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For a given problem, you don’t need to know that much, usually —
and, besides, very simple ideas will often work.

Jean-Pierre Serre [CL ]





A casual preface

The preface tries to give a non-specialist taste of what Galois theory and this
thesis are about.

§1. Galois groups.Suppose one is interested in solving polynomial equations.
Such an equation

(1) ar Xr + ar−1Xr−1 + · · · + a0 = 0,

where the coefficientsai are rational numbers (fractions), is calledsolvable by rad-
icals, if the solutionsα can be obtained from the coefficientsai in a finite sequence
of steps, each of which may involve addition, subtraction, multiplication, division,
or takingn-th roots. For example, if the degreer = 2, then

α =
a1±

√
a2

1 − 4a0a2

2a2
.

Actually, every polynomial equation of degree at most 4 is solvable in radicals, as
there exist similar universal formulas.

A question which puzzled 18th century arithmeticians is1

Can polynomial equations of degree at least 5 be solved by rad-
icals?

Around 1830, Evariste Galois came up with a theory of polynomial equations
which not only answered this question but in fact introduced new structures that
would revolutionize algebra. Beyond that, he provided mathematics with one of its
most fascinating biographies, by leading a very short but agitated life.

All night long he had spent the fleeting hours feverishly dashing off
his scientific last will and testament, writing against time to glean a
few of the great things in his teeming mind before the dead which he
saw could overtake him. Time after time he broke off to scribble in
the margin “I have not time; I have not time,” and passed on to the
next frantically scrawled outline. What he wrote in those last desperate
hours before the dawn will keep generations of mathematician busy for
hundreds of years. He had found, once and for all, the true solution of a
riddle which had tormented mathematicians for centuries: under what
conditions can an equation be solved? [Bel], p. 375

1For an account on the history of this topic and of algebra in general, there is e.g. [Wae].
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Thus, at least according to E.T. Bell and mathematical folklore2, Galois scrib-
bled down the elements of his theory on the eve of his fatal duel.

Originally, the equation X2 = −1 had no solution.
Then the two solutions i and−i were created.

But there is absolutely no way to tell who is i and who is−i .
That is Galois theory.

S.S. Abhyankar [Abh]

If we take a polynomial equation (1) with rational coefficients, some solutionsα

may not be defined over the fieldQ of rational numbers itself, but then we can
consider the smallest fieldK which containsQ and all the solutions of (1). Just
like we could replacei by −i without making any difference, we obtain a finite
set of symmetries of the fieldK which leaveQ fixed; these symmetries form a
group, called theGalois groupGal(K/Q). Galois observed that ifr ≥ 5, then this
group in general does not have a ‘solvable’ structure, which implied that polynomial
equations of degree at least 5 cannot be solved by radicals.

The field Q̄ which containsQ and the solutions of all polynomial equations
overQ is called thealgebraic closureof Q, and to this extension we can again as-
sociate an (infinite) group, the absolute Galois group0Q. This single group now en-
codes all the information on algebraic extensions ofQ. Unfortunately, its structure
is tremendously complicated and a great deal of modern number theory is directly
related to trying to understand it. One idea is to study it by its action on vector
spaces, i.e. by its linear representations.

§2. Galois representations of0Q. Suppose one is interested in the question:3

(Fermat’s last theorem)Does the equation

(2) Xn + Yn = 1

have any rational solutions for X and Y , both different from
zero, if the integer n is at least3?

Around 1637, Pierre de Fermat wrote down this problem in his copy of Diophantos’
Arithmeticae, and went on to say that he could show by a very elegant argument that
no such solutions exist, but that the margin was too narrow to give it. Thus he would
haunt generations and generations of mathematicians, as they would not be able to
find any proof for his so-called ‘Last Theorem’, but beyond their stubbornness, they
loved the problem dearly because all attempts to solve it generated good theories
anyway.

Before Wiles finally did prove, in 1994, that there are no such solutions, it was
already known, by another theory, that there could be at most a finite number of
solutions. If one considers the equation (2) over the complex numbers, then the
solutions form a real surface. In 1984, Faltings proved:

2See [Rot] for a demystified account.
3Those also interested in the story surrounding the question should read [Sin].
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(Mordell conjecture)The number of rational solutions of any
system of polynomial equations whose complex solutions form
a surface with at least 2 handles, is finite.

If one considers the equation (2) over the complex numbers, then the solutions form
a surface indeed, and the number of handles equals

(n− 1)(n− 2)/2,

so this theorem applies ifn ≥ 4 (Forn = 3, Fermat’s last theorem can be proved by
an straightforward number theory argument).

Not only are Faltings’s and Wiles’s theorems two landmarks of 20th century
mathematics, they also illustrate perfectly the prominence of Galois theory. They
study linear representations of the absolute Galois group, i.e. the action of0Q on
certain vector spaces (over the field of`-adic numbers). In other words, they con-
sider systems of polynomial equations which arise from algebro-geometric objects
(elliptic curves, abelian varieties) and which carry a linear structure. The above
two problems can be reformulated into equivalent statements on the representation-
theoretical properties of theseGalois representations(the Tate conjecture [CS],
resp. the Taniyama-Weil conjecture [CSS]).

Anyway, the excitement about Wiles’s proof that was still in the air certainly
boosted my motivation when I started my Ph.D. research on Galois representations.
A second good excuse for bringing up Faltings’ theorem here, is that some of the
essential ideas of its proof had been developed in Zarhin’s work on the (`-adic) Tate
conjectures over function fields of finite characteristic, i.e. finite extensions of the
fieldFp(t) of rational functions in one variable over the finite fieldFp of p elements.
This and many other examples of ‘transplantation’ of pieces of theory motivate why
one would want to do number theory without dealing with numbers: the function
field case often serves as a terrific analogue for the number fieldQ. This thesis will
be a study of Galois representations over function fields.

§3. Galois representations associated toτ -sheaves.Let p be a prime num-
ber andK a field of characteristicp, i.e. wherep times 1 equals 0. For such a field,
we have the identity

(3) (X + Y)p = X p + Yp.

The field K sep which containsK and the roots of all polynomials overK whose
derivative is nonzero is called the separable closure ofK . The absolute Galois
group0K is defined as the group of symmetries ofK sepwhich leaveK invariant.

Take an invertibler × r matrix A with coefficientsai j lying in K , and look at
the following system ofr algebraic equations inr variablesX1, . . . , Xr :

X p
1 = a11X1+ a21X2 + · · · + ar 1Xr

X p
2 = a12X1+ a22X2 + · · · + ar 2Xr

...

X p
r = a1r X1+ a2r X2 + · · · + arr Xr
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or, for short:

(4) (X p
1 , . . . , X p

r ) = (X1, . . . , Xr ) · A.
By the identity (3), the setW(A) of solutions(X1, . . . , Xr ) ∈ (K sep)r for (4) is
a vector space over the finite fieldFp with p elements, and one proves that it has
dimensionr . The absolute Galois group0K permutes these solutions, so we obtain
an action of0K on W. Thus, in finite characteristic, Galois representations can be
obtained from such a matrixA; the converse is true as well.

Consider the power series ringK sep[[t]], consisting of infinite power series

S :=
∞∑

i=0

si t
i = s0+ s1t + s2t2+ . . .

with coefficientssi lying in K sep. We define an operationσ on it as follows:

σS :=
∞∑

i=0

sp
i t i .

Choose an invertible matrixA with entries in the power series ringK [[t]]. For
power seriesSj =∑∞i=0 si j t i ∈ K sep[[t]], we look at the equation

(5) (σS1, . . . ,
σSr ) = (S1, . . . , Sr ) · A.

This equation actually involves an infinite number of polynomial equations in the
infinite number of variablessi j . The setTt (A) of solutions

(S1, . . . , Sr ) ∈ K sep[[t]]r
is again endowed with a linear structure and an action of the Galois group0K .

Finally, suppose we have a matrixA defined overK [t]. We can then, analo-
gously toT̀ (A) in the above, construct a ‘Galois module’T̀ (A), for all irreducible
polynomials` in Fp[t], and thus obtain asystemof Galois representations. We
can rephrase this in a more intrinsic way by introducing Drinfeld’sτ -modules4. A
τ -module M over K [t] is a free module over the ringK [t], together with aσ -
semilinear mapτ (σ acts trivially ont and by raising-to-the-p-th-power onK ). If
we denote byA the matrix representingτ with respect to some basis forM, then we
can associate toM a system of Galois representationsT̀ (M) as before.

The first part of this thesis deals with properties of these systems associated to
a τ -module. Consider the set of equations (5) in an infinite number of variabless(t)i j
which defineTt (M), and, at the same time, consider analogous sets of equations in
variabless(`)i j for the otherT̀ (M). A question one would like to answer is to give
a qualitative description of the (infinite) Galois group corresponding to the field
extension defined by the solutions of these equations. A naive formulation of the
so-called adelic Mumford-Tate conjecture is that, under certain conditions on the
τ -moduleM (more precisely, no nontrivial endomorphisms plus a condition on the
determinant module),

4Using more efficient language, we will actually, instead ofτ -modules, considerτ -sheaves.



Every permutation of the solutions of these equations that
- respects all the linear relations and
- leaves a particular finite set of variables s(`)i j invariant

is a Galois symmetry.5

On the other hand, and on a deeper level,τ -sheaves are also closely related to
abeliant-modules and Anderson’st-motives, basic structures in the arithmetic of
function fields. These offer a striking, even if poorly understood, counterpart for
motives in algebraic geometry. In the second part of this thesis, we will explain
how general results onτ -sheaves and Galois representations shed new light on the
structure oft-motives.

Und so hat es auch schon damals, als Ulrich Mathematiker wurde,
Leute gegeben, die den Zusammenbruch der Europ¨aischen Kultur voraussagten,

weil kein Glaube, keine Liebe, keine Einfalt, keine G¨ute mehr
im Menschen wohne, und bezeichnenderweise sind sie alle

in ihrer Jugend- und Schulzeit schlechte Mathematiker gewesen.
Robert Musil [Mus] I §11 p. 40

5In more cryptic terms: the image of the Galois representation is almost as large as ‘possible’. See
the artist’s impression on page v!
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Introduction

First, we state definitions and fix notations for the central objects considered:
Drinfeld’s τ -sheaves and Anderson’st-motives, with their associated systems of
Galois representations. In sectionII , we give a concise overview of the present
work, its evolution and its main results. SectionIII contains a survey in Dutch.

I. τ -Sheaves andt-motives

§1. Algebraicτ -sheaves.
1. τ -Modules.Let R be a commutative ring andσ an endomorphism ofR. For

an R-moduleM, we define theR-module

σ ∗M := Rσ ⊗R M,

whereRσ is the ringR, viewed as anR-algebra viaσ . Any R-linear homomorphism

τ : σ ∗M → M

can be regarded as a mapM → M which isσ -semi-linear, i.e.

τ (r ·m) = σr · τ (m)
for r ∈ R andm ∈ M.

DEFINITION 0.1.

i) A τ -module (M, τ ) (for short: M) over R is a finitely generated projec-
tive R-module endowed with an injective morphism

τ : σ ∗M → M.

ii) A morphism of τ -modules is an R-linear morphism respecting the ac-
tion of τ . An isogenybetweenτ -modules is an injective morphism of
τ -modules whose cokernel is a torsionR-module.

iii) The tensor product M1 ⊗ M2 of two τ -modules hasM1 ⊗R M2 as the
underlyingR-module and aτ -action defined by

τ (m1⊗m2) = τm1⊗ τm2

for mi ∈ Mi .
iv) A τ -module is calledsmooth if τ is an isomorphism. It is calledtriv-

ial if it is isomorphic to a direct sum of copies of theτ -module whose
underlyingR-module isR itself and where

τ : Rσ → R : 1 7→ 1.



18 0. Introduction

v) If all nontrivial sub-τ -modules of a givenτ -moduleM are isogenous to
M, thenM is calledsimple.

2. τ -Sheaves.Let Fq be a finite field withq elements, and letp denote its
characteristic. We fix an absolutely irreducible affine smooth curveC with constant
field Fq, called the base curve. We denote its function field byF and put

A := H 0 (C,OC) .

For anyFq-schemeX, the coefficient scheme, we consider the product

CX := C ×Fq X.

If X is an affine scheme SpecB, we also writeCB := CX.
Denote byϕ : X→ X the Frobenius morphism defined by the map

x 7→ ϕx := xq

on OX. We then endow the schemeCX with the endomorphismσ := id × ϕ. The
following object, closely related to Drinfeld’s shtukas andF-crystals, often appears
under the name ‘ϕ-sheaf’ as well (cf. [TW ]):

DEFINITION 0.2. (Drinfeld) Aτ -sheaf(M, τ ) (for short: M) of rank r ≥ 1,
defined onCX, is a locally freeOCX -module of finite rankr , endowed with an
injective morphism

τ : σ ∗M → M.

A morphism of τ -sheavesis aOCX -linear morphism which respects the action ofτ .

EXAMPLE 0.3. The most elementary example is given by puttingC := A1,
and, for some fieldK containingFq, settingX := SpecK . We will identify the
τ -sheafM with its module of global sections, a freeK [t]-module of finite rank
endowed with aσ -semi-linear injective morphism, where the endomorphismσ acts
as Frobenius onK and trivially ont .

Let us fix a basis forM. We expressτ with respect to this basis by means of
a matrix1 in Matr×r (K [t]), the ring ofr by r matrices overK [t]. If we write
m := (m1, . . . ,mr ), then1 is determined by

τ (m) = m ·1.
If we replacem by another basism′ = m · U , with U ∈ GLr (K [t]), thenτ is
represented by

U−1 ·1 ·σU,

where the matrixσU is obtained by applyingσ to the entries ofU .

REMARK 0.4. As is explained in [TW ], if CX is affine, every locally free
sheafM onCX injects into a free sheafMe of finite rank as a direct factor:

Me = M ⊕ M0.

We then define a (noninjective!)OCX -linear homomorphismτe : σ ∗Me→ Me by

τe := τ ⊕ 0.

The pair(Me, τ ) (which is not aτ -sheaf in our terminology) is called anfree ex-
tension by zeroof M.



I. τ -Sheaves andt-motives 19

3. Characteristic.For aτ -sheafM on CX, the cokernel cokerτ of τ is sup-
ported on a closed subscheme of codimension at least 1 ofCX, asτ is an injective
morphism.

DEFINITION 0.5. Consider a morphismι : X → C and its graph0(ι) in CX.

i) We say that aτ -sheafM on CX hascharacteristic ι, if cokerτ is sup-
ported on the graph0(ι) and if the restriction cokerτ |0(ι) is a locally free
O0(ι)-module of a constant rankd, which is called thedimensionof M.

ii) For a field K containingFq, consider a morphismι : SpecK → C. If the
image of the generic pointη of SpecK via ι is the generic point ofC, then
we say that the characteristic isgeneric, and it is calledspecialotherwise.

iii) Finally, consider a morphismι : SpecK → C and letX be a connected
Fq-scheme with function fieldK . We then call a closed pointx of X
(or its associated valuationvx on K ) finite if ι extends to a morphism
ι : X → C, andinfinite if not. If x is finite, then we callι(x) theresidual
characteristic point at x.

EXAMPLE 0.6. In the context of example 0.3, the determinant of a matrix1

representingτ is independent of the choice of a basism up to a unit inK . Given a
morphismι : SpecK → A1 induced by a map

ι∗ : Fq[t] → K : t 7→ θ,

theτ -moduleM has characteristicι if the determinant of1 equals

h · (t − θ)d,
whereh is a unit in K andd the dimension ofM. The characteristic is generic if
and only if θ is transcendental overFq. A valuationv is finite with respect toι if
and only ifv(θ) ≥ 0.

§2. Galois representations.
1. `-Adic τ -sheaves.Let ` be a closed point ofC and X anFq-scheme. We

denote byA` the completion with respect to thè-adic topology of the local ring
at ` of regular functions onC, and byF` its field of fractions. Also, letκ` be the
residue field ofA`.

For a closed point̀ of C and anFq-schemeX, we let ĈX,` be the formal
completion ofC ×Fq X along{`} × X andOĈX,`

its structure ring. The Frobenius

morphismϕ on X induces the endomorphismσ := id × ϕ on ĈX,`.
Let π1(X) denote the arithmetic fundamental group ofX (cf. [SGA1] Exposé

No. 5). We have the following fundamental correspondence:

PROPOSITION 0.7 (Drinfeld, [TW ] Prop. 6.2). The category of smoothτ -
sheaves of rank r on̂CX,` is antiequivalent to the category of X-schemes of free
A`-modules of rank r with continuousπ1(X)-action.

We now recall the definition of the functorT establishing this antiequivalence
(cf. [TW ] §6). Let N be a locally freeOX-module endowed with a morphism

τ : ϕ∗N → N.
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For every X-schemeX′, we define theX′-valued points of the scheme ofFq-
modulesT(N) by

(6) T(N)(X′) := { f ∈ HomOX (N,OX′ ); f ◦ τ = ϕ ◦ f
}
.

For everyn ≥ 1, letCn
X,` denote then-th formal neighborhood of̀. We denote

the closed embedding
Cn

X,` ↪→ ĈX,`

by i n
` and the morphismCn

X,`→ X by jn. For an`-adicτ -sheafM̂`, we set

(7) Mn
` := ( jn)∗(i n

` )
∗M̂`,

a locally freeOX-module endowed with a morphism

τ : ϕ∗Mn
` → Mn

` .

We thus obtain an injective system ofτ -modulesMn
` on X, which yields a projective

systemT(Mn
` ) of schemes ofFq-modules. We put

T(M̂`) := lim← T(Mn
` ).

This moduleT(M̂`) naturally carries the structure of a scheme ofA`-modules of
some rankr ′ ≤ r , with equality holding if and only ifM̂` is smooth.

2. Tate modules.For a fieldK containingFq, let K sepbe the separable closure
of K and0K the absolute Galois group

Gal(K sep/K ) ∼= π1(SpecK )

of K . The functorT associates to each̀-adic τ -sheafM̂` over ĈK ,` the scheme
T(M̂`) of freeA`-modules of finite rank with continuous0K -action. LetM be a
τ -sheaf onCX. We can associate toM an`-adicτ -sheaf onĈX,` via

(8) M̂` := OĈX,`
⊗OCX

M.

DEFINITION 0.8. Let K be a fieldK containingFq. Consider aτ -sheafM
overCK and a closed point̀ of C.

i) For a closed point̀ of C, then theA`[0K ]-module

T̀ (M) := T(M̂`)(SpecK sep)

is called theTate module ofM at `. Its A`-rank equals the rank of̂M` if
and only if the latter is smooth. We also consider the dualA`[0K ]-module

H`(M) := HomA` (T̀ (M),A`).

ii) Recall thatκ` denotes the residue field at the closed point` of C. With
the notations of (7), we define thè-torsion module as the continuous
κ`[0K ]-module

(9) W`(M) := T(M1
` )(SpecK sep).

iii) We define anF`[0K ]-module associated toM as follows

(10) V`(M) := F` ⊗A` T̀ (M).
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REMARK 0.9. By the injectivity ofτ on M, the codimension of the support
onCX of its cokernel is at least 1. We remark that it follows from this that, if
X = SpecK , for a field K containingFq, then M̂` is smooth for all but a finite
number of closed points̀of C. If X has generic characteristicι, thenM̂` is smooth
for all `.

EXAMPLE 0.10. We take up Example 0.3. Let` be the point ofC correspond-
ing to the ideal(t). The ringA` is then isomorphic to the power series ringFq[[t]].
The Tate moduleT̀ (M) can be computed as follows: It is theFq[[t]]-module con-
sisting of vectors(X1, . . . , Xr ) ∈ K sep[[t]]⊕r satisfying

(11) (σX1, . . . ,
σ Xr ) = (X1, . . . , Xr ) ·1.

The`-adicτ -moduleM̂` is smooth if det1 ∈ K [t] is not divisible byt , and then
T̀ (M) has full rankr .

REMARK 0.11. TheF`[0K ]-modulesV`(M) give rise to continuous represen-
tations

ρ` : 0K → AutF`(V`(M)).

These representations form a strictly compatible system of Galois representations
(cf. Thm. 3.3) in the sense of Serre ([Se1]) and, by work of Tamagawa, also the Tate
and semisimplicity conjectures (cf. Thm. 3.7) are known to hold.

For any subset3 of closed points ofC, we consider the rings

κ3 :=
∏
`∈3

κ`

andF3 :=
∏
`∈3

′
F`,

(12)

where the prime indicates that, if3 is infinite, then we consider the restricted prod-
uct, i.e.F3 is the subring of

∏
`∈3 F` consisting of elements(a`)` such thata` ∈ A`

for almost all` in 3. We put:

W3(M) :=
∏
`∈3

W`(M)

andV3(M) :=
∏
`∈3

′
V`(M).

(13)

If 3 contains all closed points ofC, then we setκad := κ3 and

(14) Wad(M) := W3(M);
idem for Fad andVad(M).

§3. Andersont-motives. We now review Anderson’s definition of abeliant-
modules andt-motives ([An1], §1). When speaking oft-motives, we will, as was
done by Anderson himself, restrict ourselves to the caseC = A1, the affine line
overFq. There should be no obstacles to generalize to the case whereC is equal
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to C̄\{∞}, whereC̄ is an absolutely irreducible smooth projective curve with con-
stant fieldFq and∞ a closed point of̄C. We fix a ring isomorphism

A = H 0(A1,OA1) ∼= Fq[t].
1. t-modules.Let K be a field containingFq. The ring EndFq(Ga,K ) of Fq-

linear endomorphisms ofGa,K is isomorphic toK [ϕ], the skew polynomial ring
generated by the Frobenius morphismϕ : κ 7→ κq and with the commutation
relationϕ · κ = κq · ϕ, for all κ ∈ K . The ring EndFq(G

⊕d
a,K ) can then be identified

with the matrix ring Matd×d(K [ϕ]).
DEFINITION 0.12. LetK be a field containingFq.

i) A d-dimensional t-module (E, φE) (for short: E) defined over K is
an algebraic groupE isomorphic toG⊕d

a,K endowed with an injectiveFq-
algebra morphism

φE : A → EndFq (E).

ii) A morphism of t-modules is a morphism of the underlying algebraic
groups which commutes with the action ofA.

iii) For a given ring morphismι∗ : A → K , we say that ant-moduleE de-
fined overK hascharacteristic ι∗ if, for everya ∈ A, the endomorphism
on Lie(E) induced byφE(a) has single eigenvalueι∗(a).

To a d-dimensionalt-module E defined overK , we associate theK -vector
space

M(E) := HomFq (E,Ga,K )

of Fq-linear algebraic homomorphismsE → Ga,K . The action ofA on E induces
ant-module structure onM(E) via

a ·m := m ◦ a,

for m ∈ M(E) anda ∈ A. This action commutes with the action ofK , and therefore
we can seeM(E) as a module overK ⊗Fq A = K [t].

If M(E) is finitely generated overK [t], it is automatically free of finite rank, by
[An1], Lemma 1.4.5. The Frobenius endomorphismσ on Ga,K yields an injective
K [t]-linear map

σ ∗M(E)→ M(E),

which endowsM(E) with the structure of aτ -module overK [t].
We fix a characteristic morphismι : SpecK → A1, defined by a map

ι∗ : A → K

(cf. Example 0.6). Remark that theτ -moduleM(E) has characteristicι if and only
if E has characteristicι∗. Finally, we define

DEFINITION 0.13. (Anderson)
Let E be ad-dimensionalt-module overK with characteristicι∗. If M(E) is finitely
generated overK [t] (hence free, of some rankr ), and M(E) has characteristicι,
thenE is called anabelian t-moduleand theτ -moduleM(E) overK [t] (or, equiv-
alently, the associatedτ -sheaf onA1

K ) is called at-motive, of dimensiond and
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rankr . A 1-dimensional abeliant-module is called aDrinfeld module (see [Dr1],
[AlB ], [Go4], etc.).

Any morphisme : E→ E′ of abeliant-modulesE, E′ induces a morphism

e? : M(E′)→ M(E) : m 7→ m ◦ e

of the associatedt-motives. We then have:

PROPOSITION0.14 (Anderson ([An1] §1)). The categories of abelian t-mod-
ules and t-motives are antiequivalent.

2. Purity. Let∞ be the point at infinity of the projective lineP1 overFq such
thatP1 = A1 ∪ {∞}. We consider the formal completion

P̂1
K ,∞

of P1
K along{∞} × SpecK and its structure ringO

P̂1
K ,∞

. For a sheafM̃ onP1
K , we

set

M̂∞ := O
P̂1

K ,∞
⊗O

P
1
K

M̃.

DEFINITION 0.15 (Anderson ([An1] §1.9)). Aτ -sheafM onA1
K is calledpure

(of weightw) if there exists ∈ N, and an extensioñM of M to P1
K such that

τ s((σ s)∗M̂∞) = tsw · M̂∞.
PROPOSITION0.16 (Anderson ([An1], Prop. 1.9.2)).Let M be aτ -sheaf onA1

K
with characteristicι and dimension d. If M is pure of weightw, then there exists an
abelian t-module E of dimension d, defined over a finite inseparable extension K′
of K , such that MK ′ ∼= M(E). If r denotes the rank of M, then rw = d.

3. Drinfeld modules.

DEFINITION 0.17 (Drinfeld ([Dr1], [AlB ], [Go4], etc.)). LetC = C̄\{∞},
whereC̄ is an absolutely irreducible smooth projective curve with constant fieldFq

and∞ a closed point of̄C. Put

A := H 0(C,OC),

and, for a fieldK containingFq, let ι∗ : A → K be a ring morphism. ADrinfeld
A-module φ defined overK is a 1-dimensionalA-module

φ : A → EndFq (Ga,K )

such that the induced action∂φ : A → End(Lie(E)) on the Lie algebra Lie(Ga,K )

is given byι∗, butφ 6∼= ∂φ.

REMARK 0.18. Prop. 0.16 implies, in particular, that any pureτ -sheaf M
onA1

K with dimension 1, corresponds, over a finite inseparable extension, to a Drin-
feld module. Conversely, thet-motiveM(φ) corresponding to a Drinfeld moduleφ,
is always pure (cf. [An1] Prop. 4.1.1)
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4. Tate modules.For a t-moduleE over K , one associates to every nonzero
ideal` of A, with generatorλ the`-torsion module

E[`] = ker(φE(λ))(K̄ ).

It is a finite A/`-module endowed with a continuous action of0K . For every
nonzero maximal ideal̀, we consider the system of morphisms

φE(λ
m) : E[`m+n] → E[`n].

DEFINITION 0.19. The inverse limit

T̀ (E) := lim← E[`n]
is the`-adic Tate module ofE.

If E is abelian with associatedt-motiveM and the characteristic is generic (to
assure thatM̂` is smooth for everỳ), then we have an isomorphism

(15) T̀ (E) ∼= T̀ (M)

of A`[0K ]-modules by [An1], prop. 1.8.3 (cf. [Tag3] as well).
5. What’s in a name?The categoryt−MotK of t-motives overK is an additive

tensor category. In Def. 0.8, we defined, for every closed point` of A1, a contravari-
ant functorV` from t−MotK to the category of finite dimensionalF`-vector spaces
with a continuous action of0K . This can be considered as the`-adic realization for
t-motives.

Anderson, Gekeler etc. (see [Go2]) developed a ‘de Rham’ realization, a func-
tor Vd R from t−MotK to the category of finite dimensionalF∞-vector spaces,
whereF∞ is the completion ofOP1 at∞. For uniformizablet-motives (cf. 5.2),
there is also the notion of a Betti realization, given by the corresponding lattice.
Further, as we just saw, Anderson gave a definition of purity.

Thus, judging from its formal properties which compare very well with that of
classical motives from algebraic geometry (as discussed in [Se6] and [Se7] e.g.), the
categoryt-motives have a very ‘motivic’ nature indeed. However, nothing seems to
be known yet about the relation with cohomology of algebraic varieties in charac-
teristic p.



II. A bird’s eyes’ view 25

II. A bird’s eyes’ view

§1. The starting point6 for this research project was given by Serre’s famous
theorem on the image of the absolute Galois group of a number field on the Tate
modules of an elliptic curve:

THEOREM 0.20 (Serre ([Se3], 1972)). Let E be an elliptic curve without po-
tential7 complex multiplication defined over a number field K with absolute Galois
group0K . For any prime number p, consider the Tate module Tp(E) of E at p and
the associatedQp[0K ]-module

Vp(E) := Qp ⊗ Tp(E).

The image of the ‘adelic’ representation of0K on the restricted product

Vad(E) :=
∏

p

′
Vp(E)

is open inGL2(
∏′

pQp), for the adelic topology.

Roughly speaking, the main ingredients of its proof include:

i) the fact that the0K -modulesVp(E) form a strictly compatible system of
Galois representations and satisfy the Tate and semisimplicity conjecture;

ii) an application of the theory ofp-adic Lie groups to show that, ifE has no
potential complex multiplication, the image of the representation

ρp : 0K → GL2(Qp),

given by the continuous0K -action onVp(E), is open for allp;
iii) the study of the action of tame inertia onVp(E);
iv) the construction of compatible systems of 1-dimensional Galois represen-

tations associated to Hecke characters (cf. [Se1]).

Combining results i), iii) and iv) with a classification of maximal subgroups of
GL2(Fp), Serre first proves: IfE has no potential complex multiplication, then
the Galois representation

ρ p : 0K → GL2(Fp)

given by theFp[0K ]-modulesE[p] of p-torsion points is surjective for almost all
primesp. Thm. 0.20 follows from this by ii) and some group theory.

§2. Consider an affine, smooth, absolutely irreducible curveC with field of
constantsFq en denote byA the ring of global functions. Analogously to Thm. 0.20,
there is an ‘adelic Mumford-Tate conjecture’ on the image of the adelic representa-
tion associated to Drinfeld modules (cf. Conj. 3.17 as well):

6I want to thank G. Cornelissen, J. Top, M. van der Put and J. Van Geel for suggesting this topic
for my FWO research project.

7Let P be a property related to a fieldK . We say that the property holdspotentially, if it holds for
some finite extensionK ′ of K .
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CONJECTURE0.21. Let φ be a Drinfeld module (Def. 0.13) of rank r , de-
fined over a global function field K , without potential complex multiplication and
of generic characteristic. The image of the representationρ3 of 0K on the module
V3(φ) (see (13)) is open, for any set3 of closed points ofC.

