotic estimates for local logarith-
mic heights ort-modules, which are presented in section 6.V, and weight inequal-
ities induced by nontrivial analytic morphisms (cf. Prop. 6.9). In Thm. 6.16, we
work out a further aspect of analytic morphismg-@hodules, namely that of uni-
formization lattices. Finally, we discuss how, via this theorem, Thm. 1.26 leads to
an analytic description of analytiemodules.
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Ill. Nederlandstalige samenvatting

81. Het uitgangspunt van dit onderzoeksproject is Serres gevierde resultaat
over het beeld van de representaties van de absolute Galoisgroep van een getallen-
veld op de Tatemodulen van een elliptische kromme:

STELLING 0.20 (Serre $e3, 1972)).Zij E een elliptische kromme zonder po-
tentiéle complexe multiplicatie, gedefinieerd over een getallenveld K met absolute
Galoisgroepl'k . Voor elk priemgetal p, beschouwen we het TatemodgU Tvan
E in p en het geassocieerdg[T'k -moduul

Het beeld van de ‘adelische’ representatie g op het gerestringeerde product

Vad(E) := [ Vo(E)
p

is een open deelgroep VmZ(H/p@p) (voor de adelische topologie).

De belangrijkste ingrediiten van het bewijs zijn ruwweg de volgende:

i) deI'k-modulenVp(E) vormen een strict compatibel systeem van Galois-
representaties waarvoor de Tate- en semisimpliciteitsconjecturen gelden;

ii) eentoepassing vap-adische Liegroepentheorie toont aan datakgeen
potentéle complexe multiplicatie bezit, het beeld van de representatie

pp: 'k — GL2(Qp),

gegeven door de continue actie Vag op V(E), open is voor allep;

iif) we kennen de actie van de gemodereerde inertiegroey,0R);

iv) we hebben een constructie van compatibele systemen van 1-dimensionale
Galoisrepresentaties geassocieerd aan HeckekarakterSé&fy. [

Serre bewijst eerst, door het combineren van de resultaten i), iii) en iv) met
een classificatie van maximale deelgroepen van de groepgif@l. het volgende:
heeftE geen potenéle complexe multiplicatie, dan is de residier Galoisrepresen-
tatie

Pp: 'k = GL2(Fp),
gegeven door heffp[I'k ]-moduul E[ p] van dep-torsiepunten, surjectief voor alle
priemgetallerp, op een eindige aantal uitzonderingen na. Stelling 0.20 volgt hieruit,
na toepassing van ii) en wat groepentheorie.

82. We beschouwen een affiene, absoluutirreduciebele gladde kréhmes
constantenvely en we noteren de ring van globale reguliere functies@aisA.
Analoog aan Stelling 0.20 is er een ‘adelisch Mumford-Tate-vermoeden’ over het
beeld van de adelische representatie geassocieerd aan Drinfeldmodulen (zie ook
Conj. 3.17).

CONJECTUURO.21 (Pink). Zij ¢ een DrinfeldA-moduul van rang r, gedefi-
niéerd over een globaal functieveld K, zonder potatcomplexe multiplicatie en
met generieke karakteristiek. Het beeld van de represengatiean de absolute
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Galoisgroepl'k van K op het [Tk ]-moduul V4 (¢) (cfr. (13))is open voor elke
verzamelingA van gesloten punten van

Pink bewees inRi2] (Thm. 0.1; 1997) dat dit vermoeden geldt voor elke eindi-
ge verzameling\. Zijn bewijs is een toepassing van technieken uit de algetina”
groepentheorie en Serres concept van Frobeniustori.

Het was niet zo moeilijk om in te zien dat Serres ieleednd de 2-dimensionale
representaties geassocieerd met elliptische krommen samen met Pinks resultaat vol-
staan om Conj. 0.21 te bewijzen in het geval dat de ranggvéan hoogste 2 is.
Deze gedachte werd uitgewerkt i@d1]. Om een dergelijk resultaat voor hogere
rangr aan te tonen, zijn meer nieuwe idgevereist, in het bijzonder over eindige
deelgroepen van algehsahe groepen (werk van Larsen en PihR]) en over de
absolute irreducibiliteit van de residuele representaijeslie wordt bestudeerd in
recent onderzoek van Pink en Traulsen.

83. De rode draad in dit onderzoeksproject is de ambitie om een aantal tech-
nieken die in de bovenstaande resultaten worden aangewend, te verruimen van Drin-
feldmodulen naar algemene (hoger dimensionalepdulenE (cfr. Def. 0.12). In
de eerste plaats bestuderen we de actie van inertie op de Tatemodulen geassocieerd
metE. Zij K een veld daFgq bevat en uitgerust is met een valuatie, dan vereist dit
dat we voor het-moduul E een gunstig model vinden metefficienten in de va-
luatiering R van R waarvan de reductie modulo het maximale ideaal Raruttige
informatie levert.

Voor Drinfeldmodulen is er een bevredigende theorie van zulke modellen (zie
[Tag2], 81). Zo weten we, bij voorbeeld, dat er voor elk Drinfeldmodgidver K
potentgel een zgn. ‘stabiel’ model bestaat, een Drinfeldmoduul meffic@nten
in R, isomorf mety en waarvan de reductig een Drinfeldmoduul is over het re-
siduveldk. De rangr’ van¢ is mogelijks kleiner dan de rargvan ¢; het model
wordt ‘goed’ genoemd indien=r".

Veronderstellen we dd€ compleet is, dan zegt Drinfelds propositie over Tate-
uniformizatie (Prop. 2.10) het volgende: er bestaat een goed Drinfeldmegduul
overR, een roosteH in K5€P(Def. 6.15), en een exacte rij

(19) O-H—-¢'-¢p—-0

van rigied analytische ruimtes met een actie Ran
Hieruit volgt dat de inertiegroejx van K potentieel unipotent opereert op de
Tatemoduleril;(¢), behalve voor = ¢’, waar¢’ het eventuele residuele charac-
teristieke punt is (cfr. Def. 0.5.iv)). Dit kan men vergelijken met Grothendiecks
klassieke monodromiestelling vogr-adische representaties: de inertiegroep van
een lokaal veld met residuele karakteristigk# p opereert potentieel unipotent.
Jammer genoeg is het onmogelijk om deze situatie te extrapoleren naar alge-
mene (abelsaymodulen. Er bestaat namelijk een ‘niet-semistabiel’ abetoduul
(zie Prop. 2.11), waarvoor de actie van de inertiegigepp de Tatemodulef, (M)
niet potentieel unipotent is voor alle£ ¢'.
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Wat daarentegen bleek (Stelling 6.22), is dat we de analytische structuur van
een Drinfeldmoduu (zie vgl. (16)) kunnen herinterpreteren als een exacte rij

(20) O—>N—>h7|(¢)—> l\?l(gb/)—>0

van t-schoven over de rigied analytische affiene reo@}g hier is M(¢) (resp.
M (¢)) de analytische-schoof geassocieerd aan henotief vang (resp.¢’).

Dit lokte de idee uit omi-modulen (voor een tijdje) aan de kant te zetten en een
theorie van modellen voar-schoven te ontwikkelen. Deze strategie bleek vrucht-
baar en stelde ons in staat om nieuwe inzichten te verkrijgen in enerzijds de Galois-
representaties geassocieerd aathoven, en anderszijds de arithmetische structuur
vant-motieven.

84. Overzicht. We bespreken kort enkele hoofdresultaten uit dit proefschrift.
Zij X een irreduciebel Dedekindschema o¥gr met functieveldK, en zijM een
t-schoof overCk .

Hoofdstuk 1.I1s X = SpecR voor een discrete valuatiering dig bevat, dan
kan men een mode# voor M overCx definiéren door zijn halm bij het generische
punt van de speciale vezel aan te geven. Deze opmerking van L. Lafforgue staat ons
toe voor een gegevenschoofM het bestaan te bewijzen (voor algemefjevan

- niet-gedegenereerde modellgn over Cr (Def. 1.6), over een eindige
separabele uitbreiding’ van R, en

- een maximal modemM™® (Def. 1.12) overCr dat een Nfoncriterium
vervult.

Veronderstellen we d&t = SpecR, waarbijR een complete discrete valuatie-
ring is waarvan het residuveldalgebrasch is oveify. We bewijzen dat voor elke
7-schoofM met niet-gedegenereerde reductie, deze redantsytischkan worden
‘gelift’ tot een analytische deel-schoof/' van M met goede reductie (cf. Def.
1.6), tenminste wanneer v@door een open deelschema vervangen. Hieruit volgt:

STELLING 1.26 (Analytische semistabiliteif). Voor elker-schoof\ overCy
bestaat er

e een niet-leeg open deelsche®ac €,
e een eindige separabele uitbreiding Van R, met breukenveld’'Ken
o een filtratie

door gesatureerde analytische deekchoven ove€/,,
zo dat de deelquotientevi; := Ni/Ni_1 een goed model bezitten ove, .

Dit veralgemeent het resultaat (19) voor Drinfeldmodulen.
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Hoofdstuk 2.Uit het verband tussefradischer-schoven en Galoisrepresen-
taties (Prop. 0.7), volgt onmiddellijk uit Stelling 1.26 dat voor eeschoofM
over Ck, de inertiegroep potentieel unipotent opereert op de Tatemodu(dm),
behalve voor een eindig aantal gesloten purtean C (Stelling 2.4).

In de veronderstelling d&f het veldF = Quot(A) bevat, geven we ook een
antwoord op enkele andere esselativragen in verband met de actie van inertie
op de Tatemoduleti, (M) van eenr-schoof met een goed model en karakteristiek
t: SpecK — C:

i) een beschrijving van de actie van gemodereerde inertie, in termen van
fundamentele karakters (Stelling 2.14);

ii) een beschrijving van het beeld van de wilde inertiegroep (Cor. 2.24), voor
7-schoven met dimensie 1.

Hoofdstuk 3.0p basis van deze resultaten kunnen we nu terugkeren naar ons
oorspronkelijke probleem. In Stelling 3.13 bewijzen we het volgende vermoeden in
het geval de rang van M ten hoogste 2 is:

CONJECTUUR3.1. Zij K een eindige uitbreiding van F en M een simpele
7-schoof van rang r ove€k met karakteristiek : SpecK — €, dimensie 1 en
absolute endomorphismenrig Het beeld van de representafigg van'k op het
kad 'k 1-moduul Wq(¢) (cfr. 14) is open irnGL; (kag).

Deze stelling is in het bijzonder van toepassing voor Drinfeldmodulen zonder
potentgle complexe multiplicatie (zi€2). Het is evenwel onze opzet geweest om
de vereiste van ‘puurheid’ voor deschoven te vermijden, aangezien het een beter
idee lijkt om direct de natuurlijke relatie tusserschoven en Galoisrepresentaties
aan te wenden. Het lijkt erop dat het, net zoals in de zoektocht naar modellen (zie
83), niet meer dan een omweg is om te veronderstellen dat onze structuren met
t-modulen verwant zijn.

Voor Drinfeldmodulen volgt Conj. 0.21, dankziP[2], uit Conj. 3.1, wat een
bewijs levert voor < 2 (cfr. Stelling 3.20).

Hoofdstuk 4.Zij R een discrete valuatiering dig, omvat, met perfect residu-
veldk, en zijK het breukenveld vaR. We geven een algemeen analogon voor het
bekende Galoiscriterium vandidn-Ogg-Shafaregivoor goede reductie van abelse
variéteiten:

STELLING 4.1. Zij M eent-schoof ovelCk met een karakteristieken? een
gesloten punt va® zodatM, glad is. Is de actie van de inertiegroeg bp T,(M)
triviaal, dan bezit M een goed model ov@g.

Uit deze stelling kunnen we meteen een Galoiscriterium voor triviale reductie
afleiden (Stelling 4.8). Tenslotte leggen we een verband tussénrfaetor vanM
bij een plaats van slechte reductie vddren de actie van Frobenius op de Tatemo-
dulenT, (M) (Stelling 4.12).
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Hoofdstuk 5.Het Galoiscriterium voor triviale reductie kan worden toegepast
om nieuw licht te laten schijnen op Anderson-uniformizatie.@i= Al enK een
discreet gevalueerd veld datomvat, met eindig residuveld waarvoor de valuatie
met betrekking tot de karakteristiek Speck — A! oneindig is. Voortbouwend
op resultaten van AndersorAfil], Thm. 4) en Pink bewijzen we:

STELLING 5.1381s. Voor een abels t-model E met t-motief M zijn de volgende
uitspraken equivalent:
i) hett-moduul E is uniformizeerbaar;
i) de analytische-schooﬂ\ﬁ overAlK geassocieerd met M omvat potentieel
een triviale deek-schoof met volle rang;
iii) der-schoof M bezit potentieel een goed magiemet triviale reductie;
iv) deo-bundel geassocieerd aan M over de open eenheidsschijfdond
minus het punso zelf, is triviaal;
V) er bestaat een semistabiele filtratie (cfr. (42)) vddrdie gedefinieerd is
over heelAk en waarvan alle deelqudhten triviale reductie hebben;
vi) de actie vari'k op het Tatemoduul,TM) is potentieel triviaal, voor alle
gesloten puntes vanC; en tenslotte:
vii) er bestaat een gesloten puhvan € zodat de actie valrk op het Tate-
moduul F (M) potentieel triviaal is.

Hoofdstuk 6.Tenslotte komen we terug op vgl. (19): het verband tussen Tate-
uniformizatie en de analytische semistabiele filtratie (20) voor een Drinfeldmo-
duul ¢ was van doorslaggevend belang in het ontwikkelen van een reductietheorie
voor t-schoven. We kunnen zo’n correspondentie veralgemenen voor hogerdimen-
sionale purg¢-motieven:

STELLING 6.381S. Zij K een compleet gevalueerd veld dat F omvat, en waar-
voor de valuatie eindig is m.b.t. de karakteristiekSpecK — Al. Er bestaat een
anti-equivalentie tussen de categdénevan pure abelse t-modulen over K en pu-
re t-motieven oveA}(, waarbij de morphismen in beide gevallen door analytische
homomorphismen zijn gegevi@ef. 6.1 & 6.2).

Het bewijs van deze Stelling steunt of asymptotische schattingen van een lokale
hoogtefunctie voot-modulen enerzijds (cf. sectie 6.V), en ongelijkheden voor de
gewichten vart-motieven waartussen een niet-triviaal analytisch morfisme bestaat
(cf. Prop. 6.9). In Stelling 6.16 werken we een verder aspect van analytische mor-
fismen uit, namelijk het opduiken van uniformizatieroosters. Tot slot verklaren we
hoe Stelling 1.26 de aanzet geeft tot een analytische beschrijvingmadulen.



CHAPTER 1

The analytic structure of t-sheaves

. Models of t-sheaves

§1. Models. Let X be an irreducible Dedekinfl,-scheme, i.e. an irreducible
smooth one-dimensional scheme oFgr We denote the function field of by K.
For everyr-sheafM on Cx, we denote byMk the restriction ofM to the generic
fibre Ck.

DEFINITION 1.1. A model M over Cx of a r-sheafM on Ck is a t-sheaf
on Cx which extendsM, i.e. such thatiMx = M.

PROPOSITION 1.2. For any givent-sheaf M onCx, there exists a model
overCx.

ProOOF We choose an extensioft’ of the sheafM to Cx. We can find an
invertible sheaf£ on €x which is the pullback of an invertible subsheaf @k
on X, such that extends to a morphism

1:0°M = £ M.

If we put M := £ ® M thent(c*M) C £9D @ M, which yields thatM is
T-invariant and hence is a model owex for M. O

Quite often, problems on models can be reduced to the local case, i.e. where the
coefficient schem& equals Spe®, for a discrete valuation ring, with function
field K and residue fiel&. We now discuss a lemma by Lafforgue which explains
how, in this situation, a model can be constructed. We denote tye rational
function field ofCg, and by®, := O¢g,» the local ring of regular functions at the
generic pointr of the special fibr&, — CR.

LeEmMA 1.3. Lafforgue,[Laf] To give a locally free coherent sheaf on Cr
is equivalent to giving its restriction M t6x and its stalkM,, at the pointw .

More precisely, for givem and.M, we consider the unique largest coherent
sheafM on Cr whose restrictions t€x and®,, areM and M, respectively. We
include a proof of this lemma for future reference:

ProOOF Let M be a sheaf ove®x and M, a free@®,-module, both of same
rankr, together with an isomorphism of thhedimensional -vector spaces

L ®(9@K M
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(the stalk ofM at the generic point ofk) andL ®¢, M. We need to show that
there exists a locally free coherent shefon Cr, unique up to unique isomor-
phism, which extendM and M.

The stalkM, defines a locally free sheaf’ on a neighborhood of  which
coincides withM on Cx NU. Gluing.mM’ together withMg , we obtain a locally free
sheafmM” which is defined on an open subscheldie= Cgr \ Q, outside a closed
setQ of codimension> 2. AsCr is a surface is a finite set of closed points.

Denoting byj the open embedding’ < CR, we consider the push-forward
M = jM". Itis shown by Langton {{an]), using the fact tha€r is noetherian,
that .M is the unique largest coherent and torsion free extensioti’ofo Cr. We
remark thatM depends functorially upon the data.

Further, Langton proves that,iif: Gx — Cr denotes the closed embedding
of the special fibrej,* .M is torsion free. AL is 1-dimensional and smooth; .M
must actually be free. Its rank must bebecause it is so locally aim1(U). By
standard arguments using Nakayama'’s lemma, it then followsthiatlocally free
of rankr. O

COROLLARY 1.4. To give atr-sheafM on CR is equivalent to giving its re-
striction M toCk and its stalkM, at w .

PrROOFE By the above lemma, the modulssand M, define a unique locally
free sheatM. As M and M, aret-invariant, so isM, again by the above lemma.
O

§2. Good and nondegenerate modeldzor a pointx of X, we denote the
residue field ak by k.

DEFINITION 1.5. LetM be ar-sheaf oveCyx. For a pointx of X, letiyx denote
the embeddin@y, +— Cx. Thereduction of M at X is defined as the locally free
coherent sheaf

(22) My =M =M X0c, Ociy s
endowed with the induced homomorphismo* My — Mx.

DEFINITION 1.6.
i) Ther-sheafM is calledgood atx if M is ar-sheaf, i.e.
T 0% My — My

is injective. o .

ii) The t-sheafM is calleddegenerate ax if T : o*Mx — M is nilpotent,
andnondegenerateotherwise. .

iii) Let (Mg, ), denote the maximat-sheaf onCy, contained inM,. The
rank of (M, ), is called thenondegenerate rankof M, atx.

REMARK 1.7. If the residue fielky is perfect, thens is an automorphism
on0O¢, . Let H denote the fraction field of this ring. By elementary theoryren
modules, there exist, for every finite dimensiokvector spacd/ endowed with
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a (possibly noninjective) morphism: o*V — V, a decomposition
(23) V = V1 & Vhi.

whereV, is at-sheaf (i.ez is injective) and where the action efon Vyy is nilpo-
tent. For every locally free coherefi,, -moduleN endowed with a morphism

7:0*N — N,

let us denote by the stalk ofN at the generic point afy, . PuttingNy := V1N N,
the decomposition (23) then induces an exact sequence

(24) 0— N;g — N — Npj — 0.

of sheaves ok, endowed with @ -semilinear morphism, whereN; is ar-sheaf
and the action oNp; is nilpotent.

LEMMA 1.8.

i) At-sheafM of Cx is good at a point x of X if and only if is an isomor-
phism on the stalkM,, of M at the generic pointo of the special fibre
C -

i) Everyr-sheafM onCx is good outside a finite number of points.

PrROOFE Parti) is obvious from the definition.
We consider the generic pointof € and the subschenjg} x X of Cx. As

T:0"°M—> M
is an injective homomorphism, its cokernel cokeis supported on a closed sub-

schemeY of Cx of codimension at least 1. Thereforés an isomorphism locally
at{u} x {x}, for all but a finite number of points of X. By i), this provesii). O

Let X’ — X be a finite extension of the coefficient scheme. For a given
sheafM on Cx, the pullback ofM to Cyx will be denoted byM k.

PrRoOPOSITION1.9. For everyr-sheaf M onCk, there exists a finite separable
extension X— X of the coefficient scheme with function fieldtd a modelm
overCx: for Mk, which is nondegenerate at all closed points df X

PROOF a) Local case(Drinfeld, [Laf] Lemme 3) Suppose tha¢ = SpecR,
where the ringR is a discrete valuation ring and whetés the unique closed point.
We denote byd,, the completion of the local ring of functior®,, at the generic
pointz of the special fibre, and bly,; its fraction field. We puv := L ®oe, M
and

\7 = ﬁw ®L V.

It is shown in Laf] Lemme 3, that there exists a valuation deg\érwhich

takes its values i%Z, for somee € Z, and such that

degr (v) = qdegy,

foralld e V.
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Over a finite separable totally ramified extens®of R, one can assume that
deg attains the value 0 dn. We define a-invariant®,-module by taking

M = {0 € V; degd > 0}.
As deg attains the value 0., is nondegenerate at Putting
My = Mw NV C \7,

we obtain ar-module ovel¥, which is nondegenerate atas well, since the mod-
ule M, is dense inM . By Cor. 1.4, this stalkM,, atw together with the generic
fibre M yield a uniquer-sheafM on Cr with the desired properties.
b) Global case.By Lemma 1.8.ii) there exists a nonempty open subscheme

U c X suchthatM|e, is good at all closed points &f. From the resultin the local
case, we obtain, over a finite base extensfdon— X, nondegenerate modelg,,
locally at the fibres) := € x {u} of the finite number of closed pointsof X\U.
Gluing these withM |y definesm. O

LEMMA 1.10. Every inclusioni: M’ — M of z-sheaves o€, yields, for
each point x of2, an injective map

(#,), = (),

PrROOF Taking up the setting of the proof of Prop. 1.9, the inclusiamduces
an injective morphisnm,, < M, of r-modules ovet,;, for the local ring at the
generic point of the special fibi@,. On M, > M, we have the valuation deg as

before. Any nonzero elemeni of (ﬂ[(x>l can be lifted to an elememnt € M/,

such that degn = 0. This immediately shows that the reductionnafseen as an
element ofM is nonzero. O

REMARK 1.11. Models for t-modules?Let E be at-module overK. A
model & for E over X is at-module overX extending the generic fibr&. In
[Tag2], Taguchi develops a theory of nondegenerate (‘stable’) reduction and mini-
mal models for Drinfeld modules.

There is little hope for a fruitful theory of reduction for higher dimensional
abeliant-modules. For example, an essential step would be to find a nrSodbbse
reductiong at a closed point of X is nondegenerate in the following sense: there
exists a suli-module&; of & which is abelian.

In Prop. 2.11, we will give an example of an abeltamodule for which a non-
degenerate model cannot exist, not even after an extension of the base. fidid
arithmetic study of general abelisimodules should therefore rely on the reduction
theory of the associatadsheafM (E).

83. Maximal models.

DEFINITION 1.12. We say that a model( for a givent-sheafM over Gk
is maximal if, for every t-sheaf& on Cx, every morphismfx : Nx — M of
7-sheaves o€k extends to a morphisrh : & — M of t-sheaves o®x.
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This property is clearly analogous to themdh mapping property for schemes
(cf. [BLR]).

PROPOSITION1.13.

i) Everyr-sheaf M defined ovetx admits a maximal model ovérx which
is unique, up to unique isomorphism, and which we denoté B§*.
i) If M is a good model for M ove®x, then it is maximal.

PrROOF First, we notice that if the maximal model exists, then it follows from
its universal property that it is unique up to unique isomorphism.

a) Local case.Suppose thak = SpecR, whereR is a discrete valuation ring
and wherex is the unique closed point. Leit,, and.M,, be t-modules ove,;,
the local ring of functions at the generic potntof the special fibre. Note that any
uniformizerz of R is a uniformizer of®,, and thats acts onr by 7 = #=9. If
M, C Mg, it follows that

(25) lengthy  (t(0*My)/T(0* M) =q-lengthy (Mq/M,).

We define thaliscriminant A(M,) > 0 to be the length ovad,, of cokerz:
A(Mq) :=lengthy  (Mey/T(0" My)).

It follows from (25) that if M, C M4 then

(26) A(ML) > A(Mg).

We choose a-module M., which is contained in the stalk of M at the
generic point ofCx and with minimal discriminant. ThisW(, contains allz-
modules ove®,, contained ifV: Indeed, suppose there does existmodulet
over@, which is not contained ioi/, then the sum

My + Mey D Moy,

again ar-invariant projective9,-module, has a smaller discriminant than the
moduleM,, by (26).

TakeM to be ther-sheaf onCr defined, following Cor. 1.4, by its generic fibre
Mk := M and its stalkM, atw. LetL, V andV’ denote the stalk 0®eg,, M
and.V, respectively, at the generic point@k. For a given morphism

fk : Nk = M,

we consider its unique extension td_dinear morphismf : V' — V. The image
f(Nm) C V of the stalkN,, of & atw is at-module over®,,. Hence it must be
contained in the maximal-moduleM; .

We consider the shedf (V) as alocally free coherent subsheaf of the constant
sheaiV. By Cor. 1.4, is completely determined by its generic filbgg M) and stalk
fk (M) atew. Sincefx (Nk) € M and

fK(thzf) C My,

we obtain thatfx (V) C M, i.e. fx extends to a morphissv — M. Hence the
modelM is maximal, which provesi) in the local case.



40 1. The analytic structure af-sheaves

If M has a good model, thenA (M, ) = 0 by Lemma 1.8.i), and hence the
stalk M, as well as the-sheafM, are maximal, which proves ii).

b) Global case.Let X be a Dedekind'q-scheme. Statement ii) follows easily
from the local case.

For i), we remark that, by Lemma 1.8.ii), any modél on Cx for M is good
at the closed points of an nonempty open subschedme X. HenceM’|y is a
maximal model forM on Cy, by ii). From the local case, we obtain maximal
modelsM,, locally at the fibres := € x {u} of the finite number of closed pointis
of X\U. Gluing these withm’|y clearly defines a maximal modat. g

LEMMA 1.14. Let X' — X be a finitettale extension of absolutely irreducible
Dedekind schemes and let Henote the function field of’ XA t-sheaf M onCk
has a good model ovety if and only if Mk, has a good model ovety..

PrROOF We can assume tha’ — X is Galois. By Prop. 1.13.ii), a good
modelM’ for Mg, is maximal, and, as a consequence, Galois invariant. By Galois
descent, the shealt’ on Cx' descends to a sheat on Cx, and the morphism

T:0*M — M
yields a morphisnt : ¢*M — M. As properties of sheaves descend as well,

we obtain thatr, is injective (henceM is a model forM) and thatM is a good
model. |

Il. Analytic r-sheaves

§1. Models of analytict-sheaves.Let R be a complete discrete valuatiy-
algebra. We denote bl its field of fractions and b¥ its residue field. Further,
let v be its valuation| - |k its absolute value and a uniformizer. LetCx denote
the curveCk, seen as a rigid analytic space in the sensé8bR[]. We consider a
formal admissible schem@g which is anR-module forCx (see BL]).

Let O, andOg,, denote the structure sheaf of the spage and the formal
schemeCr, respectively. The endomorphismon Cr extends in a unique way to
an endomorphism 0@k andCr.

DEFINITION 1.15.

i) An analytic z-sheaf(M, 7) (for short: M) of rank r > 1, defined on
Ck (resp.Cr), is alocally free®z, -module (respOg -module) of finite
rankr, endowed with an injective morphism

T:0*M — M.

i) A model . over Cr of an analyticr-sheafM on Gk is at-sheaf onCr
which extenddM, i.e. such that the generic fibre associatedtpin the
sense oflLUt], is M.

iii) Let M be ar-sheaf ovelCr. Leti denote the closed embedding of the

special fibreCx — Cgr. Thereduction of M is defined as the locally free
coherent sheaf

(27) M=i*M,
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endowed with the induced homomorphism: ¢*M — M. Therz-
sheafM is calledgoodif M is at-sheaf. Ther-sheafM is calleddegen-
erateif 7 is nilpotent onM andnondegenerateotherwise.

iv) A model . for a given analyticr- -sheafM over@K is maximal if, for
everyr- -sheaf¥ on C’R, every morphismfy : J\/K S M of t-sheaves
on Gk extends to a morphisrh : & — M of T-sheaves o€Rg.

PROPOSITION1.16. Let M be ar-sheaf onCk .

i) There exists, over a finite separable extensidérfRR, a nondegenerate
modelM on Cg for M.
i) There exists a maximal mod&i™® over Cg for M, unique up to unique
isomorphism.
iii) Let M be an algebraicr-sheaf onCk, and M the associated analytic
t-sheaf. The analytic sheaf associatedid?* is isomorphic tos™m2*.

We postpone the proof of this proposition to §4.

REMARK 1.17. Similarly as for algebraic-sheaves (Def. 0.8), we can asso-
ciate with every analytie-sheafM on Cx and every closed poirttof C, the Tate
module Ty (M).

§2. Explicit construction of Cr. Suppose that is an open subscheme Af.
We setC := A\ S, whereS = (s, ..., s,} is a finite set of closed points @f’,
and for each < p, let fi € A = Fq[t] be a generator of the ideal definigg

1. The spac@x . An admissible covering af is given by the affinoid spaces

QY =t e K; |tk < |7l " and| fi)lk > |7}, forl<i <pu},
for positive integers. LetK (to, t1, ..., t,) denote the Tate algebra in the variables
[
i.e. the ring of formal power series

> athyte

veNn+l
for whicha, — 0if v — oo.
Consider the rindK <t(”) tv t,([‘)> [t] and its ideal
(28) Ik = (t(()n) — ", tin) fi)y ==, tlgn) ) — rrn) )
The affinoid algebra corresponding§}, is then
(29) WY = K< t ", ...,t;m)[t]/xK.

Further,Q} is an affinoid subdomain a2}, for m greater tham, via the unique
homomorphisnWg' — W which leaves the variableinvariant.
We denote by ({t, t1, ..., t,)) the ring of entire functions in the variables

ttg, sty
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Setting
(30) ko=t fu) =1, .t - fa) = 1),
the ring of global analytic functions ofk is isomorphic to
K({t, ta, ... b)) /0K
2. An R-model foiCk. For eachn, we consider the admissibR-algebra

(31) WA = R(tg"%tf‘), . .,tg”)[t]/lR,

where we define the idedlr of R(té”), e, t,ﬂ”)> [t] as in (28). Following

[BL], its formal spectrum defines a formal admissible sché&rfieover R, whose
generic fibre, in the sense @l ], is Q. For every integem greater tham, we
have, as before, a canonical embeddjg— QF. The direct limit of theQ'} over
all integersn > 0 then yields an analyti®-modelCr for Cx. Definingdf; as in
(30), its ring of global analytic functions equals

(32) R({t, t1, ..., t)) /LR

3. Construction ofo. For everyn, we define unique continuous ring mor-
phisms

(on)* : Wﬂn — WY

as follows: (o) * restricts to the Frobeniyson K and acts trivially on the variabte
Thus we obtain homomorphisms : Q — Q}", which, upon taking the limit,
endowCk with an endomorphism = lim_, oy,. Similarly, we can endowr with
such an endomorphism.

8§3. Lafforgue’s Lemma for € = A'. We consider the discrete valuatiog
on
HO (R 071 ) = R(W)
given by

VR (Z f; ti) = iri1f{v(fi)},
i=0

and extend this valuation to the fraction fidldof R ((t)). Note that the nonzero
o-invariant functions have zero valuation. y _
Denoting the valuation ring afr insideL by @, we have

HO (A%, 071 ) N O = HO (AR, 051 ) -
Toa given@lg%e-moduleﬂ, we associate th@,, -module

Calling M, suggestively, but with some abuse, 8talk of M at the ‘point’ @
defined by the valuationr, we have the following analog of Lafforgue’s lemma:

LEMMA 1.18. To give a locally free coherent shesf on KlR is equivalent to
giving its restrictionM to A% and its stalki,, ate-.
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PROOF. Let M be a sheaf oveh} and.M,, a freed,,-module, both of same

rankr, together with an isomorphism of thedimensional -vector spaces
L ®(95K M and L ®g, M-

The valuatiorwr extends, in a unique continuous way, to the fields Qﬂ@b
of meromorphic functions on the covering spatgsfor Al Let us denote byﬁw
the associated valuation ring. We can, informally, VLM/Q, = (9” ® My as the
pullback ofM, from & to the ‘point’ onQ}, defined by the valuationr.

We claim that the restrictioM |qn together withM"? defines, for every inte-
gern > 0, a sheaf#(" on Q7. Indeed, as the spaces, are noetherian, one checks
that, mutatis mutandis, the proof for sheaves on algebraic schemes that we gave in

Prop. 1.4 can be carried over. _
By uniqueness of these sheavé$, it follows that

(7n+1 __ {7n
for all n > 0. Therefore, we can glue th&" to a uniqueM which satisfies the
conditions. 0
As in the algebraic case, we immediately draw from this the following corollary

COROLLARY 1.19. To give ar-sheaf.M on K%{ is equivalent to giving its re-
striction M to AL and its stalkM,, atw .

84. Proof of Prop. 1.16.

PROOF OFPROPR 1.16. We first prove ii). In the case = Al, we can, as
in the proof of Prop. 1.13, use Lemma 1.19 in order to prove the existence of a
maximal model. For a general cur@we proceed as following: Complet@to a
projective curveC and choose a rational functiohon € which has poles exactly
at the points of2\ €. This yields a finite morphism

f.:e— Al
The t-moduleM* := f.M on 7&1}( is endowed with a scalar multiplication of the
coherenw;k%e-module f*((95R). The image of

(33) f.(0g,) @0&%{ M* — M*

is coheLent agd-inv~ariant, andeust therefore be a stisheaf of the maximal
modelM* of M* on CR. HenceM* carries an action of théz. -algebraf.(Og,).
We now apply:

LEMMA 1.20. Let f : € — C* be a finite morphism of irreducible affine
curves, and let us denote by f the induced morphigris—> G andCr — C%
as well. LetM be at-sheaf onCk . To give a modelM for M on Cr is equivalent
to giving a modeli* on G, for the t-sheafM* := f.M on €} which carries an
action of theg. -algebra f (0, ). We then have
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Thus we obtain a modet( of M overCg. As f.(M) = M*, the model is
clearly maximal.

i) Following the same argument as in Prop. 1.9 and using Cor. 1.19, we can
prove that, over a finite extensid®l of R, there exists a nondegenerate modié!
overAlR for everyr-sheafl\?l" on A}(. By a proper analogue of Lemma 1.10, the
maximal modeli{'™2 s still nondegenerate. For a general cuestatement i)
now follows by a reduction to the cage= A! as before.

To prove statement iii), we notice that the stalks of the maximal medé#* of
M on Cg and of the maximal mode#(™2* of M on Cg are both determined by the
maximalt-module overd,, (same notations as in the proof of Lemma 1.9), and,
therefore, the analytic sheaf associatedt®2 is isomorphic tai ™2, O

lll. Analytic structure of t-sheaves
81. Analytic lifts.

THEOREM1.21. Let R be a complete discrete valuatiBgralgebra and K its
field of fractions. Suppose that the residue field k of R is algebraiclbyeltetﬂ
be ar-sheaf orﬁR of nondegenerate rank r There exists

e a nonempty open subsche®eof ¢ and
e a unigue maximal good analytic subsheafA{; C ﬂ|5,R of rank ry.

This M1 is functorial with respect to analytic homomorphisms.

PROOF. a) First, suppose that = Al. We denote byM the maximak-sheaf
inside.M, the reduction of#{ at the closed point of SpecR, and byry := rk M
the nondegenerate rank af. Let $; be the support of the cokernel efon My
and$; the finite set of closed points? lying below $1. We set¢’ := A\ . In
the next paragraph, will present a proof of the following proposition:

PROPOSITIONL.22. Let R be a complete discrete valuatitgralgebra and K
its field of fractions. Suppose that the residue field k of R is algebraiclyuefor
a nondegenerate analyticsheafmM on AlR, there exists an analytic sub-sheaf

such that# has good reduction, and such that
N = Mg,

Let M1 be the saturation o in M. As My is T-invariant, it is actually a
t-sheaf onCh. Further, the modeli(; is good, asV is good. ClearlyM; is a
maximal good suk=module of M on @fq, as its rank equals the nondegenerate
rank of (.

b) To prove the theorem for a general cu@ewe consider, as in the proof of
Prop. 1.16, a finite morphisrh : ¢ — Al, whose degree we denote by degBy
the above results, we obtain a nonempty open subsclérméA® and a nontrivial
maximal good sub—moduleﬂ{ of rankry - degf of the r-sheaf

M= £
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on Ck. We put€’ := f=(C*). As M is amaximal it is invariant under the
action of f,(9g ); hence, by Lemma 1.20, we obtainrasheafMy on Cg such

that . (M1) = M. Clearly,.M1 is a good sub=-sheaf of the desired rank. As it is
saturated inM, and its rank is the nondegenerate rankofit is clearly a maximal
good sube-sheaf.

c) In order to prove the functoriality, le and.M’ be t-sheaves o@g with
associated maximal good subsheavest(; and M’. As the question is local, we
may assume that the latter are defined® as well, and we may just as well
suppose that all of the above sheaves are free.fLagnote an analytic homomor-
phismM — .i(’, and consider the induced homomorphism

My — M =M /M.
On the reductionM; of M1, the action ofr is injective, whereas, by Remark 1.7,

we know thatr acts nilpotently on the reductiol” of "
For integers, let us denote the matrix representation% by As, that Offfq/,

by AZ, and that off by #, with respect to some fixed bases. We have the equation:
(34) F-As=AL-F.

For everym, there exists an exponesisuch thatAy = 0 modn™, whereasAs is
injective modz™; henceF = 0 modn™, for everym, and sof is trivial. This
shows that

f (Ml) C Mo.

§2. Proof of Prop. 1.22.
PROOF OFPROP 1.22. a) Let us extendM by zero to a fre@ 1 -module
Me = M ® Mo
of rankr’, endowed with a -linear endomorphism (cf. Remark 0.4). Let
m:= (my,..., M)
be a global basis foile, and let
A € Maty/ (HO (A’l, (9;@)

be the matrix representation ofwith respect to this basis, igm) = m- A. The
reductionm of m yields a basis fom.
Next, we choose a basis' = (M)1<i<r, for HO (A}, M1) and denote by

A1 € Matyur, (HO (A&, @A&))

the representation af with respect to this basis:(M') = M - A1. We expressn’
with respect to the basim of Mg, by means of a matrix

W e Mat, (HO(44.0,4))
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as follows:m = m - ¥. Comparing the action of with respect to this basis, this
yields the equation
V. (A)=A-¥;

hereA is the reduction ofA, and the action of on W is given by that on the entries
of W,

The residue fieldk being algebraic oveFy, there exists a canonical embedding
k — R. Let A1 denote the canonical lift via — R of A; to anrq x ry-matrix
with coefficients inH® (&%{, (9;%) , and

& & Mat ., (H (AR, 051))

the lift of the matrixW. _ _ _
b) The idea is to construct a basisfor a subz-sheaf;\ C Me on G such

thatt acts byA; on its basis. If we put := m - Z, for a matrix

0(3 g~
(35) Z & Maty; (H (8. 0z, )).
this boils down to finding & of full rankr1, which solves the equation
(36) Z-Ai=A-Z.

Recall that the reductiod - A1 = A - °Z modulox of this equation has the solu-
tion W,

Let D be the adjoint matrix ofA; and puts := detA;. We setd := detA;
andB := ((§)"1A). Recalling that we definef; as the set of closed points af

lying below the set of zeros 6f the matrixB has entries in the ringl © (é’R, (95,R>.
Equation (36) is now equivalent to
(37) Z=B.°Z.D.
c)Let A\ ¢’ = {s1,...,s,}, and, for each < p, let fi € A be a generator
for the ideal definings . We recall from equation (32), that, putting
Ro= Rt tr, ..., 1),
the ring of entire functions 0@’ is isomorphic to
R/ (- fa®) =1, t, - f0) —1).

The endomorphisms on é’R is induced by the endomorphisimof R which acts as
the Frobeniug on R and fixes the indeterminatgs

We recall that the reductioB - A; = A -°Z modulor of equation (37) has the
solutionw. We can therefore fix a lifZo with coefficients inR for the matrix\,
as well as liftsB and.D for B andD such that the reduced matric&s, 8o andD

satisfy the equation (37) modua We then set

®:=n"NB Zo- D — Zo) € Matwr, (R).
The equation (37) lifts to
(38) Z=8-°Z D,
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for amatrixz € Maty/ ., (R).
PuttingZ = Zo + 7 Z1, for some matrixZ, we obtain the following equation
for Z1:

(39) Z1=o+7918.Z; . D.
We postpone the proof of the following lemma:
LEMMA 1.23. Equation (39) has a unique solutidgy € Mat r, (R).

d) Finally, a solutionZ of equation (37) is given by the image of the matrix
Z:=Zo+nZ
under the map
0(n -
R — H°(Cr 0z,
As the reductior?g has full rank, so doez. _ N _
The matrixZ now defines a basis= m - Z for a subz-sheaf¥ C Me onCh

such thatr acts asA; on its basis; hence clearly); = . As 7 is injective on
N C Me, We actually haveV C M. O

Proof of Lemma 1.23ut
®© = (B°B---°"'B) D (° DD D).
As one easily verifies, the unique formal solution to the equation (39) is

o
(40) Zl = Zﬂ:qs*l . CD(S).
s=0
Clearly, this formal sum defines a matrix in Mat, (R(t, t1, ..., t,)). It remains
to show that the entrie®; are inR.
Every elemenp € R{(t, t1, ..., t,)) can be expanded as

where thep; are polynomialss K[t, tg,...,t,]. For everyi > 0, we denote by
degpi the total degree of; € KI[t,t1,...,t,]; if pj = O then deg; := —oco. For
entire functions, we have the following convergence condition:

degp;
peﬂ@%ao.

Further, we putB := B, introducing matrices
Bi = ((Bi)k) € Mat (K[t tg, ..., 1,]).

Let us put de@Bj := maxy, {ded Bi)x}. We do the same fob, D, Z; and
the ®®, and we set

di := max{degB;, degd;, degd;} > 0.

SinceB, D andd have coefficients iR, we haved; /i — 0. Fixing ane > 0,
there exists @ (¢) > O such thatl <ei +«(¢), foralli > 0.
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Note that’8 = Y _(°8i)7 Y and that de§B; = degB; < d;, for alli. Put
(41) J:= [(io,...is,l; i0:Ko. .. ke_1) € NZHL

(o+0ait+...05Yiso) +a%jo+ (Ko+ -+ 0% theo1) = n} .

We obtain an estimate

1 1
deg(l)rgs) = deg(z(£|0 ‘TJBil e oS £i571) (rs(I)jo (o’s ka—l . U@kl £k0)>
J

< mJaX(dio +diy + -+ dig, +djp+ diy + i, + ... Oig_y)
<max(e(ip+ir+---+is—1+ jo+io+Ki+---Ks-1) + (25 + D« (e))
<en+ (2s+ Dk (e).

Finally, dedZ1)n = deg(zgio ‘ngnl)- Now

degdY s,; < en+ ((25+ 3k (e) — (@S — 1)),

where((2s + 3)kx (¢) — €(q° — 1)) is a function ofs which is bounded by a constant
k(€). Therefore de@Z1)n < €n + k(¢), which shows that

degzl)n <e
n

limsup

As this holds for alk > 0, it follows that de@Z1),/n — 0, for alln > 0. Hence
the matrixZ1 has entire coefficients indeed.]

REMARK 1.24. The entries of the matrix (cf. 35) which expresses a basis
for the t-sheaf A in terms of a basis for/\ze, are holomorphic functions 0@}
which may have essential singularities at the pointS;oindeed, by equation (40),
they are entire functions in the variablesfy(t)=1, ..., fu (t)~1. In general, one
has to allow such ‘singularities’ to obtain a nice analytic structure for an analytic
r-sheafM on 1&1K: see Prop. 2.11 (in view of Def. 1.27).

What can be proved if we do not assume that the residuekieR is algebraic
overFq. For a nondegenerate analytiesheaf( on AL, suppose that the support
of the cokernel ofr on M7 contains a point = s, where we choose sonsee k
which is transcendental ovEy. Note that equation (37) has now a factbr- s) in
the denominator. Therefore, if we solve this equation formally (cf. (40)), we obtain
a function with poles at the infinite set of poim;%'. But, in the sense of rigid
analysis, this defines an analytic function on some small open disks, but not on a
‘larger’ global rigid analytic space.

Denoting, as before, the completion of the local ring of regular functidgps
at the generic pointr of the special fibre® of Cr by @, equation (40) clearly
defines an element i, . Therefore, using similar arguments as in Thm. 1.21, we
can deducek(not necessarily algebraic ovEg):
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PROPOSITION 1.25. For an analytict-sheaf.M onCr with nondegenerate
rank r1, let M,, denote the completion of the stal,, of M at w. There exists
a unigue maximal good submoduleMy C My, of rank r; and M is functorial
with respect tad,, -linear homomorphisms.

83. Analytic semistability theorem.

THEOREM 1.26 (Analytic semistability theorem). Let R be a complete dis-
crete valuationFg-algebra, K its field of fractions and suppose the residue field k
of R is algebraic oveFq. For every analyticr-sheafM on Ck, there exists

e anonempty open subsche®ecC C,
o afinite separable extension’ Bf R, with fraction field K, and
o afiltration

(42) 0=N‘0cﬁlc---cﬂn=|\ﬁ|5k,
of the puIIbacI<l\7I'|5;</ of M to €, by saturated analytic sub-sheaves
oneCy,

such that the subquotientd; := N; /Ni_1 have good models over,.

ProOFE By Lemma 1.16 and an analytic analogue of Lemma 1.10, there exists
a finite extensiorR; of R, with fraction field K1, such that the maximal model
MM for My, is nondegenerate at the closed point of SRec By Thm. 1.21
this yields a saturated good subsheafM 1 defined ovef?&, for a nonempty open
subscheme* of €. Let M; denote its generic fibre of and put

M’ := M/My,

which is ar-sheaf onCy .
By induction on the rank, we obtain, for a nonempty open subscheme

¢ cel
and a finite extensioR’ of Ry with fraction fieldK’, a filtration
0=NicNoc - cNo=Mg .
O

DEFINITION 1.27. For an analytic-r;sheafl\ﬁ on (N?KN,J we call a filtration as
in Thm. 1.26 asemistable filtration for M. We say thaMM is semistableif there
exists semistable filtratiofiN; } which is already defined ofik .

As a first example, Drinfeld modules are potentially semistable:

PrROPOSITION1.28 Analytic structure of Drinfeld modules).
Let¢ be a DrinfeldA-module defined over K and M its t-motive; @heaf oA .
The associated analytic-sheafM on Akl( is potentially semistable.
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PROOF First, suppose that the valuation Kf is infinite with respect to the
characteristia. As every Drinfeld module is uniformizable, it will follow from
Thm. 5.13 thatv potentially has a good model.

For finite valuations, it is shown in Thm. 6.22, that, over a finite field exten-
sionK’ of K, there exists an exact sequence

0>N—>M-=>M -0
of analytict-sheaves or\},. In this sequencd\ is a trivial r-sheaf (hence poten-

tially good), andM’ is the good reductiob-motive associated to a Drinfeld mod-
ule ¢’ with a model of good reduction. a



CHAPTER 2

Local Galois representations

Let C be an absolutely irreducible affine smooth curve with constant Rgld
and function field~. Consider a&ompletediscrete valuation ringR whose fraction
field K containsF, with residue fieldk. We denote byr a uniformizer ofR and
by x the closed point of SpeR, which we will identify with the associated place
of K.

The embedding- < K defines a generic characteristic map

t:SpecK — @

(cf. Def. 0.5), and we putx := t(x), the residual characteristic point. Finally,
let 'k be the absolute Galois group Kfandl its inertia subgroup.

Let M be ar-sheaf oveCk with characteristic. We denote its maximal model
over Cr by M = MM and the reduction of¥ at x by M. In this chapter,
we establish some properties of the Galois modulgdl) andW, (M) (Def. 0.8)
concerning the action of the inertia subgroups:

- analyticsemistability(Thm. 1.26) implies unipotent action of inertia on
V¢ (M) on all but a finite number of closed point®f C;

- adescription of the characterstame inertiaacting onW, (M) at¢ = ¢,
for ar-sheafM with a good model ax;

- adescription of thémage of inertiason V, (M), for all ¢, if the t-sheaf has
characteristie, dimension 1 and posesses a good mode! at

I. Semistability of Galois representations

If M is good atx then, for all but a finite number of closed pointof C,
the homomorphism : o*.M — M is an isomorphism locally at the closed pomt
& := ¢ x Speck of Ck. If T is anisomorphism locally &, thent : cF My — My
is smooth, and s@, (M) is unramified, by Prop. 0.7.

In conclusion, this shows

LEMMA 2.1. Let R be a discrete valuation ring. If M has a good modeten
then ¢ (M) is unramified for all but a finite number of closed poiatsf C.

REMARK 2.2. There exists a converse to this statement, which is stated in
Theorem 4.1.

REMARK 2.3. We immediately obtain an analogous statement for analytic
sheavedV: If M has a good model ofir, then the Tate moduMg(M) is unrami-
fied for all but a finite number of closed poirt®f C.
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No longer assuming tha#l has a good model at, we now prove that inertia
acts (almost everywhere) potentially unipotently on the Tate-modGied ):

THEOREM 2.4 (Semistability of Galois representationy. Suppose that the
residue field k of the discrete valuation ring R is algebraic ogr For any -
sheaf M onCk, there exists a finite separable extensiohdf K such that the
action of the inertia group¢- on V;(M) is unipotent, for all but a finite number of
closed pointg of C.