Using heavy machinery from the theory of algebraic groups and Serre’s ideas
on Frobenius tori, Pink proved this conjecture in [Pi2] (Thm. 0.1; 1997) in the case
that3 is a finite set.

It was not so hard to realize that Serre’s ideas, which deal with 2-dimensional
representations, together with Pink’s result, already allow to prove Conj. 0.21 for
Drinfeld modules of rank at most 2. This line of thought was worked out in [Ga1].
To deal with the case of general rank, more ideas are needed, in particular on sub-
groups of finite algebraic groups (work of Larsen-Pink [LP]) and on the absolute
irreducibility of the residual representationsρ`, which will be explained in upcom-
ing work by Pink and Traulsen.

§3. The underlying motive in this research project was to generalize the tech-
niques that are used in the above result from the case Drinfeld modules to arbitrary
t-modules. In the first place, we wanted to study the action of inertia on the Tate
modules associated toE. If we let K is a valued field containingFq, then this re-
quires that we find a suitable model8 for the t-moduleE with coefficients in the
valuation ringR of K whose reduction modulo the maximal ideal ofR yields some
useful information.

For Drinfeld modules, there is a satisfying theory of models (see [Tag2], §1).
We know, for example, that, for every Drinfeld moduleφ, there potentially exists a
‘stable’ model, i.e. a Drinfeld module with coefficients inR, isomorphic toφ and
whose reduction is a Drinfeld module over the residue field ofR, whose rankr ′ is
possibly smaller than the rankr of φ. The model is called good ifr = r ′.

Assume thatK is complete. Drinfeld’s proposition on Tate uniformization
(Prop. 2.10) then says: There exists a good Drinfeld moduleφ′ over R and an
A-lattice H in K sep(cf. Def. 6.15) such that we have an exact sequence

(16) 0→ H → φ′ → φ→ 0

of rigid analyticspaces endowed with anA-action.
As a consequence of this, the inertia groupIK acts potentially unipotently on all

of its Tate modulesT̀ (φ), except at the residual characteristic point`′ (Def. 0.5.iv),
if it exists. Compare this to the classical monodromy theorem onp-adic representa-
tions, stating that the inertia group of a local field of residual characteristicp′ 6= p
acts potentially unipotently.

Unfortunately, extrapolating this satisfactory situation to general (abelian)t-
modules is impossible. This is shown by the existence of a ‘nonsemistable’ abelian
t-moduleE (see Prop. 2.11), where the action of inertia on the Tate modulesT̀ (E)
is not always unipotent for̀ 6= `′.

8This line of thought was worked out in the project proposal ‘Bad reduction oft-modules’ submit-
ted to the Swiss Science Foundation.
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But, as it turned out (Thm. 6.22), one can reinterpret the analytic structure of a
Drinfeld moduleφ (cf. equation (16)) into an exact sequence

(17) 0→ N̂ → M̂(φ)→ M̂(φ′)→ 0

of τ -sheaves onA1
K , seen as a rigid analytic space. HereM̂(φ) (resp.M̂(φ′)) is the

analyticτ -sheaf associated to thet-motive ofφ (resp.φ′). This triggered the idea
to forget about thet-modules (for a while) and concentrate on developing a theory
of models forτ -sheaves instead. This strategy proved quite fruitful end allowed us
to get some new insights into the theory of Galois representations associated with
τ -sheaves on the one hand, and the arithmetic structure oft-motives on the other
hand.

§4. Overview. Let us now make a tour through some of the main results in this
thesis. LetX be an irreducible DedekindFq-scheme with function fieldK andM a
τ -sheaf onCK .

Chapter 1. If X = SpecR, for a discrete valuationFq-algebraR, then it suf-
fices, in order to define a modelM for M on CX (Def. 1.1), to give its stalk at the
generic point of the special fibre. This observation by L. Lafforgue allows us to
show for a givenτ -sheafM the existence

- of nondegenerate modelsM for M onCR′ (Def. 1.6), for a finite separable
extensionR′ of R, en

- of a maximal modelMmax for M (Def. 1.12), which satisfies a N´eron-type
mapping property.

Suppose thatX = SpecR, whereR is now a complete discrete valuationFq-
algebra whose residue field is algebraic overFq. If we have aτ -sheafM with
nondegenerate reduction, then we prove that it is possible to lift this reductionan-
alytically to an analytic sub-τ -sheafN of M with good reduction, at least upon
replacingC by an open subscheme. As a consequence, we obtain:

THEOREM 1.26.For every analyticτ -sheafM̃ on C̃K , there exists

• a nonempty open subschemeC ′ ⊂ C,
• a finite extension R′ of R, with fraction field K′, and
• a filtration

(18) 0= Ñ0 ⊂ Ñ1 ⊂ · · · ⊂ Ñn = M̃|C̃′
K ′

by saturated analytic sub-τ -sheaves oñC ′K ′
such that the subquotients̃Mi := Ñi /Ñi−1 have good models over̃C ′R′ .

This generalizes the result (17) on Drinfeld modules.

Chapter 2. By the correspondence between`-adicτ -sheaves and Galois repre-
sentations, one immediately deduces from Thm. 1.26 that, for aτ -sheafM on CK ,
the action of inertia acts potentially unipotently on the Tate modulesT̀ (M), for all
but a finite number of closed points` of C (Thm. 2.4).
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Assuming thatK is a valued field containingF := Quot(A), we deal with fur-
ther essential questions concerning the action of inertia on the Tate modulesT̀ (M)
of a τ -sheafM with a good model and characteristicι : SpecK → C:

i) a description of the action of tame inertia, in terms of fundamental char-
acters (Thm. 2.14);

ii) a description of the image of wild inertia (Cor. 2.24), forτ -sheaves of
dimension 1.

Chapter 3. With these results, we can now turn back to our original problem.
We give a proof (Thm. 3.13) of the following conjecture in the case where the rankr
of M is at most 2:

CONJECTURE3.1. Let K be a finite extension of F, the function field ofC
and M aτ -sheaf overCK with characteristicι : SpecK → C, dimension1 and
absolute endomorphism ringA. The image of the representationρadon theκad[0K ]-
module Wad(M) (cf. (14)) is open inGLr (κad).

Our theorem applies in particular to Drinfeld modules without complex multi-
plication of rank 2 (see paragraph§2). However, we were determined to avoid any
‘purity’ assumption, as it seems a better idea to exploit directly the natural relation
betweenτ -sheaves and Galois representations. Here again, just as in the quest for
models (cf. paragraph§3), it seems to be nothing but a diversion to assume that we
are dealing with structures related tot-modules!

For Drinfeld modules, we obtain Conj. 0.21 as a consequence of this Conj. 3.1
using [Pi2]; this provides us with a proof ifr ≤ 2 (Thm. 3.20).

Chapter 4.Let R be a discrete valuation ring with function fieldK . We give a
general analog of the classical ‘N´eron-Ogg-Shafareviˇc’ good reduction criterion on
abelian varieties:

THEOREM 4.1. Let M be aτ -sheaf onCK with a characteristicι and ` a
closed point ofC such thatM̂` is smooth. If the inertia group IK of K acts trivially
on T̀ (M), then there exists a good modelM overCR for M.

As a consequence, we derive a criterion for trivial reduction (Thm. 4.8). Also,
we relate theL-factor ofM at a place of bad reduction to the action of Frobenius on
the Tate moduleT̀ (M) (Thm. 4.12).

Chapter 5.The Galois criterion for trivial reduction can now be applied to shed
some new light on uniformizability. PuttingC = A1, let K be a discretely valued
field containingF and with finite residue fieldk, such that its valuation is infinite
with respect to the characteristicι : SpecK → A1. Extending results by Anderson
([An1], Thm. 4) and Pink, we prove

THEOREM5.13BIS. For an abelian t-module E with t-motive M, the following
statements are all equivalent:

i) the abelian t-module E is uniformizable;
ii) the uniformization lattice H hasA-rank r , the rank of E;
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iii) the analyticτ -sheafM̃ on A1
K associated to M potentially contains a

trivial sub-τ -sheaf of full rank;
iv) theτ -sheaf M potentially has a good modelM with trivial reduction;
v) theσ -bundle associated to M on the punctured open unit disk around∞

is trivial;
vi) the semistable filtration (cf. (42)) of̃M is defined on the whole ofA1

K and
each of its subquotients has trivial reduction;

vii) the action of0K on the Tate module T`(M) is potentially trivial, for all
closed points̀ of C; and, last but not least,

viii) there exists a closed point` of C such that the action of0K on the Tate
module T̀(M) is potentially trivial.

Chapter 6.Coming back to equation (16), we recall that the correspondence
between Tate uniformization and the analytic ‘semistable’ filtration (17) for a Drin-
feld module was crucial in developing a reduction theory forτ -sheaves. We can
extend this correspondence to higher dimensional abeliant-motives in the follow-
ing way:

THEOREM 6.3BIS. Let K be a complete valued field containing F, whose val-
uation is finite with respect to the characteristicι : SpecK → A1. There exists
an antiequivalence between the categories of pure abelian t-modules over K and
of pure t-motives overA1

K , where both categories are endowed with analytic mor-
phisms(Def. 6.1 & 6.2).

The arguments for this theorem rely on asymptotic estimates for local logarith-
mic heights ont-modules, which are presented in section 6.V, and weight inequal-
ities induced by nontrivial analytic morphisms (cf. Prop. 6.9). In Thm. 6.16, we
work out a further aspect of analytic morphisms oft-modules, namely that of uni-
formization lattices. Finally, we discuss how, via this theorem, Thm. 1.26 leads to
an analytic description of analytict-modules.
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III. Nederlandstalige samenvatting

§1. Het uitgangspunt van dit onderzoeksproject is Serres gevierde resultaat
over het beeld van de representaties van de absolute Galoisgroep van een getallen-
veld op de Tatemodulen van een elliptische kromme:

STELLING 0.20 (Serre ([Se3], 1972)).Zij E een elliptische kromme zonder po-
tentïele complexe multiplicatie, gedefinieerd over een getallenveld K met absolute
Galoisgroep0K . Voor elk priemgetal p, beschouwen we het Tatemoduul Tp(E) van
E in p en het geassocieerdeQp[0K ]-moduul

Vp(E) := Qp ⊗ Tp(E).

Het beeld van de ‘adelische’ representatie van0K op het gerestringeerde product

Vad(E) :=
∏

p

′
Vp(E)

is een open deelgroep vanGL2(
∏′

pQp) (voor de adelische topologie).

De belangrijkste ingredi¨enten van het bewijs zijn ruwweg de volgende:

i) de0K -modulenVp(E) vormen een strict compatibel systeem van Galois-
representaties waarvoor de Tate- en semisimpliciteitsconjecturen gelden;

ii) een toepassing vanp-adische Liegroepentheorie toont aan dat alsE geen
potentiële complexe multiplicatie bezit, het beeld van de representatie

ρp : 0K → GL2(Qp),

gegeven door de continue actie van0K op Vp(E), open is voor allep;
iii) we kennen de actie van de gemodereerde inertiegroep opVp(E);
iv) we hebben een constructie van compatibele systemen van 1-dimensionale

Galoisrepresentaties geassocieerd aan Heckekarakters (cfr. [Se1]).

Serre bewijst eerst, door het combineren van de resultaten i), iii) en iv) met
een classificatie van maximale deelgroepen van de groepen GL2(Fp), het volgende:
heeftE geen potenti¨ele complexe multiplicatie, dan is de residu¨ele Galoisrepresen-
tatie

ρ p : 0K → GL2(Fp),

gegeven door hetFp[0K ]-moduulE[p] van dep-torsiepunten, surjectief voor alle
priemgetallenp, op een eindige aantal uitzonderingen na. Stelling 0.20 volgt hieruit,
na toepassing van ii) en wat groepentheorie.

§2. We beschouwen een affiene, absoluut irreduciebele gladde krommeC met
constantenveldFq en we noteren de ring van globale reguliere functies vanC alsA.
Analoog aan Stelling 0.20 is er een ‘adelisch Mumford-Tate-vermoeden’ over het
beeld van de adelische representatie geassocieerd aan Drinfeldmodulen (zie ook
Conj. 3.17).

CONJECTUUR0.21 (Pink).Zij φ een Drinfeld-A-moduul van rang r, gedefi-
niëerd over een globaal functieveld K , zonder potentiële complexe multiplicatie en
met generieke karakteristiek. Het beeld van de representatieρ3 van de absolute
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Galoisgroep0K van K op het F3[0K ]-moduul V3(φ) (cfr. (13)) is open voor elke
verzameling3 van gesloten punten vanC.

Pink bewees in [Pi2] (Thm. 0.1; 1997) dat dit vermoeden geldt voor elke eindi-
ge verzameling3. Zijn bewijs is een toepassing van technieken uit de algebra¨ısche
groepentheorie en Serres concept van Frobeniustori.

Het was niet zo moeilijk om in te zien dat Serres idee¨en rond de 2-dimensionale
representaties geassocieerd met elliptische krommen samen met Pinks resultaat vol-
staan om Conj. 0.21 te bewijzen in het geval dat de rang vanφ ten hoogste 2 is.
Deze gedachte werd uitgewerkt in [Ga1]. Om een dergelijk resultaat voor hogere
rangr aan te tonen, zijn meer nieuwe idee¨en vereist, in het bijzonder over eindige
deelgroepen van algebra¨ısche groepen (werk van Larsen en Pink [LP]) en over de
absolute irreducibiliteit van de residuele representatiesρ`, die wordt bestudeerd in
recent onderzoek van Pink en Traulsen.

§3. De rode draad in dit onderzoeksproject is de ambitie om een aantal tech-
nieken die in de bovenstaande resultaten worden aangewend, te verruimen van Drin-
feldmodulen naar algemene (hoger dimensionale)t-modulenE (cfr. Def. 0.12). In
de eerste plaats bestuderen we de actie van inertie op de Tatemodulen geassocieerd
met E. Zij K een veld datFq bevat en uitgerust is met een valuatie, dan vereist dit
dat we voor hett-moduulE een gunstig model vinden met co¨efficiënten in de va-
luatieringR van R waarvan de reductie modulo het maximale ideaal vanR nuttige
informatie levert.

Voor Drinfeldmodulen is er een bevredigende theorie van zulke modellen (zie
[Tag2], §1). Zo weten we, bij voorbeeld, dat er voor elk Drinfeldmoduulφ overK
potentiëel een zgn. ‘stabiel’ model bestaat, een Drinfeldmoduul met co¨efficiënten
in R, isomorf metφ en waarvan de reductiēφ een Drinfeldmoduul is over het re-
siduveldk. De rangr ′ vanφ is mogelijks kleiner dan de rangr vanφ; het model
wordt ‘goed’ genoemd indienr = r ′.

Veronderstellen we datK compleet is, dan zegt Drinfelds propositie over Tate-
uniformizatie (Prop. 2.10) het volgende: er bestaat een goed Drinfeldmoduulφ′
over R, een roosterH in K sep(Def. 6.15), en een exacte rij

(19) 0→ H → φ′ → φ→ 0

van rigied analytische ruimtes met een actie vanA.
Hieruit volgt dat de inertiegroepIK van K potentieel unipotent opereert op de

TatemodulenT̀ (φ), behalve voor̀ = `′, waar`′ het eventuele residuele charac-
teristieke punt is (cfr. Def. 0.5.iv)). Dit kan men vergelijken met Grothendiecks
klassieke monodromiestelling voorp-adische representaties: de inertiegroep van
een lokaal veld met residuele karakteristiekp′ 6= p opereert potentieel unipotent.

Jammer genoeg is het onmogelijk om deze situatie te extrapoleren naar alge-
mene (abelse)t-modulen. Er bestaat namelijk een ‘niet-semistabiel’ abelst-moduul
(zie Prop. 2.11), waarvoor de actie van de inertiegroepIK op de TatemodulenT̀ (M)
niet potentieel unipotent is voor allè6= `′.
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Wat daarentegen bleek (Stelling 6.22), is dat we de analytische structuur van
een Drinfeldmoduulφ (zie vgl. (16)) kunnen herinterpreteren als een exacte rij

(20) 0→ N̂ → M̂(φ)→ M̂(φ′)→ 0

van τ -schoven over de rigied analytische affiene rechteA1
K ; hier is M̂(φ) (resp.

M̂(φ′)) de analytischeτ -schoof geassocieerd aan hett-motief vanφ (resp.φ′).
Dit lokte de idee uit omt-modulen (voor een tijdje) aan de kant te zetten en een

theorie van modellen voorτ -schoven te ontwikkelen. Deze strategie bleek vrucht-
baar en stelde ons in staat om nieuwe inzichten te verkrijgen in enerzijds de Galois-
representaties geassocieerd aanτ -schoven, en anderszijds de arithmetische structuur
vant-motieven.

§4. Overzicht. We bespreken kort enkele hoofdresultaten uit dit proefschrift.
Zij X een irreduciebel Dedekindschema overFq, met functieveldK , en zij M een
τ -schoof overCK .

Hoofdstuk 1.Is X = SpecR voor een discrete valuatiering dieFq bevat, dan
kan men een modelM voor M overCX definiëren door zijn halm bij het generische
punt van de speciale vezel aan te geven. Deze opmerking van L. Lafforgue staat ons
toe voor een gegevenτ -schoofM het bestaan te bewijzen (voor algemeneX) van

- niet-gedegenereerde modellenM over CR′ (Def. 1.6), over een eindige
separabele uitbreidingR′ van R, en

- een maximal modelMmax (Def. 1.12) overCR dat een N´eroncriterium
vervult.

Veronderstellen we datX = SpecR, waarbijR een complete discrete valuatie-
ring is waarvan het residuveldk algebra¨ısch is overFq. We bewijzen dat voor elke
τ -schoofM met niet-gedegenereerde reductie, deze reductieanalytischkan worden
‘gelift’ tot een analytische deel-τ -schoofN van M met goede reductie (cf. Def.
1.6), tenminste wanneer weC door een open deelschema vervangen. Hieruit volgt:

STELLING 1.26 (Analytische semistabiliteit). Voor elkeτ -schoofM̃ overC̃K

bestaat er

• een niet-leeg open deelschemaC ′ ⊂ C,
• een eindige separabele uitbreiding R′ van R, met breukenveld K′, en
• een filtratie

(21) 0= Ñ0 ⊂ Ñ1 ⊂ · · · ⊂ Ñn = M̃|C̃′
K ′

door gesatureerde analytische deel-τ -schoven over̃C ′K ′
zo dat de deelquotienteñMi := Ñi /Ñi−1 een goed model bezitten overC̃ ′R′ .

Dit veralgemeent het resultaat (19) voor Drinfeldmodulen.
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Hoofdstuk 2.Uit het verband tusseǹ-adischeτ -schoven en Galoisrepresen-
taties (Prop. 0.7), volgt onmiddellijk uit Stelling 1.26 dat voor eenτ -schoof M
overCK , de inertiegroep potentieel unipotent opereert op de TatemodulenT̀ (M),
behalve voor een eindig aantal gesloten punten` vanC (Stelling 2.4).

In de veronderstelling datK het veldF = Quot(A) bevat, geven we ook een
antwoord op enkele andere essenti¨ele vragen in verband met de actie van inertie
op de TatemodulenT̀ (M) van eenτ -schoof met een goed model en karakteristiek
ι : SpecK → C:

i) een beschrijving van de actie van gemodereerde inertie, in termen van
fundamentele karakters (Stelling 2.14);

ii) een beschrijving van het beeld van de wilde inertiegroep (Cor. 2.24), voor
τ -schoven met dimensie 1.

Hoofdstuk 3.Op basis van deze resultaten kunnen we nu terugkeren naar ons
oorspronkelijke probleem. In Stelling 3.13 bewijzen we het volgende vermoeden in
het geval de rangr vanM ten hoogste 2 is:

CONJECTUUR 3.1. Zij K een eindige uitbreiding van F en M een simpele
τ -schoof van rang r overCK met karakteristiekι : SpecK → C, dimensie 1 en
absolute endomorphismenringA. Het beeld van de representatieρ̄ad van0K op het
κad[0K ]-moduul Wad(φ) (cfr. 14) is open inGLr (κad).

Deze stelling is in het bijzonder van toepassing voor Drinfeldmodulen zonder
potentiële complexe multiplicatie (zie§2). Het is evenwel onze opzet geweest om
de vereiste van ‘puurheid’ voor deτ -schoven te vermijden, aangezien het een beter
idee lijkt om direct de natuurlijke relatie tussenτ -schoven en Galoisrepresentaties
aan te wenden. Het lijkt erop dat het, net zoals in de zoektocht naar modellen (zie
§3), niet meer dan een omweg is om te veronderstellen dat onze structuren met
t-modulen verwant zijn.

Voor Drinfeldmodulen volgt Conj. 0.21, dankzij [Pi2], uit Conj. 3.1, wat een
bewijs levert voorr ≤ 2 (cfr. Stelling 3.20).

Hoofdstuk 4.Zij R een discrete valuatiering dieFq omvat, met perfect residu-
veldk, en zij K het breukenveld vanR. We geven een algemeen analogon voor het
bekende Galoiscriterium van N´eron-Ogg-Shafareviˇc voor goede reductie van abelse
variëteiten:

STELLING 4.1. Zij M eenτ -schoof overCK met een karakteristiekι en` een
gesloten punt vanC zodatM̂` glad is. Is de actie van de inertiegroep IK op T̀ (M)
triviaal, dan bezit M een goed model overCR.

Uit deze stelling kunnen we meteen een Galoiscriterium voor triviale reductie
afleiden (Stelling 4.8). Tenslotte leggen we een verband tussen deL-factor vanM
bij een plaats van slechte reductie voorM en de actie van Frobenius op de Tatemo-
dulenT̀ (M) (Stelling 4.12).
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Hoofdstuk 5.Het Galoiscriterium voor triviale reductie kan worden toegepast
om nieuw licht te laten schijnen op Anderson-uniformizatie. ZijC = A1 en K een
discreet gevalueerd veld datF omvat, met eindig residuveldk, waarvoor de valuatie
met betrekking tot de karakteristiekι : SpecK → A1 oneindig is. Voortbouwend
op resultaten van Anderson ([An1], Thm. 4) en Pink bewijzen we:

STELLING 5.13BIS. Voor een abels t-model E met t-motief M zijn de volgende
uitspraken equivalent:

i) het t-moduul E is uniformizeerbaar;
ii) de analytischeτ -schoofM̃ overA1

K geassocieerd met M omvat potentieel
een triviale deel-τ -schoof met volle rang;

iii) deτ -schoof M bezit potentieel een goed modelM met triviale reductie;
iv) de σ -bundel geassocieerd aan M over de open eenheidsschijf rond∞,

minus het punt∞ zelf, is triviaal;
v) er bestaat een semistabiele filtratie (cfr. (42)) voorM̃ die gedefinieerd is

over heelA1
K en waarvan alle deelquotiënten triviale reductie hebben;

vi) de actie van0K op het Tatemoduul T`(M) is potentieel triviaal, voor alle
gesloten punteǹ vanC; en tenslotte:

vii) er bestaat een gesloten punt` vanC zodat de actie van0K op het Tate-
moduul T̀(M) potentieel triviaal is.

Hoofdstuk 6.Tenslotte komen we terug op vgl. (19): het verband tussen Tate-
uniformizatie en de analytische semistabiele filtratie (20) voor een Drinfeldmo-
duulφ was van doorslaggevend belang in het ontwikkelen van een reductietheorie
voor τ -schoven. We kunnen zo’n correspondentie veralgemenen voor hogerdimen-
sionale puret-motieven:

STELLING 6.3BIS. Zij K een compleet gevalueerd veld dat F omvat, en waar-
voor de valuatie eindig is m.b.t. de karakteristiekι : SpecK → A1. Er bestaat een
anti-equivalentie tussen de categorieën van pure abelse t-modulen over K en pu-
re t-motieven overA1

K , waarbij de morphismen in beide gevallen door analytische
homomorphismen zijn gegeven(Def. 6.1 & 6.2).

Het bewijs van deze Stelling steunt of asymptotische schattingen van een lokale
hoogtefunctie voort-modulen enerzijds (cf. sectie 6.V), en ongelijkheden voor de
gewichten vant-motieven waartussen een niet-triviaal analytisch morfisme bestaat
(cf. Prop. 6.9). In Stelling 6.16 werken we een verder aspect van analytische mor-
fismen uit, namelijk het opduiken van uniformizatieroosters. Tot slot verklaren we
hoe Stelling 1.26 de aanzet geeft tot een analytische beschrijving vant-modulen.



CHAPTER 1

The analytic structure of τ -sheaves

I. Models of τ -sheaves

§1. Models. Let X be an irreducible DedekindFq-scheme, i.e. an irreducible
smooth one-dimensional scheme overFq. We denote the function field ofX by K .
For everyτ -sheafM on CX, we denote byMK the restriction ofM to the generic
fibreCK .

DEFINITION 1.1. A model M over CX of a τ -sheafM on CK is a τ -sheaf
onCX which extendsM, i.e. such thatMK = M.

PROPOSITION 1.2. For any givenτ -sheaf M onCX, there exists a model
overCX.

PROOF. We choose an extensionM′ of the sheafM to CX. We can find an
invertible sheafL on CX which is the pullback of an invertible subsheaf ofOX

on X, such thatτ extends to a morphism

τ : σ ∗M′ → L−1⊗M′.

If we put M := L ⊗M′ thenτ (σ ∗M) ⊂ L(q−1) ⊗M, which yields thatM is
τ -invariant and hence is a model overCX for M. �

Quite often, problems on models can be reduced to the local case, i.e. where the
coefficient schemeX equals SpecR, for a discrete valuation ringR, with function
field K and residue fieldk. We now discuss a lemma by Lafforgue which explains
how, in this situation, a model can be constructed. We denote byL the rational
function field ofCR, and byO$ := OCR,$ the local ring of regular functions at the
generic point$ of the special fibreCk ↪→ CR.

LEMMA 1.3. Lafforgue,[Laf ] To give a locally free coherent sheafM onCR

is equivalent to giving its restriction M toCK and its stalkM$ at the point$ .

More precisely, for givenM andM$ , we consider the unique largest coherent
sheafM onCR whose restrictions toCK andO$ areM andM$ , respectively. We
include a proof of this lemma for future reference:

PROOF. Let M be a sheaf overCK andM$ a freeO$ -module, both of same
rankr , together with an isomorphism of ther -dimensionalL-vector spaces

L ⊗OCK
M
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(the stalk ofM at the generic point ofCK ) andL ⊗O$ M$ . We need to show that
there exists a locally free coherent sheafM on CR, unique up to unique isomor-
phism, which extendsM andM$ .

The stalkM$ defines a locally free sheafM′ on a neighborhoodU of$ which
coincides withM onCK ∩U . GluingM′ together withMK , we obtain a locally free
sheafM′′ which is defined on an open subschemeU ′ := CR \ Q, outside a closed
setQ of codimension≥ 2. AsCR is a surface,Q is a finite set of closed points.

Denoting by j the open embeddingU ′ ↪→ CR, we consider the push-forward
M := j∗M′′. It is shown by Langton ([Lan]), using the fact thatCR is noetherian,
thatM is the unique largest coherent and torsion free extension ofM′′ to CR. We
remark thatM depends functorially upon the data.

Further, Langton proves that, ifi : Ck → CR denotes the closed embedding
of the special fibre,i ∗M is torsion free. AsCk is 1-dimensional and smooth,i ∗M
must actually be free. Its rank must ber , because it is so locally oni−1(U). By
standard arguments using Nakayama’s lemma, it then follows thatM is locally free
of rankr . �

COROLLARY 1.4. To give aτ -sheafM on CR is equivalent to giving its re-
striction M toCK and its stalkM$ at$ .

PROOF. By the above lemma, the modulesM andM$ define a unique locally
free sheafM. As M andM$ areτ -invariant, so isM, again by the above lemma.

�

§2. Good and nondegenerate models.For a pointx of X, we denote the
residue field atx by kx.

DEFINITION 1.5. LetM be aτ -sheaf overCX. For a pointx of X, let i x denote
the embeddingCkx 7→ CX. Thereduction of M at x is defined as the locally free
coherent sheaf

(22) Mx := i ∗xM =M ×OCX
OCkx

,

endowed with the induced homomorphismτ : σ ∗Mx →Mx.

DEFINITION 1.6.

i) Theτ -sheafM is calledgood atx if Mx is aτ -sheaf, i.e.

τ : σ ∗Mx →Mx

is injective.
ii) The τ -sheafM is calleddegenerate atx if τ : σ ∗Mx →Mx is nilpotent,

andnondegenerateotherwise.
iii) Let

(
Mkx

)
1 denote the maximalτ -sheaf onCkx contained inMkx . The

rank of
(
Mkx

)
1 is called thenondegenerate rankof Mkx at x.

REMARK 1.7. If the residue fieldkx is perfect, thenσ is an automorphism
on OCkx

. Let H denote the fraction field of this ring. By elementary theory onτ -
modules, there exist, for every finite dimensionalH -vector spaceV endowed with
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a (possibly noninjective) morphismτ : σ ∗V → V , a decomposition

(23) V = V1⊕ Vnil .

whereV1 is aτ -sheaf (i.e.τ is injective) and where the action ofτ on Vnil is nilpo-
tent. For every locally free coherentOCkx

-moduleN endowed with a morphism

τ : σ ∗N → N,

let us denote byV the stalk ofN at the generic point ofCkx . PuttingN1 := V1∩ N,
the decomposition (23) then induces an exact sequence

(24) 0→ N1→ N → Nnil → 0.

of sheaves onCkx endowed with aσ -semilinear morphismτ , whereN1 is aτ -sheaf
and the action ofNnil is nilpotent.

LEMMA 1.8.

i) A τ -sheafM of CX is good at a point x of X if and only ifτ is an isomor-
phism on the stalkM$ of M at the generic point$ of the special fibre
Ckx .

ii) Everyτ -sheafM onCX is good outside a finite number of points.

PROOF. Part i) is obvious from the definition.
We consider the generic pointµ of C and the subscheme{µ} × X of CX. As

τ : σ ∗M→M

is an injective homomorphism, its cokernel cokerτ is supported on a closed sub-
schemeY of CX of codimension at least 1. Thereforeτ is an isomorphism locally
at {µ} × {x}, for all but a finite number of pointsx of X. By i), this proves ii). �

Let X′ → X be a finite extension of the coefficient scheme. For a givenτ -
sheafM onCX, the pullback ofM to CX′ will be denoted byMX′ .

PROPOSITION1.9. For everyτ -sheaf M onCK , there exists a finite separable
extension X′ → X of the coefficient scheme with function field K′ and a modelM
overCX′ for MK ′ which is nondegenerate at all closed points of X′.

PROOF. a) Local case.(Drinfeld, [Laf ] Lemme 3) Suppose thatX = SpecR,
where the ringR is a discrete valuation ring and wherex is the unique closed point.
We denote byÔ$ the completion of the local ring of functionsO$ at the generic
point$ of the special fibre, and bŷF$ its fraction field. We putV := L ⊗OCK

M
and

V̂ := F̂$ ⊗L V.

It is shown in [Laf ] Lemme 3, that there exists a valuation deg onV̂ which
takes its values in1eZ, for somee ∈ Z, and such that

degτ (v̂) = q degv̂,

for all v̂ ∈ V̂ .
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Over a finite separable totally ramified extensionR′ of R, one can assume that
deg attains the value 0 on̂V . We define aτ -invariantO$ -module by taking

M̂$ := {v̂ ∈ V̂; degv̂ ≥ 0}.
As deg attains the value 0,̂M$ is nondegenerate atx. Putting

M$ := M̂$ ∩ V ⊂ V̂ ,

we obtain aτ -module overO$ which is nondegenerate atx as well, since the mod-
uleM$ is dense inM̂$ . By Cor. 1.4, this stalkM$ at$ together with the generic
fibre M yield a uniqueτ -sheafM onCR with the desired properties.

b) Global case. By Lemma 1.8.ii) there exists a nonempty open subscheme
U ⊂ X such thatM|CU is good at all closed points ofU . From the result in the local
case, we obtain, over a finite base extensionX′ → X, nondegenerate modelsMυ

locally at the fibresυ := C × {u} of the finite number of closed pointsu of X\U .
Gluing these withM|U definesM. �

LEMMA 1.10. Every inclusion i: M′ ↪→ M of τ -sheaves onCX, yields, for
each point x ofC, an injective map(

M
′
kx

)
1
↪→ (

Mkx

)
1 .

PROOF. Taking up the setting of the proof of Prop. 1.9, the inclusioni induces
an injective morphismM′$ ↪→M$ of τ -modules overO$ , for the local ring at the
generic point of the special fibreCkx . OnM$ ⊃M′$ we have the valuation deg as

before. Any nonzero element̄m of
(
M
′
kx

)
1

can be lifted to an elementm ∈ M′$
such that degm = 0. This immediately shows that the reduction ofm, seen as an
element ofM′$ is nonzero. �

REMARK 1.11. Models for t-modules?Let E be a t-module overK . A
model E for E over X is a t-module overX extending the generic fibreE. In
[Tag2], Taguchi develops a theory of nondegenerate (‘stable’) reduction and mini-
mal models for Drinfeld modules.

There is little hope for a fruitful theory of reduction for higher dimensional
abeliant-modules. For example, an essential step would be to find a modelE whose
reductionE at a closed pointx of X is nondegenerate in the following sense: there
exists a sub-t-moduleE1 of E which is abelian.

In Prop. 2.11, we will give an example of an abeliant-module for which a non-
degenerate model cannot exist, not even after an extension of the base fieldK . The
arithmetic study of general abeliant-modules should therefore rely on the reduction
theory of the associatedτ -sheafM(E).

§3. Maximal models.

DEFINITION 1.12. We say that a modelM for a givenτ -sheafM over CK

is maximal if, for every τ -sheafN on CX, every morphismfK : NK → M of
τ -sheaves onCK extends to a morphismf : N →M of τ -sheaves onCX.
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This property is clearly analogous to the N´eron mapping property for schemes
(cf. [BLR ]).

PROPOSITION1.13.

i) Everyτ -sheaf M defined overCK admits a maximal model overCX which
is unique, up to unique isomorphism, and which we denote byMmax.

ii) If M is a good model for M overCX, then it is maximal.

PROOF. First, we notice that if the maximal model exists, then it follows from
its universal property that it is unique up to unique isomorphism.

a) Local case.Suppose thatX = SpecR, whereR is a discrete valuation ring
and wherex is the unique closed point. LetM$ andM′$ beτ -modules overO$ ,
the local ring of functions at the generic point$ of the special fibre. Note that any
uniformizerπ of R is a uniformizer ofO$ , and thatσ acts onπ by σπ = πq. If
M′$ ⊂M$ , it follows that

(25) lengthO$
(
τ (σ ∗M$)/τ(σ

∗M′$)
) = q · lengthO$

(
M$/M

′
$

)
.

We define thediscriminant 1(M$) ≥ 0 to be the length overO$ of cokerτ :

1(M$) := lengthO$
(
M$/τ(σ

∗M$ )
)
.

It follows from (25) that ifM′$ ( M$ then

(26) 1(M′$) > 1(M$).

We choose aτ -moduleM$ which is contained in the stalkV of M at the
generic point ofCX and with minimal discriminant. ThisM$ contains allτ -
modules overO$ contained inV : Indeed, suppose there does exist aτ -moduleM′$
overO$ which is not contained inM′$ , then the sum

M′$ +M$ ) M$ ,

again aτ -invariant projectiveO$ -module, has a smaller discriminant than theτ -
moduleM$ by (26).

TakeM to be theτ -sheaf onCR defined, following Cor. 1.4, by its generic fibre
MK := M and its stalkM$ at$ . Let L, V andV ′ denote the stalk ofOCR, M
andN , respectively, at the generic point ofCR. For a given morphism

fK : NK → M,

we consider its unique extension to aL-linear morphismf : V ′ → V . The image
f (N$) ⊂ V of the stalkN$ of N at$ is aτ -module overO$ . Hence it must be
contained in the maximalτ -moduleM$ .

We consider the sheaffK (N ) as a locally free coherent subsheaf of the constant
sheafV . By Cor. 1.4, is completely determined by its generic fibrefK (M) and stalk
fK (M$ ) at$ . Since fK (NK ) ⊂ M and

fK (N$) ⊂M$ ,

we obtain thatfK (N ) ⊂ M, i.e. fK extends to a morphismN → M. Hence the
modelM is maximal, which proves i) in the local case.
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If M has a good modelM, then1(M$) = 0 by Lemma 1.8.i), and hence the
stalkM$ , as well as theτ -sheafM, are maximal, which proves ii).

b) Global case.Let X be a DedekindFq-scheme. Statement ii) follows easily
from the local case.

For i), we remark that, by Lemma 1.8.ii), any modelM′ on CX for M is good
at the closed points of an nonempty open subschemeU ⊂ X. HenceM′|U is a
maximal model forM on CU , by ii). From the local case, we obtain maximal
modelsMυ locally at the fibresυ := C×{u} of the finite number of closed pointsu
of X\U . Gluing these withM′|U clearly defines a maximal modelM. �

LEMMA 1.14. Let X′ → X be a finitéetale extension of absolutely irreducible
Dedekind schemes and let K′ denote the function field of X′. A τ -sheaf M onCK

has a good model overCX if and only if MK ′ has a good model overCX′ .

PROOF. We can assume thatX′ → X is Galois. By Prop. 1.13.ii), a good
modelM′ for MK ′ is maximal, and, as a consequence, Galois invariant. By Galois
descent, the sheafM′ onCX′ descends to a sheafM onCX, and the morphism

τ : σ ∗M′ →M′

yields a morphismτ : σ ∗M → M. As properties of sheaves descend as well,
we obtain thatτM is injective (henceM is a model forM) and thatM is a good
model. �

II. Analytic τ -sheaves

§1. Models of analyticτ -sheaves.Let R be a complete discrete valuationFq-
algebra. We denote byK its field of fractions and byk its residue field. Further,
let v be its valuation,| · |K its absolute value andπ a uniformizer. Let̃CK denote
the curveCK , seen as a rigid analytic space in the sense of [BLR ]. We consider a
formal admissible schemẽCR which is anR-module forC̃K (see [BL ]).

Let OC̃K
andOC̃R

denote the structure sheaf of the spaceC̃K and the formal
schemẽCR, respectively. The endomorphismσ on CR extends in a unique way to
an endomorphism oñCK andC̃R.

DEFINITION 1.15.

i) An analytic τ -sheaf(M̃, τ ) (for short: M̃) of rank r ≥ 1, defined on
C̃K (resp.C̃R), is a locally freeOC̃K

-module (resp.OC̃R
-module) of finite

rankr , endowed with an injective morphism

τ : σ ∗M̃ → M̃ .

ii) A modelM̃ over C̃R of an analyticτ -sheafM on C̃K is aτ -sheaf oñCR

which extends̃M , i.e. such that the generic fibre associated toM̃, in the
sense of [Lüt], is M̃ .

iii) Let M be aτ -sheaf overCR. Let i denote the closed embedding of the
special fibreCk ↪→ CR. Thereduction of M is defined as the locally free
coherent sheaf

(27) M := i ∗M,
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endowed with the induced homomorphismτ : σ ∗M → M. The τ -
sheafM̃ is calledgoodif M is aτ -sheaf. Theτ -sheafM̃ is calleddegen-
erate if τ is nilpotent onM andnondegenerateotherwise.

iv) A model M̃ for a given analyticτ -sheafM̃ over C̃K is maximal if, for
everyτ -sheafÑ on C̃R, every morphismfK : ÑK → M̃ of τ -sheaves
on C̃K extends to a morphismf : Ñ → M̃ of τ -sheaves oñCR.

PROPOSITION1.16. Let M̃ be aτ -sheaf oñCK .

i) There exists, over a finite separable extension R′ of R, a nondegenerate
modelM̃ on C̃R for M̃.

ii) There exists a maximal model̃Mmax overC̃R for M̃, unique up to unique
isomorphism.

iii) Let M be an algebraicτ -sheaf onCK , and M̃ the associated analytic
τ -sheaf. The analytic sheaf associated toMmax is isomorphic toM̃max.

We postpone the proof of this proposition to §4.

REMARK 1.17. Similarly as for algebraicτ -sheaves (Def. 0.8), we can asso-
ciate with every analyticτ -sheafM̃ on C̃K and every closed point̀of C, theTate
module T̀ (M̃).

§2. Explicit construction of C̃R. Suppose that̃C is an open subscheme ofA1.
We setC̃ := A1 \ S, whereS = {s1, . . . , sµ} is a finite set of closed points ofA1,
and for eachi ≤ µ, let fi ∈ A ∼= Fq[t] be a generator of the ideal definingsi .

1. The spacẽCK . An admissible covering of̃CK is given by the affinoid spaces

�n
K :=

{
t ∈ K ; |t|K ≤ |π |−n

K and| fi (t)|K ≥ |π |nK , for 1≤ i ≤ µ} ,
for positive integersn. Let K

〈
t0, t1, . . . , tµ

〉
denote the Tate algebra in the variables

t0, . . . , tµ,

i.e. the ring of formal power series∑
ν∈Nµ+1

aν t
ν0
0 tν1

1 · · · t
νµ
µ

for whichaν → 0 if ν →∞.

Consider the ringK
〈
t(n)0 , t(n)1 , . . . , t(n)µ

〉
[t] and its ideal

(28) IK :=
(
t(n)0 − πnt, t(n)1 · f1(t)− πn, . . . , t(n)µ · fµ(t)− πn

)
.

The affinoid algebra corresponding to�n
K is then

(29) Wn
K := K

〈
t(n)0 , t(n)1 , . . . , t(n)µ

〉
[t]/IK .

Further,�n
K is an affinoid subdomain of�m

K , for m greater thann, via the unique
homomorphismWm

K → Wn
K which leaves the variablet invariant.

We denote byK
〈〈
t, t1, . . . , tµ

〉〉
the ring of entire functions in the variables

t, t1, . . . , tµ.
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Setting

(30) I′K :=
(
t1 · f1(t)− 1, . . . , tµ · fµ(t)− 1

)
,

the ring of global analytic functions oñCK is isomorphic to

K
〈〈
t, t1, . . . , tµ

〉〉
/I′K .

2. An R-model for̃CK . For eachn, we consider the admissibleR-algebra

(31) Wn
R := R

〈
t(n)0 , t(n)1 , . . . , t(n)µ

〉 [
t]/IR,

where we define the idealIR of R
〈
t(n)0 , t(n)1 , . . . , t(n)µ

〉 [
t] as in (28). Following

[BL ], its formal spectrum defines a formal admissible scheme�n
R over R, whose

generic fibre, in the sense of [BL ], is �n
K . For every integerm greater thann, we

have, as before, a canonical embedding�n
R ↪→ �m

R. The direct limit of the�n
R over

all integersn ≥ 0 then yields an analyticR-modelC̃R for C̃K . DefiningI′R as in
(30), its ring of global analytic functions equals

(32) R
〈〈
t, t1, . . . , tµ

〉〉
/I′R.

3. Construction ofσ . For everyn, we define unique continuous ring mor-
phisms

(σn)
∗ : Wqn

K → Wn
K

as follows:(σn)
∗ restricts to the Frobeniusϕ onK and acts trivially on the variablet .

Thus we obtain homomorphismsσn : �n
K → �

qn
K , which, upon taking the limit,

endowC̃K with an endomorphismσ = lim→ σn. Similarly, we can endow̃CR with
such an endomorphism.

§3. Lafforgue’s Lemma for C = A1. We consider the discrete valuationvR

on
H 0

(
Ã1

R,OÃ1
R

)
= R〈〈t〉〉

given by

vR

( ∞∑
i=0

fi t i

)
:= inf

i
{v( fi )},

and extend this valuation to the fraction field̃L of R〈〈t〉〉. Note that the nonzero
σ -invariant functions have zero valuation.

Denoting the valuation ring ofvR insideL̃ by Õ$ , we have

H 0
(
Ã1

K ,OÃ1
K

)
∩ Õ$ = H 0

(
Ã1

R,OÃ1
R

)
.

To a givenOÃ1
R
-moduleM̃, we associate thẽO$ -module

M̃$ := Õ$ ⊗ H 0(Ã1
R, M̃).

Calling M̃$ suggestively, but with some abuse, thestalk of M̃ at the ‘point’ $
defined by the valuationvR, we have the following analog of Lafforgue’s lemma:

LEMMA 1.18. To give a locally free coherent sheaf̃M on Ã1
R is equivalent to

giving its restrictionM̃ to Ã1
K and its stalkM̃$ at$ .
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PROOF. Let M̃ be a sheaf over̃A1
K andM$ a freeÕ$ -module, both of same

rankr , together with an isomorphism of ther -dimensional̃L-vector spaces

L̃ ⊗OC̃K
M and L̃ ⊗Õ$

M̃$ .

The valuationvR extends, in a unique continuous way, to the fields Quot(Wn
R)

of meromorphic functions on the covering spaces�n
K for Ã1

K . Let us denote bỹOn
$

the associated valuation ring. We can, informally, view̃Mn
$ := Õn

$ ⊗ M̃$ as the
pullback ofM̃$ from$ to the ‘point’ on�n

R defined by the valuationvR.
We claim that the restrictioñMK |�n

K
together withM̃n

$ defines, for every inte-

gern ≥ 0, a sheafM̃n on�n
R. Indeed, as the spaces�n

R are noetherian, one checks
that, mutatis mutandis, the proof for sheaves on algebraic schemes that we gave in
Prop. 1.4 can be carried over.

By uniqueness of these sheaves̃Mn, it follows that

M̃n+1|�n
R
= M̃n,

for all n ≥ 0. Therefore, we can glue thẽMn to a uniqueM̃ which satisfies the
conditions. �

As in the algebraic case, we immediately draw from this the following corollary

COROLLARY 1.19. To give aτ -sheafM̃ on Ã1
R is equivalent to giving its re-

striction M̃ to Ã1
K and its stalkM̃$ at$ .

§4. Proof of Prop. 1.16.

PROOF OFPROP. 1.16. We first prove ii). In the caseC = A1, we can, as
in the proof of Prop. 1.13, use Lemma 1.19 in order to prove the existence of a
maximal model. For a general curveC we proceed as following: CompleteC to a
projective curveC and choose a rational functionf on C which has poles exactly
at the points ofC\C. This yields a finite morphism

f : C → A1.

The τ -moduleM̃? := f∗M̃ on Ã1
K is endowed with a scalar multiplication of the

coherentOÃ1
R
-module f∗(OC̃R

). The image of

(33) f∗(OC̃R
)⊗O

Ã
1
R

M̃?→ M̃?

is coherent andτ -invariant, and must therefore be a sub-τ -sheaf of the maximal
modelM̃? of M̃? on C̃?R. HenceM̃? carries an action of theOC̃?R

-algebraf∗(OC̃R
).

We now apply:

LEMMA 1.20. Let f : C → C? be a finite morphism of irreducible affine
curves, and let us denote by f the induced morphismsC̃K → C̃?K and C̃R→ C̃?R
as well. LetM̃ be aτ -sheaf oñCK . To give a model̃M for M̃ on C̃R is equivalent
to giving a modelM̃? on C̃?R for theτ -sheafM̃? := f∗M̃ on C̃?K which carries an
action of theOC̃?R

-algebra f∗
(
OC̃R

)
. We then have

f∗(M̃) = M̃?.
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Thus we obtain a model̃M of M̃ overC̃R. As f∗(M̃) = M̃?, the modelM̃ is
clearly maximal.

i) Following the same argument as in Prop. 1.9 and using Cor. 1.19, we can
prove that, over a finite extensionR′ of R, there exists a nondegenerate modelM̃′
over Ã1

R for everyτ -sheafM̃ ′ on Ã1
K . By a proper analogue of Lemma 1.10, the

maximal modelM̃′max is still nondegenerate. For a general curveC, statement i)
now follows by a reduction to the caseC = A1 as before.

To prove statement iii), we notice that the stalks of the maximal modelMmax of
M onCR and of the maximal model̃Mmax of M̃ on C̃R are both determined by the
maximalτ -module overÔ$ (same notations as in the proof of Lemma 1.9), and,
therefore, the analytic sheaf associated toMmax is isomorphic toM̃max. �

III. Analytic structure of τ -sheaves

§1. Analytic lifts.

THEOREM1.21. Let R be a complete discrete valuationFq-algebra and K its
field of fractions. Suppose that the residue field k of R is algebraic overFq. LetM̃
be aτ -sheaf oñCR of nondegenerate rank r1. There exists

• a nonempty open subschemeC ′ of C and
• a unique maximal good analytic sub-τ -sheafM̃1 ⊂ M̃|C̃′R of rank r1.

ThisM̃1 is functorial with respect to analytic homomorphisms.

PROOF. a) First, suppose thatC = A1. We denote byM1 the maximalτ -sheaf
insideM, the reduction ofM̃ at the closed pointx of SpecR, and byr1 := rk M1

the nondegenerate rank ofM. Let S1 be the support of the cokernel ofτ on M1
andS1 the finite set of closed pointsA1 lying belowS1. We setC ′ := A1 \ S1. In
the next paragraph, will present a proof of the following proposition:

PROPOSITION1.22. Let R be a complete discrete valuationFq-algebra and K
its field of fractions. Suppose that the residue field k of R is algebraic overFq. For
a nondegenerate analyticτ -sheafM̃ on Ã1

R, there exists an analytic sub-τ -sheaf

Ñ ⊂ M̃|C̃′R
such thatÑ has good reduction, and such that

N ∼=M1|C̃′k .
Let M̃1 be the saturation of̃N in M̃. As M̃1 is τ -invariant, it is actually a

τ -sheaf onC̃ ′R. Further, the model̃M1 is good, asÑ is good. Clearly,M̃1 is a
maximal good sub-τ -module ofM̃ on C̃ ′R, as its rank equals the nondegenerate
rank ofM̃.

b) To prove the theorem for a general curveC, we consider, as in the proof of
Prop. 1.16, a finite morphismf : C → A1, whose degree we denote by degf . By
the above results, we obtain a nonempty open subschemeC? of A1 and a nontrivial
maximal good sub-τ -moduleM̃?

1 of rankr1 · deg f of theτ -sheaf

M̃? := f∗(M̃)|C̃?R
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on C̃?R. We putC ′ := f −1(C?). As M̃?
1 is a maximal, it is invariant under the

action of f∗(OC̃′R); hence, by Lemma 1.20, we obtain aτ -sheafM̃1 on C ′R such

that f∗(M̃1) = M̃?
1. Clearly,M̃1 is a good sub-τ -sheaf of the desired rank. As it is

saturated inM̃, and its rank is the nondegenerate rank ofM̃, it is clearly a maximal
good sub-τ -sheaf.

c) In order to prove the functoriality, let̃M andM̃′ be τ -sheaves onCR with
associated maximal good sub-τ -sheavesM̃1 andM̃′. As the question is local, we
may assume that the latter are defined onCK as well, and we may just as well
suppose that all of the above sheaves are free. Letf denote an analytic homomor-
phismM̃→ M̃′, and consider the induced homomorphism

f̄ : M̃1→ M̃′′ := M̃′/M̃′1.

On the reductionM1 of M1, the action ofτ is injective, whereas, by Remark 1.7,
we know thatτ acts nilpotently on the reductionM

′′
of M

′′
.

For integerss, let us denote the matrix representation ofτ s
M̃1

by1s, that ofτ s
M̃′′

by1′′s, and that off̄ by F , with respect to some fixed bases. We have the equation:

(34) F ·1s = 1′′s · F .
For everym, there exists an exponents such that1′′s ∼= 0 modπm, whereas1s is
injective modπm; henceF ∼= 0 modπm, for everym, and so f̄ is trivial. This
shows that

f
(
M̃1

) ⊂ M̃2.

�

§2. Proof of Prop. 1.22.

PROOF OFPROP. 1.22. a) Let us extendM̃ by zero to a freeOÃ1
R
-module

M̃e = M̃ ⊕ M̃0

of rankr ′, endowed with aσ -linear endomorphismτ (cf. Remark 0.4). Let

m := (m1, . . . ,mr ′)

be a global basis for̃Me, and let

1 ∈ Matr ′×r ′
(

H 0
(
Ã1

R,OÃ1
R

))
be the matrix representation ofτ with respect to this basis, i.eτ (m) = m ·1. The
reductionm of m yields a basis forM.

Next, we choose a basism′ = (m̄′i )1≤i≤r1 for H 0
(
A1

k,M1
)

and denote by

11 ∈ Matr1×r1

(
H 0

(
A1

k,OA1
k

))
the representation ofτ with respect to this basis:τ (m′) = m′ ·11. We expressm′
with respect to the basism of M̃e, by means of a matrix

9 ∈ Matr ′×r1

(
H 0

(
A1

k,OA1
k

))
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as follows:m′ = m · 9. Comparing the action ofτ with respect to this basis, this
yields the equation

9 · (1)1 = 1 ·σ9;
here1 is the reduction of1, and the action ofσ on9 is given by that on the entries
of 9.

The residue fieldk being algebraic overFq, there exists a canonical embedding
k ↪→ R. Let 1̂1 denote the canonical lift viak ↪→ R of 11 to anr1× r1-matrix

with coefficients inH 0
(
Ã1

R,OÃ1
R

)
, and

9̂ ∈ Matr ′×r1

(
H 0

(
Ã1

R,OÃ1
R

))
the lift of the matrix9.

b) The idea is to construct a basisn for a sub-τ -sheafÑ ⊂ M̃e on C̃ ′R such
thatτ acts by1̂1 on its basis. If we putn := m · Z, for a matrix

(35) Z ∈ Matr ′×r1

(
H 0

(
C̃ ′R,OC̃′R

))
,

this boils down to finding aZ of full rank r1, which solves the equation

(36) Z · 1̂1 = 1 · σZ.
Recall that the reductionZ · 11 ∼= 1 · σZ moduloπ of this equation has the solu-
tion9.

Let D be the adjoint matrix of̂11 and putδ := det11. We setδ̂ := det1̂1

andB := ((δ̂)−11). Recalling that we definedS1 as the set of closed points ofA1

lying below the set of zeros ofδ, the matrixB has entries in the ringH 0
(
C̃ ′R,OC̃′R

)
.

Equation (36) is now equivalent to

(37) Z = B · σZ · D.
c) Let A1 \C ′ = {s1, . . . , sµ}, and, for eachi ≤ µ, let fi ∈ A be a generator

for the ideal definingsi . We recall from equation (32), that, putting

R := R
〈〈
t, t1, . . . , tµ

〉〉
,

the ring of entire functions oñC ′ is isomorphic to

R/
(
t1 · f1(t)− 1, . . . , tµ · fµ(t)− 1

)
.

The endomorphismσ on C̃ ′R is induced by the endomorphismσ of R which acts as
the Frobeniusϕ on R and fixes the indeterminatesti .

We recall that the reductionZ ·11 ∼= 1 · σZ moduloπ of equation (37) has the
solution9. We can therefore fix a liftZ0 with coefficients inR for the matrix9̂,
as well as liftsB andD for B andD such that the reduced matricesZ0, B0 andD
satisfy the equation (37) moduloπ . We then set

8 := π−1(B · σZ0 ·D −Z0) ∈ Matr ′×r1(R).

The equation (37) lifts to

(38) Z = B · σZ ·D,
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for a matrixZ ∈ Matr ′×r1(R).
PuttingZ = Z0+ πZ1, for some matrixZ1, we obtain the following equation

for Z1:

(39) Z1 = 8+ πq−1B · σZ1 ·D.
We postpone the proof of the following lemma:

LEMMA 1.23. Equation (39) has a unique solutionZ1 ∈ Matr ′×r1(R).

d) Finally, a solutionZ of equation (37) is given by the image of the matrix

Z := Z0+ πZ1

under the map

R→ H 0
(
C̃ ′R,OC̃′R

)
.

As the reductionZ0 has full rank, so doesZ.
The matrixZ now defines a basisn = m · Z for a sub-τ -sheafÑ ⊂ M̃e on C̃ ′R

such thatτ acts as1̂1 on its basis; hence clearly(M)1 ∼= N . As τ is injective on
Ñ ⊂ M̃e, we actually havẽN ⊂ M̃. �

Proof of Lemma 1.23.Put

8(s) := (B σB · · · σ s−1
B) σ

s
8 ( σ

s−1
D · · · σD D).

As one easily verifies, the unique formal solution to the equation (39) is

(40) Z1 :=
∞∑

s=0

πqs−1 ·8(s).

Clearly, this formal sum defines a matrix in Matr ′×r1(R〈t, t1, . . . , tµ〉). It remains
to show that the entriesZ1 are inR.

Every elementρ ∈ R〈〈t, t1, . . . , tµ〉〉 can be expanded as

ρ =
∞∑

i=0

ρiπ
i ,

where theρi are polynomials∈ k[t, t1, . . . , tµ]. For everyi ≥ 0, we denote by
degρi the total degree ofρi ∈ k[t, t1, . . . , tµ]; if ρi = 0 then degρi := −∞. For
entire functions, we have the following convergence condition:

ρ ∈ R⇔ degρi

i
→ 0.

Further, we putB :=∑Biπ
i , introducing matrices

Bi = ((Bi )kl ) ∈ Matr ′×r ′ (k[t, t1, . . . , tµ]).
Let us put degBi := max(k,l) {deg(Bi )kl }. We do the same for8,D, Z1 and
the8(s), and we set

di := max{degBi ,degDi ,deg8i } ≥ 0.

SinceB, D and8 have coefficients inR, we havedi / i → 0. Fixing anε > 0,
there exists aκ(ε) ≥ 0 such thatdi ≤ ε i + κ(ε), for all i ≥ 0.
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Note thatσB =∑(σBi )π
qi and that degσBi = degBi ≤ di , for all i . Put

(41) J :=
{
(i0, . . . i s−1; j0; k0, . . . , ks−1) ∈ N2s+1;
(i0+ qi1+ . . .qs−1i s−1)+ qs j0+ (k0+ · · · + qs−1ks−1) = n

}
.

We obtain an estimate

deg8(s)n = deg

(∑
J

(Bi0
σBi1 · · · σ

s−1
Bis−1)

σ s
8 j0 (

σ s−1
Dks−1 · · · σDk1 Dk0)

)
≤ max

J

(
di0 + di1 + · · · + dis−1 + dj0 + dk0 + dk1 + . . .dks−1

)
≤ max(ε(i0+ i1+ · · · + i s−1+ j0+ i0+ k1+ · · · ks−1)+ (2s+ 1)κ(ε))

≤ εn+ (2s+ 1)κ(ε).

Finally, deg(Z1)n = deg
(∑∞

s=08
(s)
n−qs+1

)
. Now

deg8(s)n−qs+1 ≤ εn+
(
(2s+ 3)κ(ε)− ε(qs− 1)

)
,

where((2s+ 3)κ(ε)− ε(qs− 1)) is a function ofs which is bounded by a constant
κ̃(ε). Therefore deg(Z1)n ≤ εn+ κ̃(ε), which shows that

lim sup
deg(Z1)n

n
≤ ε.

As this holds for allε > 0, it follows that deg(Z1)n/n→ 0, for all n ≥ 0. Hence
the matrixZ1 has entire coefficients indeed.�

REMARK 1.24. The entries of the matrixZ (cf. 35) which expresses a basis
for the τ -sheafÑ in terms of a basis forM̃e, are holomorphic functions onC ′K
which may have essential singularities at the points ofS1. Indeed, by equation (40),
they are entire functions in the variablest, f1(t)−1, . . . , fµ(t)−1. In general, one
has to allow such ‘singularities’ to obtain a nice analytic structure for an analytic
τ -sheafM̃ on Ã1

K : see Prop. 2.11 (in view of Def. 1.27).

What can be proved if we do not assume that the residue fieldk of R is algebraic
overFq. For a nondegenerate analyticτ -sheafM̃ on Ã1

R, suppose that the support
of the cokernel ofτ on M1 contains a pointt = s, where we choose somes ∈ k
which is transcendental overFq. Note that equation (37) has now a factor(t − s) in
the denominator. Therefore, if we solve this equation formally (cf. (40)), we obtain
a function with poles at the infinite set of pointssqi

. But, in the sense of rigid
analysis, this defines an analytic function on some small open disks, but not on a
‘larger’ global rigid analytic space.