PROOF We consider the analytic-sheafM on Cx associated tav. By the
Semistability Theorem 1.26 we obtain an extendigra filtration of M with good
subquotients which is defined @k, except at a finite number of closed points
of C. This proves the theorem, by 2.3. |

REMARK 2.5. Clearly, if the residue field of R is algebraic oveFq, we also
have: For any analytic-sheafM on Ck, there exists a finite extensidt/ of K
such that the action of the inertia grolip: on V(M) is unipotent, for all but a
finite number of closed pointsof C.

REMARK 2.6. We compare our result to the classical theory of local Galois
representations of@p-vector space¥. If p # p’, the residual characteristic of
the local fieldK, then inertialk acts potentially unipotently ox. The proof of
this statement is remarkably elementary (§GA7], Expo< |). However, given
an abelian variety with its associated Galois representations, the fact that one can
find a finite extension of the base field such that inertia acts unipotentyl date
modules, is deeper (cfSGA7], Expog VIII); for motives, it is a consequence of
de Jong’s theory of alterations of algebraic varieties &&r], Prop. 6.3.2).

REMARK 2.7. Semistable -sheaves with characteristitet M be an analytic
t-sheaf orCk with characteristic. As the characteristic is generic, the Tate module
T¢(M) is well defined for all closed points of . If M has a good modeM
overCr, thenlk acts trivial onV, (M) for all £, except for the residual characteristic
point £y, if it exists.

If M is semistable, then each of the subquotidvitsin the semistable filtra-
tion {Ni} for M has characteristic or is smooth. Hence, inertix potentially
acts unipotently oV, (M) for £ # ¢x. This shows that in particular semistable
7-sheaves with characteristic mirror the classical semistability of the Tate modules.
This remark will now allow us to spot a non semistabisheaf.

REMARK 2.8. It may be instructive to discuss Thm. 2.4 in the special case

of Drinfeld modules. For a Drinfeld modulg defined overK with characteristic
t* : A — K, the inertia groupk acts unipotently o, (M) for all closed pointg
of C\{¢x}, by the theory of uniformization. Indeed, upon replackdy a finite
extension, we may assume thatifis a finite place, thew has stable reduction
atx, i.e. there exists a modd for ¢ over R whose reduction is a Drinfeld module
overk, possibly of lower rank (cf.TagZ]). We then have the following results:

e If ® has good reduction at then, for every ideall of A, the scheme

of A-modules®[J] is finite flat. For the maximal ideal corresponding
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to ¢, the inductive systerl{lqs[ki]}lfi forms anA-divisible scheme ofA
modules (se€Tag?], 81). The connectediale decomposition yields an
exact sequence

0— @[ — ] — @[ 0
where{®[111°} (resp.{®[A]%}) is a connected (resetéle) A-divisible
group. If¢ # ¢y, then{®[)']} is étale, which shows that the Galois

moduleV,(¢) is unramified.
e If ® has Tate reduction ovéty, then

PropPosITION2.9 (Drinfeld [Dr1], §7). There exists a Drinfeld mod-
ule ' of rankr defined over R and with good reduction at x and ayK
analytic epimorphismye: ® — & of Drinfeld A-modules. Its kernel
Hyx C Kz Pis a strictly discrete projective A-module of rank-.

This yields, for every nonzero idealof A, a decomposition
0— ®'[4] - ®[4] — Hy/4 — 0.

The latticeHy being strictly discrete, the orbit und€k of any basis is
finite; hence the action qf"x) on Hy is finite as well. Passing to the limit,
this shows that, potentially, inertia acts unipotenth\gitp) if £ # ((x).
e For all infinite places of K, we have
PrRoOPOSITION2.10 (Drinfeld Dr1], §83). There exists a K-analytic
epimorphism g : Ga — ¢ of A-modules. Its kernel Hc KyPis a
strictly discrete projectivé-module of rankr.

We obtain al'g-invariant isomorphisng[4] = Hy/J{, whereHy, as
above, has a finite Galois action. Hence, potentially, the actidp oh
Ve (¢) is trivial for all £.

II. Example: (not) semistabler-sheaves

We putC := Al and consider the discrete valuation riRg= Fq[[7]], denot-
ing by K its field of fractions. We define a characteristic map Sikee> C by
FIAZFtl > Kt 0,
for somed € K. For every paife, y) € K* x K, we define ther-sheafM,, (y)
onA} as follows: The underlying sheafisAlK © Op1, with global basis

m = (my, my),
and we set to be given by the matrix representation
B 0 a(t —0)
(43) r(m)_m-(a(t_g) st )

This M (y) is a puret-motive of rank 2, dimension 2 and weight 1. If we take
(m1, my) to be the coordinate functions @}ﬁz , then the-moduleE, (y) is given

by:
m\ _ 2 -yt a(t—0y)t my
e ()= (0 ) ()
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Letus now pu¥ := 7 + 1 € R. Then the valuation,, is finite with respect to
the characteristicand the residual characteristig is defined by the idedt — 1).

PropPoOsITION2.11. The (analyticc-sheaf associated with the) t-motiva (#)
is potentially semistable ole if and only ifv(y) > 0.

ProOFE If v(y) > 0, the@A%{-moduleﬂ generated byn is a good model for
M1(y). A fortiori, the M1(y) is semistable.

Suppose that(y) < 0. Lety’ be a(q — 1)-st root ofy, andR’ := R[y'].
We remark that the-module A with basism’ := y’ - m overd,, defines a

nondegenerate model fof := M1(y). Indeed, the representationofith respect
tom’ is then given by:
N ! 0 y'(t—6)
t(m)_m-<y/(t_9) ¢ .
The maximalr-sheaf(.M)1 in M is given by© 1 - M), and the action of by
T(M,) =t - m),.

If we let £ be the closed point af! defined by the ideat), then by Thm. 1.22,
the filtration (M) C M lifts to a filtration &1 C M, where: is a goodr-sheaf
defined on(A1\ {¢g}) x SpecK. Since the quotientv; either has characteristic
or is smooth, the action of inertia on the Tate modUlgd) is unipotent for all

¢ e AT\ (e, Lo)

(cf. Prop. 1.22 and Remark 2.6). In the following lemma, we will prove that the
action of inertia oril,,(M1(y)) is not potentially unipotent. A€o # £x, we then
obtain, by Remark 2.6, thal1 (y) is not semistable. a

LEMMA 2.12. If v(y) < 0, then the action of inertia on/J(M1(y)) is not
potentially unipotent.

PrROOF PutM := M1(y). By the definition of the functof,, we have
(44) Tee(M) = {v = (v, w) € Maty2(K*A[t]]); V=v- < ti)g t;te >}
Expanding as a power seri€s -, vi t e KSe[t]], and doing the same far,
we obtain the system of equations
v 40w =wi1
wi +60vi = vi_1+ ywio1.
By substitution, we deduce the following recursion figre KS¢€P.
q2

w' — 09ty = quiq_l — 09+ 0)wi_1 + wi_o.

By induction, it follows that ifwg # 0, thenv, (wi) = a%v(y)_ This implies
that no nonzero solutionof (0.8) is defined over a finitely ramified extensionkof
Hence, there can exist no finite extenskbhand no sub¥q[[t]][I"} ]-module

T C Tge(M)
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such thatl, acts trivially onT1. In other words, inertia does not act potentially
unipotently onT,,(M). O

The fact that we have an example of a ptimotive which is non potentially
semistable, i.e. which has not even potentially a global nondegenerate structure as a
7-sheaf oveu&lK, shows that it is impossible to find a global nondegenerate model
for the t-module E, thus leaving little hope for a general reduction theoryt-of
modules (cf. Remark 1.11).

I1l. Action of tame inertia

81. Fundamental characters.Let M be ar-sheaf onCk with characteristic
and dimensiord. We denote byc, an algebraic closure of the residue fiald
of £. Let W,*be the semisimplification of the,[I'k ]-moduleW, (M). We know
that the action ofx on W,"** factors through its quotierif, of tame inertia (cf.
[Sed, §81); hence the representation of

_ - X,SS
pe:lk = ke ®@W,

is given by a direct sum of characteis: Ik — ;. We want to give a more
detailed qualitative description of the charact&ref Wex’ss in caseM has a good
model atx.

Let « be a finite extension ofq of orderq’ and degredx : Fq]. For an
integerp, let«?] be the extension af of degreep, inside a fixed algebraic closufe
of k.

DEFINITION 2.13 (Serre). Taking a solutiom, of X" — zX = 0, one
defines a tame character

X
Cep i Ik — (K[p]> Ck* 0> o(mp)/m,.
This character, together with its Gail*!/x)-conjugates
ni
£

fori < [k : Fq], is called thdundamental character of levelp for « (cf. [Se3, §1)
(this set of fundamental characters is independent of the choiag for

Any tame charactely — (/c[p])X C k> is a power of, ,. Lete, denote the
ramification index of a closed poifitof € for the morphism : SpecR — €.

THEOREM 2.14. Let M be ar-sheaf onCx with characteristic. and dimen-
sion d. If M has a good model at x ards the closed point of lying below x,
then the representatiork| — Autg, (;Zg ® Wex’ss) is isomorphic to the direct sum of
products of fundamental characters of level at most r with at mostidactors.

The proof will be given in section I11.83.
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§2. Simple ramifiedt-modules. Denote byR"" the maximal unramified ex-
tension ofR, by K'Y its field of fractions, whose absolute Galois grdupr = Ik .
Let« be a finite extension dfq of orderq’, andy’ the Frobenius morphism

/
X x4,

By a t’-module over a-algebraB, we will mean ar-module overB with respect
to the finite fieldx, i.e. a projectiveB-moduleN, endowed with a map

T (¢))*N — N.
There is an antiequivalence between the category of fijitg ]-modulesw and
t’-modules(N, /) overK " (cf. (6)). Our aim is to make this antiequivalence more
concrete. The ideas below were inspired by the explicit theory of filtered modules

which can be found infL], §6.
Let us be given arank > 0 and a map

h:Z/pZ — {0, ...,q —1},

which is not the constant map with valgg — 1. We define a simple free’-
module ., (h) over R'" as follows: With respect to a basfsj}cz,,z, the mor-
phism

' (0')* Ny (h) = N, (h)
is given by:
(45) '(nj) = 7. Njt1.

PutN,(h) := K" ® W,(h) and letW,(h) := T(N,(h)) be the associated
k[lk ]-module. This modul&V, (h) is given by the solutions
X= (Xls R Xr) € (KSG%GBIO
of the system of equations
q/

XJ =7Th(l) * Xj+1.

The 1-dimensionat!#!-vector spac#V, (h) is generated by any nonzero element
(X)iez/pz. € (KSHP
such thatx; is a root ofX(@)” — zv® X = 0 and
X = =Dy @)
Putting

v=h0) @) T +hD @) 2+ --+h(p-1),

this shows that inertidk acts on it through a charactggfp, whereg, , is a funda-
mental character of level.

LEMMA 2.15. Any simple smooth’-module N of ranko over K" is isomor-
phic to N, (h) for some h.
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PrRoOOF For any magh, the t-modulesN, (h) and N are isomorphic, if and
only if the k[l ]-modulesW, (h) andW are isomorphic. The action dk on W
being simple and hence tame, its representatiok’6i® W is isomorphic to the
direct sum of a character

X
§:lk — (K[’O]) Ck*
and its Gal«'”!/x)-conjugates. We have = ¢! , for some 0< v < ()" — 1.
Writing down ag-expansion
v=10(@)" T+ (@) P+ vy,

with eachv; contained in{0, ..., q" — 1}, we then definé by j — vj and consider
the r-moduleN, (h). As we saw before, the characteis then a direct summand
of the representation dfx on W, (h), which shows thaW = W, (h) as«[lk]-
modules. O

Remark that these calculations also yield that tamodulesN, (h) andN, (h")
are isomorphic if and only ifi is a translate of. For anyi € Z/pZ, set

viy= > @ Ihi+)
jel0,p-1]
By our assumptions o, we havev(i) < (q)? — 1. Note thatv(0) = v and that
vi+1)=qv@i) mod()” — 1
LEMMA 2.16. The modelv, (h) for N, (h) over R" is maximal.
PrOOF It suffices to show that the iteratev, (h), (z")?) of (N, (h), ), with
(T)? 1 (") N,y (h) = N, (h),
is a maximal(z’)?-module. It is a direct sum of rank 1 sutf-moduless; of the
form
() = 7'D ;.
Let us denote by (resp.N;) ther”-module oveRY" (resp.KY") generated by
ni,...,Nj.

Asv(l) < g’ — 1, ther?-module.V; is a maximal model folN;. By induction,
we similarly prove that thev; are saturated in the maximal modéM®*for M over
RY. Hence(N, (h), ”) is maximal. a

83. Representations of tame inertia.

PROPOSITION2.17. Let N be ar’-module of rank r over K with a maximal
model./ over R such thalengthy(cokerz),) = m. If £ is the closed point of
lying below x, then the representatiop b Autz (k ® W*:59) is isomorphic to the
direct sum of products of fundamental characters of level at most r with at most m
factors.
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PrROOF Take a free summan, of rankp, in the semisimplification

N XSS — @ N

of W; then Iengtl@cokerr!’M) < m. The maximal model of¥; is isomorphic,
over RY", to somew, (h), by Lemma 2.15 and 2.16. Thus

Z h(j) < lengthy (cokerrpr(h)) <m.
i€Z/pZ

This shows that the representationl @f on thex-vector spacéV, associated tov;
is isomorphic to the direct sum of products of fundamental characters of level at
mostr with at mostm factors. O

Let M be ar-sheaf orE’K with characteristic and dimensionl.

PROOF OFTHM. 2.14. For placex of K at which M has a good model,
the k¢[1k ]-moduleW,; (M) is determined by the reductiad, of M at the point
SpecK"" x, ¢, or, equivalently, by the’-module(M,, /) overKY", with

v/ = glkeFal
As M has characteristicand dimensioml, it follows that
lengthy, (cokert’) = g - d.

Proposition 2.17 now concludes the proof. O

IV. Image of the action of inertia

Let M be ar-sheaf onCk with characteristic anddimension 1, which pos-
sesses a good mod#l over Cr. By Remark 2.7, inertia acts trivially on the Tate
modulesT, (M) for £ # £ := «(X). In this section, we give a qualitative description
of the image of inertidk in Aut(T,(M)) for £ = £y (cf. Cor. 2.24).

81. Connected¢-adic t-sheaves.Consider a closed poitdt of Cr. Let (55
denote the completion of the local rife, ¢ of regular functions a with respect
to its maximal ideamne.

DEFINITION 2.18. We call art-adic t-sheafM, on éR,g connectedif its re-
ductionM¢ até is nilpotent, i.ex" : (0*)"Ms — Mg is the zero morphism for
somen > 0.

LEMMA 2.19. For every/(-adic t-module, on Cr ¢, there exists an exact
sequence

0— ,A/A{ft—> M@—)M?—)O

of ¢-adic t-sheaves ove®,, where M is smooth andi(? is connected.
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PROOF. Ther-sheafM; overg contains a-moduleM; (of rankry) as a direct
summand, such thatacts nilpotently on

Mail = ﬂg/ﬂl.
We choose a basi®’ := (Mj)1<j<r, for M, which we then extend to a basis
m:=(Mmg,..., M)
for Mg. Any lift m = (m;) of M to M, yields a@¢-basis of the latter. Put
m' = (my, ..., m).
Let
A1 e Matrlxrl(k)
(resp.A € Matrxr(@g)) be the matrix representation efwith respect to the ba-
sismy (resp.m), and consider any lif\; of A1 with coefficients inQg.
We want to construct a basisfor a subz-moduleM 8! of rankr of A, such
thatt operates as\; with respect tan. Let us express in terms ofmasn =m- Z,

for some matrixZ € Matrxrl(@g). Comparing the action of with respect tan
andm, we obtain the equation

(46) Z-Ai=A-Z.
We reduce this equation modute :
Z-A=A-Z,

whereA is the reduction ofA. A solution forZ is given by the matrix which express
the basisn’ for M1 in terms ofm.

As Aq is invertible and@g is complete with respect tm;, we can now deter-
mine a solutiorZ for equation (46) by iteration. The basis m - Z then generates
an saturateetale sube-sheafMS' of rankry of M,. The quotient? := My /M

satisfiesﬁ? = M, and is therefore connected. O

82. Formal 1-dimensional A-modules. Let @a,R denote the formal additive
group overR. Its endomorphism ring Eritb, r) is isomorphic to the skew power
series ringR[[¢]] generated by the morphisgnand defined by the relation

p-f=%.0.

DEFINITION 2.20 (Anderson (cf.An2], 83.4)). Let¢ denote the closed point
£y = 1(x) of € andX a uniformizer ofA,. Let:* : Ay — R be a local homomor-
phism. Aformal 1-dimensional A,-module & over R is a continuous homomor-
phism

€ : A —> EndGa r) = Rllel]
such that
€(x) =*(E) mod R[[¢]]- ¢ - Rlle]] and
€() =¢° modr - Rilgll,

for somes € N (wherer denotes a uniformizer dr).

(47)
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Let us denote the order of the residue fiejdy g,. For evenyi, the kernel
EIM] := ker& ()
is a finite flat scheme ok /A'-modules of ordeg}" for a integer constant
h=s-(degt)~*

which is called théneight of &. One defines th€ate module T, (&) associated t§,
a freeA,-module with continuous action @fx as

Te(&) = lim 8N 1(KSP).

PROPOSITION2.21 (Anderson, cfAn2], 3.4). There is an equivalence of cat-
egoriesM between the categories of formal 1-dimensiohaimodules and the cat-
egory of connected 1-dimensiortafdic r-sheaves o R ¢, such that

Te(&) = Te(M(€)).
REMARK 2.22. For a DrinfeldA-moduleg, the results 2.19 and 2.21 dm(¢)
can be obtained by a different method.Alfs a maximal ideal oA, then Taguchi
proved in [Tag2) that the systen¢[A"]}nen forms ai-divisible group. One has a

connectecktale exact sequencdfg?l Remark p. 296) and an equivalence between
connected.-divisible groups and formal-modules (Tag2 Prop. 1.4).

83. Congruence subgroups o6L; (A,). For a closed point of G, we con-
sider the freé\,;-moduleT := A?r of rankr. We set

Y = End, (T/1) = Mat; »r (kx)
and putU := Enda,(T) = Matf r (A). Putting

(48) G := G := Auta,(Ty) = GL( (Ap),
we define, for every > 1, the subgroup
G :=1+AU
of G. Finally, fori > 1, we consider the grou@!i! := G' /G/*+1, which is isomor-
phictoY via

vi Y= Gl: Y 1+ A - Y.
Letx’ := K,E” be an extension of, of degree and fix an embedding
jik = U.

The finite groupd := («)* acts by conjugation obJ. For any integer € Z/hZ,
the isotypical component

(49) U(i):={ueu;ui=j1—q5z-ufora||jeJ},
hasA,-rankr (cf. [Fol] and [Abr], 1) and we obtain a decompositionlof

U= EB ua).

ieZ/rZ
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Likewise,x’ embeds intdr, and we have a decomposition
Y= P Y.
ieZ/rZ
where eacl (i) is a 1-dimensionat’-vector space on whicll operates through
the charactef — j1~%. A A
For any subgroup! of G, we set, foii > 0,H' := H N G' and
(50) HlT.— Hi/Hi+1cG[”.

84. Image of inertia. Put¢ := «(x), and letA be a uniformizer ofA;. We now
apply an idea of Fontaine (seed1] and [Abr]) to give a description of the image
of inertialx on T;(&), whereég is a formal 1-dimensionah,-module of heighh
over R. We denote by

pe: Tk — GLr(Ay)
the Galois representation dip(&). Fixing anA,-basis forT := T,(€), we use the
notations from the previous paragraph.

THEOREM 2.23. For £ := {x = 1(X), let & be a formal 1-dimensionah,-
module of height h over R. dfis unramified abové, then there exists a function
v:Z/hZ — NU {oc}

satisfyingv(0) = 1 and
v(i +J) < v() +v())
such that

(51) pe(l) = 3 (1+ ) Au(i)‘Ue(i)) C GLa(A0).

i€Z/hZ
PROOF. For the inertia groupk , we have an exact sequence
1—>|£—>|K—>ItK—>1,

Wherellﬁ’ is the subgroup of wild inertia (higher ramification subgroup), and we can
fix a sectionl& — |k of tame inertia. We pul := p;(Ik).

1) Tame inertia. By assumptiori is a uniformizer ofK. The non-triviali-
torsion pointz in

ENZ=T/A
are roots of an Eisenstein polynomial of degq@e— 1. Asis well known (cf. Be3,
81), it follows from this that the action dfx factors through tame inertia, that the
imageH (% of
Ik — Aut(T/») C Y

has ordqu‘ — 1 and can be identified as a group with the multiplicative gréup
of Klgh].

2) Wild inertia. Fori > 1, let us put

L' = KY(g[*1y),
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so we can identifyH (' with Gal(L' /L ~1). For any point of
g[}LiJrl]\g[)Li] C KseP
and any nontriviab € Gal(L'/L'~1), we haves(2) — z € €[A]\{0}. A direct
calculation shows that, with respect to the normalized valuatiofl' (z), we have
vo@ -2 =qM.
By [Se] IV &1, this implies that the subgroup
Gal(L' (z)/L") c Gal(L'(z)/K "

is contained in the (i )-th higher ramification grouf® ., of Gal(L' (2)/K), where

pi) =g - 1.
But thenl}< acts trivially by conjugation on

GalL' /LY,

by [Sed IV 82, Prop. 9 (p. 77).
Through the identificatio®!'! = Y, fori > 1, we have a decomposition

Gll = EB Y(j).
jeZ/nZ
In the above we found a quotient Gal (z)/L') of H 'l of orderq] which is invari-
ant under conjugation by, which must hence be isomorphic to

Y(©0) c HIT,

3) The function.. TheZ[J]-modulesy (] ) are simple foij # 0. It now follows
thatH['l is isomorphic to a direct sum

P v,

jed
where J(i) is a subset ofZ/hZ which, by the above, certainly contains 0. We
remark that

Y. YN =Y + 1),
if (j,])# (0, 0) (cf. [Fo1] §7). By the commutative diagram
Gl x G — G+ :(g,0) = 0iog;te,"

2 1 ) t
Y x Y — Y :(hy,hy) = [h1, ha]

thisimpliesthatifj € J(@i)andj’ € J(i"),thenj+j’ € J(i+i’) for (j, j) # (0, 0).
If we now put

v(j):=inf{i eN; j e J(i)} e NU{oo},
thenv is the required function. O

Combining Lemma 2.19, Prop. 2.21 and Thm. 2.23, we now conclude:
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COROLLARY 2.24. Let M be ar-sheaf on®k with characteristia anddimen-
sion 1, which possesses a good modélover Cr. Suppose thatis unramified at
the point¢ := ¢(x). Then we have

i) an exact sequence
(53) 0— V(M) = V(M) = Vi (M)® = 0

of F¢[I"k ]-modules, where
— the module V(M)®&tis unramified, and
— the image of the action of inertia ory8V)° can be described as in
Thm. 2.23 above, and
i) an exact sequence

(54) 0— W, (M)? = W, (M) — W, (M) = 0

of k¢[I'x]-modules where
— the module \MM)®t is unramified and
— the image of inertia on the h-dimensional vector spacgMy° is
isomorphic to

(™) c Aut, (We(M)).






CHAPTER 3
The image of global Galois representations

Let C be an absolutely irreducible projective smooth curve with field of con-
stantsFq and denote its function field by. Consider the affine cune = C\{oc},
whereoo is a fixed closed point of, and putA = HO(C, Oe). LetK be a finite
extension ofF := Quot(A), and let us denote the morphism Spgee—> € by ..

In this chapter, we will study the image of the absolute Galois gitwpf K
under the residual adelic representatigyy associated to a simple-sheafM of
rankr over Ckx with characteristic and dimension 1. The prominent example to
keep in mind is given by thé-motive M(¢) associated to a Drinfeld module
overA with coefficients inK and characteristic Theser-sheavedM (¢) are char-
acterized by the fact that they are pure (cf. Remark 0.18). In what follows, however,
we will avoid any ‘purity’ assumption, as it seems a better idea to exploit directly
the natural relation betweansheaves and Galois representations.