Denoting, as before, the completion of the local ring of regular functionsO$
at the generic point$ of the special fibreCk of CR by Ô$ , equation (40) clearly
defines an element in̂O$ . Therefore, using similar arguments as in Thm. 1.21, we
can deduce (k not necessarily algebraic overFq):



III. Analytic structure ofτ -sheaves 49

PROPOSITION 1.25. For an analyticτ -sheafM̃ on C̃R with nondegenerate
rank r1, let M̂$ denote the completion of the stalkM$ of M̃ at $ . There exists
a unique maximal good sub-τ -moduleM̂1 ⊂ M̂$ of rank r1 andM̂1 is functorial
with respect toÔ$ -linear homomorphisms.

§3. Analytic semistability theorem.

THEOREM 1.26 (Analytic semistability theorem). Let R be a complete dis-
crete valuationFq-algebra, K its field of fractions and suppose the residue field k
of R is algebraic overFq. For every analyticτ -sheafM̃ on C̃K , there exists

• a nonempty open subschemeC ′ ⊂ C,
• a finite separable extension R′ of R, with fraction field K′, and
• a filtration

(42) 0= Ñ0 ⊂ Ñ1 ⊂ · · · ⊂ Ñn = M̃|C̃′
K ′

of the pullbackM̃ |C̃′
K ′

of M̃ to C̃ ′K ′ by saturated analytic sub-τ -sheaves

on C̃ ′K ′
such that the subquotients̃Mi := Ñi /Ñi−1 have good models over̃C ′R′ .

PROOF. By Lemma 1.16 and an analytic analogue of Lemma 1.10, there exists
a finite extensionR1 of R, with fraction field K1, such that the maximal model
M̃max for M̃K1 is nondegenerate at the closed point of SpecR1. By Thm. 1.21
this yields a saturated good sub-τ -sheafM1 defined over̃C1

K , for a nonempty open
subschemeC1 of C. Let M̃1 denote its generic fibre oñC1

K and put

M̃ ′ := M̃/M̃1,

which is aτ -sheaf onC1
K .

By induction on the rank, we obtain, for a nonempty open subscheme

C ′ ⊂ C1

and a finite extensionR′ of R1 with fraction fieldK ′, a filtration

0= Ñ1 ⊂ Ñ2 ⊂ · · · ⊂ Ñn = M̃ ′|C̃′
K ′
.

�

DEFINITION 1.27. For an analyticτ -sheafM̃ on C̃K , we call a filtration as
in Thm. 1.26 asemistable filtration for M̃ . We say thatM̃ is semistableif there
exists semistable filtration{Ñi } which is already defined oñCK .

As a first example, Drinfeld modules are potentially semistable:

PROPOSITION1.28 (Analytic structure of Drinfeld modules).
Letφ be a DrinfeldA-module defined over K and M its t-motive, aτ -sheaf onA1

K .
The associated analyticτ -sheafM̃ on Ã1

K is potentially semistable.
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PROOF. First, suppose that the valuation ofK is infinite with respect to the
characteristicι. As every Drinfeld module is uniformizable, it will follow from
Thm. 5.13 that̃M potentially has a good model.

For finite valuations, it is shown in Thm. 6.22, that, over a finite field exten-
sion K ′ of K , there exists an exact sequence

0→ Ñ → M̃ → M̃ ′ → 0

of analyticτ -sheaves onA1
K ′ . In this sequenceN is a trivial τ -sheaf (hence poten-

tially good), andM̃ ′ is the good reductiont-motive associated to a Drinfeld mod-
uleφ′ with a model of good reduction. �



CHAPTER 2

Local Galois representations

Let C be an absolutely irreducible affine smooth curve with constant fieldFq

and function fieldF . Consider acompletediscrete valuation ringR whose fraction
field K containsF , with residue fieldk. We denote byπ a uniformizer ofR and
by x the closed point of SpecR, which we will identify with the associated place
of K .

The embeddingF ↪→ K defines a generic characteristic map

ι : SpecK → C

(cf. Def. 0.5), and we put̀ x := ι(x), the residual characteristic point. Finally,
let 0K be the absolute Galois group ofK and IK its inertia subgroup.

Let M be aτ -sheaf overCK with characteristicι. We denote its maximal model
over CR by M := Mmax and the reduction ofM at x by M. In this chapter,
we establish some properties of the Galois modulesV`(M) andW`(M) (Def. 0.8)
concerning the action of the inertia subgroups:

- analyticsemistability(Thm. 1.26) implies unipotent action of inertia on
V`(M) on all but a finite number of closed points` of C;

- a description of the characters oftame inertiaacting onW`(M) at` = `x,
for a τ -sheafM with a good model atx;

- a description of theimage of inertiaonV`(M), for all `, if the τ -sheaf has
characteristicι, dimension 1 and posesses a good model atx.

I. Semistability of Galois representations

If M is good atx then, for all but a finite number of closed points` of C,
the homomorphismτ : σ ∗M → M is an isomorphism locally at the closed point
ξ := ` × Speck of Ck. If τ is an isomorphism locally atξ , thenτ : σ ∗M̂` → M̂`

is smooth, and soT̀ (M) is unramified, by Prop. 0.7.
In conclusion, this shows

LEMMA 2.1. Let R be a discrete valuation ring. If M has a good model onCR,
then V̀(M) is unramified for all but a finite number of closed points` of C.

REMARK 2.2. There exists a converse to this statement, which is stated in
Theorem 4.1.

REMARK 2.3. We immediately obtain an analogous statement for analyticτ -
sheaves̃M : If M̃ has a good model onCR, then the Tate moduleV`(M̃) is unrami-
fied for all but a finite number of closed points` of C.
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No longer assuming thatM has a good model atx, we now prove that inertia
acts (almost everywhere) potentially unipotently on the Tate-modulesV`(M):

THEOREM 2.4 (Semistability of Galois representations). Suppose that the
residue field k of the discrete valuation ring R is algebraic overFq. For any τ -
sheaf M onCK , there exists a finite separable extension K′ of K such that the
action of the inertia group IK ′ on V̀ (M) is unipotent, for all but a finite number of
closed points̀ of C.

PROOF. We consider the analyticτ -sheafM̃ on C̃K associated toM. By the
Semistability Theorem 1.26 we obtain an extensionK ′ a filtration of M̃ with good
subquotients which is defined oñCK ′ , except at a finite number of closed points
of C. This proves the theorem, by 2.3. �

REMARK 2.5. Clearly, if the residue fieldk of R is algebraic overFq, we also
have: For any analyticτ -sheafM̃ on C̃K , there exists a finite extensionK ′ of K
such that the action of the inertia groupIK ′ on V`(M̃) is unipotent, for all but a
finite number of closed points̀of C.

REMARK 2.6. We compare our result to the classical theory of local Galois
representations onQp-vector spacesV . If p 6= p′, the residual characteristic of
the local fieldK , then inertiaIK acts potentially unipotently onV . The proof of
this statement is remarkably elementary (cf. [SGA7], Exposé I). However, given
an abelian variety with its associated Galois representations, the fact that one can
find a finite extension of the base field such that inertia acts unipotently onall Tate
modules, is deeper (cf. [SGA7], Exposé VIII); for motives, it is a consequence of
de Jong’s theory of alterations of algebraic varieties (cf. [Ber], Prop. 6.3.2).

REMARK 2.7. Semistableτ -sheaves with characteristic.Let M̃ be an analytic
τ -sheaf oñCK with characteristicι. As the characteristic is generic, the Tate module
T̀ (M̃) is well defined for all closed points̀ of C. If M has a good model̃M
overCR, thenIK acts trivial onV`(M̃) for all `, except for the residual characteristic
point`x, if it exists.

If M̃ is semistable, then each of the subquotientsM̃i in the semistable filtra-
tion {Ñi } for M̃ has characteristicι or is smooth. Hence, inertiaIK potentially
acts unipotently onV`(M) for ` 6= `x. This shows that in particular semistable
τ -sheaves with characteristic mirror the classical semistability of the Tate modules.
This remark will now allow us to spot a non semistableτ -sheaf.

REMARK 2.8. It may be instructive to discuss Thm. 2.4 in the special case
of Drinfeld modules. For a Drinfeld moduleφ defined overK with characteristic
ι∗ : A ↪→ K , the inertia groupIK acts unipotently onV`(M) for all closed points̀
of C\{`x}, by the theory of uniformization. Indeed, upon replacingK by a finite
extension, we may assume that ifx is a finite place, thenφ has stable reduction
at x, i.e. there exists a model8 for φ overR whose reduction is a Drinfeld module
overk, possibly of lower rank (cf. [Tag2]). We then have the following results:

• If 8 has good reduction atx then, for every idealI of A, the scheme
of A-modules8[I] is finite flat. For the maximal idealλ corresponding



II. Example: (not) semistableτ -sheaves 53

to `, the inductive system{φ[λi ]}1≤i forms anλ-divisible scheme ofA
modules (see [Tag2], §1). The connected-´etale decomposition yields an
exact sequence

0→ 8[λi ]0→ 8[λi ] → 8[λi ]et→ 0

where{8[λi ]0} (resp.{8[λi ]et}) is a connected (resp. ´etale)λ-divisible
group. If ` 6= `x, then {8[λi ]} is étale, which shows that the Galois
moduleV`(φ) is unramified.
• If 8 has Tate reduction overKx, then

PROPOSITION2.9 (Drinfeld [Dr1], §7). There exists a Drinfeld mod-
ule8′ of rankr̄ defined over Rx and with good reduction at x and a Kx-
analytic epimorphism ex : 8′ → 8 of Drinfeld A-modules. Its kernel
Hx ⊂ K sep

x is a strictly discrete projective A-module of rank r− r̄ .

This yields, for every nonzero idealI of A, a decomposition

0→ 8′[I] → 8[I] → Hx/I→ 0.

The latticeHx being strictly discrete, the orbit under0K of any basis is
finite; hence the action of(0x) on Hx is finite as well. Passing to the limit,
this shows that, potentially, inertia acts unipotently onV`(φ) if ` 6= ι(x).
• For all infinite placesx of K , we have

PROPOSITION2.10 (Drinfeld [Dr1], §3). There exists a Kx-analytic
epimorphism ex : Ga → φ of A-modules. Its kernel Hx ⊂ K sep

x is a
strictly discrete projectiveA-module of rank r .

We obtain a0x-invariant isomorphismφ[I] ∼= Hx/I, whereHx, as
above, has a finite Galois action. Hence, potentially, the action ofIx on
V`(φ) is trivial for all `.

II. Example: (not) semistableτ -sheaves

We putC := A1 and consider the discrete valuation ringR := Fq[[π]], denot-
ing by K its field of fractions. We define a characteristic map SpecK → C by

ι∗ : A ∼= Fq[t] → K : t 7→ θ,

for someθ ∈ K . For every pair(α, γ ) ∈ K× × K , we define theτ -sheafMα(γ )

onA1
K as follows: The underlying sheaf isOA1

K
⊕ OA1

K
, with global basis

m = (m1,m2),

and we setτ to be given by the matrix representation

(43) τ (m) = m ·
(

0 α(t − θ)
α(t − θ) γ t

)
.

This Mα(γ ) is a puret-motive of rank 2, dimension 2 and weight 1. If we take
(m1,m2) to be the coordinate functions onG⊕2

a,K , then thet-moduleEα(γ ) is given
by:

(tE − θ)
(

m1
m2

)
= α−2

( −γ τ α(τ − θγ )τ
ατ 0

)(
m1
m2

)
.
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Let us now putθ := π + 1 ∈ R. Then the valuationvπ is finite with respect to
the characteristicι and the residual characteristic`x is defined by the ideal(t − 1).

PROPOSITION2.11. The (analyticτ -sheaf associated with the) t-motive M1(γ )

is potentially semistable onA1
K if and only ifv(γ ) ≥ 0.

PROOF. If v(γ ) ≥ 0, theOA1
R
-moduleM̃ generated bym is a good model for

M1(γ ). A fortiori, the M1(γ ) is semistable.
Suppose thatv(γ ) < 0. Let γ ′ be a(q − 1)-st root ofγ , and R′ := R[γ ′].

We remark that theτ -moduleM̃ with basism′ := γ ′ · m over OA1
R′

defines a

nondegenerate model forM := M1(γ ). Indeed, the representation ofτ with respect
to m′ is then given by:

τ (m′) = m′ ·
(

0 γ ′(t − θ)
γ ′(t − θ) t

)
.

The maximalτ -sheaf(M)1 in M is given byOA1 · m̄′2, and the action ofτ by

τ (m̄′2) = t · m̄′2.
If we let `0 be the closed point ofA1 defined by the ideal(t), then by Thm. 1.22,

the filtration(M)1 ⊂ M lifts to a filtrationN1 ⊂ M̃, whereN1 is a goodτ -sheaf
defined on(A1 \ {`0}) × SpecK . Since the quotientN1 either has characteristicι
or is smooth, the action of inertia on the Tate modulesT̀ (M) is unipotent for all

` ∈ A1 \ {`x, `0}
(cf. Prop. 1.22 and Remark 2.6). In the following lemma, we will prove that the
action of inertia onT̀ 0(M1(γ )) is not potentially unipotent. As̀0 6= `x, we then
obtain, by Remark 2.6, thatM1(γ ) is not semistable. �

LEMMA 2.12. If v(γ ) ≤ 0, then the action of inertia on T`0(M1(γ )) is not
potentially unipotent.

PROOF. PutM := M1(γ ). By the definition of the functorT̀ , we have

(44) T̀ 0(M) =
{

v = (v,w) ∈ Mat1×2(K
sep[[t]]); σv = v ·

(
0 t − θ

t − θ γ t

)}
Expandingv as a power series

∑∞
i=0 vi t i ∈ K sep[[t]], and doing the same forw,

we obtain the system of equations{
v

q
i + θwi = wi−1

w
q
i + θvi = vi−1 + γwi−1.

By substitution, we deduce the following recursion forwi ∈ K sep:

w
q2

i − θq+1wi = γ qw
q
i−1 − (θq + θ)wi−1 +wi−2.

By induction, it follows that ifw0 6= 0, thenvπ(wi ) = qi−1
qi (q−1)

v(γ ). This implies
that no nonzero solutionv of (0.8) is defined over a finitely ramified extension ofK .
Hence, there can exist no finite extensionK ′ and no sub-Fq[[t]][0′K ]-module

T ⊂ T̀ 0(M)
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such thatIK ′ acts trivially onT1. In other words, inertia does not act potentially
unipotently onT̀ 0(M). �

The fact that we have an example of a puret-motive which is non potentially
semistable, i.e. which has not even potentially a global nondegenerate structure as a
τ -sheaf overA1

K , shows that it is impossible to find a global nondegenerate model
for the t-module E, thus leaving little hope for a general reduction theory oft-
modules (cf. Remark 1.11).

III. Action of tame inertia

§1. Fundamental characters.Let M be aτ -sheaf onCK with characteristicι
and dimensiond. We denote bȳκ` an algebraic closure of the residue fieldκ`
of `. Let Wx,ss

` be the semisimplification of theκ`[0K ]-moduleW`(M). We know
that the action ofIK on Wx,ss

` factors through its quotientI t
K of tame inertia (cf.

[Se3], §1); hence the representation of

ρ̄` : IK → κ̄` ⊗Wx,ss
`

is given by a direct sum of charactersδi : IK → κ̄×` . We want to give a more
detailed qualitative description of the charactersδi of Wx,ss

` in caseM has a good
model atx.

Let κ be a finite extension ofFq of order q′ and degree[κ : Fq]. For an
integerρ, letκ [ρ] be the extension ofκ of degreeρ, inside a fixed algebraic closureκ̄
of κ .

DEFINITION 2.13 (Serre). Taking a solutionπρ of X(q
′)ρ − πX = 0, one

defines a tame character

ζκ,ρ : IK →
(
κ [ρ]

)× ⊂ κ̄× : σ 7→ σ(πρ)/πρ.

This character, together with its Gal
(
κ [ρ]/κ

)
-conjugates

ζ (q
′)i

κ,ρ

for i < [κ : Fq], is called thefundamental character of levelρ for κ (cf. [Se3], §1)
(this set of fundamental characters is independent of the choice forπρ).

Any tame characterIK →
(
κ [ρ]

)× ⊂ κ̄× is a power ofζκ,ρ . Let è denote the
ramification index of a closed point` of C for the morphismι : SpecR→ C̄.

THEOREM 2.14. Let M be aτ -sheaf oñCK with characteristicι and dimen-
sion d. If M has a good model at x and` is the closed point ofC lying below x,
then the representation IK → Autκ̄`

(
κ̄` ⊗Wx,ss

`

)
is isomorphic to the direct sum of

products of fundamental characters of level at most r with at most e` · d factors.

The proof will be given in section III.§3.
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§2. Simple ramifiedτ -modules. Denote byRur the maximal unramified ex-
tension ofR, by K ur its field of fractions, whose absolute Galois group0K ur = IK .
Let κ be a finite extension ofFq of orderq′, andϕ′ the Frobenius morphism

x 7→ xq′ .

By a τ ′-module over aκ-algebraB, we will mean aτ -module overB with respect
to the finite fieldκ , i.e. a projectiveB-moduleN, endowed with a map

τ ′ : (ϕ′)∗N → N.

There is an antiequivalence between the category of finiteκ[IK ]-modulesW and
τ ′-modules(N, τ ′) overK ur (cf. (6)). Our aim is to make this antiequivalence more
concrete. The ideas below were inspired by the explicit theory of filtered modules
which can be found in [FL ], §6.

Let us be given a rankρ ≥ 0 and a map

h : Z/ρZ→ {0, . . . ,q′ − 1},
which is not the constant map with valueq′ − 1. We define a simple freeτ ′-
moduleNρ(h) over Rur as follows: With respect to a basis{nj } j∈Z/ρZ, the mor-
phism

τ ′ : (σ ′)∗Nρ(h)→ Nρ(h)

is given by:

(45) τ ′(nj ) := πh( j ) · nj+1.

Put Nρ(h) := K ur ⊗ Nρ(h) and letWρ(h) := T(Nρ(h)) be the associated
κ[IK ]-module. This moduleWρ(h) is given by the solutions

x = (x1, . . . , xr ) ∈ (K sep)⊕ρ

of the system of equations

xq′
j = πh( j ) · x j+1.

The 1-dimensionalκ [ρ]-vector spaceWρ(h) is generated by any nonzero element

(xi )i∈Z/ρZ ∈ (K sep)ρ

such thatxi is a root ofX(q
′)ρ − πν(i )X = 0 and

xi = πh(i−1)x(q
′)

i−1.

Putting

ν = h(0) (q′)ρ−1 + h(1) (q′)ρ−2+ · · · + h(ρ − 1),

this shows that inertiaIK acts on it through a characterζ νκ,ρ , whereζκ,ρ is a funda-
mental character of levelρ.

LEMMA 2.15. Any simple smoothτ ′-module N of rankρ over Kur is isomor-
phic to Nρ(h) for some h.
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PROOF. For any maph, the τ -modulesNρ(h) and N are isomorphic, if and
only if the κ[IK ]-modulesWρ(h) andW are isomorphic. The action ofIK on W
being simple and hence tame, its representation onκ̄× ⊗ W is isomorphic to the
direct sum of a character

δ : IK →
(
κ [ρ]

)× ⊂ κ̄×
and its Gal

(
κ [ρ]/κ

)
-conjugates. We haveδ = ζ νκ,ρ for some 0≤ ν < (q′)ρ − 1.

Writing down aq-expansion

ν = ν0 (q
′)ρ−1+ ν1 (q

′)ρ−2+ · · · + νρ−1,

with eachνi contained in{0, . . . ,q′ − 1}, we then defineh by j 7→ ν j and consider
the τ -moduleNρ(h). As we saw before, the characterδ is then a direct summand
of the representation ofIK on Wρ(h), which shows thatW ∼= Wρ(h) asκ[IK ]-
modules. �

Remark that these calculations also yield that twoτ -modulesNρ(h) andNρ(h′)
are isomorphic if and only ifh is a translate ofh′. For anyi ∈ Z/ρZ, set

ν(i ) :=
∑

j∈[0,ρ−1]
(q′)ρ−1− j h(i + j )

By our assumptions onh, we haveν(i ) ≤ (q′)ρ − 1. Note thatν(0) = ν and that

ν(i + 1) ≡ q′ ν(i ) mod (q′)ρ − 1.

LEMMA 2.16. The modelNρ(h) for Nρ(h) over Rur is maximal.

PROOF. It suffices to show that the iterate(Nρ(h), (τ ′)ρ) of (Nρ(h), τ ′), with

(τ ′)ρ : (ϕ′∗)ρNρ(h)→ Nρ(h),

is a maximal(τ ′)ρ -module. It is a direct sum of rank 1 sub-τρ-modulesNi of the
form

τρ(ni ) = πν(i ) · ni .

Let us denote byNi (resp.Ni ) theτρ-module overRur (resp.K ur) generated by

n1, . . . ,ni .

As ν(1) < q′ρ − 1, theτρ-moduleN1 is a maximal model forN1. By induction,
we similarly prove that theNi are saturated in the maximal modelN max for M over
Rur. Hence(Nρ(h), τ ρ) is maximal. �

§3. Representations of tame inertia.

PROPOSITION2.17. Let N be aτ ′-module of rank r over K with a maximal
modelN over R such thatlengthR(cokerτ ′N ) = m. If ` is the closed point ofC
lying below x, then the representation IK → Autκ̄ (κ̄ ⊗Wx,ss) is isomorphic to the
direct sum of products of fundamental characters of level at most r with at most m
factors.
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PROOF. Take a free summandNi , of rankρ, in the semisimplification

N x,ss=
⊕

Ni

of N ; then length(cokerτ ′Ni
) ≤ m. The maximal model ofNi is isomorphic,

over Rur, to someNρ(h), by Lemma 2.15 and 2.16. Thus∑
j∈Z/ρZ

h( j ) ≤ lengthR

(
cokerτ ′Nρ(h)

)
≤ m.

This shows that the representation ofIK on theκ-vector spaceW∗ associated toNi

is isomorphic to the direct sum of products of fundamental characters of level at
mostr with at mostm factors. �

Let M be aτ -sheaf oñCK with characteristicι and dimensiond.

PROOF OFTHM. 2.14. For placesx of K at which M has a good model,
the κ`[IK ]-moduleW`(M) is determined by the reductionM` of M at the point
SpecK ur×Fq `, or, equivalently, by theτ ′-module(M`, τ

′) overK ur, with

τ ′ := τ [κ`:Fq].

As M has characteristicι and dimensiond, it follows that

lengthR

(
cokerτ ′

) = è · d.
Proposition 2.17 now concludes the proof. �

IV. Image of the action of inertia

Let M be aτ -sheaf onCK with characteristicι anddimension 1, which pos-
sesses a good modelM overCR. By Remark 2.7, inertia acts trivially on the Tate
modulesT̀ (M) for ` 6= `x := ι(x). In this section, we give a qualitative description
of the image of inertiaIK in Aut(T̀ (M)) for ` = `x (cf. Cor. 2.24).

§1. Connected̀ -adic τ -sheaves.Consider a closed pointξ of CR. Let Ôξ
denote the completion of the local ringOCR,ξ of regular functions atξ with respect
to its maximal idealmξ .

DEFINITION 2.18. We call aǹ -adicτ -sheafM̂` on ĈR,` connectedif its re-
ductionMξ at ξ is nilpotent, i.e.τn : (σ ∗)nMξ → Mξ is the zero morphism for
somen > 0.

LEMMA 2.19. For every`-adic τ -moduleM̂` on ĈR,`, there exists an exact
sequence

0→ M̂et
` → M̂` → M̂0

` → 0

of `-adicτ -sheaves over̂C`, whereM̂et
` is smooth andM̂0

` is connected.
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PROOF. Theτ -sheafMξ overξ contains aτ -moduleM1 (of rankr1) as a direct
summand, such thatτ acts nilpotently on

Mnil :=Mξ /M1.

We choose a basism′ := (m̄i )1≤i≤r1 for M, which we then extend to a basis

m := (m̄1, . . . , m̄r )

for Mξ . Any lift m = (mi ) of m to M̂` yields aÔξ -basis of the latter. Put

m′ := (m1, . . . ,mr1).

Let
11 ∈ Matr1×r1(k)

(resp.1 ∈ Matr×r (Ôξ )) be the matrix representation ofτ with respect to the ba-
sism1 (resp.m), and consider any lift̂11 of 11 with coefficients inÔξ .

We want to construct a basisn for a sub-τ -moduleM̂et
` of rankr1 of M̂` such

thatτ operates aŝ11 with respect ton. Let us expressn in terms ofm asn = m · Z,
for some matrixZ ∈ Matr×r1(Ôξ ). Comparing the action ofτ with respect ton
andm, we obtain the equation

(46) Z · 1̂1 = 1 · σZ.
We reduce this equation modulomξ :

Z̄ ·11 = 1 · σZ̄,
where1 is the reduction of1. A solution forZ̄ is given by the matrix which express
the basism′ for M1 in terms ofm.

As 1̂1 is invertible andÔξ is complete with respect tomξ , we can now deter-
mine a solutionZ for equation (46) by iteration. The basisn : m · Z then generates
an saturated ´etale sub-τ -sheafM̂et

` of rankr1 of M̂`. The quotientM̂0
` := M̂`/M̂

et
`

satisfiesM
0
ξ
∼=Mnil and is therefore connected. �

§2. Formal 1-dimensional À -modules. Let Ĝa,R denote the formal additive
group overR. Its endomorphism ring End(Ĝa,R) is isomorphic to the skew power
series ringR[[ϕ]] generated by the morphismϕ and defined by the relation

ϕ · f = ϕ f · ϕ.
DEFINITION 2.20 (Anderson (cf. [An2], §3.4)). Let` denote the closed point

`x = ι(x) of C andλ a uniformizer ofA`. Let ι∗ : A` → R be a local homomor-
phism. A formal 1-dimensional A`-module E over R is a continuous homomor-
phism

E : A` → End(Ĝa,R) ∼= R[[ϕ]]
such that

E(λ) ≡ ι∗(E) mod R[[ϕ]] · ϕ · R[[ϕ]] and

E(λ) ≡ ϕs modπ · R[[ϕ]],(47)

for somes ∈ N (whereπ denotes a uniformizer ofR).
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Let us denote the order of the residue fieldκ` by q`. For everyi , the kernel

E [λi ] := kerE(λi )

is a finite flat scheme ofA/λi -modules of orderqih
` for a integer constant

h = s · (deg`)−1

which is called theheight of E . One defines theTate moduleT̀ (E) associated toE ,
a freeA`-module with continuous action of0K as

T̀ (E) = lim← E [λi ](K sep).

PROPOSITION2.21 (Anderson, cf. [An2], 3.4). There is an equivalence of cat-
egoriesM between the categories of formal 1-dimensionalA`-modules and the cat-
egory of connected 1-dimensional`-adicτ -sheaves on̂CR,`, such that

T̀ (E) ∼= T̀ (M(E)).

REMARK 2.22. For a DrinfeldA-moduleφ, the results 2.19 and 2.21 onM(φ)
can be obtained by a different method. Ifλ is a maximal ideal ofA, then Taguchi
proved in [Tag2] that the system{φ[λn]}n∈N forms aλ-divisible group. One has a
connected-´etale exact sequence ([Tag2] Remark p. 296) and an equivalence between
connectedλ-divisible groups and formalA-modules ([Tag2] Prop. 1.4).

§3. Congruence subgroups ofGLr (A`). For a closed point̀ of C, we con-
sider the freeA`-moduleT := A⊕r

` of rankr . We set

Y := Endκ`(T/λ) = Matr×r (κx)

and putU := EndA`(T) = Matr×r (A`). Putting

(48) G := G0 := AutA`(T̀ ) = GLr (A`),

we define, for everyi ≥ 1, the subgroup

Gi := 1+ λi U

of G. Finally, for i ≥ 1, we consider the groupG[i ] := Gi /Gi+1, which is isomor-
phic toY via

υi : Y ˜−→G[i ] : y 7→ 1+ λi · y.
Let κ ′ := κ [r ]` be an extension ofκ` of degreer and fix an embedding

j : κ ′ ↪→ U.

The finite groupJ := (κ ′)× acts by conjugation onU . For any integeri ∈ Z/hZ,
the isotypical component

(49) U(i ) :=
{
u ∈ U ; u j = j 1−qi

` · u for all j ∈ J
}
,

hasA`-rankr (cf. [Fo1] and [Abr ], §1) and we obtain a decomposition ofU :

U =
⊕

i∈Z/rZ
U(i ).
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Likewise,κ ′ embeds intoY, and we have a decomposition

Y :=
⊕

i∈Z/rZ
Y(i ),

where eachY(i ) is a 1-dimensionalκ ′-vector space on whichJ operates through
the characterj 7→ j 1−qi

`.
For any subgroupH of G, we set, fori ≥ 0, H i := H ∩ Gi and

(50) H [i ] := H i/H i+1 ⊂ G[i ].

§4. Image of inertia. Put` := ι(x), and letλ be a uniformizer ofA`. We now
apply an idea of Fontaine (see [Fo1] and [Abr ]) to give a description of the image
of inertia IK on T̀ (E), whereE is a formal 1-dimensionalA`-module of heighth
over R. We denote by

ρ` : 0K → GLh(A`)

the Galois representation onT̀ (E). Fixing anA`-basis forT := T̀ (E), we use the
notations from the previous paragraph.

THEOREM 2.23. For ` := `x = ι(x), let E be a formal 1-dimensionalA`-
module of height h over R. Ifι is unramified abovè, then there exists a function

ν : Z/hZ→ N ∪ {∞}
satisfyingν(0) = 1 and

ν(i + j ) ≤ ν(i )+ ν( j )

such that

(51) ρ`(IK ) = J n

1+
∑

i∈Z/hZ

λν(i ) ·U`(i )
 ⊂ GLh(A`).

PROOF. For the inertia groupIK , we have an exact sequence

1→ I p
K → IK → I t

K → 1,

whereI p
K is the subgroup of wild inertia (higher ramification subgroup), and we can

fix a sectionI t
K → IK of tame inertia. We putH := ρ`(IK ).