We will combine techniques adopted from Serre’s theory on abedialic
representations (cfSed) and his famous theorem Thm. 0.20 on the adelic image
of Galois on the torsion of elliptic curves with well known results on the Galois
modulesVy(M):

- they form astrictly compatiblesystem of integral representations;
- the Tateandsemisimplicityconjectures;

- the structure of thendomorphisming;

- properties of theleterminanDrinfeld module,

Let us call Engt (M) the absolute endomorphism ring bf. We recall from
equation (14) thaiVag(M) is defined as the produgf, W, (M) over all closed
points¢ of C. In Thm. 3.13, we will give a proof of the following conjecture in the
caser < 2:

CoNJECTURE3.1. For a finite extension K of F, let M be&asheaf oveiCk
with characteristic: : SpecK — €, dimensionl and absolute endomorphism
ring A. The image of the representatipgy of 'k on thexad I'k I-module Wg(M)
is open inGL; (kag)-

I. Global properties

For the finite extensioK of F (a field of transcendence degree 1 o¥g},
we choose an irreducible projective smooth cuveverFq with function fieldK.
For any closed point of X, which we identify with the associated placelof we
denote the completion &€ atx by Ky, its ring of integers byRy and a uniformizer



66 3. The image of global Galois representations

of Ry by . LetI'x be the absolute Galois group Kk, andly its inertia subgroup.
The characteristic
1:SpecK — €
induced by the embeddinj: A ¢ F — K extends to a morphism
1 X > €.

We denote byy := ((x) the closed point of below a placex of K.
Let M be ar-sheaf of rank overCg with characteristic mapand dimensiomnl.

REMARK 3.2. The maximal exterior power'°®M of M is ar-sheaf of rank 1,
with characteristic mapand dimensiowm as well. By the tensor compatibility &f;,
we get

APV, (M) = Vy(APPM).
If M has dimension 1 then!°PM is pure of weight 1 and therefore isomorphic
to thet-motive of a Drinfeld moduley of rank 1; thenA®©PV, (M) is isomorphic
to Ve(¢).

81. Strictly compatible system of representationsThe r-sheafM admits a
maximal modelM™® over Cx := X x € (cf. Prop. 1.13). For a closed poirt
of X, we letMy denote the reduction oft™® at Spedy x C. For all but a finite
setXPad of placesx, the modelM is good aix (i.e. its reduction is again asheaf),
by Lemma 1.8; we pux9°°d.— X\ xbad,

PrROPOSITION3.3 (Strictly compatible system.)The system of Galois mod-
ules V}(M) is a strictly compatiblesystem ove€ of integral representations with
exceptional set %9 j.e.

i) for all closed pointg of @, V;(M) is unramified for all places x X9°°d
such that? # £x. For such x, the action of a Frobenius substitutienoby,
on V, is well defined;

i) forall x € X999 the characteristic polynomial

(55) Px(Ve(M); T) := det(Frob — T | Ve (M)) € A¢[T]

(which is independent of the choicekrbby) has coefficients il and is
independent of, for all closed pointg # ¢x of C.

PrROOFE The cokernel oft on M is supported on the gragh(:) of the char-
acteristicc : X — € in Cx. For any closed point of ¢9°°d the completionM,
of M at SpecRy x {£} is smooth for all closed points# £y of C. Hence, the Tate
moduleT, (M) is unramified ak for £ # £x. Puttingdy := [Kx : Fq], we define

Py(M; T) := det(zdx ~TIH%Cy,, HX)) e A[T].
The following proposition then concludes the proof: a

PrRoOPOSITION 3.4 (Taguchi-Wan, TW], p. 772). For all closed points x of
X994 and all closed pointg = £x of C:

Px(Ve(M); T) = Px(M; T) e A[T].
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REMARK 3.5. Given a Drinfeld module such thatM = M (¢), the above can
just as well be deduced from the reduction theory of Drinfeld modules, explained in
[Drl], [GoZ] and [Tag2]. Actually, the set of places at whighhas good reduction
coincides exactly with the set of closed pointsx9°°¢ this follows from the Galois
criteria of good reduction for both Drinfeld modules angheaves (cf.Tak], resp.
our Thm. 4.1):

¢ has good reduction
& Te(¢) = Te(M) is unramified fort #£ £x
& M is good.

§2. Semistability of Galois representations As a consequence of Thm. 2.4,
we obtain:

PrRoPOSITION 3.6 (Semistability of Galois representationg)here exists an
open subschemesstof € and a finite extension Kof K such that, for all closed
points¢ of ¢SStand all places x of K the action of the inertia groupglon V; (M)
is unipotent if¢ # £y.

Cx
Asst< ° AX <
e
; \ /
'@
C
X
X

Xbad

FIGURE 1. At the finite number of places of bad reduction, we have
a finite setAx of closed points of?, such that, ifly does not acts poten-
tially unipotently onV, (M), thent € {£x}U Ax. This allows us to define
the finite setASSt such that ifk is a place oK, and¢ ¢ {£x} U ASSt then
Ix acts potentially unipotently o¥, (M).

PROOF. For every placec € X4 |et A, denote the finite set of closed points
defined a®\¢’, where€’ is as in Thm. 1.26. Set

ASSY= U, _ybadAx
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(cf. Figure 1), and

e%h=e\A%
Also, we consider a finite extensidf’ such that the semistable filtrations are de-
fined overKy, for every placex of K. O

§3. Tate and semisimplicity conjectures.Taguchi (in the case of Drinfeld
modules; cf. Tag4] and [TagZ]) and Tamagawa (for generatsheaves) Tam])
proved the so-called Tate and semisimplicity conjectures fsheaves for every
finitely generated field :

THEOREM 3.7 (Taguchi, Tamagawalor a finitely generated field K contain-
ing IFq, let M be a simple-sheaf onCk K and< a closed point of® such that the

¢-adic t-sheafM, is smooth.
i) Tate conjectureThe map

Fy ®a Enck (M) — End:{[rK] (Ve(M))

is an isomorphism.
i) Semisimplicity conjectureThe K[k ]-module V(M) is semisimple.

84. The endomorphism ring. The following result holds for any fielf con-
taining F:

PrRopPoOsITION3.8. For a field K containing F, let M be a simple-sheaf
on Ck of characteristicc : SpecK — € and dimensiorl. The ringEndk (M)
of endomorphisms M defined over K is a finitely gener#ealgebra of rank at
most 2. If M has dimension 1, thelindk (M) is commutative.

PrROOFE The ringE := Endk (M) is anA-algebra via the inclusioA — E.
First of all, if M has rank 1, then one readily sees that g(d) = A.

a) We putg? := EncP((M) = F ®a E. For everya € E, there exists
ana such thate - « € A. Indeed, ifa is (locally) represented by a matri
then its determinant is an elementAf so it suffices for example to consider the
endomorphisné represented by the adjoint matB@9. This proves thaE is a
torsion freeA-module and thaE? is a divisionF-algebra.

b) First, we suppose th#t is a finitely generated field. Taking a mod¢bf K
of finite type over Spe&'q, and a modelM overCx for ther-sheafM, there exists
a closed poink of X at which the reductiooi of .M atx is good (straightforward
generalization of paragraphl.§2). Then the stalkMyx of M at the closed point
of Cx abovex is maximal, by an analog of Lemma 1.13.ii), and therefored&md)-
invariant.

Thus we obtain a ring homomorphism

j : E — End (M),

whereky is the finite residue field at. Without loss of generality, we may reduce
ourselves to the case that = Al, and (upon replacing by some power) that
kx = Fq, as we only risk to increase the endomorphism ring. Them)jim_d) is
just the full matrix ring of rank x r overA, so for sure it is finitely generated.
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We now claim thate® — F ®a End, (M) is injective. The ringE® being
a division F-algebra, it suffices to show that it is not a zero morphism, but this is
obvious since it is nonzero on the subridgc E of multiplication-by-a endomor-
phisms. Thug is injective, and hence ERdM) is finitely generated.

For every closed point of G, it follows from the Tate conjecture (Thm. 3.7)
that theF-algebraF, ®a E embeds into Engl (V¢ (M)), which is anF,-algebra of
rankr . This shows thaE has at most rank?.

For an arbitrary fieldK, we choose an infinite tower of finitely generated
fields K;i such thatuK; = K. For everyK;, the ring Eng; (M) is finitely gen-
erated oveA, of rank< r2. It follows from the Tate conjecture that the-algebra
A ®a E is saturated in Eng (T,(M)). Therefore, if, forKj C Kj, we have

End; (M) # Endk; (M),
then this implies that
rankaEndk, (M) < rankAEndKj(M).
As these ranks are boundedit#y we obtain & such that
Endk; (M) = Enck (M),

and this proves that Epd M) is finitely generated of rank at mast.
c) Finally, suppose thaM has dimension 1. Endomorphisms by definition
commute withr, so we have a natural map:

E— End@GK (cokerr).

As cokerr is supported on the closed pointof Gk and has rank 1 on the poipt
we can identify the latter witlK = Endk (K). We claim that

j:E°> K

is ainjection. The rindE® being a divisiorF-algebra, it suffices to show thais not
a trivial morphism. But this is clear since for amye A C E, we know, asM has
characteristig, that j (o) acts on coket as:*(«) € K, wheret* is the embedding
* : A — K. HenceE? is a (commutative) field extension &f. O

Il. Image of the residual representations

We first develop a theory of compatible systemd @frepresentations associ-
ated to Hecke characters, inspired by Serre’s theory of abpliadic representa-
tions (cf. [Se). This allows us to treat residual representations which decompose
absolutely into a direct sum of 1-dimensional characters. As a consequence, we can,
following the strategy of$e3d, prove Conj. 3.1 in the case< 2 (Thm. 3.13).

81. Serre torus. For a finite separable extensighof F, we choose an irre-
ducible projective smooth curvé overFq with function fieldK. Let F denote an
algebraic closure df, andA the integral closure ok in F. Let K, denote the ring
of adeles oK.
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We choose, for all closed pointsof €, an embedding oF into an algebraic
closureF, of F¢, and letA, denote the integral closure &f € F,. We denote the
maximal ideal ofF, by A. The residue field oF, is isomorphic tac,.

1. Elements from class field theorWe may assume thdt is a Galois exten-
sion of F. We fix a nonempty finite s of closed points ofX and denote by
the finite set of closed points @f lying below it.

We now consider the product

(56) Us:= J] ROxJ[Ks K.
x closed ptof X XeS

X¢S
and, for every closed poirtof C, we let
(57) ud = J] R x[]KscKS

x closed ptof X XeS
X¢S
e,

There is an exact sequence

1—- K*/(K*NUs) - KS/Us— C — 1,
where the ‘class groui = K 5 /K *Usis a finite abelian group, &is non-empty
(cf. [Wei]).

Let K XU(SZ) be the closure oK Xug) in K. The Artin reciprocity map of
global class field theory induces a continuous isomorphism

w1 K /KUY - Gal (K& /K),
wherngW) is the maximal abelian extension Kf which splits completely at the
points ofSand is unramified outside the places lying abéve
2. Serre torus.We consider the algebraic group P,ée{@m,K), defined for all
commutativeF-algebrasB by

Res (Gm.k)(B) := (B ®F K)*.

We let K* N Ug be the Zariski closure oK * N Ug in Reé (Gm,k) and take the
guotient group
T := Reg (Gm.k)/K* NUs,
an algebraic group defined over
LetSk s (for short:S) be the push-out ovéf * /(K> NUs) of T and K&/Us,
i.e. the algebraic group with the universal property that, for any algebraic §oup
equipped with morphisnE — §" andK [ /Us — S'(F) such that the diagram

K*/(K*NUs) — KJ/Us

! !
T(F) -  S(F),

commutes, there is a uniqgue morphiSm- §' through which these maps factor.
Serre gave an explicit construction of the toflis [Se], Il §2.
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We now have a commutative diagram

1- KX/(K*nNUs) — KI/Us - C —1

(58) ) I ¢
1— T(F) — S(F) - C =1

For every closed poirtt of G, consider the composite map
(59) ve s K — K /Us =S(F) — S(Fp).
On the other hand, we have a continuous fagefined as the composition of

&

(60) K

(Mxe Kx) " = Reg Gmr(Fo

|

T(Fe) ——— S(Fy).

By the commutativity of diagram (58), it follows that k x = &k x. Thus we
obtain, for all¢ in €, a continuous group homomorphism

(61) 8¢ :

Ugoé[l: KX — S(Fe)

The mapg;, factors throughK /K > Ug).
Any linear representatio® : S — GLp, defined ovelF, now yields, for every
closed point of €, a Galois representaticb, as follows:

(62) Tk _>Ga|(KgW>/K)
er\ ~
K} /K <UD ——=S(F)

Dy

We denote by (®) the m-dimensional, [Tk ]-module F>™ with the 'k -action
given by ®,.

The algebraic grouf being a torus, its linear representatidncan be diago-
nalized over some finite extensidh c F of F, soV,(®) is semisimple. As any
compact subgroup of GKE,) (whereE, := F,E C F) is contained in a conju-
gate of Gl (A, N E), we know that the image of the Galois representatioris
contained in a conjugate of GLA,).

The system of representatiols(®) is a C\ Se-compatible system of repre-
sentations. Indeed, for every closed paindf X\'S not lying above?, the image

of a Frobenius substitution of Frohn GaI(KgW)/K) undero~1 is given by a
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uniformizerny € Fx. As&i(mx) =1, the image of Fropunderd, is then given by
the image in Gk (A¢) of mx under the map

U

SN

Ky S(F) S(Fe)

| |

GLm(F) = GLm(Fe)

so its characteristic polynomial (cf. (55))
Px(®; T) := Px(Ve(P); T)

has coefficients irF is independent of. As the image ofd is contained in a
conjugate of GI(Ay), the coefficients 0Py (®; T) are contained i\, for every?
in C\Se.

3. Galois characters associated to charactersofPut

¥ = Autg (K, F).
Everyo € ¥ extends to a homomorphiskh®r F — F and thus to a morphism
[0]: Regt (Gm.k) — Gm
defined ovelF. Thesdo|'s give aZ-basis for the character group
X(Res (Gm k).
Furthermore,

X(T) = {Zna[a] € ZIZ); [ Jo™ = 1forallx € K* OUS}.

The characters & sit in the exact sequence:
15 X(C) = X(S) > X(T) > 1.

whereX (C) is the finite group Hon(C, (Fq)x>.
By the universal property &, if we are given a pair of homomorphisms

(f,go => no[a]> € Hom(K, F*) x X(T)
gex
satisfying
e flus=1and
o flkx =o@lkx,
then these maps will factor through a unique charabter X (S) of S.
Composingd with &, gives a mapb,

Ki/KUt — S(F) — Ff
X > f(ve(x)) - @& (xh),
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and therefore yields a Galois representatign— IfgX (still denoted byd,) via the
isomorphismy 1.

§2. Characters of the residual representation.

PROPOSITION3.9. Let K be afinite separable extension of F and M-aheaf
of rank r overCk with characteristia with dimensiorl. Suppose we are given
e an infinite set.L of closed pointg of € such thatc, ® Wy(M) has a
Ik -invariant subquotient \Wof k,-dimension one:
e aclosed point g of X of degred overFq at which the maximal modei(
onCx for M is good;
Let us denote by, the character
Tk — Aut(W,) =i}
Then there exists
« afinite normal field extension kof K, whose field of constants’ K g
we denote b¥’;

e a character® € X(Sk.s), for S := {xo}, together with its system of
1-dimensionaF,[I"k-]-modules Y(®) (with Galois representation

@ : T — AS C F);

e a strictly compatible system 1-dimensioral 'k /]-modules Y(»), for
closed pointg of €\ e, such that the associated Galois characters

ne - FK’ — A; C 'Eex
factor throughl'w (the absolute Galois group @&); and
e aninfinite subsex’ of .£
such that, for allt € .£’, we have

(63) xe = dp-ne mod X

ProoOF Let K’ be a Galois extension df such that the semistable filtration
for M (see Thm. 1.26) is defined ov@rﬁs;t. Without loss of generality, we may
assume thak = K’. We may also suppose th4t contains none of the finitely
many points of® which are either

e contained inASSt
 ramified in the extensioX — €
e equal tolp := t(Xp).

a) Characters which are ‘trivial at ¥. The idea is to replace the by a family
of charactersy, whose restriction to the decomposition grag at xp is trivial.
Let F’ be the splitting field of the polynomid?,(M; T) € A[T] (cf. Thm. 3.3),
and

F o= {fi }1§i§r
the set of its roots, i.e. the eigenvaluesain M, or, equivalently, of the Frobenius
morphism Frol, acting onT,(M) for all £ # £o. By Thm. 3.2.3 d), the determi-
nant representation det corresponds to thé-adic representation associated with
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a Drinfeld module. By Go2], we have
r
0=wﬁbmdme)<=§:w(M)
1

if £ # £y, and therefore, (fi) = 0if £ # £o. Let ¢’ be a projective snjooth curve
with function fieldF’ andC’ the inverse image af via the natural mag’ — C.
For eachf € #, we can construct a-sheafN; on ¢’ (= G{Fq) by taking®e-

as the underlying sheaf and putting
7:0%0e — O¢ : 1 f.

For everyt # (o, we fix a point¢’ € ¢’ abovel and an embedding, — Fe.
As Nt is smooth at¥’, the Tate moduld, (N¢) of N is well defined. The Galois
groupl'g, acts on it through a character

f —
ny :Trqg = (Fp)* CFf

such tharn,zf (Frobg) = f € F' C F).

As F is finite, there exists an eigenvaldieand an infinite subsef; of £\ Se
such that

xe(Frobg) = f modx
forall ¢ € L£1. Then, for all¢ in L1, the character
Yo = x¢ - (772)_1 moda : T — &/f

factors through the Galois group an abelian extensidf wfhose restriction td'y,
is trivial, and which is unramified outside the placgof K lying abovet (by our
assumptions, inertif acts unipotently oV, (M) if £ = £y).

Therefore, with the notations of the previous section, the charagtefactor
through a diagram

re — Gal(K“/K)
0}
K /KxUg —= &
We will denote the majK /K *US” — & again byy,.

b) Characters of tame inertid.et x denote a place df abovet. By Cor. 2.24,
we have an exact sequencew@fI'x]-modules

(64) 0— W (M) = Wy(M) = W, (M) — 0,

where the modulgV, (M)®&is unramified. The image of inertia on thedimensional
vector spacalN, (M)? is isomorphic tO(Kéh]> C Aut,, (Wg(M)), i.e. a maximal
cyclic ‘Cartan’ subgrouf of orderq? — 1. The image of’x is then contained in

the normalizeN of C in Aut,, (W;(M)).
The action of inertidy on the subquotient/; of k; ®,, W, (M) is either

i) trivial or
i) given by a fundamental charactgy, n of levelh <r.
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The action induced bl on a 1-dimensional sub-vector spacé/dfiM) coincides
with that of C. Therefore, in case ii), the fact th@t; is I'x-invariant implies that it
is fully ramified; hence the residue figkg must already contain aﬂ? — 1-stroots
of unity, i.e./c,gh] C ky.

By assumption, the extensidgy/F, is unramified. Putting

p = [Kx : kel
it follows form local class field theory that the fundamental character of |evsl
essentially the inverse of the local norm residue symbal K¢ — F;”(‘b (cf. [Neu]
I, 7.5 p. 63). More precisely:

Z

pow: KX =R xn7l 5 kl:x=u-nm+>ut

mod X.

For everyh|p, taking the norm mapisiy : kx — «"! in Z[Gal(ky/«¢)], we have the
relationsg,,.n = Nh o e, p-

Let X be the unique place df lying below the placé. of F, andkg C & its
residue field. The above observations imply that, under the map

Yo K /KxXUS = /X,
the image of angx € Ry C K is given by:
1 _>u(>‘<)

ag — (a; mod A

whereu(X) C Z[Gal(kx/x¢)], and ux is either zero or equal tt\,,, for someh
dividing [Kx : x¢].
For any placex of K lying over¢, we can identify Hom, (ky, kx) with
¥x = Hom,, (Kx, Kg).

Everyo € X extends uniquely to & € Xy ) wherex(o) is the unique place of
abover such thatk = o x(0). With these notations, we obtain, for every

a e [[RS cK;
x|e
that
4 S\ O
(65) Yo ag > (ag mod A) ,
for some

n(l) € 3 = !Z Ny[o]; 0<n, < 1, c Z[Z].

ogeX
As # is a finite set, there @ € J#¢ and an infinite subsef, of .£1 such that

n) =g

forall ¢ € Lo.
c) Characters oSk _s. We check thap is a character of'. For every

X € K*NUs,
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we havey, (x) = 1, asy, factors throughK *. On the other hand, ase Us c K},
we obtain from (65) that

Ye(X) = o(x~1) modA.

Thuse(x) = 1 mod2x, and this for alle. C £5. As L3 is infinite, this implies the
equalityp(x) = 1. Hencep € X(T).
We extendp to some characteb’ = (f, ¢) € X(Sk,s). The character
xe :=ve- (@)~ modi: K /KXUL — i

factors throughC, so x; € X(C). The X(C) group being finite, we again find an
infinite setL’ C £ of points¢ with the same character

x = xe € X(C).
Upon replacingd’ by ® = (x - f, ¢), we then obtain, for all € £’
O, =Yy mod .

83. Abelian residual representations.

THEOREM 3.10. Let K be a finite separable extension of F and M a simple
r-sheaf of rank r ovek with characteristic and dimension 1. For every closed
point¢, let V\IKK’ss denote the semisimplification of thg [T’k ]-module

ke @ We(M).

If WKK’SS is isomorphic to a direct sum of 1-dimensiolig! -representations oved,
for an infinite sett of closed pointg of @, then the representatiory ® V, are
isomorphic to a direct sum of 1-dimensiong{ -representations, for alt of C.

PROOF a) Let xg be a closed point of at whichM has a model with good
reduction, and lekg denote its finite residue field of degrde := [ko : Fq] with
Frobenius endomorphispi = ¢%. We putF’ := koF. Let ¢’ be the smooth pro-
jective curve with function field®’ and putC’ := u~1(€) whereu is the morphism
€' — €. We define ar’-sheafM’ on Gy, as follows: let the underlying sheaf be
given byM’ := u*M and put

= u*(z%) : %M — M.
For every closed poirtt of €, we have then an isomorphism of Tate modules
ko®r, VIM) = P Ve(M).
veu-1(o)
In particular, if Fy ®Fg, V(M) is isomorphic to a direct sum of 1-dimensional
representations then soks ®f, V¢(M). Thus we may assume thiag = IFg.

b) Let us now writeW,<5 = @[ _, Wi, where the action ofx on W is given
by a charactey,. By Prop. 3.9, there exist an infinite subsgtand for eveny,
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compatible systems of 1-dimensiorigt -representation¥,(®') and V(') over
C\{£o} such that

xp =@, -n, modA.
We put

r
V=P V@ ® Vo).
i=1
This gives a compatible systevi overC\ {£o} of integral semisimpl&'k -represen-
tation overF,.
c) For everyx in X9°°4 {xo}, the characteristic polynomials of Frobenius

Pc(M; T), resp. Px(V'; T) € F(T)

are well defined, independent6fnd have integral coefficients at every placéof
abovet, for every closed point # {£g, £x} of C. If the pointZ is contained int,
we have thatV,*>*= T//3, and hence:

Pu(M; T) = P(V; T) modax

This congruence now holds for infinitely madywhich shows that we must have
an equality
Pu(M; T) = Pe(V's T) € F(T),

and this for all but a finite number of placeskf

d) By the Chebotarev density theorem, the Frobenius substitutions are dense
in C'k. It follows that, for all closed point of ¢ and allo € I'k, that the charac-
teristic polynomial of the action of onV,(M) andV, coincide. As both systems
are systems of semisimple representations (Prop. 3.7 ii), it follows, by the Brauer-
Nesbitt theorem, tha¥,(M) = V, for all £. Hence the Galois module ® V,(M)
is a direct sum of 1-dimensional representations. O

84. Rank 2.

PropPOSITION3.11. Let K be a finite separable extension of F. For any
sheaf M overCk of rank 2, with characteristic and dimensiord, there exists a
finite extension Kof K such that for all but a finite number of closed poiaisf €
we have either

o that V\IKK/’ss (cf. Thm. 3.10) is a sum of 1-dimensiofi@) -representations
overkyg, or
o that the residual representation

P - FK’ — AUtKK (WK(M))
is surjective, i.e2p := p¢(I'k’) = Aut, (Wp(M))

PrROOF
a) We need to list the possibilities for the subgrd@pof Aut,, (W, (M)). If F
is a finite field, any subgrou@ of GL(r, F) whose projection under

I: GL(r,F) — PGL(r, F)
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is surjective contains Sk, F). Forr = 2, there is Dickson'’s well known classifica-
tion of the maximal subgroups of PG, F):

PrRoPOSITION3.12 (Dickson Hup], Thm. 8.27). Any proper subgroup of the
groupPGL(2, F) over a finite fieldF of characteristic p is contained in either
i) a Borel subgroup;
ii) adihedral groupD of order2m, m prime to p;
i) PSL(2, F);
iv) a conjugate of the subgrolpGL(2, F’) for some proper subfiel@ of IF;
or
V) asubgroup isomorphic to one of the groupg As, $4.

b) We may replac& by a finite separable extension such that the semistable
filtration for M (see Thm. 1.26) is defined oveg™ Let A be the finite subset of
closed points of, containing the points

° OfL(Xbad),

o of CSSt

e forwhichqe := #x, < 5, and those
which ramify inK /F.
Let £ be a closed point of\ A.