1) Tame inertia. By assumptionλ is a uniformizer ofK . The non-trivialλ-
torsion pointsz in

E [λ] ∼= T/λ

are roots of an Eisenstein polynomial of degreeqh
` − 1. As is well known (cf. [Se3],

§1), it follows from this that the action ofIK factors through tame inertia, that the
imageH [0] of

I t
K → Aut(T/λ) ⊂ Y

has orderqh
` − 1 and can be identified as a group with the multiplicative groupJ

of κ [h]` .
2) Wild inertia. For i ≥ 1, let us put

Li := K ur(E [λi+1]),
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so we can identifyH [i ] with Gal(Li /Li−1). For any pointz of

E [λi+1]\E [λi ] ⊂ K sep

and any nontrivialσ ∈ Gal(Li /Li−1), we haveσ(z) − z ∈ E [λ]\{0}. A direct
calculation shows that, with respect to the normalized valuationv of Li (z), we have

v(σ(z)− z) = qh·i
` .

By [Se2] IV §1, this implies that the subgroup

Gal(Li (z)/Li ) ⊂ Gal(Li (z)/K ur)

is contained in theµ(i )-th higher ramification groupGµ(i ) of Gal(Li (z)/K ), where

µ(i ) := qh·i
` − 1.

But thenI t
K acts trivially by conjugation on

Gal(Li (z)/Li ),

by [Se2] IV §2, Prop. 9 (p. 77).
Through the identificationG[i ] ∼= Y, for i ≥ 1, we have a decomposition

G[i ] =
⊕

j∈Z/hZ

Y( j ).

In the above we found a quotient Gal(Li (z)/Li ) of H [i ] of orderqh
` which is invari-

ant under conjugation byJ, which must hence be isomorphic to

Y(0) ⊂ H [i ].

3) The functionν. TheZ[J]-modulesY( j ) are simple forj 6= 0. It now follows
that H [i ] is isomorphic to a direct sum⊕

j∈J(i )

Y( j ),

where J(i ) is a subset ofZ/hZ which, by the above, certainly contains 0. We
remark that

[Y( j ),Y( j ′)] = Y( j + j ′),
if ( j , j ) 6= (0,0) (cf. [Fo1] §7). By the commutative diagram

(52)
G[i ] × G[i ′ ] → G[i+i ′ ] : (g1, g2) 7→ g1g2g−1

1 g−1
2↑ ↑ ↑

Y × Y → Y : (h1,h2) 7→ [h1,h2]
this implies that ifj ∈ J(i ) and j ′ ∈ J(i ′), then j+ j ′ ∈ J(i+i ′) for ( j , j ) 6= (0,0).
If we now put

ν( j ) := inf{i ∈ N; j ∈ J(i )} ∈ N ∪ {∞},
thenν is the required function. �

Combining Lemma 2.19, Prop. 2.21 and Thm. 2.23, we now conclude:
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COROLLARY 2.24. Let M be aτ -sheaf onCK with characteristicι anddimen-
sion 1, which possesses a good modelM overCR. Suppose thatι is unramified at
the point` := ι(x). Then we have

i) an exact sequence

(53) 0→ V`(M)
0→ V`(M)→ V`(M)

et→ 0

of F̀ [0K ]-modules, where
– the module V̀(M)et is unramified, and
– the image of the action of inertia on V`(M)0 can be described as in

Thm. 2.23 above, and
ii) an exact sequence

(54) 0→ W`(M)
0→ W`(M)→ W`(M)

et→ 0

of κ`[0x]-modules where
– the module Ẁ(M)et is unramified and
– the image of inertia on the h-dimensional vector space W`(M)0 is

isomorphic to(
κ
[h]
`

)× ⊂ Autκ`(W`(M)).





CHAPTER 3

The image of global Galois representations

Let C be an absolutely irreducible projective smooth curve with field of con-
stantsFq and denote its function field byF . Consider the affine curveC = C\{∞},
where∞ is a fixed closed point ofC, and putA = H 0 (C,OC). Let K be a finite
extension ofF := Quot(A), and let us denote the morphism SpecK → C by ι.

In this chapter, we will study the image of the absolute Galois group0K of K
under the residual adelic representationρad associated to a simpleτ -sheafM of
rank r overCK with characteristicι and dimension 1. The prominent example to
keep in mind is given by thet-motive M(φ) associated to a Drinfeld moduleφ
overA with coefficients inK and characteristicι. Theseτ -sheavesM(φ) are char-
acterized by the fact that they are pure (cf. Remark 0.18). In what follows, however,
we will avoid any ‘purity’ assumption, as it seems a better idea to exploit directly
the natural relation betweenτ -sheaves and Galois representations.

We will combine techniques adopted from Serre’s theory on abelianp-adic
representations (cf. [Se1]) and his famous theorem Thm. 0.20 on the adelic image
of Galois on the torsion of elliptic curves with well known results on the Galois
modulesV`(M):

- they form astrictly compatiblesystem of integral representations;
- theTateandsemisimplicityconjectures;
- the structure of theendomorphismring;
- properties of thedeterminantDrinfeld module,

Let us call End̄K (M) the absolute endomorphism ring ofM. We recall from
equation (14) thatWad(M) is defined as the product

∏
` W`(M) over all closed

points` of C. In Thm. 3.13, we will give a proof of the following conjecture in the
caser ≤ 2:

CONJECTURE3.1. For a finite extension K of F, let M be aτ -sheaf overCK

with characteristicι : SpecK → C, dimension1 and absolute endomorphism
ring A. The image of the representationρad of0K on theκad[0K ]-module Wad(M)
is open inGLr (κad).

I. Global properties

For the finite extensionK of F (a field of transcendence degree 1 overFq),
we choose an irreducible projective smooth curveX overFq with function fieldK .
For any closed pointx of X, which we identify with the associated place ofK , we
denote the completion ofK at x by Kx, its ring of integers byRx and a uniformizer
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of Rx byπx. Let0x be the absolute Galois group ofKx, andIx its inertia subgroup.
The characteristic

ι : SpecK → C̄

induced by the embeddingι∗ : A ⊂ F ↪→ K extends to a morphism

ι : X → C̄.

We denote bỳ x := ι(x) the closed point of̄C below a placex of K .
Let M be aτ -sheaf of rankr overCK with characteristic mapι and dimensiond.

REMARK 3.2. The maximal exterior power∧topM of M is aτ -sheaf of rank 1,
with characteristic mapι and dimensiond as well. By the tensor compatibility ofV`,
we get

∧topV`(M) ∼= V`(∧topM).

If M has dimension 1 then∧topM is pure of weight 1 and therefore isomorphic
to the t-motive of a Drinfeld moduleφ of rank 1; then∧topV`(M) is isomorphic
to V`(φ).

§1. Strictly compatible system of representations.Theτ -sheafM admits a
maximal modelMmax overCX := X × C (cf. Prop. 1.13). For a closed pointx
of X, we letMx denote the reduction ofMmax at Speckx × C. For all but a finite
setXbad of placesx, the modelM is good atx (i.e. its reduction is again aτ -sheaf),
by Lemma 1.8; we putXgood := X\Xbad.

PROPOSITION3.3 (Strictly compatible system.).The system of Galois mod-
ules V̀(M) is a strictly compatiblesystem overC of integral representations with
exceptional set Xbad, i.e.

i) for all closed points̀ of C, V̀ (M) is unramified for all places x∈ Xgood

such that̀ 6= `x. For such x, the action of a Frobenius substitutionFrobx

on V̀ is well defined;
ii) for all x ∈ Xgood, the characteristic polynomial

(55) Px(V`(M); T) := det(Frobx − T |V`(M)) ∈ A`[T]
(which is independent of the choice ofFrobx) has coefficients inA and is
independent of̀, for all closed points̀ 6= `x of C.

PROOF. The cokernel ofτ on M is supported on the graph0(ι) of the char-
acteristicι : X → C in CX. For any closed pointx of Cgood, the completionM̂`

of M at SpecRx × {`} is smooth for all closed points̀ 6= `x of C. Hence, the Tate
moduleT̀ (M) is unramified atx for ` 6= `x. Puttingdx := [kx : Fq], we define

Px(M; T) := det
(
τdx − T | H 0(Ckx ,Mx)

)
∈ A[T].

The following proposition then concludes the proof: �

PROPOSITION 3.4 (Taguchi-Wan, [TW ], p. 772). For all closed points x of
Xgood and all closed points̀ 6= `x of C:

Px(V`(M); T) = Px(M; T) ∈ A[T].
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REMARK 3.5. Given a Drinfeld moduleφ such thatM = M(φ), the above can
just as well be deduced from the reduction theory of Drinfeld modules, explained in
[Dr1], [Go2] and [Tag2]. Actually, the set of places at whichφ has good reduction
coincides exactly with the set of closed points ofXgood; this follows from the Galois
criteria of good reduction for both Drinfeld modules andτ -sheaves (cf. [Tak], resp.
our Thm. 4.1):

φ has good reduction
⇔ T̀ (φ) ∼= T̀ (M) is unramified for̀ 6= `x

⇔M is good.

§2. Semistability of Galois representations.As a consequence of Thm. 2.4,
we obtain:

PROPOSITION 3.6 (Semistability of Galois representations).There exists an
open subschemeCsst of C and a finite extension K′ of K such that, for all closed
points` of Csst and all places x of K′, the action of the inertia group Ix on V̀ (M)
is unipotent if̀ 6= `x.

CX

X

C

Xbad

0(ι)

x

`x

3sst
3x

FIGURE 1. At the finite number of placesx of bad reduction, we have
a finite set3x of closed points ofC, such that, ifIx does not acts poten-
tially unipotently onV`(M), then` ∈ {`x}∪3x . This allows us to define
the finite set3sst, such that ifx is a place ofK , and` 6∈ {`x}∪3sst, then
Ix acts potentially unipotently onV`(M).

PROOF. For every placex ∈ Xbad, let3x denote the finite set of closed points
defined asC\C ′, whereC ′ is as in Thm. 1.26. Set

3sst := ∪x∈Xbad3x
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(cf. Figure 1), and
Csst := C\3sst.

Also, we consider a finite extensionK ′ such that the semistable filtrations are de-
fined overKx, for every placex of K . �

§3. Tate and semisimplicity conjectures.Taguchi (in the case of Drinfeld
modules; cf. [Tag4] and [Tag2]) and Tamagawa (for generalτ -sheaves) [Tam])
proved the so-called Tate and semisimplicity conjectures forτ -sheaves for every
finitely generated fieldK :

THEOREM 3.7 (Taguchi, Tamagawa).For a finitely generated field K contain-
ing Fq, let M be a simpleτ -sheaf onCK K and` a closed point ofC such that the
`-adicτ -sheafM̂` is smooth.

i) Tate conjecture.The map

F` ⊗A EndK (M)→ EndF`[0K ] (V`(M))
is an isomorphism.

ii) Semisimplicity conjecture.The F̀ [0K ]-module V̀(M) is semisimple.

§4. The endomorphism ring. The following result holds for any fieldK con-
taining F :

PROPOSITION 3.8. For a field K containing F, let M be a simpleτ -sheaf
on CK of characteristicι : SpecK → C and dimension1. The ringEndK (M)
of endomorphisms M defined over K is a finitely generatedA-algebra of rank at
most r2. If M has dimension 1, thenEndK (M) is commutative.

PROOF. The ringE := EndK (M) is anA-algebra via the inclusionA ↪→ E.
First of all, if M has rank 1, then one readily sees that EndK (M) = A.

a) We put E0 := End0
K (M) := F ⊗A E. For everyα ∈ E, there exists

an α̂ such thatα̂ · α ∈ A. Indeed, ifα is (locally) represented by a matrixB,
then its determinant is an element ofA, so it suffices for example to consider the
endomorphism̂α represented by the adjoint matrixBad. This proves thatE is a
torsion freeA-module and thatE0 is a divisionF-algebra.

b) First, we suppose thatK is a finitely generated field. Taking a modelX of K
of finite type over SpecFq, and a modelM overCX for theτ -sheafM, there exists
a closed pointx of X at which the reductionM of M at x is good (straightforward
generalization of paragraph1.I.§2). Then the stalkMx of M at the closed point
of CX abovex is maximal, by an analog of Lemma 1.13.ii), and therefore EndK (M)-
invariant.

Thus we obtain a ring homomorphism

j : E→ Endkx (M),

wherekx is the finite residue field atx. Without loss of generality, we may reduce
ourselves to the case thatC = A1, and (upon replacingτ by some power) that
kx = Fq, as we only risk to increase the endomorphism ring. Then Endkx (M) is
just the full matrix ring of rankr × r overA, so for sure it is finitely generated.
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We now claim thatE0 → F ⊗A Endkx (M) is injective. The ringE0 being
a division F-algebra, it suffices to show that it is not a zero morphism, but this is
obvious since it is nonzero on the subringA ⊂ E of multiplication-by-a endomor-
phisms. Thusj is injective, and hence EndK (M) is finitely generated.

For every closed point̀ of C, it follows from the Tate conjecture (Thm. 3.7)
that theF-algebraF` ⊗A E embeds into EndF`(V`(M)), which is anF`-algebra of
rankr . This shows thatE has at most rankr 2.

For an arbitrary fieldK , we choose an infinite tower of finitely generated
fields Ki such that∪Ki = K . For everyKi , the ring EndKi (M) is finitely gen-
erated overA, of rank≤ r 2. It follows from the Tate conjecture that theA`-algebra
A` ⊗A E is saturated in EndA`(T̀ (M)). Therefore, if, forKi ⊂ K j , we have

EndKi (M) 6= EndK j (M),

then this implies that

rankAEndKi (M) ≤ rankAEndK j (M).

As these ranks are bounded byr 2, we obtain aK j such that

EndK j (M) = EndK (M),

and this proves that EndK (M) is finitely generated of rank at mostr 2.
c) Finally, suppose thatM has dimension 1. Endomorphisms by definition

commute withτ , so we have a natural map:

E→ EndOCK
(cokerτ ).

As cokerτ is supported on the closed pointγ of CK and has rank 1 on the pointγ ,
we can identify the latter withK = EndK (K ). We claim that

j : E0→ K

is a injection. The ringE0 being a divisionF-algebra, it suffices to show thatj is not
a trivial morphism. But this is clear since for anyα ∈ A ⊂ E, we know, asM has
characteristicι, that j (α) acts on cokerτ asι∗(α) ∈ K , whereι∗ is the embedding
ι∗ : A ↪→ K . HenceE0 is a (commutative) field extension ofF . �

II. Image of the residual representations

We first develop a theory of compatible systems of0K -representations associ-
ated to Hecke characters, inspired by Serre’s theory of abelianp-adic representa-
tions (cf. [Se1]). This allows us to treat residual representations which decompose
absolutely into a direct sum of 1-dimensional characters. As a consequence, we can,
following the strategy of [Se3], prove Conj. 3.1 in the caser ≤ 2 (Thm. 3.13).

§1. Serre torus. For a finite separable extensionK of F , we choose an irre-
ducible projective smooth curveX overFq with function fieldK . Let F̄ denote an
algebraic closure ofF , andĀ the integral closure ofA in F̄ . Let KA denote the ring
of adeles ofK .
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We choose, for all closed points̀of C, an embedding of̄F into an algebraic
closureF̄` of F`, and letĀ` denote the integral closure ofA` ∈ F̄`. We denote the
maximal ideal ofF̄` by λ̄. The residue field of̄F` is isomorphic toκ̄`.

1. Elements from class field theory.We may assume thatK is a Galois exten-
sion of F . We fix a nonempty finite setS of closed points ofX and denote bySC

the finite set of closed points ofC lying below it.
We now consider the product

(56) US :=
∏

x closed pt. of X
x 6∈S

R×x ×
∏
x∈S

K×x ⊂ K×
A
,

and, for every closed point̀of C, we let

(57) U (`)
S :=

∏
x closed pt. of X

x 6∈S
`x 6=`

R×x ×
∏
x∈S

K×x ⊂ K×
A
.

There is an exact sequence

1→ K×/(K× ∩US)→ K×
A
/US→ C→ 1,

where the ‘class group’C = K×
A
/K×US is a finite abelian group, asS is non-empty

(cf. [Wei]).

Let K×U (`)
S be the closure ofK×U (`)

S in K×
A

. The Artin reciprocity map of
global class field theory induces a continuous isomorphism

ω : K×
A
/K×U (`)

S → Gal
(

K ab,(`)
S /K

)
,

whereK ab,(`)
S is the maximal abelian extension ofK which splits completely at the

points ofSand is unramified outside the places lying above`.
2. Serre torus.We consider the algebraic group ResK

F (Gm,K ), defined for all
commutativeF-algebrasB by

ResKF (Gm,K )(B) := (B⊗F K )×.

We let K× ∩US be the Zariski closure ofK× ∩ US in ResKF (Gm,K ) and take the
quotient group

T := ResKF (Gm,K )/K× ∩US,

an algebraic group defined overF .
Let SK ,S (for short:S) be the push-out overK×/(K× ∩US) of T andK×

A
/US,

i.e. the algebraic group with the universal property that, for any algebraic groupS′
equipped with morphismsT→ S′ andK×

A
/US→ S′(F) such that the diagram

K×/(K× ∩US) → K×
A
/US

↓ ↓
T(F) → S′(F),

commutes, there is a unique morphismS → S′ through which these maps factor.
Serre gave an explicit construction of the torusS in [Se1], II §2.
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We now have a commutative diagram

(58)
1→ K×/(K× ∩US) → K×

A
/US → C → 1

↓ ↓ ↓
1→ T(F) → S(F) → C → 1

For every closed point̀ of C, consider the composite map

(59) υ` : K×A → K×
A
/US = S(F)→ S(F`).

On the other hand, we have a continuous mapξ` defined as the composition of

(60) K×
A

��

ξ`

��

(∏
x|` Kx

)×
ResKF (Gm,K )(F`)

��
T(F`) // S(F`).

By the commutativity of diagram (58), it follows thatυ`|K× = ξ`|K× . Thus we
obtain, for all` in C, a continuous group homomorphism

(61) 4` := υ` · ξ−1
` : K×A → S(F`)

The map4` factors throughK×
A
/K×U (`)

S .
Any linear representation8 : S→ GLm defined overF̄ , now yields, for every

closed point̀ of C, a Galois representation8` as follows:

(62) 0K //

8`
22

Gal
(

K ab,(`)
S /K

)
K×
A
/K×U (`)

S

ω
OO

4` // S(F̄`)
8��

GLm(F̄`).

We denote byV`(8) them-dimensionalF̄`[0K ]-moduleF̄⊕m
` with the0K -action

given by8`.
The algebraic groupS being a torus, its linear representation8 can be diago-

nalized over some finite extensionE ⊂ F̄ of F , so V`(8) is semisimple. As any
compact subgroup of GLr (E`) (whereE` := F`E ⊂ F̄`) is contained in a conju-
gate of GLr (Ā` ∩ E), we know that the image of the Galois representation8` is
contained in a conjugate of GLr (Ā`).

The system of representationsV`(8) is a C\SC -compatible system of repre-
sentations. Indeed, for every closed pointx of X\S not lying abovè , the image

of a Frobenius substitution of Frobx in Gal
(

K ab,(`)
S /K

)
underω−1 is given by a
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uniformizerπx ∈ Fx. As ξ`(πx) = 1, the image of Frobx under8` is then given by
the image in GLm(Ā`) of πx under the map

K×
A

υ`

""
// S(F) //

��

S(F`)

��
GLm(F̄) // GLm(F̄`)

so its characteristic polynomial (cf. (55))

Px(8; T) := Px(V`(8); T)
has coefficients inF̄ is independent of̀ . As the image of8 is contained in a
conjugate of GL(Ā`), the coefficients ofPx(8; T) are contained in̄A`, for every`
in C\SC .

3. Galois characters associated to characters ofS. Put

6 := AutF (K , F̄).

Everyσ ∈ 6 extends to a homomorphismK ⊗F F̄ → F̄ and thus to a morphism

[σ ] : ResKF (Gm,K )→ Gm

defined overF̄ . These[σ ]’s give aZ-basis for the character group

X(ResKF (Gm,K )).

Furthermore,

X(T) =
{∑

σ

nσ [σ ] ∈ Z[6];
∏
σ

σ (x)nσ = 1 for all x ∈ K× ∩US

}
.

The characters ofS sit in the exact sequence:

1→ X(C)→ X(S)
j→ X(T)→ 1,

whereX(C) is the finite group Hom
(
C, (Fq)

×
)
.

By the universal property ofS, if we are given a pair of homomorphisms(
f, ϕ =

∑
σ∈6

nσ [σ ]
)
∈ Hom

(
K×
A
, F̄×

)× X(T)

satisfying

• f |US = 1 and
• f |K× = ϕ|K× ,

then these maps will factor through a unique character8 ∈ X(S) of S.
Composing8 with 4` gives a map8`

K×
A
/K×U ` → S(F̄`) → F̄×`

x 7→ f (υ`(x)) · ϕ(ξ`(x−1)),
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and therefore yields a Galois representation0K → F̄×` (still denoted by8`) via the
isomorphismω−1.

§2. Characters of the residual representation.

PROPOSITION3.9. Let K be a finite separable extension of F and M aτ -sheaf
of rank r overCK with characteristicι with dimension1. Suppose we are given

• an infinite setL of closed points̀ of C such thatκ̄` ⊗ W`(M) has a
0K -invariant subquotient W′̀ of κ̄`-dimension one:
• a closed point x0 of X of degree1 overFq at which the maximal modelM

onCX for M is good;

Let us denote byχ` the character

0K → Aut(W′̀) ∼= κ̄×` .
Then there exists

• a finite normal field extension K′ of K , whose field of constants K′ ∩ Fq

we denote byF′;
• a character8 ∈ X(SK ,S), for S := {x0}, together with its system of

1-dimensionalF̄`[0K ′ ]-modules V̀(8) (with Galois representation

8` : 0K ′ → A×` ⊂ F̄×` );
• a strictly compatible system 1-dimensionalF̄`[0K ′ ]-modules V̀(η), for

closed points̀ of C\SC , such that the associated Galois characters

η` : 0K ′ → A×` ⊂ F̄×`
factor through0F′ (the absolute Galois group ofF′); and
• an infinite subsetL′ of L

such that, for all̀ ∈ L′, we have

(63) χ` ≡ 8` · η` mod λ̄.

PROOF. Let K ′ be a Galois extension ofK such that the semistable filtration
for M (see Thm. 1.26) is defined overCsst

K ′. Without loss of generality, we may
assume thatK = K ′. We may also suppose thatL contains none of the finitely
many points ofC which are either

• contained in3sst

• ramified in the extensionX → C̄
• equal tò 0 := ι(x0).

a) Characters which are ‘trivial at x0’. The idea is to replace theχ` by a family
of charactersψ` whose restriction to the decomposition group0x0 at x0 is trivial.
Let F ′ be the splitting field of the polynomialPx0(M; T) ∈ A[T] (cf. Thm. 3.3),
and

F := { fi }1≤i≤r

the set of its roots, i.e. the eigenvalues ofτ onM, or, equivalently, of the Frobenius
morphism Frobx0 acting onT̀ (M) for all ` 6= `0. By Thm. 3.2.3 d), the determi-
nant representation detρ` corresponds to thè-adic representation associated with
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a Drinfeld module. By [Go2], we have

0= v`(detρ`(Frobx)

(
=

r∑
1

v`( fi )

)
if ` 6= `x, and thereforev`( fi ) = 0 if ` 6= `0. Let C̄ ′ be a projective smooth curve
with function fieldF ′ andC ′ the inverse image ofC via the natural map̄C ′ → C̄.

For eachf ∈ F , we can construct aτ -sheafN̄ f on C ′ (= C ′
Fq

) by takingOC′

as the underlying sheaf and putting

τ : σ ∗OC′ → OC′ : 1 7→ f.

For every` 6= `0, we fix a point`′ ∈ C ′ above` and an embeddingF ′
`′ ↪→ F̄`.

As Nf is smooth at̀ ′, the Tate moduleT̀ ′(Nf ) of Nf is well defined. The Galois
group0Fq acts on it through a character

η
f
` : 0Fq → (F ′`′)

× ⊂ F̄×`
such thatη f

` (Frobx0) = f ∈ F ′ ⊂ F̄×` .
As F is finite, there exists an eigenvaluef and an infinite subsetL1 of L\SC

such that
χ`(Frobx0) ≡ f modλ̄

for all ` ∈ L1. Then, for all` in L1, the character

ψ` := χ` · (η f
` )
−1 mod λ̄ : 0k → κ̄×`

factors through the Galois group an abelian extension ofK whose restriction to0x0

is trivial, and which is unramified outside the placesx` of K lying abovè (by our
assumptions, inertiaIx acts unipotently onV`(M) if ` = `x).

Therefore, with the notations of the previous section, the charactersψ` factor
through a diagram

0K // Gal
(

K ab,(`)
S /K

)
K×
A
/K×U (`)

S

ω
OO

// κ̄×` .

We will denote the mapK×
A
/K×U (`)

S → κ̄×` again byψ`.
b) Characters of tame inertia.Let x denote a place ofK abovè . By Cor. 2.24,

we have an exact sequence ofκ`[0x]-modules

(64) 0→ W`(M)
0→ W`(M)→ W`(M)

et→ 0,

where the moduleW`(M)et is unramified. The image of inertia on theh-dimensional

vector spaceW`(M)0 is isomorphic to
(
κ
[h]
`

)
⊂ Autκ`(W`(M)), i.e. a maximal

cyclic ‘Cartan’ subgroupC of orderqh
` − 1. The image of0x is then contained in

the normalizerN of C in Autκ`(W`(M)).
The action of inertiaIx on the subquotientW′̀ of κ̄` ⊗κ` W`(M) is either

i) trivial or
ii) given by a fundamental characterζκ`,h of levelh ≤ r .
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The action induced byN on a 1-dimensional sub-vector space ofW`(M) coincides
with that ofC. Therefore, in case ii), the fact thatW′̀ is 0x-invariant implies that it
is fully ramified; hence the residue fieldkx must already contain allqh

` − 1-st roots

of unity, i.e.κ [h]` ⊂ kx.
By assumption, the extensionKx/F` is unramified. Putting

ρ := [kx : κ`],
it follows form local class field theory that the fundamental character of levelρ is
essentially the inverse of the local norm residue symbolω` : K×x → 0ab

x (cf. [Neu]
III, 7.5 p. 63). More precisely:

ζρ ◦ ω : K×x = R×x × πZx → k×x : x = u · π i
x 7→ u−1 mod x.

For everyh|ρ, taking the norm mapsNh : kx → κ
[h]
` in Z[Gal(kx/κ`)], we have the

relationsζκ`,h = Nh ◦ ζκ`,ρ .
Let x̄ be the unique place ofK lying below the placēλ of F̄ , andkx̄ ⊂ κ̄` its

residue field. The above observations imply that, under the map

ψ` : K×A /K×U (`)
S → κ̄×` ,

the image of anyax̄ ∈ R×x̄ ⊂ K×
A

is given by:

ax̄ 7→
(
a−1

x̄ mod λ̄
)µ(x̄)

,

whereµ(x̄) ⊂ Z[Gal(kx/κ`)], andµx̄ is either zero or equal toNh, for someh
dividing [kx̄ : κ`].

For any placex of K lying over`, we can identify Homκ`(kx, kx̄) with

6x = Homκ`(Kx, Kx̄).

Everyσ ∈ 6 extends uniquely to āσ ∈ 6x(σ ) wherex(σ ) is the unique place ofK
abovè such that̄x = σ x(σ ). With these notations, we obtain, for every

a` ∈
∏
x|`

R×x̄ ⊂ K×
A

that

(65) ψ` : a` 7→
(
a`
−1 mod λ̄

)µ(`)
,

for some

µ(`) ∈ H :=
{∑
σ∈6

nσ [σ ]; 0 ≤ nσ ≤ 1

}
⊂ Z[6].

As H is a finite set, there aϕ ∈ H and an infinite subsetL2 of L1 such that

µ(`) = ϕ
for all ` ∈ L2.

c) Characters ofSK ,S. We check thatϕ is a character ofT. For every

x ∈ K× ∩US,
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we haveψ`(x) = 1, asψ` factors throughK×. On the other hand, asx ∈ US ⊂ K×
A

,
we obtain from (65) that

ψ`(x) ≡ ϕ(x−1) mod λ̄.

Thusϕ(x) ≡ 1 mod λ̄, and this for all̀ ⊂ L2. As L2 is infinite, this implies the
equalityϕ(x) = 1. Henceϕ ∈ X(T).

We extendϕ to some character8′ = ( f, ϕ) ∈ X(SK ,S). The character

χ` := ψ` · (8′̀ )−1 mod λ̄ : K×
A
/K×U `→ κ̄×`

factors throughC, soχ` ∈ X(C). The X(C) group being finite, we again find an
infinite setL′ ⊂ L2 of points` with the same character

χ = χ` ∈ X(C).

Upon replacing8′ by8 = (χ · f, ϕ), we then obtain, for all̀ ∈ L′:

8` ≡ ψ` mod λ̄.

�

§3. Abelian residual representations.

THEOREM 3.10. Let K be a finite separable extension of F and M a simple
τ -sheaf of rank r overCK with characteristicι and dimension 1. For every closed
point`, let WK ,ss

` denote the semisimplification of theκ̄×` [0K ]-module

κ̄` ⊗W`(M).

If WK ,ss
` is isomorphic to a direct sum of 1-dimensional0K -representations over̄κ`

for an infinite setL of closed points̀ of C, then the representations̄F` ⊗ V` are
isomorphic to a direct sum of 1-dimensional0K -representations, for all̀ of C.

PROOF. a) Let x0 be a closed point ofC at which M has a model with good
reduction, and letk0 denote its finite residue field of degreed0 := [k0 : Fq] with
Frobenius endomorphismϕ′ = ϕd0. We putF ′ := k0F . Let C̄ ′ be the smooth pro-
jective curve with function fieldF ′ and putC ′ := u−1(C) whereu is the morphism
C̄ ′ → C̄. We define aτ ′-sheafM ′ on C ′k0

as follows: let the underlying sheaf be
given byM ′ := u∗M and put

τ ′ = u∗(τd0) : σ d0
∗
M → M.

For every closed point̀ of C, we have then an isomorphism of Tate modules

k0⊗Fq V`(M) ∼=
⊕

`′∈u−1(`)

V`′(M
′).

In particular, if F̄` ⊗F ′
`′

V`′(M ′) is isomorphic to a direct sum of 1-dimensional

representations then so is̄F` ⊗F` V`(M). Thus we may assume thatk0 = Fq.
b) Let us now writeWK ,ss

` = ⊕r
i=1Wi

` , where the action of0K on Wi
` is given

by a characterχ i
`. By Prop. 3.9, there exist an infinite subsetL, and for everyi ,
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compatible systems of 1-dimensional0K -representationsV`(8i ) andV`(ηi ) over
C\{`0} such that

χ i
` ≡ 8i

` · ηi
` mod λ̄.

We put

V ′̀ :=
r⊕

i=1

V`(8
i )⊗ V`(η

i ).

This gives a compatible systemV ′ overC\{`0} of integral semisimple0K -represen-
tation overF̄`.

c) For everyx in Xgood\{x0}, the characteristic polynomials of Frobenius

Px(M; T), resp. Px(V
′; T) ∈ F̄(T)

are well defined, independent of` and have integral coefficients at every place ofF̄
above`, for every closed point̀ 6= {`0, `x} of C. If the point` is contained inL,
we have thatWK ,ss

`
∼= T ′̀/λ, and hence:

Px(M; T) ≡ Px(V
′; T) mod λ̄

This congruence now holds for infinitely many`, which shows that we must have
an equality

Px(M; T) = Px(V
′; T) ∈ F̄(T),

and this for all but a finite number of places ofK .
d) By the Chebotarev density theorem, the Frobenius substitutions are dense

in 0K . It follows that, for all closed point̀ of C and allσ ∈ 0K , that the charac-
teristic polynomial of the action ofσ on V`(M) andV ′̀ coincide. As both systems
are systems of semisimple representations (Prop. 3.7 ii), it follows, by the Brauer-
Nesbitt theorem, thatV`(M) ∼= V ′̀ for all `. Hence the Galois modulēF` ⊗ V`(M)
is a direct sum of 1-dimensional representations. �

§4. Rank 2.

PROPOSITION3.11. Let K be a finite separable extension of F. For anyτ -
sheaf M overCK of rank 2, with characteristicι and dimension1, there exists a
finite extension K′ of K such that for all but a finite number of closed points` of C
we have either

• that WK ′,ss
` (cf. Thm. 3.10) is a sum of 1-dimensional0K ′ -representations

overκ̄`, or
• that the residual representation

ρ` : 0K ′ → Autκ`(W`(M))

is surjective, i.e.�` := ρ̄`(0K ′) = Autκ`(W`(M))

PROOF.
a) We need to list the possibilities for the subgroup�` of Autκ`(W`(M)). If F

is a finite field, any subgroupG of GL(r,F) whose projection under

5 : GL(r,F)→ PGL(r,F)
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is surjective contains SL(r,F). Forr = 2, there is Dickson’s well known classifica-
tion of the maximal subgroups of PGL(2,F):

PROPOSITION3.12 (Dickson [Hup], Thm. 8.27). Any proper subgroup of the
groupPGL(2,F) over a finite fieldF of characteristic p is contained in either

i) a Borel subgroup;
ii) a dihedral groupD of order2m, m prime to p;
iii) PSL(2,F);
iv) a conjugate of the subgroupPGL(2,F′) for some proper subfieldF′ of F;

or
v) a subgroup isomorphic to one of the groups A4, A5, S4.

b) We may replaceK by a finite separable extension such that the semistable
filtration for M (see Thm. 1.26) is defined overCsst

K . Let3 be the finite subset of
closed points ofC, containing the points

• of ι(Xbad),
• of Csst,
• for whichq` := #κ` ≤ 5, and those
• which ramify in K/F .

Let ` be a closed point ofC\3.
Consider a point̀ in L. As the maximal exterior power∧2Mmax of the maxi-

mal modelMmax is good at any placex above`, Cor. 2.24, applied tor = 1, tells
us that detρ` is surjective. Therefore, either�` = GL(2, κ`) or5(�`) is a proper
subgroup of PGL(2, κ`), where case iii) is then ruled out.

Choosing a splitting of the mapIx → I t
K , we obtain from Cor. 2.24 that�`

contains a cyclic subgroup of orderqh
` − 1, whereh ≤ 2 is the height ofM̂`.

This yields that5(�`) contains a maximal (split or non-split) Cartan group, i.e. a
maximal cyclic subgroup (of orderq` ± 1),5(C) of PGL(2, κ`), which excludes
case iv). Also,5(C) is cyclic of orderq` ± 1 > 5, whereas the groups in v) only
have cycles of order at most 5; hence case v) is also excluded.

If 5(�`) is contained in a Borel subgroup - case i) -, then it follows thatWss is
a sum of two 1-dimensional0K -representations.

c) So suppose that5(�`) is as in ii). The maximal cyclic subgroupH of order
at least 2 insideD is uniquely determined becausem > 2 as 2m ≥ q` ± 1 > 5.
Consider the quadratic character

ε` : 0K
5◦ρ`−→ D → D/H.

We claim that, for all but a finite number of closed points` of C\3, this character
is unramified at all places ofK

Let x be a place ofK . We distinguish 2 cases:

• `x 6∈ 3 . In particular, theτ -sheafM has a good model atx andx is not
ramified in K/F . If ` 6= `x, then the action ofIx on W`(M) is trivial.
Suppose that̀ = `x. Let h denote the height ofM̂` (cf. Def. 2.20).

– h = 1 . From Cor. 2.24, we see that the action via conjugation of
the subquotientρ`(I

t
x)
∼= (κ`)

× on the p-groupρ`(I
p
x ), defines a
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κ×` -module structure onρ`(I
p
x ). As ε` has order 2, andq` > 5, it

follows thatε`|I p
x
= 1. The imageC of tame inertia in PGL2(κ`) is a

maximal cyclic subgroup, of orderq`−1. ThereforeC must coincide
with H ⊂ D andε`|Ix = 1.

– h = 2 . Wild inertia acts trivially onW`(M) and the imageC of
tame inertia in PGL2(κ`) is a maximal cyclic subgroup, of order
q` + 1. ThereforeC must coincide withH ⊂ D andε`|Ix = 1.

• `x ∈ 3 . If M is good atx then Ix acts trivially onW`(M). If M is not
good atx, then there exists an exact sequence

0→M1→M→M2→ 0

of goodτ -sheaves onCsst
Kx

. The reductionM1 of M1 at x extends to a
τ -sheaf onCkx , which is isomorphic to the maximalτ -sheaf contained
in M, the reduction ofM at x. The eigenvalue of Frobenius onT̀ (M1) is
hence an integral functionα1 ∈ A, independent on the choice of` 6∈ 3.
Letting α2 denote the eigenvalue of Frobenius onT̀ (M2), the action of
any Frobenius lift by conjugation groupρ`(I

p
x ), is given by multiplication

by β := α1/α2.
On the other hand, by Remark 3.2, the maximal exterior power

∧topT̀ (M)

is isomorphic toT̀ (φ), for some DrinfeldA-moduleφ which has good
reduction atx, since∧topT̀ (M) is unramified. By Prop. 3.4 and the fact
that dimM = 1, we know that the eigenvalueα ∈ A of Frobenius on
T̀ (φ) satisfies

v`x (α) = [kx : Fq],
whereasv`x (α1) is an integer multiple of[kx : Fq]. As we have

α = α1 · α2,

and thusα2 ∈ F , this yields thatv`x (β) 6= 0. Therefore

β2− 1 6= 0,

and henceβ2−1 is divisible by only a finite number of maximal ideals in
A. It follows that, with the exception of a finite number of closed points`

of C\3, the action of Frobenius Frobx by conjugation onρ`(I
p
x ), does not

have order 2 mod̀. Hence, for all but a finite number of closed points`
of C, we haveε`|I p

x
= 1.

Let K (`) be the field fixed by the kernel ofε`. As the extensionK (`)/K is un-
ramified at all places ofK , there exist only a finite number of possibilities forK (`),
by Minkowski’s theorem. If we callK ′ the compositum of all these fields, then

ε`|0K ′ = 1

for all ` 6∈ 3. We conclude that - in case ii) - the groupρ`(0K ′) ⊂ H is abelian, and

therefore,WK ′,ss
` is isomorphic to the sum of two 1-dimensional representations.

�
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§5. Rank 2: Proof of Conj. 3.1.

THEOREM 3.13. Let K be a finite extension of F and M a simpleτ -sheaf
over CK of rank at most2, with characteristicι : SpecK → C, dimension1
and absolute endomorphism ringA. The image of the representationρad on the
κad[0K ]-module Wad(M) is open inGLr (κad).

PROOF. If r = 1, thenM potentially has a good model at all placesx of K .
For every finite placex, the action of inertia onW`(M) is then trivial for` 6= `x,
whereas, by Cor. 2.24, its image underρ` is surjective for̀ = `x. This proves the
theorem forr = 1.

Suppose now thatr = 2.
a) We may assume thatK is a separable extension ofF : For any finite exten-

sionK of F , then, ifM is aτ -sheaf overCK , theτ -sheafM ′ := (σ c)∗M is aτ -sheaf
with coefficients in a separable subextensionK ′ ⊂ K of F , for some integerc. As

W`(M) ∼= W`(M
′),

for every closed point̀ of C, the theorem holds forK/F if and only if it holds for
the extensionK ′/F .

It now follows from Prop. 3.11 either

i) thatρ` is surjective for almost all̀, or

ii) that WK ′,ss
` is the direct sum of two 1-dimensional Galois representations,

for an infinite setL of closed points̀ of C. By Thm. 3.10, it follows
from this that theF`[0K ′ ]-modulesV`(M) are isomorphic to the direct
sum of two 1-dimensional Galois representations. However, by the Tate
conjecture (Thm. 3.7), this shows that EndK ′(M) is larger thanA, a con-
tradiction.

b) Let3 be the finite subset of closed points ofC consisting of

• the points ofι(Xbad),
• those which ramify inK/F , and
• those for which�` 6= Aut(W`(M)).

Let us putH [0]` := �ad∩GLr (κ`) ⊂ GLr (κad). We claim that

H [0]` = GLr (κ`)

for all ` 6∈ 3, which proves the theorem. For a proof of this claim, we refer to the
proof of ‘Conj. 3.1 + 3.14 for finite3⇒ Conj. 3.14 for3ad’ , part c), in the next
section. �

III. Image of the adelic representation

Let K be a finite extension ofF andM a τ -sheaf overCK . For any finite set3
of closed points ofC, we denote by03 the image of the representation

(66) ρ3 : 0K →
∏
`∈3

AutF3(V3(M)),

where theF3[0K ]-moduleV3(M) was defined in (13).
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CONJECTURE3.14. Let K be a finite extension of F and M a simpleτ -sheaf
overCK , with characteristicι : SpecK → C, dimension1 and absolute endomor-
phism ringA. The image03 of the representationρ3 of 0K on the module V3(M)
is open inGLr (F3), for any set3 of closed points ofC.

REMARK 3.15. Suppose that3 is a finite set. In [Pi2] Thm. 0.1, Pink proves
the above conjecture in the case thatM is at-motive, associated to a Drinfeld mod-
ule φ. After discussions with him, I am convinced that existing methods (beyond
the scope of this thesis) would suffice to prove this conjecture. If this is true indeed,
then all the results which we will state for Drinfeld modules in what follows, carry
over to generalM of dimension 1 as well.

We now prove that Conj. 3.1, together with Conj. 3.14 for finite sets3, imply
Conj. 3.14 for3ad, the set of all closed points ofC (and hence, a fortiori, for all3).

PROOF OFCONJ. 3.1 + 3.14FOR FINITE3⇒ CONJ. 3.14FOR3ad.
a) Let ` be a closed point ofC. Fixing a basis forT̀ (M), we put

G` := GLr (A`) ∼= AutA`(T̀ (M))

and use the notations we introduced in (48) and following. We consider the sub-
group

H` = 0ad∩GLr (A`) ⊂ G`.

b) Let3 be the finite subset of closed points ofC consisting of

• the points ofι(Xbad),
• the points for which #κ` = 2,
• those which ramify inK/F , and
• those for which�` 6= Aut(W`(M)) (this is a finite set of points by Conj.

3.1).

By assumption, Conj. 3.14 holds for this set3. To show that0ad is open in
AutFad(Vad(M)), we need to prove thatH` = G` for all ` 6∈ 3.

c) For all placesx of K abovè , M has a good model atx, so the imageρad(Ix)

of inertia is contained inH`. Further, by Cor. 2.24, there is a filtration

0→ W0
` → W`(M)→ Wet

` → 0

such thatIx acts trivially on the ´etale quotientWet
` and where the imageρ`(Ix) of Ix

in Aut(W0
` ) is a maximal non-split torus. In particular, there exists a block matrix

B :=
(
α ∗
0 1

)
∈ H [0]`

whereα is a scalar matrix in GLh(κ`) ∼= Aut(W0
` ) which is not the identity matrix.

The groupH` being closed under conjugation by0ad, its quotientH [0]` is closed
under conjugation by GLr (κ`). One easily sees, by considering a product of con-
jugates ofB, that one obtains a unipotent matrix with only one non-zero entry off
the diagonal. The GLr (κ`)-conjugates of such an element generate SLr (κ`). As
the image of inertia on the determinant ofρ̄` is surjective (by Remark 3.2, this is a
consequence of the caser = 1), it follows thatH [0]` = GLr (κ`).
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d) Finally, we have to prove thatH [k] ∼= Y for eachk ≥ 1. By Cor. 2.24,
there exists a non-scalar elementh ∈ H [i ], for eachi > 1. From the commutative
diagram

(67)
G[0] × G[i ] → G[i ] : (g, g1) 7→ g−1g1g
↑ ↑ ↑

GLr (κ`) × Y → Y : (g,h) 7→ g−1hg,

we see, asG[0] = GLr (κ`), that H [i ] is closed under conjugation by GLr (κ`) for
everyi ≥ 1.

We then make use of the following lemma, whose elementary proof is omitted:

LEMMA 3.16. Let L be a field with#L > 2. Every subgroup ofMatr×r (L)
which contains a non-scalar element and is closed under conjugation byGLn(L),
containsMat0r×r (L), the subgroup of matrices of trace 0.

Notice that, with our notation, Mat0
r×r (L) ∼= (SLr (A`))[k] ⊂ Y. On the other

hand, one sees from Cor. 2.24, that the trace map Tr: H k→ κ` is surjective, which
finally shows thatH k = Y, and this for eachk > 1. This concludes the proof
of H` = G`. �

IV. The adelic Mumford-Tate conjecture

Let E denote the absolute endomorphism ring EndK̄ (M) of M and put

E0 := E ⊗A F.

SetK (E) to be the finite extension ofK generated by the coefficients of elements
in E and0K (E) its absolute Galois group. We denote by0ad the image of the
representation

(68) ρad : 0K (E) → EndFad(Vad(M))

(see equation (14) for the definition ofVad). Finally, there is a natural embedding
of E0 into Aut(Vad(M)), and we consider its centralizer

(69) Cad⊂ AutFad(Vad(M))

inside EndFad(Vad(M)).

CONJECTURE3.17. Let K be a finite extension of F. If M is a simpleτ -sheaf
overCK with characteristicι and dimension 1, then0ad is open in

Cad⊂ AutFad (Vad(M)) .

REMARK 3.18. If M is pure, then it corresponds to thet-motive M(φ) of a
Drinfeld moduleφ. In [Pi1], Pink introduced Hodge structures associated toφ,
and subsequently proved that the Hodge groupGH(φ) of this structure structure is
isomorphic to the centralizerC in GLr,F of E = EndK̄ (M). The above conjecture
can be seen as the analogue of the‘Grothendieck + Mumford-Tate’ conjecture in
the classical theory of motives over number fields:
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CONJECTURE3.19 (Grothendieck-Mumford-Tate, [Se7] §9–13, Conj. 11.4?).
Let L be a number field, with absolute Galois group0L . For a motive E defined
over L, we denote by Vp(E) the p-adic cohomology of E, and putQad := ∏′pQp

(the ring of finite adeles ofQ) and

Vad(E) :=
∏

p

′
Vp(E).

Suppose the associated Mumford-Tate group GM(E) is connected and E is maximal.
The image0ad of the adelic representation

ρad : 0L → AutQad(Vad(E))

is open in GM(E)(Qad).

Conjecture 3.17 is an immediate consequence of Conj. 3.14, as we now show.

PROOF OFCONJ. 3.14⇒ CONJ. 3.17. The ideas of this proof originate from
[Pi2], Thm. 0.2 (cf. p. 408).

Let M be aτ -sheaf satisfying the condition of Conj. 3.17. If we putA′ := E
and F ′ = E0, then by Prop. 3.8,F ′ is a finite extension ofF . We remark thatF ′
has a unique place∞′ above∞. We putC ′ := SpecA′ and consider the finite
morphism f : C ′ → C.

By Lemma 1.20, theτ -sheafM, endowed with an action ofA′, induces aτ -
sheafM ′ onC ′K such thatf∗M ′ = M, denoting the induced morphismC ′K → CK

again by f . However,C ′ is not necessarily smooth, so we consider the normaliza-
tion C̃ ′ of C ′ and the morphismf̃ : C̃ ′ → C ′.

Consider theτ -sheaf
M? := f̃ ∗M ′

on C̃ ′K . We get adjunction morphisms̃f∗ f̃ ∗ → id and id → f̃ ∗ f̃∗, which are
isomorphisms outside the finite setS of singularities ofC ′. Thus we see that the
τ -sheaf f∗M? on C ′K is isogenous toM ′. As now Tate modules are determined by
τ -sheaves up to isogeny (by the Tate conjecture, Thm. 3.7), we can reduce ourselves
to the case that̃C ′ = C ′.

Upon replacingK by a finite extension, we may assumeE = EndK (M), and
hence EndK (M ′) = A′. By Conj. 3.14 and the above, this implies, for every closed
point`′ of C ′, that the image of the representation

0K → Vad′(M) :=
∏
`′

Aut(V`′(M
′)

has finite index. Finally, the isomorphismV`(M) ∼=⊕`′|` V`′(M ′) of Tate modules
induces an isomorphism

Cad∼= AutF ′
ad′
(Vad′(M)),

which concludes the proof. �

Finally, we can, in the case of Drinfeld modules, conclude the following result,
by Thm. 3.13, Remark 3.15 and the above implications:
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THEOREM 3.20. Let K be a finite extension of F. If M is a Drinfeld module
defined over K of rank at most2, with characteristicι∗ : A ↪→ K , then0ad is open
in Cad⊂ EndFad (Vad(φ)).

REMARK 3.21. We remark that if Conj. 3.14 holds for all finite extensions
of F , then it also holds for all finitely generated fieldsK containingF . The same
statement follows for Conj. 3.17, and, in particular, Thm. 3.20 holds for all such
fields. This can be shown as follows, using the ideas in [Pi2] Thm. 1.4.

PROOF. Let K be finitely generated fields containingF andM a τ -sheaf sat-
isfying the condition of Conj. 3.14. By the Tate conjecture (Thm. 3.7) the sub-F`-
algebraF`0` of EndF`(V`(M)) generated by0` is equal to EndF`(V`(M)), and this
for every closed point̀ . By lemma [Pi2], 1.5, there is an open normal subgroup
01 ⊂ 0` such that for any subgroup�′ ⊂ 0` for which�′01 = 0`, we have

F`�
′ = F`0`

(denoting byF`�′ the sub-F`-algebra of EndF`(V`(M)) generated by�′). Taking
the extensionK̃ of K fixed by01, one denotes bỹX be the normalization ofX in K̃
and byπ the morphismX̃ → X.

By lemma [Pi2], 1.6, there exists a pointx of X such thatK ′, the residue field
of x, is a finite extension ofF , and such thatπ−1(x) is irreducible. Letting�′x be
the image of0K ′ on V`(M), seen as a subgroup of0`, we then have

�′x01 = 0`.
Hence

F`�
′
x = End(V`(M)),

and therefore the reductionMx of M at x has End̄K (Mx) = A, by the Tate con-
jecture (Thm. 3.7). Assuming that Conj. 3.14 holds forK ′, a finite extension
of F , we get that the image of0K ′ is open in GLr (Fad). A fortiori, 0ad is open
in GLr (Fad). �



CHAPTER 4

Galois criteria

I. Galois criterion for good reduction

Let Rbe a complete discrete valuation ring with fraction fieldK , perfectresidue
field k, uniformizerπ and valuationv. Let x denote the closed point of SpecR
and0K (resp. IK ) absolute Galois group ofK (resp. its inertia subgroup). Letι
denote a morphism SpecK → C. In this chapter, we propose aτ -sheaf analog
for the Néron-Ogg-Shafareviˇc criterion for good reduction of abelian varieties (cf.
[BLR ], 7.4, Thm. 5):

THEOREM 4.1 (Galois criterion for good reduction). Let M be aτ -sheaf
onCK with characteristicι and` a closed point ofC such thatM̂` is smooth. If the
inertia group IK of K acts trivially on T̀(M), then there exists a good modelM
overCR for M.

PROOF. If IK acts trivially onT̀ (M), then theA`-moduleT̀ (M) yields a rep-
resentation ofπ1(SpecR). Hence, by the correspondence 0.7, the`-adic τ -mod-
ule M̂` extends to a smoothτ -moduleN̂` overOĈR,`

. We then apply the following
theorem: �

THEOREM 4.2. Let M be aτ -sheaf onCK with characteristicι and` a closed
point ofC such thatM̂` is smooth. IfM̂` extends to aτ -sheafN̂` on ĈR,` of non-
degenerate rankρ, then there exists a modelM for M onCR whose nondegenerate
rank is at leastρ.

The proof of Thm. 4.2 will take up the rest of sectionI .

IDEA/SKETCH OF THE PROOF OFTHM. 4.2. As a first approach, let us as-
sume thatC = A1, that` is a closed point of degree 1 ofA1 and thatN̂` is smooth.
In §5, we will show how to deal with the general case.

Let t denote a generator for the maximal ideal inA defining the point̀ . Let$
be the generic point of the special fibreCk. We can make the following identifica-
tions:

H 0 (CK ,OCK

) ∼= K [t]
OCR,$

∼= O$ := R[t](π)
OĈR,`

∼= K [[t]]
OĈR,`

∼= R[[t]].
(70)
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Let M be aτ -sheaf onA1
K with characteristicι, and let us denote theK [t]-module

of its global sections byM as well. Supposing theτ -moduleM̂` overK [[t]] extends
to a smoothτ -moduleN̂` over R[[t]], the naive idea is to put

M := M ∩ N̂` ⊂ M̂`.

More precisely, we will proceed as follows:

i) The moduleN̂` is actually contained in

(K ⊗R R[[t]])⊗K [t ] M ⊂ M̂`

(Lemma 4.4).
ii) We put Q := Quot(R[[t]]) and denote byB the valuation ring for the

valuationvπ in Q (see below for sound definitions). Denoting the stalk of
M at the generic point ofCK by V , theO$ -module

N$ := V ∩
(

B · N̂`

)
⊂ Q := Q⊗K (t) V

is free and is of full rank insideV (Lemma 4.5).
iii) Using the fact thatN` is smooth, we show thatN$ is a goodτ -module

overO$ (Thm. 4.7).

By Cor. 1.4, the sheafM together withN$ define a good modelM overCR. �

REMARK 4.3. Using the same methods, one can readily establish an analog of
Thm. 4.2 and Thm. 4.1 for analyticτ -sheaves.

§1. Notations. We call a monic polynomial

h(t) = td +
d−1∑
i=0

hν t
ν ∈ R[t]

strict if v(hν ) > 0 for all ν. Every nonzero elementg ∈ R[[t]] has a unique
decomposition

g = u · πνg · g̃
such thatu ∈ R[[t]]×, νg ≥ 0 and whereg̃ is a strict monic polynomial inR[t]
(Weierstraß preparation forR[[t]]). We have a valuationvπ on R[[t]] given by
vπ (g) := νg, and extend this valuation to the quotient fieldQ of R[[t]].

We consider the discrete valuation subring

B := {g ∈ Q; vπ(g) ≥ 0} ⊂ Q.

Its residue field is isomorphic tok((t)). Finally, we setO$ := R[t](π). By the
unique factorization inR[[t]], we have

O$ = K (t) ∩ B ⊂ Q.

To keep track of all these rings, the following diagram might be useful; we have
inclusions from left to right and from top to bottom.



I. Galois criterion for good reduction 87

R[t] � � //� u

((QQQQQQQ� _

��

R[t](t,π) � � //
v�

))SSSSSSS� _

��

O$ � s

%%KKK
KK_�

��

K [t] � � //
� _

��

K [t](t) � � //
� _

��

K (t)� _

��

R[[t]] � � //� u

((QQQQQQ B ∩ K [[t]] � � //
v�

))SSSSSS B � s

%%KKKKKK

K ⊗R R[[t]] � � // Q ∩ K [[t]] � � //
_�

��

Q
_�

��
K [[t]] � � // K ((t))

We extend the Frobeniusϕ on R to a Fq-linear endomorphismσ := ϕ ⊗ id
on R[t] = R⊗ Fq[t]. This induces in a unique way endomorphisms on all of the
aforementioned rings.

§2. A Lemma by Anderson.

LEMMA 4.4. Let M beτ -sheaf onA1
K with characteristicι and dimension d

such thatM̂` is smooth at the closed point` of degree 1 ofC. Suppose theτ -sheafN̂`

overĈR,` is an extension of̂M`. The moduleN̂` is contained in

(K ⊗R R[[t]])⊗K [t ] M ⊂ M̂`.

PROOF. a) We want to apply a result of Anderson ([An2], Thm. 1). Letm be
a K [t]-basis forM. As a locally freeR[[t]]-module,N̂` is actually free; letq be an
R[[t]]-basis forN̂` ⊂ M̂`. We expressq in terms of theK [[t]]-basism for M̂` by
means of a matrix9 ∈ Matr×r (K [[t]]):

q = m ·9.
We have to show that9 ∈ Matr×r (K ⊗ R[[t]]).

Further, we denote by1 ∈ Matr×r (K [t]) and1̂ ∈ Matr×r (R[[t]]) the matrix
representations ofτ on the modulesM andN̂` respectively, i.e.τ (m) = m ·1 and
τ (q) = q · 1̂. These representations are related to each other by the equation

(71) 1 · σ9 = 9 · 1̂.
b) Recall that, for some constanth ∈ K×, we have det1 = h · (t − θ)d (cf.

Example 0.6), whereι∗ : A ∼= Fq[t] → K : t 7→ θ . As M̂` is smooth, we must
haveθ 6= 0. Let1̃ be the modified adjoint matrix in Matr×r satisfying

1̃ ·1 = (t − θ)d.
Upon multiplying both sides of equation (71) by1̃, we get:

(t − θ)d · σ9 = 1̃ ·9 · 1̂.
c) The equationσz = (t − θ) · z has a nonzero solutionc ∈ K sep[[t]], as

one checks immediately (it is a nonzero element of the Tate module of the Carlitz
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module, cf. [Go4], Ch. 3). The matrix9 ′ := cd ·9 then satisfies the equation

(72) σZ = 1̃ · Z · 1̂
for Z ∈ Matr×r (K̄ [[t]]). We claim that every solutionZ for this equation is con-
tained in Matr×r (K ⊗ R̄[[t]]). Let us write outZ :=∑∞i=1 Zi t i , introducing matri-
cesZi = (Zi )kl ∈ Matr×r (K̄ ). For all i ≥ 0, we set

v(Zi ) := min
k,l
{v ((Zi )kl)} ∈ Z ∪ {+∞}.

For 1̃ = (1̃k,l )kl , considered as a matrix in Matr×r (K ⊗ R[[t]]), we put

v(1̃) := min
k,l

{
v
(
1̃kl

)}
;

we do the same for̂1.
Comparing the coefficients oftn in equation (72), we get

σZn =
∑

i+ j+k=n

1̃i · Z j · 1̂k.

Thus we see that

q · v(Zn) ≥ v(1̃)+ v(1̂)+min
j≤n

v(Z j ),

and it follows by induction onn that

(q − 1)v(Zn) ≥ v(1̃)+ v(1̂).
This shows that9 ′ ∈ Matr×r (K ⊗ R̄[[t]]) indeed.

d) We know distinguish two cases:

i) v(θ) ≤ 0 . Puttingζ := θ−1 ∈ R, we rewrite(t − θ) as

−ζ−1 · (1− ζ · t).
The power seriesc−1 ∈ K̄ [[t]] satisfies the equation

z= −ζ−1(1− ζ · t) · σz.
An easy calculation shows that the solutions for this equations are con-
tained inK ⊗ R̄[[t]]. Therefore the matrix

9 = c−d ·9 ′
is a matrix with coefficients inK ⊗ R̄[[t]], and, as it was defined over
K [[t]], we may conclude that

9 ∈ Matr×r (K ⊗ R[[t]]).
ii) v(θ) > 0 . We are now in the situation of [An2], Thm. 1, p. 52. Consider

the matrix9 = c−d9 ′, seen as a matrix whose entries are meromorphic
functions the open unit disk

D0
K̄
:= {t ∈ K̄ ; v(t) < 1}

(viewed as a rigid analytic space). Following Anderson, one first proves
that9 has no poles (working over the completionC of K̄ , to be more
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precise). Next, using the fact that9 ′ has entries inK ⊗ R̄[[t]] and some
estimates onc, one deduces that9 has entries inK ⊗ R[[t]] indeed.

�

§3. Rational modules defined by formal modules.

LEMMA 4.5. Let V be an r-dimensional K(t)-vector space and put

Q := Q⊗K (t) V.

For a given free B-submoduleB of Q of rank r , we define theO$ -module

N$ := V ∩B.

i) TheO$ -moduleN$ := V ∩B is free of rank r .
ii) The cokernel of B·N$ → B has finite length as a B-module.

O$ � r

$$III
I_�

��

N$ � r

$$III
II_�

��

K (t)
_�

��

V� _

��
B � r

%%JJJ
JJJ

B � r

%%JJJ
JJJ

Q Q

PROOF. Let us choose aK (t)-basisv := (v1, . . . , vr ) for V . We also fix aB-
basisb := (b1, . . . ,br ) for the free moduleB and expressv in terms ofb by means
of a matrix� ∈ Matr×r (Q) as follows:v = b · �. After dividing v by a suitable
power ofπ , we can assume that� has coefficients inB, so that the elementsvi are
contained inN$ .