Consider a point in .£. As the maximal exterior power?.M ™2 of the maxi-
mal modelmM™® is good at any placg above?, Cor. 2.24, applied to = 1, tells
us that dep, is surjective. Therefore, eith€t, = GL(2, x¢) or I1(L2,) is a proper
subgroup of PGL2, k), where case iii) is then ruled out.

Choosing a splitting of the malx — 1%, we obtain from Cor. 2.24 thaz,
contains a cyclic subgroup of ordgf' — 1, whereh < 2 is the height oM.
This yields thatl1(€2,) contains a maximal (split or non-split) Cartan group, i.e. a
maximal cyclic subgroup (of ordey, + 1), I1(C) of PGL(2, x¢), which excludes
case iv). AlsoJ1(C) is cyclic of orderg, = 1 > 5, whereas the groups in v) only
have cycles of order at most 5; hence case v) is also excluded.

If T1(£2) is contained in a Borel subgroup - case i) -, then it follows Watis
a sum of two 1-dimensiondlk -representations.

¢) So suppose thdi (€2;) is as in ii). The maximal cyclic subgroug of order
at least 2 insideD is uniquely determined because> 2as 2n > g+ 1 > 5.
Consider the quadratic character

e Tk l-ﬂf({()—):{)/H.
We claim that, for all but a finite number of closed poiatsf C\ A, this character
is unramified at all places &
Letx be a place oK. We distinguish 2 cases:

. . In particular, ther-sheafM has a good model atandx is not
ramified inK/F. If £ #£ £y, then the action ofy on Wy (M) is trivial.
Suppose that = £x. Leth denote the height of(, (cf. Def. 2.20).

—|h=1| From Cor. 2.24, we see that the action via conjugation of
the subquotien’ﬁe(lf() = (k¢)* on the p-groupm(lxp), defines a




Il. Image of the residual representations 79

«,-module structure or;_be(lxp). As ¢; has order 2, and, > 5, it
follows thateghxp = 1. The imageC of tame inertiain PGh(k¢) is a
maximal cyclic subgroup, of ordey — 1. ThereforeC must coincide
with H C D ande.|), = 1.
- . Wild inertia acts trivially onW,; (M) and the imageC of

tame inertia in PGk(x,) is a maximal cyclic subgroup, of order
g¢ + 1. ThereforeC must coincide wittH C D ande|;, = 1.

° . If M is good atx thenly acts trivially onW,(M). If M is not

good atx, then there exists an exact sequence

O M > M—> Mr— 0

of goodt-sheaves orﬁ?sst The reductionM of M7 at x extends to a
7-sheaf onCy,, which is |somorph|c to the maximal-sheaf contained
in M, the reduction of( atx. The eigenvalue of Frobenius da(M1) is
hence an integral functiosy € A, independent on the choice bfg A.
Letting a2 denote the eigenvalue of Frobenius BriM>), the action of
any Frobenius lift by conjugation gro@(lxp), is given by multiplication
by B := a1/a>.

On the other hand, by Remark 3.2, the maximal exterior power

NPT, (M)

is isomorphic toT(¢), for some DrinfeldA-module¢ which has good
reduction aix, sinceA°PT,(M) is unramified. By Prop. 3.4 and the fact
that dimM = 1, we know that the eigenvalue € A of Frobenius on
Te(¢) satisfies

vy, (@) = [Kx : IFq],
whereasy, («1) is an integer multiple ofky : Fgl. As we have

o =a1-az,

and thusx, € F, this yields thaw,, (8) # 0. Therefore

B?—1+#0,
and hencgg? — 1 is divisible by only a finite number of maximal ideals in
A. It follows that, with the exception of a finite number of closed points
of @\ A, the action of Frobenius Frglby conjugation o, (1Y), does not
have order 2 mod. Hence, for all but a finite number of closed poists
of C, we havee|p = 1.

Let K© be the field fixed by the kernel @f. As the extensiork () /K is un-
ramified at all places ok , there exist only a finite number of possibilities 1",
by Minkowski's theorem. If we calK’ the compositum of all these fields, then

6g|rK, =1
forall £ ¢ A. We conclude that - in case ii) - the grogp(I'k/) C H is abelian, and

therefore,WeK/’ss is isomorphic to the sum of two 1-dimensional representations.
O
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85. Rank 2: Proof of Conj. 3.1.

THEOREM 3.13. Let K be a finite extension of F and M a simplesheaf
over Ck of rank at most2, with characteristic. : SpecK — €, dimensionl
and absolute endomorphism riry  The image of the representati@ngq on the
kad 'k ]-module Wy(M) is open inGL; (kad).

PrRooOFE If r = 1, thenM potentially has a good model at all placesf K.
For every finite place, the action of inertia oW, (M) is then trivial for¢ # £y,
whereas, by Cor. 2.24, its image unggris surjective fort = £y. This proves the
theorem for = 1.

Suppose now that= 2.

a) We may assume th#t is a separable extension Bf For any finite exten-
sionK of F, then, ifM is atr-sheaf ovely, ther-sheaf\’ := (¢%)*M is atr-sheaf
with coefficients in a separable subextendionc K of F, for some integec. As

W (M) = W, (M),

for every closed point of ¢, the theorem holds fdK /F if and only if it holds for
the extensiorK’/F.
It now follows from Prop. 3.11 either
i) thatp, is surjective for almost all, or
ii) thatW,zK/’ss is the direct sum of two 1-dimensional Galois representations,
for an infinite setL of closed pointy of €. By Thm. 3.10, it follows
from this that theF,[T"k-]-modulesV,(M) are isomorphic to the direct
sum of two 1-dimensional Galois representations. However, by the Tate
conjecture (Thm. 3.7), this shows that gneM) is larger thamA, a con-
tradiction.
b) Let A be the finite subset of closed points®@tonsisting of
e the points of (XP2%),
e those which ramify irkK /F, and
o those for whichQ2, £ Aut(W;(M)).

Letus putHZ[O] = QadN GL; (k¢) C GL; (kad). We claim that
H{” = GL (o)

for all £ ¢ A, which proves the theorem. For a proof of this claim, we refer to the
proof of ‘Conj. 3.1 + 3.14 for finiteA = Conj. 3.14 forAad, partc), in the next
section. O

[ll. Image of the adelic representation

Let K be a finite extension df andM at-sheaf oveCk . For any finite se\
of closed points o€, we denote by, the image of the representation

(66) pa Tk = [T Aute, (Va(M)),
LeA

where theF, [Tk ]-moduleV, (M) was defined in (13).
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CONJECTURE3.14. Let K be a finite extension of F and M a simplsheaf
overCk, with characteristia : SpecK — €, dimensiorl and absolute endomor-
phism ringA. The imagd™, of the representatiop, of 'k on the module ¥ (M)
is open inGL; (F, ), for any setA of closed points of.

REMARK 3.15. Suppose that is a finite set. InPPi2] Thm. 0.1, Pink proves
the above conjecture in the case thais at-motive, associated to a Drinfeld mod-
ule ¢. After discussions with him, | am convinced that existing methods (beyond
the scope of this thesis) would suffice to prove this conjecture. If this is true indeed,
then all the results which we will state for Drinfeld modules in what follows, carry
over to generaM of dimension 1 as well.

We now prove that Conj. 3.1, together with Conj. 3.14 for finite getémply
Conj. 3.14 forA 54, the set of all closed points &f (and hence, a fortiori, for alh).

PROOF OFCONJ. 3.1 + 3.14FOR FINITE A = CONJ. 3.14FOR Agg.
a) Let ¢ be a closed point of. Fixing a basis foil, (M), we put

Gy := GLr (Ag) = Autp, (Te(M))

and use the notations we introduced in (48) and following. We consider the sub-
group
Hy =TagN GL (Ar) C Gy.

b) Let A be the finite subset of closed points®@tonsisting of
the points of (XP24),
the points for which #;, = 2,
those which ramify irK /F, and
those for whichQ2, # Aut(W,(M)) (this is a finite set of points by Conj.
3.1).

By assumption, Conj. 3.14 holds for this s&t To show thafsq is open in
Autr,,(Vad(M)), we need to prove thdd, = G, forall £ & A.

c) For all places of K abovel, M has a good model at so the imag@ad(lx)
of inertia is contained inH,. Further, by Cor. 2.24, there is a filtration

0— W2 — Wy(M) - W' = 0

such thatly acts trivially on theetale quotienwget and where the imagde, (I1x) of Iy
in Aut(Weo) is a maximal non-split torus. In particular, there exists a block matrix

_[a * (0]
B._(O 1>eH€

whereq is a scalar matrix in Gh(ky) = Aut(Weo) which is not the identity matrix.

The groupH, being closed under conjugation Byg, its quotientHgo] is closed
under conjugation by Gl(x;). One easily sees, by considering a product of con-
jugates ofB, that one obtains a unipotent matrix with only one non-zero entry off
the diagonal. The Gl(k¢)-conjugates of such an element generate(&8l). As

the image of inertia on the determinant®fis surjective (by Remark 3.2, this is a
consequence of the case-= 1), it follows thatHgo] = GL; (k).
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d) Finally, we have to prove thatl Kl = Y for eachk > 1. By Cor. 2.24,
there exists a non-scalar eleméne HL!, for eachi > 1. From the commutative
diagram

Gl x Gl - 6 :(@g) ~ glog
(67) t ? !
GLi(k) x Y — Y :(gh ~gthg,

we see, a$l% = GL, («(), that H!"l is closed under conjugation by Gl«,) for
everyi > 1.
We then make use of the following lemma, whose elementary proof is omitted:

LEMMA 3.16. Let L be a field with¥L > 2. Every subgroup ofMat; (L)
which contains a non-scalar element and is closed under conjugati@GLiyL ),
containsMat?, , (L), the subgroup of matrices of trace 0.

Notice that, with our notation, M@, (L) = (SLr (A¢))¥! c Y. On the other
hand, one sees from Cor. 2.24, that the trace magHIt — «, is surjective, which
finally shows thatH* = Y, and this for eactk > 1. This concludes the proof
of H, = Gg. (]

IV. The adelic Mumford-Tate conjecture
Let E denote the absolute endomorphism ring ) of M and put
EO:=E®aF.

SetK (E) to be the finite extension d€ generated by the coefficients of elements
in E andT'k g its absolute Galois group. We denote Byy the image of the
representation

(68) pad : Tk () = ENdeq(Vad(M))

(see equation (14) for the definition ¥fg). Finally, there is a natural embedding
of E% into Aut(Vag(M)), and we consider its centralizer

(69) Cad C Autp,(Vad(M))
inside Eng,,(Vad(M)).

CONJECTURE3.17. Let K be a finite extension of F. If M is a simplesheaf
overCk with characteristia and dimension 1, theR4qis open in

Cad C Autry (Vad(M)) .

REMARK 3.18. If M is pure, then it corresponds to thenotive M (¢) of a
Drinfeld moduleg. In [Pil], Pink introduced Hodge structures associate@ to
and subsequently proved that the Hodge gr@up,) of this structure structure is
isomorphic to the centralize® in GL, r of E = End; (M). The above conjecture
can be seen as the analogue of‘thmthendieck + Mumford-Tate’ conjecture in
the classical theory of motives over number fields:
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CONJECTURE3.19 (Grothendieck-Mumford-TateS¢7 §9-13, Conj. 11.4?).
Let L be a number field, with absolute Galois groDp. For a motive E defined
over L, we denote by (E) the p-adic cohomology of E, and pQkq := ]_[’pr
(the ring of finite adeles dp) and

Vad(E) := [ ] Vp(E).
p

Suppose the associated Mumford-Tate groyp £ is connected and E is maximal.
The imagd 44 of the adelic representation

pad: 'L — Autg, (Vad(E))
is open in Gu(e) (Qad).
Conjecture 3.17 is an immediate consequence of Conj. 3.14, as we now show.

PROOF OFCONJ. 3.14= CoNJ. 3.17. Theideas of this proof originate from
[Pi2], Thm. 0.2 (cf. p. 408).

Let M be ar-sheaf satisfying the condition of Conj. 3.17. If we jAit:= E
andF’ = EO, then by Prop. 3.8F is a finite extension oF. We remark thaF’
has a unique placeo’ aboveco. We put@’ := SpecA’ and consider the finite
morphismf : ¢’ — C.

By Lemma 1.20, the -sheafM, endowed with an action o&’, induces ar-
sheafM’ on ¢ such thatf,M’ = M, denoting the induced morphis@j, — Ck
again by f. However,C’ is not necessarily smooth, so we consider the normaliza-
tion @ of ¢’ and the morphisnf : ¢’ — €'

Consider ther-sheaf

M* = f*M’
on C.. We get adjunction morphismé, f* — id andid — f*f,, which are
isomorphisms outside the finite sBtof singularities of¢’. Thus we see that the
r-sheaff,M* on ¢} is isogenous tdM’. As now Tate modules are determined by
7-sheaves up to isogeny (by the Tate conjecture, Thm. 3.7), we can reduce ourselves
to the case that’ = C'.

Upon replacingK by a finite extension, we may assurie= Endk (M), and
hence End (M’) = A’. By Conj. 3.14 and the above, this implies, for every closed
point¢’ of ¢/, that the image of the representation

Tk = Vag(M) == [ JAut(Ve (M)
e/
has finite index. Finally, the isomorphisth(M) = @6/\6 Vy(M’) of Tate modules
induces an isomorphism

Cag = AUtFéd (Vag(M)),
which concludes the proof. O

Finally, we can, in the case of Drinfeld modules, conclude the following result,
by Thm. 3.13, Remark 3.15 and the above implications:
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THEOREM 3.20. Let K be a finite extension of F. If M is a Drinfeld module
defined over K of rank at mo2t with characteristioc™ : A — K, thenI'yqis open

in Cad C End:ad (Vad(¢))

REMARK 3.21. We remark that if Conj. 3.14 holds for all finite extensions
of F, then it also holds for all finitely generated fieldscontainingF. The same
statement follows for Conj. 3.17, and, in particular, Thm. 3.20 holds for all such
fields. This can be shown as follows, using the idea®ig][Thm. 1.4.

PrROOF Let K be finitely generated fields containihmgand M a t-sheaf sat-
isfying the condition of Conj. 3.14. By the Tate conjecture (Thm. 3.7) thesub-
algebraF,I"; of Ends, (V¢ (M)) generated by, is equal to Eng, (V,(M)), and this
for every closed point. By lemma Pi2], 1.5, there is an open normal subgroup
I'1 c Iy such that for any subgroup’ c I'y for whichQ'T'1 = 'y, we have

FeQ' = Fely

(denoting byF, ' the subF,-algebra of Eng, (V,(M)) generated by2’). Taking
the extensiorK of K fixed byT'1, one denotes by be the normalization oX in K
and byz the morphismX — X.

By lemma Pi2], 1.6, there exists a point of X such thatK’, the residue field
of x, is a finite extension oF, and such that —1(x) is irreducible. Letting2}, be
the image of"k, on V,(M), seen as a subgroup Bf, we then have

Q;(Fl =TIYy.
Hence
FeQ) = End(V,(M)),
and therefore the reductiofly of M at x has Enqt(ﬁx) = A, by the Tate con-
jecture (Thm. 3.7). Assuming that Conj. 3.14 holds %f, a finite extension

of F, we get that the image dfx’ is open in Gl (Faq). A fortiori, 'yq is open
in GL; (Fag). a



CHAPTER 4

Galois criteria

I. Galois criterion for good reduction

Let Rbe a complete discrete valuation ring with fraction figldperfectresidue
field k, uniformizerz and valuatiorw. Let x denote the closed point of Sp&c
andI'k (resp.lk) absolute Galois group df (resp. its inertia subgroup). Let
denote a morphism Spéc — C. In this chapter, we proposewmsheaf analog
for the Néron-Ogg-ShafarewiCriterion for good reduction of abelian varieties (cf.
[BLR], 7.4, Thm. 5):

THEOREM 4.1 (Galois criterion for good reduction). Let M be ar-sheaf
on Gk with characteristia and¢ a closed point o such thatVl, is smooth. If the
inertia group Ik of K acts trivially on F(M), then there exists a good modél
overCrg for M.

PrROOF If Ik acts trivially onT,(M), then theA,-moduleT, (M) yields a rep-
resentation ofr1(SpecR). Hence, by the correspondence 0.7, thadic r-mod-
ule M, extends to a smoottrmodule, over@g,_ - We then apply the following
theorem: O

THEOREM4.2. Let M be ar-sheaf onCk with characteristiac and¢ a closed
point of € such thatM, is smooth. IfM, extends to a-sheafA; on Cr of non-
degenerate rank, then there exists a mod#t for M on Cr whose nondegenerate
rank is at leasto.

The proof of Thm. 4.2 will take up the rest of sectibn

IDEA/SKETCH OF THE PROOF OFTHM. 4.2. As a first approach, let us as-
sume that = Al, thatt is a closed point of degree 1 af and thatA; is smooth.
In 85, we will show how to deal with the general case.

Lett denote a generator for the maximal ideaRimefining the point. Let
be the generic point of the special fibeg. We can make the following identifica-
tions:

HO(Ck, Ocy ) = Kt
(9@R,m = O» = Rl
Opq, = KIItI]
=~ R[[t]].

(70)

[0

Cr.e
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Let M be ar-sheaf onAlK with characteristie, and let us denote thi€ [t]-module
of its global sections b as well. Supposing themodulel\?lg overK[[t]] extends
to a smoothr-modulen; over R[[t]], the naive idea is to put
M= MN N, C M.
More precisely, we will proceed as follows:
i) The modulet; is actually contained in

(K ®r RI[t]]) ®ky M C M,

(Lemma 4.4).

i) We put Q := Quot(R[[t]]) and denote byB the valuation ring for the
valuationv, in Q (see below for sound definitions). Denoting the stalk of
M at the generic point afk by V, the @, -module

N =V 0 (B Np) € 2= Q&ke V

is free and is of full rank insid¥ (Lemma 4.5).
iii) Using the fact thatV, is smooth, we show thaty, is a goodr-module
overO@4 (Thm. 4.7).

By Cor. 1.4, the shed¥l together with, define a good model overCr. g

REMARK 4.3. Using the same methods, one can readily establish an analog of
Thm. 4.2 and Thm. 4.1 for analyticsheaves.
81. Notations. We call a monic polynomial
d—1
ht) =t?+ > ht" € Rit]
i=0
strict if v(h,) > O for all v. Every nonzero elemerg € R[[t]] has a unique
decomposition
g=u- Ve . g
such thatu € R[[t]]*, vy > 0 and wherej is a strict monic polynomial irR[t]
(Weierstrald preparation fdr[[t]]). We have a valuatiom, on R[[t]] given by

vr (9) := vg, and extend this valuation to the quotient fi€df R[[t]].
We consider the discrete valuation subring

B:={ge Q;vs(g) >0} C Q.

Its residue field is isomorphic t((t)). Finally, we set@, := R[t]). By the
unique factorization irR[[t]], we have

O =K{t)NBCQ.

To keep track of all these rings, the following diagram might be useful; we have
inclusions from left to right and from top to bottom.
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R[t] Rlt]¢t,7)C Ow

~ T\

K[t]C Kltly————— K@)

}
RIS B N K[[t]] B

K ®r RI[t]IC QN K[MN“—Q

K[t K((1))

We extend the Frobeniuson R to aFq-linear endomorphisrr := ¢ ® id
on R[t] = R® Fq[t]. This induces in a uniqgue way endomorphisms on all of the
aforementioned rings.

§2. A Lemma by Anderson.

LEMMA 4.4. Let M bet-sheaf onAlK with characteristic. and dimension d
such thatVl; is smooth at the closed poifibf degree 1 of. Suppose the-sheaf;
overCRr ¢ is an extension o¥l,. The moduleV, is contained in

(K ®r RI[t]]) ®Kt; M C My.

PROOF a) We want to apply a result of AndersorAj2], Thm. 1). Letm be
a K[t]-basis forM. As a locally freeR[[t]]-module,V; is actually free; leg) be an
R[[t]]-basis forA; C M,. We express] in terms of theK [[t]]-basism for M, by
means of a matrixy € Mat; . (K[[t]]):
g=m- V.

We have to show tha¥ € Mat; . (K ® R[[t]]).

Further, we denote byx € Mat; «r (K[t]) andA € Mat «r (R[[t]]) the matrix
representations af on the module$/ and.A; respectively, i.er(m) = m- A and
7(q) = q - A. These representations are related to each other by the equation

(71) A-U=U.A,

b) Recall that, for some constante K*, we have dgn =h-(t—6)d(cf.
Example 0.6), where® : A = Fg[t] - K : t = 6. As M, is smooth, we must
haved # 0. LetA be the modified adjoint matrix in Mat, satisfying

A-A=t—-6)9
Upon multiplying both sides of equation (71) By, we get:
t—0)%. W=A.U.A,

c) The equatiorfz = (t — 0) - z has a nonzero solution € KS®A[t]], as
one checks immediately (it is a nonzero element of the Tate module of the Carlitz
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module, cf. [504], Ch. 3). The matrix¥’ := c9 - W then satisfies the equation

(72)

°7Z =A-Z-A

for Z e Matrxr(K[[t]]_). We claim that every solutiod for this equation is con-
tained in Matr (K ® R[[t]]). Letus write outZ := ) 2, Z;t', introducing matri-

ces’Zi =

(Zi)k € Mat «r (K). Foralli > 0, we set
v(Zj) = rrk1i|n{v ((Zi)x)} € Z U {4o00}.

For A = (Ak/)ki, considered as a matrix in Mat (K ® R[[t]]), we put

U(A) = I’Tk1!iln [v (&m)} ;

we do the same foh.
Comparing the coefficients of in equation (72), we get

Zn = Z Ai~Zj~Ak.
i+j1k=n

Thus we see that

Q- v(Zn) = v(A) +v(A) + minv(Z)),

and it follows by induction om that

(q— Dv(Zn) = v(A) + v(A).

This shows that’ € Mat; »; (K ® R[[t]]) indeed.
d) We know distinguish two cases:

i) |v(@) <0|. Putting; := 61 € R, we rewrite(t — 0) as

i)

Tt @-c.
The power series 1 € K[[t]] satisfies the equation
z=-¢t1-¢-1) -2

An easy calculation shows that the solutions for this equations are con-
tained inK ® R[[t]]. Therefore the matrix

v=cd. v

is a matrix with coefficients irK ® R[[t]], and, as it was defined over
K[[t]], we may conclude that

v e Mat xr (K @ R[[t]]).
. We are now in the situation oAh2], Thm. 1, p. 52. Consider

the matrix® = ¢c~99’, seen as a matrix whose entries are meromorphic
functions the open unit disk

DY :={teK:vt) <1

(viewed as a rigid analytic space). Following Anderson, one first proves
that W has no poles (working over the completi@nof K, to be more
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precise). Next, using the fact thét has entries ik ® R[[t]] and some
estimates o, one deduces that has entries irK ® R[[t]] indeed.

O

83. Rational modules defined by formal modules.
LEMMA 4.5. Let V be an r-dimensional K)-vector space and put
Q:=0Q®kw V.
For a given free B-submoduiB of  of rank r, we define thé,.-module
N =V NB.

i) The®,-moduleN, :=V N*B is free of rankr.
ii) The cokernel of BN, — B has finite length as a B-module.

(9,3& Nw\

K(® v
B B
Q 9]

PROOF Let us choose & (t)-basisv := (v, ..., v) for V. We also fix aB-
basisb := (by, ..., by) for the free modul@& and expresg in terms ofb by means
of a matrix2 € Mat; », (Q) as follows:v = b - Q. After dividing v by a suitable
power ofrr, we can assume th& has coefficients ifB, so that the elemenis are
contained inVy .

There exists am € Z such thatr® - Q~1 has entries irB. Let us write any
elemenin € N, asn =b - A with A € Mat «1(B). It then follows that

(73) °n=7%-A=v-@°QY) A Cv-Mat.1(B).

This shows thatr® N, is contained in th&,-module generated by. As O is a
noetherian principal ideal domain, the torsion free modulg is therefore finitely
generated and hence free of rank his implies that the cokernel of

B-Ng — B
is a torsion module. O

REMARK 4.6. The following example shows thRt.V, may be strictly smaller
than®B. Let o be an element irB with reductiona € k((t)). Consider the 2-
dimensionakK (t)-vector space spanned by a basis (v1, v2), and theB-module
B C Q generated by = (A1, N2) such that

1 7 la
V:b(o 7_[71 )
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Itis easy to see that, if ¢ k(t), thenV N B is generated by, such that we have
an exact sequence 8-modules

O—-B - Ny —>B—>B/(w)— 0.
84. Nondegenerate format-modules.
THEOREM4.7. Let V ber-module over Kt) and put
0Q:=Q®kw V.
For a given sube-module® over B ofQQ of full rank, we define thé,.-module
N i =V NB.
Thetr-moduless over B andV,, over®@, have the same nondegenerate rank.

PROOF. a) Let &, denote the reduction of,,. Ask is perfect, we have by
Remark 1.7 an exact sequence&df)[t]-modules as follows:

0— (Ww)l - Ww - (Ww)nil — 0,
where (N )1 is at-module (whose rank we will denote ky), whereas the ac-

tion of ¢ on (N4 )nil is nilpotent. We choose &(t)-basis (A1, ..., Ay) (resp.