There exists anω ∈ Z such thatπω · �−1 has entries inB. Let us write any
elementn ∈ N$ , asn = b ·3 with 3 ∈ Matr×1(B). It then follows that

(73) πωn = πωb ·3 = v · (πω�−1) ·3 ⊂ v ·Matr×1(B).

This shows thatπωN$ is contained in theO$ -module generated byv. As O$ is a
noetherian principal ideal domain, the torsion free moduleN$ is therefore finitely
generated and hence free of rankr . This implies that the cokernel of

B ·N$ → B

is a torsion module. �

REMARK 4.6. The following example shows thatB·N$ may be strictly smaller
thanB. Let α be an element inB with reductionᾱ ∈ k((t)). Consider the 2-
dimensionalK (t)-vector space spanned by a basisv = (v1, v2), and theB-module
B ⊂ Q generated byb = (n̂1, n̂2) such that

v = b ·
(

1 π−1α

0 π−1

)
.
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It is easy to see that, ifα 6∈ k(t), thenV ∩B is generated byv, such that we have
an exact sequence ofB-modules

0→ B ·N$ → B→ B/(π)→ 0.

§4. Nondegenerate formalτ -modules.

THEOREM 4.7. Let V beτ -module over K(t) and put

Q := Q⊗K (t) V.

For a given sub-τ -moduleB over B ofQ of full rank, we define theO$ -module

N$ := V ∩B.

Theτ -modulesB over B andN$ overO$ have the same nondegenerate rank.

PROOF. a) Let N $ denote the reduction ofN$ . As k is perfect, we have by
Remark 1.7 an exact sequence ofk(t)[τ ]-modules as follows:

0→ (N $)1→ N $ → (N $)nil → 0,

where(N $)1 is a τ -module (whose rank we will denote byρ′), whereas the ac-
tion of τ on (N $)nil is nilpotent. We choose ak(t)-basis(n̄1, . . . , n̄ρ′) (resp.
(n̄ρ′+1, . . . , n̄r )) for (N $)1 (resp.(N $)nil). Finally, we fix a lift

n := (n1, . . . ,nρ′ ; nρ′+1, . . . ,nr )

for (n̄1, . . . , n̄r ) in N$ , which yields anO$ -basis forN$ , and, for everys> 0, we
denote by1s ∈ Matr×r (O$) the matrix representation ofτ relatively to the basisn,
i.e.τ s(n) = n ·1s.

b) We have a similar filtration of thek((t))[τ ]-moduleB̄ yielding modulesB̄1

andB̄nil . Note that(N $)1 injects intoB̄1, by an argument as in Lemma 1.10.
We now assume thatρ′ < ρ, whereρ is the nondegenerate rank ofB, and want

to deduce a contradiction. Let us extend(n̄1, . . . , n̄ρ′) to ak((t))-basis

b1 := (n̄1, . . . , n̄ρ′ ; b̄ρ′+1, . . . , b̄ρ)

for B̄1. For alls> 0, let(11)s ∈ GLρ
(
k((t))

)
denote the matrix representation the

action ofτ s on B̄1 with respect to this basisb1: τ s(b1) = b1 · (11)s.
c) On the other hand, we choose ak((t))-basis(b̄ρ+1, . . . , b̄r ) for B̄nil . Taking

some lift(bρ′+1, . . .br ) of (b̄ρ′+1, . . . b̄r ) to B, we obtain aB-basis

b = (n1, . . . ,nρ′ ; bρ′+1, . . . ,bρ; bρ+1, . . .br )

for B. We denote theB-module spanned by the elementsn1, . . . ,nρ′ by B0, and
further putB? := 〈bρ′+1, . . . ,bρ〉 andB2 := 〈bρ+1, . . .br 〉.

Notice that a different choice of the elements(b̄ρ′+1, . . . , b̄ρ; b̄ρ+1, . . . , b̄r ) or
their respective lifts would correspond to a basis transformationb′ := b · U for a
matrix in

U :=

 1 ∗ ∗

0 ∗ ∗
0 π∗ ∗

 ⊂ GLr (B),

where the blocks correspond to the compositionB = B1⊕B2⊕B3.
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d) We expressn in terms ofb by means of a matrix

� ∈ GLr (Q) ∩ Matr×r (B)

as follows:n = b ·�. The matrix� is then of the form
 1 ∗ ∗

0 ∗ ∗
0 ∗ ∗

 .
Note that taking a different choice ofb amounts to replacing� by U · �, for some
U ∈ U. We can find a basisb such that� (and more precisely itsρ′ + 1-st column)
is of the form:

ρ′+1
↓

� =


1 Z ∗ ∗
0 πc ∗ ∗
0 0 ∗ ∗
0 W ∗ ∗

 ,
whereX ∈ Matρ′×1(B), c ≥ 0 and

W ∈ πc ·Mat(r−ρ)×1(B).

The blocks correspond to the decompositionB = B0⊕B?,1⊕B?,2⊕B2, where
we putB?,1 := 〈bρ′+1〉 andB?,2 := 〈bρ′+1, . . . ,bρ〉; we consider an analogous
decomposition forN$ .

e) For any integers, we will denote by1̂s ∈ Matr×r (B) the matrix represent-
ing τ s with respect tob: τ s(b) = b·1̂s. Observe that the representations1̂s and1s

satisfy the following relation:

(74) 1̂s · σ s
� = � ·1s.

We distinguish two cases:

1) Supposec > 0. Fors > 0, let us write1̂s as a block matrix of matrices
(δ | δ′ | δ′′ | δ′′′) with respect to the decomposition ofB; we do the same
for1s = (d | d′ | d′′ | d′′′). The equation (74) can then be rewritten as:

(75) (δ | δ′ | δ′′ | δ′′′) ·


1 σ s

Z ∗ ∗
0 πqsc ∗ ∗
0 0 ∗ ∗
0 σ s

W ∗ ∗

 = � · (d | d′ | d′′ | d′′′).
We thus obtain the equations

(76)

{
δ = � d

δ σ
s
Z + πqsc(δ′ + δ′′′ σ s

W) = � d′.
Assume thats is large enough so thatvπ (det�) < qsc, which implies

that
πqsc ·�−1 ∈ π ·Matr×r (B).

It then follows from (76) that

(77) d σ s
Z + (πqsc ·�−1)(δ′ + δ′′′ σ s

W) = d′.
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We denote bȳd ∈ Matr×ρ′ (k(t)) the reduction ofd moduloπ ; similarly,
we defined̄′. Also, we consider the reductions

δ̄ ∈ Matr×ρ′
(
k((t))

)
andZ̄ ∈ Matρ×1

(
k((t))

)
of δ andZ, respectively. Reducing modπ , equa-

tion (77) gives

(78) d̄ σ s
X̄ = d̄′.

As δ̄ has full rankρ′, we deduce from̄δ = �̄ · d̄ that d̄ has full
rankρ′, too. Therefore, the solution̄Z of (78) is unique, namelȳZ, and
must therefore be algebraic, i.e.

Z̄ ∈ Matρ×1
(
k(t)

)
,

asd̄ andd̄′ have entries ink(t) as well. Finally, let us take the canonical
lift Z0 of Z̄ to O$ and putZ = Z0 + πZ1, for Z1 ∈ Matρ′×1(B). The
element

v := π−1 n ·


−Z0

1
0
0

 = b ·


Z1

πc−1

0
π−1W


is contained both inV and inB, but not contained inN$ , which obvi-
ously contradicts the definition ofN$ .

2) If c = 0, then we see, denoting bȳ� the reduction of� moduloπ , that
the upper left(ρ′ + 1)× (ρ′ + 1)-block of �̄ has full rankρ′ + 1. Also,
the upper leftρ × ρ block of1s, namely(11)s has full rankρ. We see
from this that the matrix

1s · σ s
�̄ = �̄ ·1s

has rank at leastρ′ + 1, for all s > 0. In particular, the nondegenerate
rank of1s is at leastρ′ + 1, which gives a contradiction.

�

§5. Proof of Theorem 4.2.

PROOF OFTHEOREM 4.2. a) First of all, we can reduce ourselves to the case
thatC = A1. Indeed, for a general curveC, we consider a finite morphism

f : C → A1,

and denote the induced morphismCK → A1
K (resp.CR→ A1

R) again by f . If M?

is the maximal model forf∗(M) on CR andM the maximal model forM on CR,
then f∗(M) = M, as we already remarked in the proof of Prop. 1.16 (for analytic
τ -sheaves). Let̀ be a closed point ofC. If N̂` has nondegenerate rankρ on ĈR,`,
then f∗(N̂`) has nondegenerate rank at least degf · ρ. Assuming that the theorem
holds forA1, we then obtain a model with nondegenerate rank at least degf · ρ,
and, by Lemma 1.10, the maximal modelM? has at least the same nondegenerate
rank. This in turn implies thatM has nondegenerate rank≥ ρ.
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b) Next, we show that it suffices to prove the result over a finite ´etale exten-
sion R′ of R. Suppose thatN̂` has nondegenerate rankρ on ĈR,`, and that we
found that the maximal model̃M′ of MK ′ on C̃K ′ has nondegenerate rankr1 at
leastρ. By Prop. 1.25, this yields a maximal good sub-τ -moduleM̂′1 of M̂′$ , the

completion of the stalk of̃M′ at$ , of rankr1 overÔ$ . ThisM̂1 is functorial with
respect toÔ$ -linear homomorphisms, and therefore we can, as we did in the proof
of Lemma 1.14, apply Galois descent to obtain a good sub-τ -moduleM̂1 of M̂$

of rankr1. This shows that the nondegenerate rank of the maximal modelM̃ of M̃
on C̃R is at leastr1 (cf. Proof of Lemma 1.9).

c) We now assume thatC = A1. Let ` be a closed point ofA1 of degrees, with
residue fieldκ`. We may assume the finite fieldκ` ↪→ R. Let

{`′1, `′2, . . . , `′s}
be the set of closed points of lying above` onA1

κ`
. Let Ĉκ`,`′i denote the completion

of A1
κ`

at`′i , and put

A′
`′i
:= OĈκ`,`

′
i

.

As C is smooth, we haveA′
`′i
∼= κ`[[λi ]], whereλi denotes a uniformizer at the

point`′i . The ringR ⊗̂κ` A′
`′i

is then isomorphic toR[[λi ]]. Finally

OĈR,`
= R ⊗̂Fq A` ∼=

∏
i

R ⊗̂κ` A′
`′i
=
∏

i

R[[λi ]].

Similarly,

OĈK ,`
∼=
∏

i

K [[λi ]].

The endomorphismσ of OĈR,`
induces morphismsσ : R[[λi ]] → R[[λ j ]] for all

pairs(i , j ) such thatσ`i = ` j .
Any OĈR,`

-moduleN̂` can be written as a product̂N` = ∏i N̂i , where theN̂i

areR[[λi ]]-modules. IfN̂` is endowed with aσ -linear endomorphism

τ : σ ∗N̂` → N̂`

thenτ will induce morphisms

τ : σ ∗N̂i → N̂ j

if (i , j ) satisfiesσ`i = ` j (the same applies toOĈK ,`
-modules). Each of the mod-

ulesNi is τ s-invariant.
Let M andN` be as in the statement of this theorem. Let us denote the stalk

of M at the generic point ofA1
K by V . Let Qi , Bi etc. denote the subrings ofK [[λi ]]

which we defined forK [[t]] in §§1.
We considerM as aτ s-sheaf overA1

K = A1
κ`
⊗κ` SpecK . Now, upon replac-

ingϕ byϕs, andτ by τ s, we can apply Lemma 4.4 to the modulêNi ⊂ M̂i to obtain
that

N̂i ⊂ (K ⊗ R[[λi ]])⊗K [λi ] M.
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We remark thatO$ = OCR,$ , and define theO$ -modules

(N$)i := V ∩ (Bi · N̂i ) ⊂ (Qi )λ ⊗K (λi ) V.

Again replacingτ by τ s, we then deduce from Thm. 4.7 that the(N$)i have the
same nondegenerate rank asN̂`. Finally, theOCR,$ -module

N$ :=
∑

i

(N$)i

is τ -invariant and nondegenerate of rankρ. Hence it defines, by Lemma 1.4, a
modelM for M with the desired property. �

II. Galois criterion for trivial reduction

THEOREM 4.8. Let R be a complete discrete valuationFq-algebra with field
of fractions K andfinite residue field k. Let M be aτ -sheaf onCK . The following
statements are equivalent:

i) There exists a closed point` of C for which M̂` is smooth such that the
A`[0K ]-module T̀(M) is trivial.

ii) For every closed point̀ of C for whichM̂` is smooth, theA`[0K ]-module
T̀ (M) is trivial.

iii) Theτ -sheaf M onCK has a good modelM such that the reductionM is
a trivial τ -sheaf onCk (cf. Def. 0.1 iv)).

PROOF. Clearly ii)⇒ i). If M is a goodτ -sheaf onCR such that the reduc-
tion M is trivial on A1

k, thenM̂` is smooth with trivial reduction for every closed
point` of C. By the correspondence 0.7, this yields iii)⇒ ii).

It remains to show that i) implies iii). As the action of the inertia groupIK

on T̀ (M) is trivial, the maximal modelM for M on CR is good, by Thm. 4.1 (k
is perfect). Let us consider its reductionM. The theorem now follows from the
following proposition: �

PROPOSITION4.9. Let k befinitely generatedfield containingFq. Let M be a
τ -sheaf onCk. The following statements are equivalent:

i) There exists a closed point` of C for which M̂` is smooth such that the
F`[0k]-module V̀(M) is trivial.

ii) For every closed point̀ of C for which M̂` is smooth, the F̀[0k]-module
V`(M) is trivial.

iii) Theτ -sheaf M is trivial (cf. Def. 0.1 iv)).

PROOF. Clearly iii)⇒ ii) ⇒ i). For i)⇒ iii), let N be a trivialτ -sheaf onCk

of same rankr as M. We use the Tate conjecture: It was stated in Thm. 3.7 for
fields of transcendence degree 1 overFq, but holds for any finitely generated fieldk
(cf. [Pi2], Thm. 1.4). For a closed point` of C such thatM̂` is smooth, we have an
isomorphism:

F` ⊗A Homk(M, N)→ HomF`[0k] (V`(N),V`(M)) .
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As bothV`(N) ∼= V`(M), this yields an isogenyf : N → M. The cokernel off
has finite length, and is supported over finitely many closed points ofC. By an
induction on the length of cokerf , we can find another

(N′, f ′ : N′ → M)

with f ′ an isomorphism. �

III. Local factors of L-functions

We now show how the above theory explains how the localL-factor of aτ -
sheaf (cf. [Böc], def. 1.40, and [TW ]) at a place of bad reduction is related to the
action of Frobenius on the associated Galois representations. LetR be a complete
discrete valuationFq-algebra with fraction fieldK and finite residue fieldk. Let

dx := [k : Fq]
denote the degree of the closed pointx of R. Let M be aτ -sheaf overCK , M its
maximal model overCR andM the reduction ofM at x.

DEFINITION 4.10. We define thelocal L-factor for M at x by

Lx(M; Z)−1 := det
A

(
1− Zdxτdx | H 0(Ck,M)

)
∈ A[Z].

Let ` be a closed point ofC such thatM̂` is smooth. Let

H`(M)
IK

be theA`-module of invariants ofH`(M) (Def. 0.8) under the action ofIK ; it is a
0K -invariant direct summand ofH`(M). The action of0k ∼= 0K /IK on H`(M)IK

is well defined, in particular that of its canonical generator Frobx which acts asϕdx

onk.

DEFINITION 4.11. We define thelocal L-factor for T̀ (M) at x by

Lx(T̀ (M); Z)−1 := det
(
1− Zdx Frobx | H`(M)IK

)
∈ A`[Z].

THEOREM 4.12. Let R be a complete discrete valuationFq-algebra with frac-
tion field K and finite residue field k and let M be aτ -sheaf overCK . For all but a
finite number of closed points̀of C, we have:

Lx(M; Z) = Lx(T̀ (M); Z).
PROOF. a) We denote the maximalτ -subsheaf ofM onCk by M1, and its rank

by ρ′. As shown in the proof of Thm. 1.26, we can liftM1 to a saturated analytic
sub-τ -sheafM̃1 ⊂ M̃ of rankρ′ on C ′R for some nonempty open subschemeC ′
of C. For any closed point̀ of C ′, this yields a saturated̀-adic sub-τ -sheaf

(M̂`)1 ⊂ M̂`

on Ĉ ′R,`. Clearly its reduction(M̂`)1 satisfies

(M̂`)1 = OĈk,`
⊗OCk

(M)1.
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Outside a finite setS′ of closed points ofC ′, the`-adicτ -sheaf(M̂`)1 is smooth.
We deduce for all closed points` ∈ C ′′ := C \ S′:

Lx(M; Z)−1 = det
(
1− Zdxτdx |M

)
= det

(
1− Zdxτdx | (M)1

)
= det

(
1− Zdxτdx |OĈk,`

⊗OCk
(M)1

)
= det

(
1− Zdxτdx

∣∣∣ (M̂`)1

)
b) Let ρ be the rank ofH`(M)IK . By Prop. 0.7, we deduce the existence of a

maximal smooth̀ -adic τ -sheafN̂` of M̂` on ĈR,` of rankρ. Let N ` denote the
reduction ofN̂` to Ĉk,`. As explained in [TW ], Cor. 6.2, the same correspondence
implies that

det
(
1− Zdx Frob

∣∣∣ H`(M)
IK
)
= det

(
1− Zdxτdx |N `

)
.

We want to show thatN̂` = (M̂`)1. As the moduleN̂` is the maximal smooth
sub-τ -sheaf ofM̂` on ĈR,`, we have

(M̂`)1 ⊂ N̂`.

The τ -sheafM̂` has nondegenerate rankρ and, therefore, by Theorem 4.2, the
nondegenerate rank of̂N ′̀ is at mostρ′, which shows that

N̂` = (M̂`)1

as both are saturated smooth`-adic sub-τ -sheaves on̂CR,` of rankρ′ of M̂`.
Finally, we can deduce that, for all closed points` ∈ C ′′,

(79)

Lx(T̀ (M); Z)−1 := det
(
1− ZdxFrob

∣∣∣ H`(M)
IK
)

= det
(
1− Zdxτdx

∣∣N `

)
= det

(
1− Zdxτdx | (M̂`)1

)
= Lx(M; Z)−1.

�



CHAPTER 5

Anderson uniformization of t-motives

I. Anderson uniformization

§1. Uniformizable t-modules. Let K be a complete local field which contains
the finite fieldFq and a variableθ with v(θ) < 0, wherev denotes the valuation of
K ; in other words, letK be a finite algebraic extension of the fieldFq((θ

−1)). Let
| · | be the normalized absolute value onK andR its valuation ring. We denote the
completion of an algebraic closure ofK by C. As we will be dealing with Anderson
t-motives in this and the next chapter, we will from now on assume for simplicity
thatC = A1 (cf. section 0.I.§3). We define a characteristic mapι : SpecK → C by
means of the ring morphism

ι∗ : A ∼= Fq[t] → K : t 7→ θ.

As v(θ) < 0, the valuationv is then infinite with respect toι (Def. 0.5.iii).

PROPOSITION5.1 (Anderson, [An1]).

i) For every d-dimensional t-module E over K with characteristicι, there
exists a unique entireFq-linear map

(80) e∞ : G⊕d
a,K → G⊕d

a,K ,

defined over K which induces a morphismLie(E)→ E of t-modules and
whose derivativede∞ is the identity.

ii) If E is abelian and has rank r, then the kernel

H := ker(e∞)(K̄ ) ⊂ (K sep)d

is a finitely generated sub-A-module ofLie(E)(K̄ sep), which is free of
rank at most r and strictly discrete, i.e. every open disk of finite radius con-
tains only a finite number of points of H . (In other words, using Def. 6.15,
the t-module H is anA-lattice of rank at most r insideLie(E)(K sep).)

In other words, using Def. 6.15, thet-moduleH is anA-lattice of rank at mostr
inside Lie(E)(K sep).

DEFINITION 5.2 (Anderson). Ife∞ is surjective overK sep, then we callE
uniformizable.

THEOREM 5.3 (Anderson, [An1], Thm. 4). The abelian t-module E is uni-
formizable if and only if theA-rank of H is r .
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COROLLARY 5.4. If E is uniformizable, then the Tate module T`(M) is poten-
tially a trivial 0K -representation, for every closed point` of A1.

PROOF. For any nonzeroa ∈ A, thea-torsion moduleE[a] is isomorphic to

H/a · H
as anA/(a)[0K ]-module. SinceH is strictly discrete, the orbit of anyA-basis forH
under0K is finite, and hence, potentially,H is a trivialA[0K ]-module. This implies
that, potentially, for any closed point` of A1, theA`-moduleT̀ (E) ∼= T̀ (M) is a
trivial 0K -representation. �

§2. Uniformizable analytic τ -sheaves.For an abeliant-moduleE over K ,
let M = M(E) be thet-motive associated toE, andM̃ the analyticτ -sheaf oñA1

K
obtained fromM.

DEFINITION 5.5. An analyticτ -sheafM̃ on Ã1
K with characteristicι is called

uniformizable if it contains a trivialτ -sheaf of full rank.

We set
D0

K := {t ∈ K ; |t| ≤ 1},
the closed disk of radius 1 around the origin, considered as a rigid analytic space.

LEMMA 5.6. If a τ -sheafM̃ onÃ1
K is uniformizable, then the restrictioñM |D0

K

of M̃ to D0
K is trivial.

PROOF. Suppose that̃M? := M̃ |D0
K

contains the trivialτ -sheafÑ, of same

rank. The morphismτ acts via a unit inOD0
K

on both∧topÑ and∧topM̃?. One

easily draws from this the conclusion that the quotientM̃?/Ñ is supported on aσ -
invariant nontrivial closed subsetSof D0

K . Choosing a line bundleL whose divisor
has supportS, we can find a powern such thatM̃ is contained inL⊗(−n) ⊗ Ñ,
which is again a trivialτ -sheaf. By lemma [An1], 2.10.6, this implies that̃M? is
trivial. �

LEMMA 5.7. If the restriction ofM̃ toD0
K is trivial, then, for all closed points̀

of A1, the Tate module T̀(M̃) is a trivial 0K -representation.

PROOF. CompletingM̃ at {`} ⊗ SpecK yields a trivial smoothτ -sheafM̂`

onĈK ,`. By the correspondence 0.7, this shows thatT̀ (M̃) is a trivial0K -represen-
tation. �

In his paper [An1], Anderson showed that the uniformizability ofE can be
expressed in terms of thet-motiveM as follows:

THEOREM 5.8. (Anderson, [An1], Thm. 4)) The abelian t-module E is uni-
formizable if and only if the analyticτ -sheafM̃D0

K̄
onD0

K̄
is trivial.

We want to extend this result, by showing that, amongst other criteria, uni-
formizability of E is equivalent to potential uniformizability forM.
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§3. Pink’s theory ofσ -bundles. A new point of view was introduced by Pink
in [Pi4]. Takingz := t−1 as a local parameter at the point∞ of P1, we set

Ḋ∞C := {z ∈ C; 0< |z| < 1}
to be the punctured open disk of radius 1 around infinity, considered as a rigid
analytic space overC.

DEFINITION 5.9 (Pink). Aσ -bundle F is a smoothτ -sheaf onḊ∞C .

For instance, for each co-prime pair(u, s) ∈ Z2 with s> 0, consider the sheaf

Fu,s := O⊕s
Ḋ∞C

.

We define aσ -linear endomorphism

τ : σ ∗Fu,s→ Fu,s

with respect to the natural basise = (ei )1≤i≤s of Fu,s by its matrix representation
τ (e) = e · Zu,s, where

(81) Zu,s :=


0 0 z−u

1 0 0
. . .

0 1 0

 ∈ Mats×s(Fq(z)).

This endowsFu,s with the structure of aσ -bundle, which is, by definition,pure of
weight u/s.

If M̃ is an analyticτ -sheaf oñA1
C with characteristicι, then we notice that, on

the annulus

A := {z ∈ C; |θ−1| < |z| < 1} ⊂ Ḋ∞C ,

the map

τ : σ ∗M̃|σ−1(A)→ M̃ |A
is an isomorphism.

THEOREM 5.10. (Pink, [Pi4]) There exists a uniqueσ -bundleF (M̃) on Ḋ∞C
such that

F (M̃)|A = M̃ |A
andF (M̃) is isomorphic to a direct sum of copies of pureσ -bundlesFu,s.

THEOREM 5.11. (Pink, [Pi4]) An analyticτ -sheafM̃ over Ã1
C is uniformiz-

able if and only if theσ -bundleF (M̃) is trivial (i.e. isomorphic toF0,r , for some
integer r) onḊ∞C .
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II. Main theorem

Let M̃ be an analyticτ -sheaf oñA1
K with characteristicι. We consider the

following statements:

U(K ): The analyticτ -sheafM̃K on Ã1
K is potentially uniformizable.

U(K̄ ): The analyticτ -sheafM̃K̄ on Ã1
K̄

is uniformizable.

U’ (K ): The analyticτ -sheafM̃D0
K

onD0
K is potentially trivial.

U’ (C): The analyticτ -sheafM̃D0
C

onD0
C is trivial.

G`: There exists a closed point` of A1 such that the0K -representationT̀ (M̃)
is potentially trivial.

G: The0K -representationT̀ (M̃) is potentially trivial for all closed points̀
of A1.

R: The τ -sheafM̃ on Ã1
K potentially has a good model̃M such that the

reductionM is a trivialτ -sheaf oñA1
k.

R’ : Potentially, theτ -sheafM̃ on Ã1
K is semistable and, denoting the subquo-

tients of the semistable filtration for̃M by M̃i , the reductionsMi of good
modelsM̃i for M̃i yield trivial τ -sheaves oñA1

k.
P: Theσ -bundleF (M̃) is trivial on Ḋ∞C .

THEOREM5.12. For an analyticτ -sheaf oñA1
K with characteristicι, the prop-

ertiesU(K ), U’ (K ), G`, G andR are equivalent.

Suppose that̃M is associated to an abeliant-moduleE defined overK and
consider the following statements:

A1: The abeliant-moduleE is uniformizable.
A2: TheA-rank of H is r .

THEOREM 5.13 (Anderson Uniformization). Let E be an abelian t-module
over K with characteristicι and M̃ its associated analyticτ -sheaf oñA1

K . The
properties

U(K ), U(K̄ ), U’ (K ), U’ (C), A1, A2, G`, G, R, R’ andP
are equivalent.

OVERVIEW OF THE PROOFS OFTHM. 5.12AND 5.13.
The following diagram illustrates how the mentioned properties are related to each
other for aτ -sheafM̃ , resp.t-motive M̃ . Dotted arrows represent immediate im-
plications or results we already proved and full arrows refer to the theorems by
Anderson and Pink. The double arrows correspond to results we will establish in
sectionsIV andV, thus completing the proof of these theorems. �
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III. Example: (not) uniformizable t-motives

In his paper [An1], Anderson gave one, rather complicated, example of a not
uniformizable abeliant-module. Theorem 5.13 now enables us to give a very simple
1-parameter family of abeliant-modulesE(γ ), whereE(γ ) is uniformizable if and
only if γ is contained in the open unit disk around the origin.

We consider the discrete valuation ringR := Fq[[ζ ]], denote byK its field of
fractions and byv its valuation. The valuation onK is then infinite with respect to
the characteristic mapι defined by

ι∗ : A ∼= Fq[t] → K : t 7→ θ := ζ−1.

For eachγ ∈ R, we consider thet-motive Mζ (γ ), and its associatedt-module
Eζ (γ ), which were introduced in section 2.II.

PROPOSITION5.14. The abelian E-module Eζ (γ ) is uniformizable if and only
if v(γ ) > 0.

PROOF. a) If v(γ ) ≥ 0, theOÃ1
R
-moduleM generated bym is a good model

for M := Mζ (γ ). With respect to the basism, the action ofτ on the reductionM is
given by:

τ (m) = m ·
(

0 −1
−1 γ̄ t

)
.

a.i) If γ̄ = 0, then,M is trivial on A1
Fq2

(cf. propertyR). HenceEζ (γ ) is

uniformizable by Thm. 5.13.
a.ii) The (linear!) endomorphismτ onM satisfies the identity

T2 = γ̄ t T + 1.

This shows that, ifγ̄ 6= 0, no iterate ofτ can be the identity onM (as it has non-
constant eigenvalues). Repeating the argument in Thm. 4.8, the0k-representation
T̀ (M) cannot be potentially trivial. HenceEζ (γ ) is not uniformizable in this case
(cf. Thm. 5.13, propertyG).

b) If v(γ ) < 0, then one can show, by an argument as in Lemma 2.12, that if`0
is the closed point ofA1 defined by the ideal(t) in A = Fq[t], then the Tate module
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T̀ 0(M) is not potentially unramified. Hence,Eζ (γ ) is not uniformizable (cf. Thm.
5.13, propertyG). �

REMARK 5.15. The above example suggests that ‘uniformizability’ is an ‘open’
condition with respect to the topology onK : For a uniformizableτ -sheafM̃ on Ã1

K
with matrix representation1, theτ -sheaf obtained by changing the coefficients of1

by a small amount is still uniformizable. This follows from propertyR of Thm. 5.13.
This idea was suggested by [Pi4].

IV. Models and uniformizability

PROPOSITION5.16. For a τ -sheafM̃ on Ã1
K , we have:

i) R⇒ U(K );
ii) R’ ⇒ U’ (K̄ ).