(Ap41s - .., 0r)) for (N )1 (resp.(N - )ni). Finally, we fix a lift
n:=y,...,Nx;Nyy1,...,Nr)

for (01, ..., Ay) in N4, which yields an9,, -basis forV,,, and, for evens > 0, we

denote byAs € Mat; «r (O ) the matrix representation ofrelatively to the basis,
ie.t5(n) =n- As.
b) We have a similar filtration of thk((t))[t]-moduleB yielding moduless
andBn;. Note that(.V )1 injects intoB1, by an argument as in Lemma 1.10.
We now assume that < p, wherep is the nondegenerate rank®Bf and want
to deduce a contradiction. Let us exteid, . .., i) to ak((t))-basis

by := (A1, ..., Ay Dyy1, ..., 0p)

for B1. Foralls > 0, let(A1)s € GL, (k((t))) denote the matrix representation the
action of S on B8 with respect to this basts; : t5(by) =b1- (Ap)s.

c¢) On the other hand, we choos&@t))-basis(by+1, . . ., br) for Byj. Taking
some lift(by41, ... br) of (D41, ... br) to B, we obtain aB-basis

b=(y,..., Ny, bp/+1, e, bp; bp+1, ...by)

for . We denote thd-module spanned by the elements. .., n, by Bo, and
further put®B, := (byy1,...,b,) andBy := (byy1, ... br).

Notice that a different choice of the elemeits 1, ..., by; by41, ..., br) or
their respective lifts would correspond to a basis transformdtiae= b - U for a

matrix in
1) x | %
U = O x | % c GL;(B),
O mx| %

where the blocks correspond to the composittbe- 81 & Bo & Ba.
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d) We expres® in terms ofb by means of a matrix
Q € GL (Q) N Mat «r (B)

as follows:n = b - Q. The matrixs2 is then of the form
1] % | %
O % | *
O % | *

Note that taking a different choice bfamounts to replacing by U - 2, for some
U € U. We can find a basis such that2 (and more precisely itg’ + 1-st column)
is of the form:

/

o' +1

+

Q=

K| K| *|*
K| K| *|*

<lo| 3N

o Oo| o

whereX e Mat, 1(B),c > 0 and
Wen®. Mat;_p)x1(B).
The blocks correspond to the decompositn= Bg ® B, 1 D B2 d B, where
we putB, 1 = (by41) andB, 2 := (by41,...,by); we consider an analogous
decomposition forvy, .
e) For any integes, we will denote byAs € Mat; « (B) the matrix represent-

ing 75 with respect td: t3(b) = b-As. Observe that the representatighsandAs
satisfy the following relation:

(74) As- 7 Q=Q. As.
We distinguish two cases:

1) Suppose > 0. Fors > 0, let us writeAs as a block matrix of matrices
(8168"168”18") with respect to the decomposition 8f; we do the same
for As = (d | d’|d”|d”). The equation (74) can then be rewritten as:

1| °°z

k| 3k
ARV AR JEEEETE _ Iy A A
(75) 1818718 | 5 gt [ =2 @ld'1d"1d".
0l oW | x| =
We thus obtain the equations
§ =Qd
(76) { 85?+nq5c(5/+5///UW) :Qd/

Assume thas is large enough so that, (det2) < g5c, which implies
that
9. QL e Mat . (B).
It then follows from (76) that

(77) d°Z + @0 @ H©E +6”° W) =d.
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We denote byl € Mat; ., (k(t)) the reduction ofl modulos; similarly,
we defined’. Also, we consider the reductions
§ € Matr . (k((1))
andZ e Mat,1(k((t))) of § andZ, respectively. Reducing mod, equa-
tion (77) gives
(78) d°x =d.
As § has full rankp’, we deduce frond = Q - d thatd has full

rank o, too. Therefore, the solutiod of (78) is unique, namelyZ, and
must therefore be algebraic, i.e.

Z € Mat,1(k(1)),

asd andd’ have entries irk(t) as well. Finally, let us take the canonical
lift Zg of Z to O and putZ = Zo + 72y, for Z; € Mat, 1(B). The

element
—Zo Z1
1 7¢1
_ 1. -b. | =
v:i=m N ) b )
0 7 IW

is contained both iV and in‘B, but not contained inV,,, which obvi-
ously contradicts the definition of, .

2) If ¢ = 0, then we see, denoting I§y the reduction o2 moduloz, that
the upper left(p’ + 1) x (o’ + 1)-block of Q has full ranke’ + 1. Also,
the upper lefto x p block of As, namely(A1)s has full rankp. We see
from this that the matrix

Zs . USSTZ = STZ . Ks
has rank at least’ + 1, for alls > 0. In particular, the nondegenerate
rank of As is at leasfp’ + 1, which gives a contradiction.
|

85. Proof of Theorem 4.2.

PROOF OFTHEOREMA4.2. a) First of all, we can reduce ourselves to the case
that@ = Al. Indeed, for a general cur, we consider a finite morphism

f:e— Al
and denote the induced morphigtr — A} (resp.Cr — AL) again byf. If m*
is the maximal model foff,(M) on Cr and M the maximal model foM on Cg,
then f, (M) = M, as we already remarked in the proof of Prop. 1.16 (for analytic
7-sheaves). Let be a closed point of. If N has nondegenerate raplon éR,g,
then f.(N;) has nondegenerate rank at least flegp. Assuming that the theorem
holds for A, we then obtain a model with nondegenerate rank at leasf deg

and, by Lemma 1.10, the maximal mod#l has at least the same nondegenerate
rank. This in turn implies tham has hondegenerate rapkp.
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b) Next, we show that it suffices to prove the result over a fipi€ exten-
sion R" of R. Suppose thatV; has nondegenerate rapkon éR,g, and that we
found that the maximal modei(’ of Mg- on @K/ has nondegenerate rank at
leastp. By Prop. 1.25, this yields a maximal good stonodules of A, the
completion of the stalk o’ atz, of rankr; over@,,. This M1 is functorial with
respect tad,, -linear homomorphisms, and therefore we can, as we did in the proof
of Lemma 1.14, apply Galois descent to obtain a goodsueduleM of M.,
of rankr. This shows that the nondegenerate rank of the maximal méded M
onCr is at least; (cf. Proof of Lemma 1.9).

c) We now assume th& = Al. Let¢ be a closed point oi! of degrees, with
residue fieldc,. We may assume the finite field — R. Let

{05, 65, ..., L)
be the set of closed points of lying abdizen A,}{. Let éw,ei’ denote the completion
of AL at¢], and put

Al =0

[CH

K/C’['i
As C is smooth, we havaé\’e_, = ke[[Ai]], where; denotes a uniformizer at the
point¢;. The ringR P, A/e.’ is then isomorphic td=[[A; ]]. Finally

Opn, = RO A Z[[R& A} = ]_[ RI[Ai]].
i

Similarly,
Opp 0 = H KA.

The endomorphism of Opp mduces morph|sms : RI[Ai ]l = RI[Aj]] for all
pairs(i, j) such thaf¢; _EJ
Any 0p - -moduleN; can be written as a produst, = []; M, where then

are R[[ A ]]-modules. IfA; is endowed with a-linear endomorphism
T:0* N — Ny
thent will induce morphisms
T:0*N — :AA/j
if (i, j) satisfies’; = £ (the same applies 0p, [-modules). Each of the mod-
ules.; is rS-invariant. '
Let M and.V; be as in the statement of this theorem. Let us denote the stalk
of M at the generic point o&x}( by V. Let Qj, B; etc. denote the subrings Kf{[Ai]]

which we defined foK [[t]] in 8§81.
We consideM as arS-sheaf over\y = Al ®,, SpecK. Now, upon replac-

ing ¢ by ¢S, andr by S, we can apply Lemma 4.4 to the modwie C M; to obtain
that
M C (K ® RI[A ) ®kpy) M.
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We remark thall, = Ocg,», and define th&,,-modules
(No)i :=V N (Bi - M) C (Q)x ®ki) V-

Again replacingr by 75, we then deduce from Thm. 4.7 that th#,, )i have the
same nondegenerate rank#is Finally, theOeg, -module

Ny 1= Y (N

is t-invariant and nondegenerate of rapk Hence it defines, by Lemma 1.4, a
modelM for M with the desired property. |

Il. Galois criterion for trivial reduction

THEOREM4.8. Let R be a complete discrete valuatiBg-algebra with field
of fractions K andinite residue field k. Let M be a-sheaf onCk . The following
statements are equivalent:

i) There exists a closed poiatof € for which M, is smooth such that the
A¢[T'k]-module T (M) is trivial.
ii) For every closed point of € for which M, is smooth, thé\,[T'k ]-module
T¢(M) is trivial.
i) Ther-sheaf M onCk has a good modeM such that the reduction is
a trivial 7-sheaf onCy (cf. Def. 0.1 iv)).

PrRooOF Clearly ii) = i). If M is a goodr-sheaf onCr such that the reduc-
tion M is trivial on A&, thenM, is smooth with trivial reduction for every closed
point¢ of €. By the correspondence 0.7, this yields ##) ii).

It remains to show that i) implies iii). As the action of the inertia grdup
on T, (M) is trivial, the maximal modelM for M on CRr is good, by Thm. 4.1K
is perfect). Let us consider its reductiord. The theorem now follows from the

following proposition: |

PROPOSITION4.9. Let k befinitely generatedield containingFq. Let M be a
7-sheaf onCx. The following statements are equivalent:

i) There exists a closed poiatof € for which M, is smooth such that the
F¢[Tk]-module V(M) is trivial.
ii) For every closed point of € for which M, is smooth, the ATx]-module
V(M) is trivial.
iii) Ther-sheaf M is trivial (cf. Def. 0.1 iv)).

PrROOF Clearly iii) = ii) = i). For i) = iii), let N be a trivialr-sheaf onCx
of same rank asM. We use the Tate conjecture: It was stated in Thm. 3.7 for
fields of transcendence degree 1 a¥gybut holds for any finitely generated fiekd
(cf. [Pi2], Thm. 1.4). For a closed poitdtof @ such thatV, is smooth, we have an
isomorphism:

Fe ®a Home (M, N) — Homg, [y (Ve(N), Ve(M)) .
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As bothV,(N) = V,(M), this yields an isogeny : N — M. The cokernel off
has finite length, and is supported over finitely many closed point3.oBy an
induction on the length of cokefr, we can find another

(N, f:N = M)

with f/ an isomorphism. O

Il. Local factors of L-functions

We now show how the above theory explains how the ldcdctor of az-
sheaf (cf. Bod], def. 1.40, andTW]) at a place of bad reduction is related to the
action of Frobenius on the associated Galois representation$R heta complete
discrete valuatiot¥y-algebra with fraction fielK and finite residue fiel&. Let

denote the degree of the clgsed pointf R. Let M be ar-sheaf ovelCk, M its
maximal model ove€r and.M the reduction ofM atx.

DEFINITION 4.10. We define thiocal L-factor for M at x by
Ly(M: 2)~L .= dAet(l — Z2%% | HO(Ey, ﬂ)) c AlZ].

Let ¢ be a closed point af such thatVl; is smooth. Let
He (M)

be theA,-module of invariants oH,(M) (Def. 0.8) under the action df; it is a
'k -invariant direct summand dfi;(M). The action of'y = 'k /lk on He(M)'k
is well defined, in particular that of its canonical generator knohich acts ag%
onk.

DEFINITION 4.11. We define thiocal L-factor for T,(M) at x by
Ly (Te(M): 2)~1 .= det(l — Z%Froby| Hg(M)'K> e AZ].

THEOREM4.12. Let R be a complete discrete valuatiBgralgebra with frac-
tion field K and finite residue field k and let M bea ssheaf ovelCk . For all but a
finite number of closed pointsof €, we have:

Lx(M; Z) = Lx(Te(M); Z).
PROOF. a) We denote the maximalsubsheaf ol on Gk by M1, and its rank
by p’. As shown in the proof of Thm. 1.26, we can lift ; to a saturated analytic

subc-sheafMy C .M of rank o’ on Ck for some nonempty open subschegle
of €. For any closed point of ¢/, this ylelds a saturate¢tadic subez-sheaf

(Me)1 C My

onCh ,. Clearly its reductior{.M,); satisfies

(M1 =04, , ®0, (M1
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Outside afinite se® of closed points of’, the¢-adict-sheaf(M;)1 is smooth.
We deduce for all closed pointse ¢” := €\ S:

Ly(M: 2)~L = det(l _ 7%k W) = det(l _ 7% | (ﬂ)l)
= det(1- 2%c% | 0, | Qo (1)

= det(l — 7% o

(Meh)

b) Let p be the rank oH,(M)'<. By Prop. 0.7, we deduce the existence of a
maximal smootlt-adic t-sheafN, of M, on Cr, of rankp. Let N, denote the
reduction ofA; to ék)(. As explained inTW], Cor. 6.2, the same correspondence
implies that

det(l — ZdXFrob‘ He (M)'® ) - det(l — 7% % |m) .
We want to show thatV; = (M)1. As the moduleV; is the maximal smooth
sub<-sheaf ofM, on Cr ¢, We have
(M)1 C Ny

The t-sheaf M, has nondegenerate rapkand, therefore, by Theorem 4.2, the
nondegenerate rank of; is at mosto’, which shows that

N = (Mo)1

as both are saturated smodtadic subz-sheaves o@r ¢ of rank o’ of M.
Finally, we can deduce that, for all closed poiats ¢”,

Ly (To(M): Z)~L o= det(l — 7z%Frob ‘ Hy (M) )
=det(1— z%% | W&
(79) (120 |L)
- det(l— 7% | (M)l)
= Ly(M; 2)"L.



CHAPTER 5

Anderson uniformization of t-motives

I. Anderson uniformization

81. Uniformizablet-modules. Let K be a complete local field which contains
the finite fieldFg and a variabl® with v(6) < 0, wherev denotes the valuation of
K; in other words, leK be a finite algebraic extension of the fidi@((@*l)). Let
| - | be the normalized absolute value KnandR its valuation ring. We denote the
completion of an algebraic closure kfby C. As we will be dealing with Anderson
t-motives in this and the next chapter, we will from now on assume for simplicity
thatC = Al (cf. section 0.1§3). We define a characteristic mapSpecK — € by
means of the ring morphism

FTAZTFGtl > Kt 6.
Asv(0) < 0, the valuation is then infinite with respect to(Def. 0.5.iii).

PrROPOSITIONS.1 (Anderson,Anl]).

i) For every d-dimensional t-module E over K with characteristithere
exists a unique entirgq-linear map

(80) e 1 GE% — GEY.

defined over K which induces a morphikim(E) — E of t-modules and
whose derivativeley, is the identity.
ii) If E is abelian and has rank r, then the kernel

H := ker(ex,)(K) C (KSehd

is a finitely generated suB-module ofLie(E)(K 3P, which is free of
rank at mostr and strictly discrete, i.e. every open disk of finite radius con-
tains only a finite number of points of H. (In other words, using Def. 6.15,
the t-module H is a\-lattice of rank at most r insideie(E)(KS€P.)

In other words, using Def. 6.15, thenoduleH is anA-lattice of rank at most
inside Lig(E)(KS¢P),

DEFINITION 5.2 (Anderson). Ifey, is surjective overK ¢P, then we callE
uniformizable.

THEOREM 5.3 (Anderson, Anl], Thm. 4). The abelian t-module E is uni-
formizable if and only if thé\-rank of H is r.
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COROLLARY 5.4. If E is uniformizable, then the Tate modulg M) is poten-
tially a trivial 'k -representation, for every closed poinof AL,

PROOFE For any nonzera € A, thea-torsion moduleE[a] is isomorphic to
H/a-H

as am/(a)[I'k ]-module. SinceH is strictly discrete, the orbit of anf-basis forH
underTk is finite, and hence, potentialll is a trivial A[T"k ]-module. This implies
that, potentially, for any closed pointof Al, theA,-moduleT,(E) = T,(M) is a
trivial 'k -representation. |

§2. Uniformizable analytic r-sheaves.For an abeliart-module E overK,
let M = M(E) be thet-motive associated t&, andM the analyticr-sheaf orA}(
obtained fromM.

DEFINITION 5.5. An analyticr-sheafM on KlK with characteristic is called
uniformizable if it contains a trivialr-sheaf of full rank.

We set
DY = {t e K;t| <1},
the closed disk of radius 1 around the origin, considered as a rigid analytic space.

LEMMA 5.6. If a t-sheafi on A is uniformizable, then the restrictid | oo
of M to DY is trivial.

PROOF Suppose thaM* := M|@g contains the trivialr-sheafN, of same
rank. The morphism acts via a unit in® po on both A°PN andAPNM*. One
easily draws from this the conclusion that the quotigrt/N is supported on a-
invariant nontrivial closed subs8tof DY . Choosing a line bundlg whose divisor
has suppors, we can find a powen such thatV is contained int®" ® N,

which is again a triviak-sheaf. By lemma/n1], 2.10.6, this implies thaM* is
trivial. O

LEMMA 5.7. If the restriction ofM to DY is trivial, then, for all closed pointg
of A1, the Tate module,TM) is a trivial I' -representation.

PROOF CompletingM at {¢} ® SpecK yields a trivial smoothr-sheafM;
onCk . By the correspondence 0.7, this shows th&M) is a trivial 'k -represen-
tation. O

In his paper Anl], Anderson showed that the uniformizability & can be
expressed in terms of themotive M as follows:

THEOREM 5.8. (Anderson,Anl], Thm. 4)) The abelian t-module E is uni-
formizable if and only if the analytic-sheafM ;0 on i)g is trivial.
K

We want to extend this result, by showing that, amongst other criteria, uni-
formizability of E is equivalent to potential uniformizability favl.
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83. Pink’s theory of o -bundles. A new point of view was introduced by Pink
in [Pi4]. Takingz :=t~! as a local parameter at the poiatof P!, we set

D :={zeC; 0< |zl <1}

to be the punctured open disk of radius 1 around infinity, considered as a rigid
analytic space ovet.

DEFINITION 5.9 (Pink). Ac-bundle & is a smoothr-sheaf on:[)g’.
For instance, for each co-prime pair, s) € Z? with s > 0, consider the sheaf
Fus = 0%,
u,s @80
We define ar-linear endomorphism
T:0"Fus—> Fus

with respect to the natural basis= (g)1<i<s Of Fy s by its matrix representation
7(e) = e- Zy s, Where

0 o zv¢
1 0 O

(81) Zys:= . € Matsys(Fq(2)).
0 1 0

This endows? s with the structure of a-bundle, which is, by definitiomure of
weightu/s. ~

If M is an analyticr-sheaf on&é with characteristie, then we notice that, on
the annulus

A={zeC; 107} <zl <1} Cc DT,
the map
T: a*ﬂla_l(A) — M4
is an isomorphism.

THEOREM5.10. (Pink, Pi4]) There exists a unique-bundle# (M) on :[)go
such that

F(M)[4 = M4
and ¥ (M) is isomorphic to a direct sum of copies of purdundles?y s.

THEOREM 5.11. (Pink, Pi4]) An analyticr-sheafﬂ overf&}: is uniformiz-
able if and only if ther—bundle?'(l\ﬁ) is trivial (i.e. isomorphic tofo,, for some
integer r) onDZ°.
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Il. Main theorem

Let M be an analyticr-sheaf onf&lK with characteristia. We consider the
following statements:
U(K): The analyticr-sheaﬂ\ﬁK on 1&}( is potentially uniformizable.
U(K): The analytiCr-sheafl\WK onf&PlZ is uniformizable.
U'(K): The analyticr-sheaflﬁ@g on :DQ is potentially trivial.
U'(C): The analytiCr-shean@8 on D2 is trivial.

G¢: There exists a closed poifibf Al such that thd 'k —representatioffg(l\W)
is potentially trivial. N

G: The{K—representatioff@(M) is potentially trivial for all closed points
of A-.

R: The r-sheafM on A} potentially has a good mode#l such that the
reductionM is a trivial -sheaf onA.

R’: Potentially, ther-sheafM on A'P{ is semistable and, denoting the subquo-
tients of the semistable filtration féf by M;, the reductions¥(; of good
modelsA; for M; yield trivial t-sheaves o

P: Theo-bundlef (M) is trivial on D&°.

THEOREMS5.12. For an analytict-sheaf orf‘ilK with characteristia, the prop-
ertiesU(K), U (K), G;, G andR are equivalent.

Suppose thaM is associated to an abeliarmodule E defined overk and
consider the following statements:

Al: The abeliart-moduleE is uniformizable.

A2: TheA-rank ofH isr.

THEOREM 5.13 (Anderson Uniformization). Let E be an abelian t-module
over K with characteristia and M its associated analytic-sheaf onAk. The
properties

U(K), U(K), U'(K), U (C), A1, A2, G, G, R, R’ andP
are equivalent.

OVERVIEW OF THE PROOFS OF HM. 5.12AND 5.13.
The following diagram illustrates how the mentioned properties are related to each
other for ar-sheafM, resp.t-motive M. Dotted arrows represent immediate im-
plications or results we already proved and full arrows refer to the theorems by
Anderson and Pink. The double arrows correspond to results we will establish in
sectiondV andV, thus completing the proof of these theorems. |
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Al A2

N\_5358 .

(®) U'(K) - 54

o , 57
5.11| 5.16.i) U/(K) e > G < > Gy
56 7 EA

P U(K) 48

5.& 5.16.0) £

lll. Example: (not) uniformizable t-motives

In his paper Anl], Anderson gave one, rather complicated, example of a not
uniformizable abeliat-module. Theorem 5.13 now enables us to give a very simple
1-parameter family of abelianmodulesE(y ), whereE(y) is uniformizable if and
only if y is contained in the open unit disk around the origin.

We consider the discrete valuation rifg:= Fq[[¢]], denote byK its field of
fractions and by its valuation. The valuation oK is then infinite with respect to
the characteristic mapdefined by

L*:AEFq[t]—>K:t»—>9:=§_l.

For eachy e R, we consider the-motive M, (y), and its associatettmodule
E; (y), which were introduced in section 2.II.

PROPOSITIONS.14. The abelian E-module £y ) is uniformizable if and only
if v(y) > 0.

PrROOF a) If v(y) > 0, the(DM—moduleM generated byn is a good model
for M := M, (y). With respect to the basig, the action ofr on the reductionV is

given by:
. 0 -1
(M =m- 1 gt )
a.i) If y = 0, then, M is trivial on A}F , (cf. propertyR). HenceE;(y) is
q

uniformizable by Thm. 5.13. o

a.ii) The (linear!) endomorphismon M satisfies the identity

T2=7ptT+1

This shows that, ify # 0, no iterate ofr can be the identity ooM (as it has non-
constant eigenvalues). Repeating the argument in Thm. 4.8 thepresentation
T¢(M) cannot be potentially trivial. Hendg; (y) is not uniformizable in this case
(cf. Thm. 5.13, propert).

b) If v(y) < 0, then one can show, by an argumentas in Lemma 2.12, that if
is the closed point ofi! defined by the ideat) in A = Fqlt], then the Tate module
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Teo (M) is not potentially unramified. Henc& (y) is not uniformizable (cf. Thm.
5.13, propertyG). O

REMARK 5.15. The above example suggests that ‘uniformizability’ is an ‘open’
condition with respect to the topology ¢t For a uniformizable-sheafM on A}(
with matrix representation, ther-sheaf obtained by changing the coefficientaof
by a small amount is still uniformizable. This follows from propergf Thm. 5.13.
This idea was suggested byifl].
IV. Models and uniformizability

PROPOSITION5.16. For a t-sheafM on 1&1K, we have:
) R= U(K);
i) R = U (K).
PROOF a) For i), we assume thafl has a good model( and thati is trivial.

Choose a global basis for M, the reduction of#, such thatr (M) = m. Let us
extendM by zeroto a fre@&%{-module

Me = M ® Mo
of rankr’ with t-action. Letm be a global basis foMe, and
A € Mat (HO (Rk, 051))

the matrix representation efwith respect to this basis, i.e(m) = m - A.
b) We want to construat independent elemenits= (nj)1<ij<r in

H 0(&1 ’ qu)

which are fixed byr, and we will do this by lifting the basim to M. If we put
n:=m - Z, this boils down to finding a matrix

0(X1 -
Z e Mat (H (A ,(DA%»
with rankr, which solves the following equation:
(82) Z=A-Z.
The reductiorZ = A - °Z of this equation has the solution
Zo € Matrxr (A, 07)
expressing the basis in terms of the reduction ah in M. Let Zg be the canonical
lift of Zg to Mat (HO (A}Q, 0&%)) which corresponds to the imbedding
k— R

c) Letus setZ := Zg + nZ1 andB := 7~ (A - °Zg — Zg), which yields the
following equation forZ1:

Zl = B —+ TL’q_lA 021.
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By lemma 1.23, There exists a unique solution
0(%L o~
21 € Matr (HO (B, 07 ))

for this equation. The matrix = Zo0 + 7 Z1 hence solves equation (82). As its
reductionZ = Zg has full rank, so doeZ. Finally, ast acts as the identity on each
of the basis elements, we see that

ni € HOAL, 40) c HOAL, Me).

In conclusion,M contains the triviak-sheafN on A} generated by the global
sectiona. This finishes the proof of i).

d) For ii, it follows from i) and Lemma 5.6 that, iK1 is semistable such that
the reductionsM(; of its subquotlentsMI are trivial, thenMi,o is an extension of

trivial T-sheaves. Over the algebraic closrgevery extension of trivial analytic-
sheaves is trivial (cf.An1], lemma 2.7.2), which shows thit satisfied)’ (K). O

V. o-Bundles and uniformizability

PROPOSITION5.17. For anyr-sheafM on AL, statemenP impliesR’.

PROOF. Assume that property holds. LetM; denote the nondegenerate part
of the reductionM of the maximal modef(™®* for M on Ak,

a) First, let us suppose that(; is potentially trivial. Upon replacindR by
a finite unramified extension, we can, by Prop. 1.22 Mi to a subz-sheaf
on A%{, with trivial reduction. Consider the saturatiowy of & in MM and its
restriction Ny to the generic flbre&l . By Prop. 5.16.i), the analytic-sheafNy,
which is defined ovef&lK is uniformizable oveK, a fortiori overC. Considering
the quotient -sheaf

M’ := M/N;
overf&lK, it is then clear thal\7i/C is uniformizable; henc® holds forM’. We are
thus reduced to proving the proposition in the case whseis not potentially
trivial.

b) Suppose thad(; is not potentially trivial. Putting := [k : Fq], consider the
linear endomorphisii := 75 : M1 — My. If (M1, T5) is potentially trivial, then
S0 is(M1, ) (a consequence of Prop. 4.9). It also follows from Thm. 4.9 and the
Tate conjecture that if(; is not trivial then neither is any isogenoussheaf. This
implies thatT acts nontrivially onv, the stalk ofM; at the generic point o&x%.

Let

Op1 oo =kt

be the completion of the local ring of regular functionﬂt&ratoo, with uniformizer
z := t~1, and F its field of fractions. For every co-prime pdin, s) € Z? with
s > 0, one can define a so-callpdre z-module V, s over Fy, of weightu/s as
follows: taking F2° as the underlyind-«-vector space, let the action efon the
standard basis is given by the mat#y s (cf. (81)).
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Consider the characteristic polynomial
H(T) :=T" + an_1T". a9 € K[t][T] C FoolT]

of T onV. We decompos€,, ®« ) V as a direct sum of pure’>-modulesV s.
The weights that occur in this decomposition are exactly the valuations of the roots
of H(T) in Fs, or, equivalently, the inverses of the slopes of the Newton polygon
associated ttd (T). This shows that the decompositionfef, ® V has at least one
component with positive weight, unless all the coefficient$lgil ) are constants.
But in the latter case, one easily sees ih\atr®) is potentially trivial, a contradic-
tion. Hence we may suppose that, ® V contains as a direct summand a pure
r-moduleVy, s,, with ug ands; > 1.

c) Letus extendi by zeroto a free@&%-module

Me = M & Mo
of rankr’ with r-action. Letm be a global basis fon?e, and
A € Maty/ (HO (&1, (9;%))

the matrix representation efwith respect to this basig:(m) = m - A. By lifting
the elementsg to Jie, we will construct ar-bundleF’ c ﬂe on i)g’, with basisv,
such thatF’ = %, s, (cf. (81)).

d) Let R denote the valuation ring &. Let us putv := m - Z. We look for a
solution

Z € Mat/yr, (HO (:D;ﬁ, (91,0;))
of the equation
(83) Z-Zyg=A-Z.
The reduction .
Z-Zy,s=A-2
of this equation has the solution
Zo € Mat/r, (Foo)

which represents thE,,-basisv in terms of the reduction af to M.
Note that there exists a canonical embedding

Foo = k((2) — H°(i‘>§°, %%c) .
Let Zo denote the canonical lift aZg to
Matyr (HO(DF, O g)).
Starting fromZo, we can immediately easily construct via iteration a solution
Z = Z0+mZ1 € Mat, (Ho(g')gg’, 0@%))

for (83) which lifts Zg. As Z = Zg has full rank, they; are linearly independent.
Further, sincer satisfiesr (v) = tU1v, each of they; is clearly contained in

HODE, M) c HODE, Me).
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In conclusion, if we sef’ to be the@ubgo—module generated by the global basgjs
then¥" is a pures-bundle

on :[)8" which is isomorphic tafy, s,. The o-bundle F (M) being the maximal

o-bundle contained iM, we haveF’ ¢ F(M).
If 1 and¥%> are purer-bundles satisfyingu(¥1) > w(¥2), then

Hom(¥#1, #2) =0
(cf. [Pi4]). In the present situation, however, we have HGM ¥ (M)) # 0 and
w(F') = % > w (F(M)) =0,
1

which gives a contradiction. a






CHAPTER 6

Analytic morphisms of t-motives

Let R be a complete valuatioFg-algebra, with fraction fieldK, valuationv
and residue field. Like in the previous chapter, we p@t:= A, and we adopt the
notations from Remark 0.3. We fix a characteristic magpecK — € by means
of an injectiveFy-algebra map

FrA—-> Kt 0,

for somed € K. We will assume tha# € R, which means that the valuatiens
finite with respect toe (Def. 0.5.iii).

For t-moduleskE and E’, the group of morphisms Hof&, E") consists of all
algebraic homomorphisnts — E’ which respect the action &. Fort-motivesM
and M’, the group of morphisms HofW, M’) consists ofK [t]-linear homomor-
phismM — M’ which commute with the action af. We recall from Prop. 0.14
that, with the above definitions of morphisms, the categories of abeliaodules
andt-motives are then antiequivalent.

DEFINITION 6.1. Fort-modulesE andE’, the group ofanalytic morphisms
HomP"(E’, E) consists of all rigid analytic entire homomorphisis— E which
respect the action k.

Let K ((t)) be the ring of entire functions in For at-motive M, put
M = K((t)) ®k 1 M.
We extendr to ac-semilinear morphism oM.

DEFINITION 6.2. Fort-motivesM and M’, we define the group ddnalytic
morphismsHon?"(M, M’) as the group oK ((t))-linear homomorphisiv — M’
commuting witht.

We finally remark that all the mentioned groups of morphisms have a natural
structure ofA-modules. Our main result deals with analytic morphismpufe
t-motives (see Def. 6.6):

THEOREM 6.3. Let E and E be abelian t-modules whose associated t-mot-
ives M and M are pure of weightv and w’, respectively. There exists a natural
isomorphism of A-modules

* : Hom®(E’, E) > Hom?"(M, M").
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In other words:

THEOREM 6.38IS. There exists an antiequivalence between the categories of
pure abelian t-modules over K and of pure t-motives oﬁvkr both endowed with
analytic morphisms.

The first part of this chapter is devoted to the proof of Thm. 6.3. After estab-
lishing in 8l (Prop. 6.5) that is well defined and injective, we prove in section §llI
(Thm. 6.13) that it is surjective. The arguments for this theorem rely on asymptotic
estimates for local logarithmic heights timodules, which are presented in section
8V, and weight inequalities induced by nontrivial morphisms (cf. §ll, Prop. 6.9).
In section IV, we work out a further aspect of analytic morphisms-ofodules,
namely that of uniformization lattices: see Thm. 6.16.

Analytic morphisms arise naturally in the reduction theont-ofiodules and
7-sheaves. In section VI, we recall the Tate uniformization theorem on the analytic
structure of Drinfeld modules (i.e. 1-dimensional abeliamodules) with stable
reduction, and show how it gives rise to an analytic filtration of the corresponding
t-motive. On the other hand, the theory of analytic semistability (see Thm. 1.26)
yields an analytic structure of themotive, which should, conjecturally, induce an
analytic description of the-module, as will be explained in section VII.

I. Analyic morphisms of pure t-motives

81. Topologies ont-motives. Every freeK [t]-moduleM of finite rank has a
natural topology t-topology), namely that of uniform convergence on any ball of
finite radius. Its completion with respect to this topology equals

M = K((t)) ®kt; M.

On the other hand, the ring[t] has a natural topology of uniform convergence
in all balls of finite radius. Identifying with the mapx — X9, this topology is that
induced by the topology on the polynomial rikgx] as above viK|[r] c KI[x].
The completionK ({z)) of K[r] with respect to thig-topology can be identified
with the ring of rigid analytid®q-linear endomorphisms @, « .

For at-module E, the associated [t]-module M is endowed with a natu-
ral topology ¢-topology) of uniform convergence on all bounded open subsets of
E(K). The completion ofM with respect to itsc-topology is given theK ((z))-
module Hom"(E, G4 k) consisting of all rigid analytic entirBq-linear homomor-
phismE — Ga k. ThisK {{r))-module is isomorphic to

M ®k 7] K{{T)).

Thus at-motive M is endowed withtwo natural topologies. The following
statement shows that thetopology is finer than thetopology.

PrROPOSITIONG.4. There exists a natural injectic#rM ® K{(t)) — M |.

We will give a proof in subsection §83. L& and E’ be abeliart-modules
defined oveK, with associated motivegl andM’. Every morphism

e € Hom?"(E’, E)
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induces &K ((t))-linear homomorphism
(84) € MRK{t)) > M®K{r)) :m~ moe

which commutes with the action &. By Prop. 6.4, this yields K [t]-linear homo-
morphism

e:M—> M
respecting the action af. The homomorphisme” extends in a unique way to an
K ((t))[t]-linear homomorphisne* : M — M’. Clearly, the mage — €* is
injective andA-linear, and we have a commutative diagram

M ¢ MeK({r) c M
Ve \E/e*
M © M'®K(()) ¢ M’

Thus we have proved

THEOREMG.5. Let E and E be abelian t-modules defined over K, with asso-
ciated t-motives M and M There exists an natural injective-linear map

* : Hom®(E’, E) — Hom®'(M, M) : e > €*.

82. Notations. Let E be an abelian-module of dimensionl and rank', de-
fined overK, with t-motive M. Fixing an isomorphism

E = G2%.
letx := (X1, -- -, Xq) be the corresponding basis of coordinate functions
Xi : E— Gaxk;

this yields aK [t]-basis for the-motive M. On the other hand, we choose a basis
m = (Mg, ..., m;) for the freeK [t]-moduleM.
As we will often have to switch from seeirlg as aK [t]-module to seeing it as
a K[r]-module, we will express the basisof coordinate functions foE in terms
of m by means of a matri¥ € Mat; «q(K[t]) such that

X=m-7V.

Let us expand every entryij e K[t]of V as
KO .
> ol
k=0
puttingko := degV := max; i degvij. We then obtain the formula
K0
(85) Xi =Z'Vij)l( mj o t*,
k=0
where we have used the ‘Einstesuimmation conventioior summation over the

coordinate indices = 1,...,d, as we will systematically do in the rest of this
chapter. Finally, we set(V) := min; j. v(V/,).
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Next, we consider the matrix representation of the endomorphismsav. For
every integes, we consider a matrix

AS = (AT’S)U,J- € Maty . (K[t])

such that (m) = m- AS. We putus := degA® := max; y degA‘jJ’s. Notice that, as
AVS = AL T(AY),

we getus := degA® < sui; we also note that; > 1. Introducing coefficients

A‘j"z € K, we write out

n=0
such that
Us
(86) 750 m; =ZA;{’;mu oth.
n=0

Also, we set(AS) :=miny j . v(A‘j‘_jZ).
§3. Proof of Prop. 6.4.

PrROOF OFPROP 6.4. a) Notice that an element

> ynt" € K[Iz]l € K[[x]]

n=0

is contained irk ((t)) if and only if g~"v(yn) — oo; this convergence condition is
much stronger than that for elemedty’ , y"t" € K((t)), namely

n_lv(yn) —> OQ.

We will now show through explicit calculations that, similarly, convergence for
topology is a stronger condition than for théopology, on &-motive M.

b) Let us express an elemepte M ® K {(r)) in terms of theK[z]-basisx
of M viay = F°x¢ (using summation convention), introducing coefficients

FCe K{(1)).
Expanding#: as) 2, F ", for some element$;’ € K, we get
(87) q "v(Fy) — oo.

With these notations, we obtain
o0
y= Z?nCTnOXC.
n=0

We can, using the notations of (85) and (86), express this formally in terms of the
K[t]-basism and the endomorphisiras follows:
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(88)

00 Ko N-pu1 N
=220 A (V) A meort
n=0x=0u=0
Regrouping the terms in this expression, and substitutiagu + «, we obtain

co [ min(¢,k0) o0 RN

(89) y=> 1 > > % (VCJ,,(> AV my ottt
=0 =0 —«
ol i)

What remains to prove is that the coefficients

min(¢,k0) oo

8; = Z
o o)

are well defined elements &f such thatzzx’zo 849 tf e K((t)), forallu <r.
c¢) Upon replacing the basisy by a scalar multiple, we may suppose that
v(A™ > 0 for all n > 1, and modifying the coordinates @&hby a scalar, we can
also assume that(V) > 0. Thus it follows from (87) that the seri@%‘ converges
to an element irK, for all u and¢. Moreover, we see that
{—kQ

qa " () — o0

. qn
aC J u,n
7 (V) apn

for £ — oo. This shows thaf ¢ € K ((t)), and hency € M. O

Il. Morphisms and weights
We reformulate Def. 0.15:

DEFINITION 6.6 (AndersonAnl], 1.9). At-motive M overK[t] is pure of
weightw, if there exists an integerand aK [[t~1]]-lattice M in

Voo 1= M @k K (™)
such that
72((09)*Mao) = 1% Mgo.
We remark that if a pure-motive has rank, dimensiord and weightw, then

w=—.
r

Let deg denote the natural extension of the degree functidf[bhto K (t). For a
matrix B = (Bjj)i,; € Mat(K (1)), we put

degB = maxdegB;; .
i
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LEMMA 6.7. For a pure t-motive M of weighty and rank r, we put, for all
integers se zrN,
TS :=t75"AS
(cf. Def. 6.6 for the definition of z, and cf. (86) for that®f. There exists an integer
8 > Osuch thadeg7 s < § anddeg(75)~! < § for all such s.
PROOF. With respect to & [[t~1]]-basism of M., we have
SHm)y =m’ - (tSZwrf-'SZ)

with 752 € GL, (K [[t~1]]) (cf. def. 6.6). Expressing th€ ((t~1))-basism’ for M
in terms of the fixed basis for M by means of the matrix € GL, (K ((t™1))) as
follows:

m=m-y,
we obtain:
(90) ASZ — v tszwrf«sz. crsfyfl).

As, 752 = y . 752. ©°(3~1) we can takeé := 2 maxdegy, degy 1), and the
claim follows. O

Let M andM’ be puret-motives of respective weights andw’, ranksr andr’
and constants andz’ as in Def. 6.6. Given a morphism

f € Hom?"(M, M),
we expresd in terms of basem andm’ for M andM: let the matrix
F € Maty . (K((t)))
satisfy f (m) =m’ - F. We also putF = ) }2, Fitk, for matrices
Fk= (-?:jl:lk)u’j € Maty . (K).
Finally, we set
v(Fk) := min v(fFjuk)
u, ] ’
and
(91) O (F) = inf v(Fp).
k'>k
LEMMA 6.8. Let M and M be pure t-motives of respective weightand w’.
There exists a consta#dg, such that for any morphism
f € Hom®"(M, M")

with matrix representatiot¥ , we have, for all s divisible by r,'rz and z, and for
all k:

(92) Wk (F) = minjzkfs(w/fw)f&g qsﬁj (F) |
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PROOF. a) As the homomorphisnfi commutes witheS, for all s, we have:
o f="fory;

in matrix notation (using the notations from (86)):

(93) | A% °F =7 . a8 k.
We will now exploit the relations this equation induces on the coefficients of
o
F =) Atk
k=0

b) Recall that det! = b(t — )4, for someb € K %, and thatd = r w. We put
A=t —6)%(AH ™! e Mat . (K[t])
and definev(A1) just like we defined(Al). Note that the Lemma is not affected
by replacing the basis by a scalar multiple, and therefore we may assume that
v(AY) > 0. Next, we sefAS ;= "H(Al) .- AL, Multiplying on the right byAS in
equation (93) then gives
(94) AS. CF AS=F (t—6)d... (t — % .

We expandt — 6)9- .- (t —09° 19 as
ds—1

tds+ Z elstl’
i=0

where the coefficient$® satisfy v(6?) > 0 (here we need the assumption that
v(0) > 0, i.e. that the valuation is finite).
Upon replacing the basisY by some scalar multiple, we can assume that
v(A’®) > 0. By Lemma 6.7, degS < sw + § and deg\”® < sw’ + 8. AsAS s,
up to a scalar ik, the adjoint matrix ofAS, this yields that
degA® < (r — 1) degA® < (r — 1)(sw + §).

c¢) Equation (94) gives

sw'+8 00 (r=1)(sw+3§)

‘ . o
» ATt (§ "J‘?kt") » ASt
i=0

k=0 i=0
95
( ) 00 rws—1 )
- (Z ?’ktk) (t“"s—i— > GiSt')
k=0 i=0
Comparing the coefficients 0f'S¥ in this equation yields
Sw
s ~
(96) Yo AV TF A =R ) s Fir
i+i’+j=k+rsw j=1
i’ <sw'+¢§

i<(r—1)(sw+s)
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Puttingdp := &8’ + (r — 1)é, this implies

97) v(Fk) = min { min q°v(Fj), Minv(Fict j )} .
j =k—s(w'—w)—do i=1
It follows that Ok (F) = MiNj>k—s(w'—w)—s, A°0j (F). O

PROPOSITIONG.9. Let M and M be pure t-motives of weight and w’, re-
spectively.

i) If w> w,thenHom®(M, M’) = Hom(M, M’) = 0.
i) If w=w,thenHom®(M, M) = Hom(M, M").
i) If w < w’, thenHom(M, M’) = 0.

PrROOF a) To show that ifw # w’, then HoniM, M’) = 0, we use the theory
of Dieudonrg modules, as explained ibd1], Appendix B. The definition of purity
for M implies, upon passing to the algebraic closkrghat ther-module

Voo := M @kt K((t™H)
is isomorphic to a direct sum of modules of the form
Kt Izl/(* - ),

with z > 0. Idem forM replaced byM’. If w # w’, then the theory shows that
Hom(Vso, V4,) # 0. Afortiori, if w # w’, then HoniM, M’) = 0.
b) To conclude the proof, we are left to show that if there exists an

f € Hom™"(M, M")\Hom(M, M"),
thenw < w’. We letF be the matrix representation éfand take up the notation
from Lemma 6.8. Asf is entire, we havéx(F) — .
o If w > w’, then we can choosesuch that-s(w’ — w) — 8’ > 0, and then
Lemma 6.8 implies:

k(F) = min vy (F) = tx1(F)
k' >k

for k, whereasix(F) < hatu1(F) by definition. Thus we get that
k(F) = v (F) for all k, k' > kog. As k(F) — oo, this implies that
Fk = 0 for all k, which is a contradiction, aé # 0.

o If w' = w, then we obtain, for ak > 0 and for alls > 1, that

K (F) = 9*k—s (F) > 0.

Lettings — oo, we deduce for alk > kg + 8’ thatFx = 0, which is a
contradiction, ad # Hom(M, M").

Thus we conclude that < w’. O
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[ll. Analytic morphisms of pure t-motives

81. Local height. With respect to the basisof coordinate functions o&, we
define a naivédocal (logarithmic) height h : E(K) — R on E(K) as follows:

DEFINITION 6.10.
h(P) := max —v(x; - P)
1<i<d
Fora € A andP € E(K), let us denote the image &f under the endomor-
phism¢g (a) bya - P. Let the standard norm |, on A be defined by
laloo = 9%,

In section V (see Prop. 6.18 and Prop. 6.19), we will prove the following as-
ymptotic estimates for the heightunder the action of on E(K):

THEOREM®G.11. If E is a pure of weighiv, then there exist constants & 1
and @ > 1 and an integer n such that, for all B E(K) with h(P) > 0 and for
all nonconstant ae Fq[t"]:

(98) cilal; " h(P) <h@- P) < cola] h(P).

REMARK 6.12. In some situations, it will be useful to replace the pgir¢g)
by the so-called inducedmodule (cf. Den]) consisting ofE and¢r, where

¢g : A — EndE) : t > ¢e(t").
We can then assunme= 1 in the above formula.

82. Surjectivity of x. We need to express as well as the endomorphism
in terms of theK [z]-basisx. For this, we introduce, analogously to what we did in
(85) and (86), constanis) andvs € N, for all s, and coefficientng!’A, for A < Ao,

and@i’f’;s, for v < vs, such that

A0
(99) m; =ZW}’AtAoXi;
A=0
US
(100) Xj ot = Z @vas ¥ 0 Xy
v=0

The following proposition, combined with Thm. 6.5, concludes the proof of
Thm. 6.3:

THEOREM6.13. Let E and E be abelian t-modules defined over K, with as-
sociated motives M and MThe map

* : Hom®(E’, E) — Hom™(M, M")

is a bijection.
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PROOF a) By Anderson, we know that there is a bijection
Hom(E’, E) = Hom(M, M).

So let us take

f € Hom®(M, M")\Hom(M, M’).
We need to show that, for any of the basis coordinate functipnthe function
f(xij) € M is entire onE’. Indeed, this implies that restricts to a homomorphism

M ®k 1 K((7)) = M' @k 7] K{(T)),

hence gives rise to a morphisre Hom"(E’, E) such thae* = f.

We represent in terms of basem andm’ by means of a matrig, adopting
the same notation as in Lemma 6.8. We want to express the morghiarterms
of the coordinate functions andx’. We use the base change formulas (85) and
(99) (where we use analogous notationstr systematically adding a prime), and
obtain the following formal equation

o
(101) fo0) =YY V. W, Fythox, ot
k=0 «,A
Hence, putting
(102) ek P):= > v W, FH X Py
KA

we need to show that (x)(P) = > 2, ¢k(P) converges for alP € E/(K). In
order to do this, we need estimates on the coefficigpnd on the height afte.p
in terms ofk.

b) Puttingv(Fi) := miny_j v(}“j‘fk), andig(¥) := infusk v (F) as before,
we have, by Lemma 6.8, the inequality

(103) WF)=  omin - g%j(F),
j >k—s(w'—w)—do

which holds for a fixed constadg and alls > 0 divisible byz, r, Z andr. From
Prop. 6.9, we know that < w’. Therefore we get, for all such> 0 and all

k> ko4 s(w’ — w) + o,
that
(104) 0 (F) = 9> Ok—s(u/—w)—so (F)-
One deduces from this that there exigtk; > 0 such that fok > k:

k

(105) vk > qQv-wug |.

c) We may replacde’ by an induced-module without loss of generality, since
we are looking for an analytic homomorphism of the underlying gr@@ﬁg. Hence,
by remark 6.12, we can assume that there exist consfast< andc, > 1 such
that, forall integerss and allP € E’(K) with h(P) > n:

h(t®- P) < c2q%" h(P).
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We can extend this formula to one holding for Bllas follows: there exists a con-
stantc’ > 1, such that, for all integesand allP € E'(K):

(106) h(ts- P) < ¢/q¥* maxh(P), n}

Indeed, eitheh(ts - P) > n for all s < s or there exists ag’ < s such that
ht - P) >y
andh(t' - P) < pfori <s. Inthe latter case, using (113)
ht*- P) < cg®*"'ht* - P) < cq® /" (—u(@Y + g"n) < ¢/ n g™,

for a new constart’ > c;.
d) Finally, we can give an estimate fotk; P), for everyP € E’(K). By (106)
and (92), we get, fok > kg
v(e(k; P))
/ T\ _ o K+« |
(107) > v(V) +v(W) + v(Fk) — g*°h(t P)

1 1

> o(V) + o(W) + qv (vo qk(WT) —cq o maxh(P), 77}) .

Since 0< w < w', one has*— > L. Therefore the expression

()

tends to infinity, and hence so doe& (k; P)). This shows that the seridqx;) is
indeed an entire function dA € E'(K). O

QUESTIONG6.14. Does Thm. 6.13 hold without the assumption tandM’
are pure?

IV. Uniformization lattices

DEFINITION 6.15. AnA-lattice H in E(K) is a free finitely generated sukb-
module of E(K) which is strictly discrete, i.e. the intersectiontdfwith any open
disk of finite radius is finite.

THEOREM6.16. Let E and E be pure t-modules of rank r and,rresp. For
every e Hom?"(E’, E) is such that & € Hom?"(M, M’) is surjective, the kernel

H := (ker e)(K)
is anA-lattice in E'(KS®P) whose rank h satisfiestar —r’.
PROOF a) H is strictly discrete We remark that
cokerty

is isomorphic to
Homg (Lie(E), K),
were Lig E) is the Lie-algebra oE. Now €* induces a surjective morphism

cokertyy — cokertyy
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which shows that Lige) : Lie(E’) — Lie(E) is injective. By the inverse function
theorem, kee is therefore a 0-dimensional analytic subvarietyEof= Aﬂ. As
affinoid spaces are noetherian, any closed disk contains only a finite number of
points of H, whence strict discreteness.

b) H is torsion free By the isomorphism

Ela](K) — Homk t)-;(M/aM, Hom(A/(a), K))
for abeliant-modules (cf. An1]), it follows, for all non-constana € A, from
M/aM—M’/aM’
that
E'lal(K) < Elal(K).

HenceH is torsion free.

c) H is finitely generatedUpon replacinge’ by an induced-module, there
exist, by remark 6.12, constarts < 1 andc, > 1 such that, for all integersand
all P € E'(K) with h(P) > 0:

(108) c1g¥" h(P) < h(t®- P) < c2q%" h(P),
and we can assume that/c; < ql/w’. The closed disk
D, = {P € E'(K); h(P) < n}

contains only a finite number of elements ofH. As H contains no torsion, we
have that, for alP € H N D,, the pointsP, t - P,t2. P, ..., t* . P are all distinct.
This shows thah(t#o - P) > 0 for someug < u, and, a fortiori,

ht" - P) > g

forall &' > uo. As it suffices to show that* - H is finitely generated, we may
suppose tha N Dn = ¢, hence the estimates of (108) are valid forRlE H.

SinceH is torsion freeH injects intoV := Fq(t) ®a H. LetV’ be a subspace
of V of finite dimensiorw and putH’ := H N V’. We choose an elemeRf € H’
with minimal height. We take recursively, for all< «, a pointP with minimal
heightinH’ \ H/_,, where we put

Hio:= D APy,
1<j=k

fork <i — 1. PutV, := Fq(t) - H, c V’. We will now prove, by induction on,
k q k

that(Py, ..., Pk) forms a basis foH’ N'V,. Fork = 1, the statement is obvious;
we assume that it holds for< k — 1.
Suppose that

Qe (H’ﬂvlé) \Hé:
there exis{aj}1<j<x € A" and a non-constabte A such thab does not divide all
of thea; and such that

b-Q= Z aj - Pj.

1<j<k
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Upon replacingQ by an element irQ + H,, we can assume that
degaj < degb,
forall j < k. By the estimate (108), it follows from
h(b- Q) < mjaxh(aj -P))

that

c1q%®/'h(Q) < h(b- Q) < maxh(@; - Pj)

(109) , :
< czmaxq®*®/"' h(P)) < c2q P/ h(Ry).
J

As we assumed thaf < qwfl, we obtainh(Q) < h(Px). However, as

Q ¢ Vi1,
we haveh(Q) > h(Px), which gives a contradiction.
In conclusion, since dif’ = « = dimV,, we see thatl, = H’, soH’ is
finitely generated. Next, we observe that

L H)/H S ERIK) =a A/D).

Further, the kernel of the mapt(H’)/H’ — H’/t(H’) is isomorphic tc(A/(t))".
Therefore

rka;@y H'/t(H) <r —r’,
which implies thatrkH’ <r —r’ and hence difv’ < r —r’. We have thus proved,
for all finite dimensional subspaces ¥¢f that dimV’ < r —r’, which shows that
V itself is finite dimensional, with difv <r —r’. As H is then finitely generated
overA and torsion free, it is free of rank at mast-r’. O

V. Asymptotic bounds on local heights

Let K be a complete valueBly-field; in this section, we will not assume that
the valuation orK is finite with respect to the characteristic
For everyP € E(K), we can deduce from equations (85) to (100):

(110) v(Xi (P)) = v(V) + minj,,( v(m; (t* - P));
(111) v(M;j(P)) > v(W) + minj 3, *v(Xi (P));
(112) qv(mj (P)) > v(AS) + miny, y<us v(My(t* - P));
(113) v(X; (ts -P)) > U(®s) + minw,vgvs qu(Xw(P))«

LEMMA 6.17. Let E be an abelian t-module. For ajt > 1, there exists an
integer n> 0 such that: for all Pe E(K) with h(P) > 0 and for all nonconstant
a € Fq[t"]:

(114) h(a-P) > v -h(P)
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PrRooOF The endomorphism obviously satisfiehi(z - P) = q - h(P). The
idea is that, as can be expressed in terms of the operatasn M (equation (86)),
there exists, for eacR with h(P) > 0, a powett” such thah(t” - P) ~ q - h(P).
The subtlety is to find @ which holds for allP.

a) Combining the three inequalities (110) to (112) gives, fosal 0 and alli :

qSv(xi - P) = (q®0(V) + v(A%) +v(W)) + min g v(xi (t - P)).

1
O<u=us

0=<A<2o
0<k<ko

Henceg®h(P) + q°v(V) + v(A%) 4+ v(W) < max, ».. g*h(t# % . P).
For a giveny, let us fixs > 0 such thag® > g*oy. For P with h(P) large
enough, we obtain

(115) ¥-h(P)< max h{”-P).
1<p=ustko

b) Let us putpg := us + xo. We deduce from (113) that, for &
h(t®- P) < —v(®°) + q"°h(P).
In particular, we can find, foP with h(P) > 0, a constang,, > 0 such that

(116) max h(t” - P) < x,, h(P).
1<p=po

c) We now take, for each? with h(P) > 0, app(1) with 0 < pp(1) < po
such thah(t”?®. P) > v h(P), and choose recursively, for all> 1, somepp (1)
such that

pp(U—1) < pp(U) < pp(U—1) + po
and for which

ht?PW . Py > y ht?PU=D . p) > yUh(P).

We fix an integen such thaty("/#—1 > » " For eachP, we take the smallest
such thapp (u) > n. We then havep(u) — n < pg andu > n/pg and we find that

(117)  y“h(P) <ht”™© . P) = h(t""=V o t"(P)) < xpo h(t" - P),
which shows thaln(t" - P) > ¢ h(P). If ain Fg[t"], then

h@@- P) = ht%%® . P) > y h(P),
for P with h(P) > 0. |

PROPOSITION6.18. If E is pure of weightw, then there exists a constant
c1 < 1 and an integer n such that, for all R E(K) with h(P) > » and for
all nonconstant a Fq[t"]:

(118) c1lal” " h(P) < h@- P)
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PrRoOOFE Without loss of generality, we may replace thmoduleE by an in-
duced module such that, by the previous lemma, for some fixed1, we have

Y h(P) <h(t-P)
for h(P) > 0. The essential idea, expressed by Lemma 6.7, is that, fortpure
moduleskE and large powers, the endomorphismsu’_1 acts, up to lower powers
of t, more or less a&’, and hencé(ts - P) ~ qswflh(P).

a) By lemma 6.7 us := degAS < sw + §, for a fixeds > 0 and any integer
s > 0 divisible byr andz. Hence, using formulas 86 and 99, we geh(P) > 0:

av(mj - P) > v(AS)+ min  v(my(t” - P))
u,l<pu<sw+s

(119) > v(AS)+v(W)+  min +quu(xi(tﬂ.P))

iAl<pu<sw
= v(A®) + V(W) + g*(=h(t*" . P))
On the other hand, by (110:h(P) > v(V) 4+ minj  v(m; (t* - P)), so we get
(120)
—0°N(P) = gu(V) + v(A%) + v(W) + ™0 min (~h@>"T7 . P))
> gSu(V) 4 v(AS) + v(W) 4 g*op(@°T+0) — grotVsoh(tS¥ . P).

b) Notice thatv(AS) > (14 q+ --- + g5 Hv(AY). Hence, for every small
€ > 0, we can také(P) large enough such that for atl

—(@%v(V) + v(A%) 4+ v(W)) < €q°h(P).
We then obtain
grotUstoh(ts - P) = (1—€)(@%)" h(P).
Finally, if we setcy := (1 — €) g~ *0"%+0) < 1, then, for alls divisible byzr,
h(t>"(P)) > c1g°h(P).
Therefore, putting := zdr, we obtain for all nonconstaate Fq[t?9"], that

h(a(P)) = h(t®®. P) > c; [, " h(P).
0

PROPOSITION6.19. If E is pure of weightw, then there exists a constant
c2 > 1 and an integer n such that, for all B E(K) with h(P) > 0 and for
all nonconstant ae Fq[t"]:

(121) h(a-P) < ¢l h(P)

PROOFR The essential idea, using Lemma 6.7, is now to expieder large
exponents, in terms of lower powers df and the endomorphism (cf. equation
(86)) and apply the triangle inequality. Let

TS :=t"SYAS € Mat . (K[t, t™1]).
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a) For an appropriat& > §, to be fixed later, we approximate
t(7) 7 € Mat . (K[t t71])
by a matrixS with coefficients inK [t] such that
degAS —t¥ (7971 < 0.
If we put
(122)  BS:= ASAS — 15 = AS. (AS —t7 (75 7) € Maty o (K[t])

then degBS < sw + 4.
b) We expand4® = Y"*5 ASt!, introducing matrices
AT = (AT, | € Matq (K)
and set
V(AS) = minv(A[D).
u,j.i ’

Similarly, we definev(8%5), v(7°5). First, we need an estimate of45).

Upon replacingn by some scalar multiple, we may suppose that

v(Ah) >0
and hence thab(75) = v(AS) > 0 as well. If7S is the adjoint of7S, then
v(TS) > 0, and
(757! = (det75)~17S.

On the other hand, if we set dat = - (t — 6)9 with v(w) > 0, then
(123) detrs = M+ (1 —at7L) ... (1 — 0917,
If we write out det7%)~! = Y32, djt~J, then, for alin,

(124) lmin v(dj) > g3(—v(w) + nmin{v(9), O}).
<j=n

As 4% is the ‘integer part’ of

o0

(@9 =t det7H TS = > [ Y dj @ |t
i=—68 | —8=<k
0<]
k+j=i

it follows that
(125) v(4%) > g% and v(8°%) = %,

wherey := (—v(®) + (§ + 8") min{v(9), 0}).
¢) The morphism® is represented byS(m) = m - AS, hence, by equation
(122):

(126) S(m) - AS = m - (5 1 85).
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Letusseh= (ag,...,a) :=t(M) - ASandb = (by,...,by) := m- BS. As for
the right hand side, we will soon (se§ that, upon evaluating the equation

a=mott 4b
at a pointP with h(P) > 0, the terrm o 5w+ is dominant. More precisely:

(127) min o(m; YT P)) < min wu(bj (€ - P)),
0

j,0<k <Ko j,0<K <k

for all j. There we will use the result of the previous lemma to ‘bound’ the action
of the lower powers of. It follows from (127) that

(128) minuay (¢ - P)) = minu(m; (£ . Py).
).k ik

We now calculate

5/
v(@j(P)) =v (Z AT TS omy(t - P))

n=0

129

(129) >v(A%+ min_ g% (myt” - P))
u,0<u<d

> q% +qSu(W) — g *oh? - P)
d) On the other hand, combining (110) and (129), we get
—htS* . Py > u(V) + rPLn v(m (S + L py)
(130) =v(V)+ r}nKn v(@j(t* - P))

> (V) + gSv(W) + g% — g0 max ht® < . p).

0<k<ko
If we takeh(P) big enough for a fixed smadl > 0, then it follows that
(131)
hs” - P) < ht®+¥. P) < g*oht* 0. P) — (v(V) + q%u(W) + ¢°)
= ¢* (@ -aan’. p))
< (@ = Oxs+¢00™°) a°h(P);
we recall that the constamt .., was introduced in (116). If we put

co:=((1— 6)X5/+Koqk°) ,
then this proves that
ht> - P) < c2(q®)h(P),

for all s divisible byz andr. Finally, if we putn = zdr, then, for all nonconstant
a € Fq[t"],

h(@- P) = h(t%% . p) < c;ja|”. " h(P).



124 6. Analytic morphisms df-motives

e) It remains to prove formula 127. TakifgP) > 0, we calculate, using the
estimates (125) and (99):

Sw+d
vbj(P) =v | Y B"s myt* - P)

n=0
(132) > v(B8% +  min +5u(mv(tﬂ.P))

v,0<u<sw
> g% +v(W) — g*°h(t>"*’ . P)
> —(1—-e)g*h* . P)
Thus
v (bj(t* - P)) > —(1 — e)g™°ht>* ™+ . p),
for all « > 0. By lemma 6.18, we can findsa > § such that, if

Clq((s/_‘s_KO)/w > q)‘O’

then
qAOh(tSw-i-& P) > h(tsw+5/+K)
for all ¥k < «g. Thus

minv (bj (t* - P)) > —(1— e)ht>" ™+ . p),
],k

Finally, if h(P) > 0, then

minv(m; o tSWHHK P) < —h(tsw+5/ PY—v(V) < —(1— e)h(tSerrS’ . P)

],k
and hence mip, v(m;j o tS**+< . P) < min; , (bj(t* - P)) indeed. O

REMARK 6.20. a) Suppose thaE is ad-dimensionat-module such that, for
somen, we have, with respect to the coordinate basis

m
th = Z@iri,
i=0

whered; € Matyxq(K) and®p, invertible; thet-moduleE is then pure, and hence
abelian. As explained inden] in the case of global heights, this implies the exis-
tence of a constamt, > 0, depending ol € A, andn > 0 such that

jal " h(P) — ca < h(a(P)) < lal% " h(P) + ca
for h(P) > 5. This allows us to define a unique canonical local height function
A(P) :=lim g~ 'h(tS - P)

which satisfiei(a(P)) = |a|2 " h(P) for all a € Fq[t"], and such thalh — h is
bounded foh(P) > n.
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b) In general, however, it is not possible to define a canonical héightch
thath — h is bounded. Consider for example the 2-dimensional pumetive E of
weight one given by:

<¢E<t>—e>(§;)=<g 9;“)(2)

wherev(9) = 1 andu > 1. For pointsPy := < 2 ) with v(x) < 0, we obtain

that
h(t3(Px)) = g"*°h(Py) — 1,

for all s. Therefore, the constans in (98) is at leasg*, and, ifh is defined, then
the functionh — h cannot be bounded.

VI. Semistability of Drinfeld modules

Upon replacingk by a finite totally ramified extension, every Drinfeld mod-
ule ¢ defined ovelK is isomorphic to a Drinfeld modul® with coefficients inR
and which isstable in the following sense: it has coefficientsi®) and its reduc-
tion ® modulo the maximal ideal dR is a Drinfeld module over the residue fiedd
of rankr’ < r. A Drinfeld module¢ is calledgoodif it is stable and’ =r.

PROPOSITIONG.21 (Tate uniformization (DrinfeldOr1] §5)).
For every stable Drinfeld modukg, there exists a unique good Drinfeld moddie
with rank r and a unique non-trivial morphism

ep € Hom(d', d)
such that @ is the identity on the Lie algebiae(Ga k).

By the theory of entire analytic functions a@rt, the analytic mag is surjective
overKSeP. The kerneH := ker(e)(K) is anA-lattice in ®’(K); its rank is exactly
equal tor — r’ (see Drinfeld, Dr1] 85, and compare with Theorem 6.16).

Let us denote b resp.M’ thet-motives associated tb and®’. By Theorem
6.3, the morphisne induces a morphisrgj; € Honf"(M, M").

THEOREM 6.22. The Tate uniformization morphisnj e Hom®(M, M’) in-
duces an exact sequence

(133) 0> N- M-S 0 -0

of z-modules over K(t)), where ther-moduleN is trivial over a finite extension
of K.

We recall that an analytic-module is calledrivial if it is isomorphic to a
direct sum of copies ofK ({t)), 7).

PROOF. a) Surjectivity of &. As finitely generated ideals il {(t)) are princi-
pal, the kerneN := kere* is finitely generated (hence free) by — a proper analog of
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— the structure theorem for finitely generated modules over a principal ideal domain.
For each non-constaate A, the sequence

0> H—> &K)—> &(K)—=0
induces the following short exact sequencéAfa)[I"k ]-modules:
0— ®'[t] > ®[t] > H/a-H — 0.

For every maximal ideal of A, let A, denote the/-adic completion ofA; idem for
K[t], andH,. We obtain an exact sequence of the Tate modules

0— Ty(d') — Te(P) = H, — O.

We setM, := K[t],®k (1)) M (idem forM’ andN); by the contravariant correspon-
dence between Galois representations and smfeadic r-modules (Prop. 0.7), this
yields

(134) 0— Ny — My — l\?lé — 0.

In particular, this shows that the submodulee*(M) of M’ over K ((t)) has the
same rank’. As finitely generated ideals iK ((t)) are principal, there exists an
a € K{{t)) such that

A (M) =a - AT M.
Now detr,. g, divides detg, which is, up to a unitirkK *, equal to
detrg, ~ (t —6).

Hence it follows from the equation

- (dette*(,\])) = o - (detrg,)

thata, up to a unit, is inA. By (134), we conclude that is not contained in any
maximal ideal ofA, and hence* is a surjective analytic morphism.

b) N is potentially trivial. As H is strictly discrete, the action dfx onH,
hence onH, as well, is finite. Upon replacingl by a finite extension, we may
assume that this action is trivial, i.¢d c K. If the residue fielk is finite, then,
by (an analytic version of) the Galois criterion for trivial reduction (Thm.4.8), the
r-sheaf obtained fronN has good trivial reduction, a&(N) = Hy is trivial. By
the analytic lifting theoremGa3], Thm. 2.3, this implies thaN contains a trivial
7-module. Arguing with the determinant, as above, we conclude that this trivial
sub<-module is in fact saturated.

c) N is potentially trivial(Il). We now give a proof in the general cader(ot
necessarily finite). We recall (cfDf1], 85) that, for a Drinfeld module’ de-
fined overK, everyA-lattice H in ¢'(K>¢P defines a unique Drinfeld moduig
over K and a unique morphismy ¢ Hom?"(¢', ¢1) defined overK with kernel
(kerey)(KS€P = H. More preciselygy is given by

en(X) = X - ]_[ (1—%).

QeH\{0}
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Let now(P)1<j<r—r be a successively minimal basis t#ds := H (cf. [Tag2],
84). We consider the free direct summahd= A - P; C H of rank 1, and put

Hi = @o<i<r—r’A- B

Let ®; be the Drinfeld module and; € Hom?"(®’, ®;) the morphism associated
to J;. By the minimality of the baséP, ), we have

v(Q + Q) = min{v(Q), v(Q")}
for Q € JyandQ’ € Hj. Since

X
U1(X) = X - <1——>,
Qel.]_[ Q
1\{0}
we obtainv(u1(Q")) < v(Q), for all Q" € Hj. This shows that the free sub-
module
Hi := u1(H) = u1(Hy)
of ¢’ (K) is strictly discrete, and hence itis a lattice, of rarkr'— 1. The associated
entire mage; := ey, satisfiese = e; o uz, and hence yields the morphism

e:d1 > .

By induction, we thus construct Drinfeld modulkés of rankr’ + i, for everyi
satisfying 1<i <r —r’ (with ®g := ®" and®,;_,/ := @), together with surjective
morphisms

Ui € HomP"(®j_1, ®;),
whose kernels aré-lattices ingj_1(K) or rank 1. Letﬂi denote the respective
analytict-motives. By Thm. 6.3, the; induce surjective morphisms

u' e Honﬁ”(ﬂi, Mi_l).
As one sees from the determinant, each subquotiNEnt: kerur is a trivial z-
module overK ((t)). ConsequentlyN is an extension of triviak-modules over
K ((t)). Every such extension is analytically trivial over tKé®P((t)) (cf. [An1],

lemma 2.7.2). NowT¢(N) = H, is atrNiviaI representation for afl, and henceN)
is trivial overK [[t]]. This implies thaiN is actually already trivial oveK ((t)). O

VII. Tate uniformization of pure t-motives

Let E be an abelian-module with associatedmotive M. In this section, we
want to raise some questions concerning the analytic structute loét

(135) 0=NocNic...cNs1cNs=M

be a filtration ofM by saturated sub-modules ofVi overK ((t)).

The key example is provided by the filtration (133)tefotives associated
with Drinfeld modules, which we discussed in the previous chapter (Thm. 6.22).
For generat-motives, such filtrations arise from the reduction theory-sheaves,
cf. Thm. 1.26.
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We want to study how the analytic structure df@otive M can give rise to an
analytic description of theemoduleE. Unfortunately, the only well-understood ex-
ample is given by Drinfeld modules; not even for tensor products of saobdules
do we have enough arguments to work out the ideas we sketch below. In spite of
their very speculative nature, | think that these ideas, supported by analogies with
the theory of Anderson uniformization (cfAfil] Thm. 4, [Ga3] §4), can help to
give some insight into this matter.

a) We cannot resist the temptation to call a triviamodule overK [t] a (pure)
t-motive of weight 0. A first question is:

QUESTIONG6.23. Are the subquotients in such a filtration induced by algebraic
-modulest-motives, purd-motives even?

We now suppose there is a filtratighi } for M such that all subquotients are

puret-motives. For O< i < n, we putM; := M/N;_1 and
|\7|Y = Ni /Ni—l-

Let wi, ri, di = wi - ri denote the weight, rank and dimension of the ptre
motive M; inducingM;, and, ifw; > 0, let E; be the associatedmodule; idem
for M/ with associated//, wi, r/, di and, ifw{ > 0, E/.

b) From Thm. 6.9 we can extract some information on the weights. The exact
sequences

0> M - Mj > Mi;1 — 0
imply, by thatw] < wi < wjy1; in particular, it follows that
O<w=w1 <uw,

for alli. On the other hand, the exact sequences
(136) 0— M/ — Nij1/Niig — M/ 4 — 0
yield thatw; < wj_,. for everyi. In particular, there exists anwith0 < m <'s
such thatw; = 0 if and only ifi <m.

c) By Theorem 6.3, the surjective homomorphidfy — M;;1 induces an

entire analytic morphisngy € HomP(Ej1, Ej). Let H; denote the kernel o,
which, by Thm. 6.16, is aA-lattice in Ej 1 1(K®€P), whose rank satisfies

O<h<r—r’.
The exact sequence (136) induces also, for every maximaldadal, an exact
sequence of\¢[["k ]-modules
(137) 0— T¢(Mi41) — T,(Mj) - T,(M/) — 0.

As thet-moduleE can be defined over a finitely generated extensioaf Fq(t),
and we can hence assume thais not algebraically closed, this provides useful
information.

d) Suppose that < m. From (137) it follows, considering-torsion modules
for some maximal idea of A that

0— Ej+1[¢] — E[{] > W — 0,
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whereW is a trivial (A/¢)[T'k ] module @] = 0). This suggests, in analogy with
Tate uniformization of Drinfeld modules, th&¢ should be associated to the lat-
tice H; by W = H; /£H;. That triggers the following suggestion:

QUESTION6.24. Is the complex > Hj — Ej+1(K®Ph — Ej(K%¢h — 0
exact?
REMARK 6.25. If we suppose that this complex is exact, i.e.
Ei11(K®®H) — E;j (K
is surjective, then the exact sequence
0— Hi — Ej11(KP - E(K**P) - 0
induces, for alb € A, the short exact sequence
0— E'[a] — E[a] > H/a-H — 0
of (A/a)-modules; and this then shows thathas full rankr —r’.
e)If i > m, then the sequendd’ — M; — M1 induces, by Thm. 6.3, a
complex
(138) 0— Ei;1(K®®H — Ej(K®®*H — E/(K**® — 0.
The exact sequence
0 — Te(Eit1) = Te(Ei) — Te(E) — 0,
which comes from (137), suggests the question:
QUESTIONG.26. Is the complex (138) exact?

Suppose the answer to the above questions could be proved to hold, then we
would obtain a notion of ‘Tate uniformizability’, an analytic structureEgfwhich
we can axiomatize as follows:

DEFINITION 6.27. ATate uniformization of E consists of

1) ann-tuple(E := Ej, E>. .., Ep) of abeliant-modules,

2) entire morphisms; : Ej;1 — Ej,for1<i <n-1,

3) an integem < n, and, fori < m, anA-lattice H; of Ej;1(K),
4)an(n —m— 1)-tuple(E,,,, ..., E/_,) of abeliant-modules and
5) entire morphismsg/ : Ej — E{,form+1<i <n-1,

such that the following sequences are exact:

O—-H —-E>—>E1—>0

0—- Hpn—> Emy1 > En—0

(139) 0— Emy2 = Emt1 — Er/'n+1 -0

0—> En—>En-1— E,_;— 0.
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With his discovery of mathematics,
Galois became absorbed and neglected his other courses.
Before enrolling in M. Vernier’s class, typical comments about him had been:
Religious duties — Good
Conduct — Good
Disposition — Happy
Work — Sustained
Progress — Marked
Character — Good, but singular

After a trimester in M. Vernier’s class, the comments were:
Religious duties — Good
Conduct — Passable
Disposition — Happy
Work — Inconstant
Progress — Not very satisfactory
Character — Closed and original
The words “singular”, “bizarre”, “original” and “closed” would appear more and more
frequently during the course of Galois’s career at Louis-le-Grand.
P. Dupuy (cf. Rot])
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