PROOF. a) For i), we assume that̃M has a good model̃M and thatM is trivial.
Choose a global basism for M, the reduction ofM̃, such thatτ (m) = m. Let us
extendM̃ by zero to a freeOÃ1

R
-module

M̃e = M̃ ⊕ M̃0

of rankr ′ with τ -action. Letm be a global basis for̃Me, and

1 ∈ Matr ′×r ′
(

H 0
(
Ã1

R,OÃ1
R

))
the matrix representation ofτ with respect to this basis, i.e.τ (m) = m ·1.

b) We want to constructr independent elementsn = (ni )1≤i≤r in

H 0(Ã1
R, M̃e)

which are fixed byτ , and we will do this by lifting the basism to M̃. If we put
n := m · Z, this boils down to finding a matrix

Z ∈ Matr ′×r

(
H 0

(
Ã1

R,OÃ1
R

))
with rankr , which solves the following equation:

(82) Z = 1 · σZ.
The reductionZ = 1 · σZ of this equation has the solution

Z0 ∈ Matr ′×r (H
0(Ã1

k,OÃ1
k
))

expressing the basism in terms of the reduction ofm in M. Let Ẑ0 be the canonical

lift of Z0 to Matr ′×r

(
H 0

(
Ã1

R,OÃ1
R

))
which corresponds to the imbedding

k ↪→ R.

c) Let us setZ := Ẑ0 + πZ1 andB := π−1(1 · σẐ0 − Ẑ0), which yields the
following equation forZ1:

Z1 = B + πq−11 σZ1.
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By lemma 1.23, There exists a unique solution

Z1 ∈ Matr ′×r

(
H 0

(
Ã1

R,OÃ1
R

))
for this equation. The matrixZ = Ẑ0 + πZ1 hence solves equation (82). As its
reductionZ̄ = Z0 has full rank, so doesZ. Finally, asτ acts as the identity on each
of the basis elementsni , we see that

ni ∈ H 0(Ã1
R, M̃) ⊂ H 0(Ã1

R, M̃e).

In conclusion,M̃ contains the trivialτ -sheaf Ñ on Ã1
K generated by the global

sectionsn. This finishes the proof of i).
d) For ii, it follows from i) and Lemma 5.6 that, if̃M is semistable such that

the reductionsMi of its subquotients̃Mi are trivial, thenM̃D0
K

is an extension of

trivial τ -sheaves. Over the algebraic closureK̄ , every extension of trivial analyticτ -
sheaves is trivial (cf. [An1], lemma 2.7.2), which shows that̃M satisfiesU’ (K̄ ). �

V. σ -Bundles and uniformizability

PROPOSITION5.17. For anyτ -sheafM̃ on Ã1
K , statementP impliesR’ .

PROOF. Assume that propertyP holds. LetM1 denote the nondegenerate part
of the reductionM of the maximal modelM̃max for M̃ on Ã1

R.
a) First, let us suppose thatM1 is potentially trivial. Upon replacingR by

a finite unramified extension, we can, by Prop. 1.22, liftM1 to a sub-τ -sheafÑ
on Ã1

R, with trivial reduction. Consider the saturatioñN1 of Ñ in M̃max and its
restriction Ñ1 to the generic fibrẽA1

K . By Prop. 5.16.i), the analyticτ -sheafÑ1,
which is defined over̃A1

K is uniformizable overK̄ , a fortiori overC. Considering
the quotientτ -sheaf

M̃ ′ := M̃/Ñ1

over Ã1
K , it is then clear that̃M ′C is uniformizable; henceP holds for M̃ ′. We are

thus reduced to proving the proposition in the case whereM1 is not potentially
trivial.

b) Suppose thatM1 is not potentially trivial. Puttings := [k : Fq], consider the
linear endomorphismT := τ s :M1→ M1. If (M1, τ

s) is potentially trivial, then
so is(M1, τ ) (a consequence of Prop. 4.9). It also follows from Thm. 4.9 and the
Tate conjecture that ifM1 is not trivial then neither is any isogenousτ -sheaf. This
implies thatT acts nontrivially onV , the stalk ofM1 at the generic point ofA1

k.
Let

OP1
k̄
,∞ ∼= k̄[[t−1]]

be the completion of the local ring of regular functions onP1
k̄

at∞, with uniformizer

z := t−1, andF∞ its field of fractions. For every co-prime pair(u, s) ∈ Z2 with
s > 0, one can define a so-calledpure τ -module Vu,s over F∞ of weight u/s as
follows: takingF⊕s∞ as the underlyingF∞-vector space, let the action ofτ on the
standard basis is given by the matrixZu,s (cf. (81)).
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Consider the characteristic polynomial

H (T) := Th + ah−1Th−1 · +a0 ∈ k[t][T] ⊂ F∞[T]
of T on V . We decomposeF∞ ⊗K (t) V as a direct sum of pureτ s-modulesVu,s.
The weights that occur in this decomposition are exactly the valuations of the roots
of H (T) in F∞, or, equivalently, the inverses of the slopes of the Newton polygon
associated toH (T). This shows that the decomposition ofF∞ ⊗ V has at least one
component with positive weight, unless all the coefficients ofH (T) are constants.
But in the latter case, one easily sees that(V, τ s) is potentially trivial, a contradic-
tion. Hence we may suppose thatF∞ ⊗ V contains as a direct summand a pure
τ -moduleVu1,s1, with u1 ands1 ≥ 1.

c) Let us extendM̃ by zero to a freeOÃ1
R
-module

M̃e = M̃ ⊕ M̃0

of rankr ′ with τ -action. Letm be a global basis for̃Me, and

1 ∈ Matr ′×r ′
(

H 0
(
Ã1

R,OÃ1
R

))
the matrix representation ofτ with respect to this basis:τ (m) = m ·1. By lifting
the elements̄v to M̃e, we will construct aσ -bundleF ′ ⊂ M̃e on Ḋ∞C , with basisv,
such thatF ′ ∼= Fu1,s1 (cf. (81)).

d) Let R denote the valuation ring ofC. Let us putv := m · Z. We look for a
solution

Z ∈ Matr ′×r1

(
H 0

(
Ḋ∞R ,OḊ∞R

))
of the equation

(83) Z · Zu1,s1 = 1 · σZ.
The reduction

Z · Zu1,s1 = 1 · σZ
of this equation has the solution

Z0 ∈ Matr ′×r1(F∞)
which represents theF∞-basisv̄ in terms of the reduction ofm to M.

Note that there exists a canonical embedding

F∞ ∼= k((z)) ↪→ H 0
(
Ḋ∞R ,OḊ∞R

)
.

Let Ẑ0 denote the canonical lift ofZ0 to

Matr ′×r (H
0(Ḋ∞R ,OḊ∞R )).

Starting fromẐ0, we can immediately easily construct via iteration a solution

Z = Ẑ0+ πZ1 ∈ Matr1×r1

(
H 0

(
Ḋ∞R ,OD∞R

))
for (83) which lifts Z0. As Z̄ = Z0 has full rank, thevi are linearly independent.
Further, sincev satisfiesτ s1(v) = tu1v, each of thevi is clearly contained in

H 0(Ḋ∞C , M̃) ⊂ H 0(Ḋ∞C , M̃e).
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In conclusion, if we setF ′ to be theOḊ∞C
-module generated by the global basisv,

thenF ′ is a pureσ -bundle
F ′ ⊂ M̃ |Ḋ∞C

on Ḋ∞C which is isomorphic toFu1,s1. The σ -bundleF (M̃) being the maximal
σ -bundle contained iñM , we haveF ′ ⊂ F (M̃).

If F1 andF2 are pureσ -bundles satisfyingw(F1) > w(F2), then

Hom(F1,F2) = 0

(cf. [Pi4]). In the present situation, however, we have Hom(F ′,F (M̃)) 6= 0 and

w(F ′) = u1

s1
> w

(
F (M̃)

) = 0,

which gives a contradiction. �





CHAPTER 6

Analytic morphisms of t-motives

Let R be a complete valuationFq-algebra, with fraction fieldK , valuationv
and residue fieldk. Like in the previous chapter, we putC := A1, and we adopt the
notations from Remark 0.3. We fix a characteristic mapι : SpecK → C by means
of an injectiveFq-algebra map

ι∗ : A → K : t 7→ θ,

for someθ ∈ K . We will assume thatθ ∈ R, which means that the valuationv is
finite with respect toι (Def. 0.5.iii).

For t-modulesE and E′, the group of morphisms Hom(E, E′) consists of all
algebraic homomorphismsE→ E′ which respect the action ofA. Fort-motivesM
and M ′, the group of morphisms Hom(M,M ′) consists ofK [t]-linear homomor-
phism M → M ′ which commute with the action ofτ . We recall from Prop. 0.14
that, with the above definitions of morphisms, the categories of abeliant-modules
andt-motives are then antiequivalent.

DEFINITION 6.1. Fort-modulesE andE′, the group ofanalytic morphisms
Homan(E′, E) consists of all rigid analytic entire homomorphismsE′ → E which
respect the action ofA.

Let K 〈〈t〉〉 be the ring of entire functions int . For at-motiveM, put

M̃ := K 〈〈t〉〉 ⊗K [t ] M.

We extendτ to aσ -semilinear morphism oñM.

DEFINITION 6.2. Fort-motivesM and M ′, we define the group ofanalytic
morphismsHoman(M,M ′) as the group ofK 〈〈t〉〉-linear homomorphism̃M → M̃ ′
commuting withτ .

We finally remark that all the mentioned groups of morphisms have a natural
structure ofA-modules. Our main result deals with analytic morphisms ofpure
t-motives (see Def. 6.6):

THEOREM 6.3. Let E and E′ be abelian t-modules whose associated t-mot-
ives M and M′ are pure of weightw andw′, respectively. There exists a natural
isomorphism of A-modules

? : Homan(E′, E) →̃ Homan(M,M ′).
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In other words:

THEOREM 6.3BIS. There exists an antiequivalence between the categories of
pure abelian t-modules over K and of pure t-motives overA1

K , both endowed with
analytic morphisms.

The first part of this chapter is devoted to the proof of Thm. 6.3. After estab-
lishing in §I (Prop. 6.5) that? is well defined and injective, we prove in section §III
(Thm. 6.13) that it is surjective. The arguments for this theorem rely on asymptotic
estimates for local logarithmic heights ont-modules, which are presented in section
§V, and weight inequalities induced by nontrivial morphisms (cf. §II, Prop. 6.9).
In section IV, we work out a further aspect of analytic morphisms oft-modules,
namely that of uniformization lattices: see Thm. 6.16.

Analytic morphisms arise naturally in the reduction theory oft-modules and
τ -sheaves. In section VI, we recall the Tate uniformization theorem on the analytic
structure of Drinfeld modules (i.e. 1-dimensional abeliant-modules) with stable
reduction, and show how it gives rise to an analytic filtration of the corresponding
t-motive. On the other hand, the theory of analytic semistability (see Thm. 1.26)
yields an analytic structure of thet-motive, which should, conjecturally, induce an
analytic description of thet-module, as will be explained in section VII.

I. Analyic morphisms of pure t-motives

§1. Topologies ont-motives. Every freeK [t]-moduleM of finite rank has a
natural topology (t-topology), namely that of uniform convergence on any ball of
finite radius. Its completion with respect to this topology equals

M̃ = K 〈〈t〉〉 ⊗K [t ] M.

On the other hand, the ringK [τ ] has a natural topology of uniform convergence
in all balls of finite radius. Identifyingτ with the mapx 7→ xq, this topology is that
induced by the topology on the polynomial ringK [x] as above viaK [τ ] ⊂ K [x].
The completionK 〈〈τ 〉〉 of K [τ ] with respect to thisτ -topology can be identified
with the ring of rigid analyticFq-linear endomorphisms ofGa,K .

For a t-module E, the associatedK [τ ]-moduleM is endowed with a natu-
ral topology (τ -topology) of uniform convergence on all bounded open subsets of
E(K ). The completion ofM with respect to itsτ -topology is given theK 〈〈τ 〉〉-
module Homan(E,Ga,K ) consisting of all rigid analytic entireFq-linear homomor-
phismE→ Ga,K . This K 〈〈τ 〉〉-module is isomorphic to

M ⊗K [τ ] K 〈〈τ 〉〉.
Thus at-motive M is endowed withtwo natural topologies. The following

statement shows that theτ -topology is finer than thet-topology.

PROPOSITION6.4. There exists a natural injectionM ⊗ K 〈〈τ 〉〉 ↪→ M̃ .

We will give a proof in subsection §§3. LetE and E′ be abeliant-modules
defined overK , with associated motivesM andM ′. Every morphism

e∈ Homan(E′, E)
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induces aK 〈〈τ 〉〉-linear homomorphism

(84) e′ : M ⊗ K 〈〈τ 〉〉 → M ′ ⊗ K 〈〈τ 〉〉 : m 7→ m ◦ e

which commutes with the action ofA. By Prop. 6.4, this yields aK [t]-linear homo-
morphism

e′′ : M → M̃ ′

respecting the action ofτ . The homomorphisme′′ extends in a unique way to an
K 〈〈t〉〉[τ ]-linear homomorphisme? : M̃ → M̃ ′. Clearly, the mape 7→ e? is
injective andA-linear, and we have a commutative diagram

M ⊂ M ⊗ K 〈〈τ 〉〉
e′��

⊂ M̃
e?��

M ′ ⊂ M ′ ⊗ K 〈〈τ 〉〉 ⊂ M̃ ′

Thus we have proved

THEOREM 6.5. Let E and E′ be abelian t-modules defined over K , with asso-
ciated t-motives M and M′. There exists an natural injectiveA-linear map

? : Homan(E′, E)→ Homan(M,M ′) : e 7→ e?.

§2. Notations. Let E be an abeliant-module of dimensiond and rankr , de-
fined overK , with t-motiveM. Fixing an isomorphism

E ˜−→ G⊕d
a,K ,

let x := (x1, · · · , xd) be the corresponding basis of coordinate functions

xi : E→ Ga,K ;
this yields aK [τ ]-basis for thet-motive M. On the other hand, we choose a basis
m = (m1, . . . ,mr ) for the freeK [t]-moduleM.

As we will often have to switch from seeingM as aK [t]-module to seeing it as
a K [τ ]-module, we will express the basisx of coordinate functions forE in terms
of m by means of a matrixV ∈ Matr×d(K [t]) such that

x = m ·V.
Let us expand every entryV j

i ∈ K [t] of V as

κ0∑
κ=0

V
j
i,κ tκ ,

puttingκ0 := degV := maxj ,i degV j
i . We then obtain the formula

(85) xi =
κ0∑
κ=0

V
j
i,κ mj ◦ tκ ,

where we have used the ‘Einstein’summation conventionfor summation over the
coordinate indicesi = 1, . . . ,d, as we will systematically do in the rest of this
chapter. Finally, we setv(V) := mini, j ,κ v(V

j
i,κ ).
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Next, we consider the matrix representation of the endomorphismsτ on M. For
every integers, we consider a matrix

1s =
(
1

u,s
j

)
u, j
∈ Matr×r (K [t])

such thatτ (m) = m ·1s. We putµs := deg1s := maxj ,u deg1u,s
j . Notice that, as

1
u,s
j := 11 · · · σ s−1

(11),

we getµs := deg1s ≤ sµ1; we also note thatν1 ≥ 1. Introducing coefficients
1

u,s
j ,µ ∈ K , we write out

1
u,s
j =

µs∑
µ=0

1
u,s
j ,µtµ,

such that

(86) τ s ◦mj =
µs∑
µ=0

1
u,s
j ,µ mu ◦ tµ.

Also, we setv(1s) := minu, j ,µ v(1
u,s
j ,µ).

§3. Proof of Prop. 6.4.

PROOF OFPROP. 6.4. a) Notice that an element
∞∑

n=0

ynτ
n ∈ K [[τ ]] ⊂ K [[x]]

is contained inK 〈〈τ 〉〉 if and only if q−nv(yn)→∞; this convergence condition is
much stronger than that for elements

∑∞
n=0 yntn ∈ K 〈〈t〉〉, namely

n−1v(yn)→∞.
We will now show through explicit calculations that, similarly, convergence forτ -
topology is a stronger condition than for thet-topology, on at-motiveM.

b) Let us express an elementy ∈ M ⊗ K 〈〈τ 〉〉 in terms of theK [τ ]-basisx
of M via y = F cxc (using summation convention), introducing coefficients

F c ∈ K 〈〈τ 〉〉.
ExpandingFc as

∑∞
n=0 F c

n τ
n, for some elementsF c

n ∈ K , we get

(87) q−nv(F c
n )→∞.

With these notations, we obtain

y =
∞∑

n=0

F c
n τ

n ◦ xc.

We can, using the notations of (85) and (86), express this formally in terms of the
K [t]-basism and the endomorphismt as follows:
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y =
∞∑

n=0

F c
n τ

n ◦
(
κ0∑
κ=0

V
j
c,κ mu ◦ tκ

)

=
∞∑

n=0

κ0∑
κ=0

n·µ1∑
µ=0

F c
n

(
V

j
c,κ

)qn

1
u,n
j ,µ mu ◦ tκ+µ.

(88)

Regrouping the terms in this expression, and substitutingζ = µ+ κ , we obtain

(89) y =
∞∑
ζ=0

min(ζ,κ0)∑
κ=0

∞∑
n=
⌊
ζ−κ
µ1

⌋ F c
n

(
V

j
c,κ

)qn

1
u,n
j ,µ

 mu ◦ tζ .

What remains to prove is that the coefficients

Eu
ζ :=

min(ζ,κ0)∑
κ=0

∞∑
n=
⌊
ζ−κ
µ1

⌋ F c
n

(
V

j
c,κ

)qn

1
u,n
j ,µ

are well defined elements ofK such that
∑∞
ζ=0 Eu

ζ tζ ∈ K 〈〈t〉〉, for all u ≤ r .
c) Upon replacing the basism by a scalar multiple, we may suppose that

v(1n) ≥ 0 for all n ≥ 1, and modifying the coordinates onE by a scalar, we can
also assume thatv(V) ≥ 0. Thus it follows from (87) that the seriesEu

ζ converges
to an element inK , for all u andζ . Moreover, we see that

q
− ζ−κ0µ1 v(Eu

ζ )→∞
for ζ →∞. This shows thatF c ∈ K 〈〈t〉〉, and hencey ∈ M̃ . �

II. Morphisms and weights

We reformulate Def. 0.15:

DEFINITION 6.6 (Anderson [An1], 1.9). A t-motive M over K [t] is pure of
weightw, if there exists an integerz and aK [[t−1]]-latticeM∞ in

V∞ := M ⊗K [t ] K ((t−1))

such that
τ z((σ z)∗M∞) = tzwM∞.

We remark that if a puret-motive has rankr , dimensiond and weightw, then

w = d

r
.

Let deg denote the natural extension of the degree function onK [t] to K (t). For a
matrix B = (Bi j )i, j ∈ Mat(K (t)), we put

degB = max
i, j

degBi j .
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LEMMA 6.7. For a pure t-motive M of weightw and rank r, we put, for all
integers s∈ zrN,

T s := t−sw1s

(cf. Def. 6.6 for the definition of z, and cf. (86) for that of1). There exists an integer
δ ≥ 0 such thatdegT s ≤ δ anddeg(T s)−1 ≤ δ for all such s.

PROOF. With respect to aK [[t−1]]-basism of M∞, we have

τ sz(m′) = m′ · (tszwT̂ sz),

with T̂ sz∈ GLr (K [[t−1]]) (cf. def. 6.6). Expressing theK ((t−1))-basism′ for M∞
in terms of the fixed basism for M by means of the matrixγ ∈ GLr (K ((t−1))) as
follows:

m′ = m · γ,
we obtain:

(90) 1sz= γ · tszwT̂ sz · σ sz
(γ−1).

As, T sz = γ · T̂ sz · σ sz
(γ−1), we can takeδ := 2 max(degγ,degγ−1), and the

claim follows. �

Let M andM ′ be puret-motives of respective weightsw andw′, ranksr andr ′
and constantsz andz′ as in Def. 6.6. Given a morphism

f ∈ Homan(M,M ′),

we expressf in terms of basesm andm′ for M andM: let the matrix

F ∈ Matr ′×r (K 〈〈t〉〉)
satisfy f (m) = m′ · F . We also putF =∑∞k=0 Fktk, for matrices

Fk = (F u
j ,k)u, j

∈ Matr ′×r (K ).

Finally, we set

v(Fk) := min
u, j

v(F u
j ,k)

and

(91) v̂k(F ) := inf
k′≥k

v(Fk′ ).

LEMMA 6.8. Let M and M′ be pure t-motives of respective weightsw andw′.
There exists a constantδ0, such that for any morphism

f ∈ Homan(M,M ′)

with matrix representationF , we have, for all s divisible by r , r′, z and z′, and for
all k:

(92) v̂k(F ) ≥ min j≥k−s(w′−w)−δ0 qsv̂ j (F ) .
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PROOF. a) As the homomorphismf commutes withτ s, for all s, we have:

τ s
M ′ ◦ f = f ◦ τ s

M ;
in matrix notation (using the notations from (86)):

(93) 1′s · σ s
F = F ·1s x.

We will now exploit the relations this equation induces on the coefficients of

F =
∞∑

k=0

Fktk.

b) Recall that det11 = b(t − θ)d, for someb ∈ K×, and thatd = rw. We put

1̃1 := (t − θ)d(11)−1 ∈ Matr×r (K [t])
and definev(1̃1) just like we definedv(11). Note that the Lemma is not affected
by replacing the basism by a scalar multiple, and therefore we may assume that

v(1̃1) ≥ 0. Next, we set̃1s := σ s−1
(
1̃1
)
· · · 1̃1. Multiplying on the right by1̃s in

equation (93) then gives

(94) 1′s · σ s
F · 1̃s = F · (t − θ)d · · · (t − θqs−1

)d.

We expand(t − θ)d · · · (t − θqs−1
)d as

tds+
ds−1∑
i=0

θs
i t i ,

where the coefficientsθs
i satisfy v(θs

i ) ≥ 0 (here we need the assumption that
v(θ) ≥ 0, i.e. that the valuation is finite).

Upon replacing the basism′ by some scalar multiple, we can assume that
v(1′s) ≥ 0. By Lemma 6.7, deg1s ≤ sw + δ and deg1′s ≤ sw′ + δ′. As 1̃s is,
up to a scalar inK , the adjoint matrix of1s, this yields that

deg1̃s ≤ (r − 1) deg1s ≤ (r − 1)(sw + δ).
c) Equation (94) givessw′+δ′∑

i=0

1′si t i

( ∞∑
k=0

σ s
Fktk

)(r−1)(sw+δ)∑
i=0

1̃s
i t i


=
( ∞∑

k=0

Fktk

)(
trws +

rws−1∑
i=0

θs
i t i

)(95)

Comparing the coefficients oftk+rsw in this equation yields

(96)
∑

i+i ′+ j=k+rsw
i ′≤sw′+δ′

i≤(r−1)(sw+δ)

1′si ′ · σ
s
F j · 1̃s

i = Fk +
sw∑
j=1

θs
rws− j Fk+ j
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Puttingδ0 := δ′ + (r − 1)δ, this implies

(97) v(Fk) ≥ min

{
min

j≥k−s(w′−w)−δ0
qsv(F j ),min

j≥1
v(Fk+ j )

}
.

It follows that v̂k(F ) ≥ min j≥k−s(w′−w)−δ0 qsv̂ j (F ). �

PROPOSITION6.9. Let M and M′ be pure t-motives of weightw andw′, re-
spectively.

i) If w > w′, thenHoman(M,M ′) = Hom(M,M ′) = 0.
ii) If w = w′, thenHoman(M,M ′) = Hom(M,M ′).
iii) If w < w′, thenHom(M,M ′) = 0.

PROOF. a) To show that ifw 6= w′, then Hom(M,M ′) = 0, we use the theory
of Dieudonné modules, as explained in [La1], Appendix B. The definition of purity
for M implies, upon passing to the algebraic closureK̄ , that theτ -module

V̄∞ := M ⊗K [t ] K̄ ((t−1))

is isomorphic to a direct sum of modules of the form

K̄ ((t−1))[τ ]/(τ z− tzw),

with z ≥ 0. Idem forM replaced byM ′. If w 6= w′, then the theory shows that
Hom(V∞,V ′∞) 6= 0. A fortiori, if w 6= w′, then Hom(M,M ′) = 0.

b) To conclude the proof, we are left to show that if there exists an

f ∈ Homan(M,M ′)\Hom(M,M ′),

thenw < w′. We letF be the matrix representation off and take up the notation
from Lemma 6.8. Asf is entire, we havêvk(F )→∞.

• If w > w′, then we can chooses such that−s(w′ −w)− δ′ > 0, and then
Lemma 6.8 implies:

v̂k(F ) ≥ min
k′>k

v̂k′ (F ) = v̂k+1(F )

for k, whereasv̂k(F ) ≤ hatvk+1(F ) by definition. Thus we get that
v̂k(F ) = v̂k′ (F ) for all k, k′ ≥ k0. As v̂k(F ) → ∞, this implies that
Fk = 0 for all k, which is a contradiction, asf 6= 0.
• If w′ = w, then we obtain, for allk ≥ 0 and for alls≥ 1, that

v̂k(F ) ≥ qsv̂k−δ′(F ) > 0.

Letting s→ ∞, we deduce for allk ≥ k0 + δ′ thatFk = 0, which is a
contradiction, asf 6= Hom(M,M ′).

Thus we conclude thatw < w′. �
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III. Analytic morphisms of pure t-motives

§1. Local height. With respect to the basisx of coordinate functions onE, we
define a naivelocal (logarithmic) height h : E(K )→ R on E(K ) as follows:

DEFINITION 6.10.

h(P) := max
1≤i≤d

−v(xi · P)

For a ∈ A and P ∈ E(K ), let us denote the image ofP under the endomor-
phismφE(a) by a · P. Let the standard norm| · |∞ onA be defined by

|a|∞ = qdega.

In section V (see Prop. 6.18 and Prop. 6.19), we will prove the following as-
ymptotic estimates for the heighth under the action ofA on E(K ):

THEOREM 6.11. If E is a pure of weightw, then there exist constants c1 < 1
and c2 > 1 and an integer n such that, for all P∈ E(K ) with h(P) � 0 and for
all nonconstant a∈ Fq[tn]:

(98) c1 |a|w−1

∞ h(P) ≤ h(a · P) ≤ c2 |a|w−1

∞ h(P). .

REMARK 6.12. In some situations, it will be useful to replace the pair(E, φE)

by the so-called inducedt-module (cf. [Den]) consisting ofE andφ′E, where

φ′E : A → End(E) : t 7→ φE(t
n).

We can then assumen = 1 in the above formula.

§2. Surjectivity of ?. We need to expressm as well as the endomorphismt
in terms of theK [τ ]-basisx. For this, we introduce, analogously to what we did in
(85) and (86), constantsλ0 andνs ∈ N, for all s, and coefficientsW i

j ,λ, for λ ≤ λ0,

and2w,si,ν , for ν ≤ νs, such that

(99) mj =
λ0∑
λ=0

W i
j ,λ τ

λ ◦ xi ;

(100) xi ◦ ts =
νs∑
ν=0

2
w,s
i,ν τ

ν ◦ xw.

The following proposition, combined with Thm. 6.5, concludes the proof of
Thm. 6.3:

THEOREM 6.13. Let E and E′ be abelian t-modules defined over K , with as-
sociated motives M and M′. The map

? : Homan(E′, E)→ Homan(M,M ′)

is a bijection.
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PROOF. a) By Anderson, we know that there is a bijection

Hom(E′, E) ∼= Hom(M,M ′).
So let us take

f ∈ Homan(M,M ′)\Hom(M,M ′).
We need to show that, for any of the basis coordinate functionsxi , the function
f (xi ) ∈ M̃ is entire onE′. Indeed, this implies thatf restricts to a homomorphism

M ⊗K [τ ] K 〈〈τ 〉〉 → M ′ ⊗K [τ ] K 〈〈τ 〉〉,
hence gives rise to a morphisme ∈ Homan(E′, E) such thate? = f .

We representf in terms of basesm andm′ by means of a matrixF , adopting
the same notation as in Lemma 6.8. We want to express the morphismf in terms
of the coordinate functionsx andx′. We use the base change formulas (85) and
(99) (where we use analogous notations forM ′, systematically adding a prime), and
obtain the following formal equation

(101) f (xi ) =
∞∑

k=0

∑
κ,λ

V
j
i,κ W ′wu,λ F u

j ,p τ
λ ◦ x′w ◦ tk+κ .

Hence, putting

(102) ε(k; P) :=
∑
κ,λ

V
j
i,κ W ′wu,λ F u

j ,k x′w(tk+κ · P)qλ ,

we need to show thatf (xi )(P) = ∑∞
k=0 ε

k(P) converges for allP ∈ E′(K ). In
order to do this, we need estimates on the coefficientsFk and on the height oftk+κ ·P
in terms ofk.

b) Puttingv(Fk) := minu, j v(F
u
j ,k), andv̂k(F ) := infk′≥k vk′ (F ) as before,

we have, by Lemma 6.8, the inequality

(103) v̂k(F ) ≥ min
j≥k−s(w′−w)−δ0

qsv̂ j (F ),

which holds for a fixed constantδ0 and alls > 0 divisible byz, r , z′ andr . From
Prop. 6.9, we know thatw < w′. Therefore we get, for all suchs ≥ 0 and all

k ≥ k0+ s(w′ −w)+ δ0,
that

(104) v̂k(F ) ≥ qsv̂k−s(w′−w)−δ0(F ).
One deduces from this that there existv0, k′0 > 0 such that fork ≥ k′0:

(105) vk ≥ q
k

w′−w v0 .

c) We may replaceE′ by an inducedt-module without loss of generality, since
we are looking for an analytic homomorphismof the underlying groupG⊕d′

a,K . Hence,
by remark 6.12, we can assume that there exist constantsη > 0 andc2 > 1 such
that, forall integerss and allP ∈ E′(K ) with h(P) > η:

h(ts · P) ≤ c2 qs/w′ h(P).
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We can extend this formula to one holding for allP as follows: there exists a con-
stantc′ > 1, such that, for all integerss and allP ∈ E′(K ):

(106) h(ts · P) ≤ c′qs/w′ max{h(P), η} .
Indeed, eitherh(ts′ · P) ≥ η for all s′ ≤ s or there exists ans′ ≤ s such that

h(ts′ · P) ≥ η
andh(t i · P) ≤ η for i ≤ s′. In the latter case, using (113)

h(ts · P) ≤ c q(s−s′)/w′h(ts′ · P) ≤ c q(s−s′)/w′(−v(21)+ qν1η) ≤ c′ η qs/w′,

for a new constantc′ > c2.
d) Finally, we can give an estimate forε(k; P), for everyP ∈ E′(K ). By (106)

and (92), we get, fork ≥ k′0:

v(ε(k; P))
≥ v(V) + v(W ′)+ v(Fk)− qλ0h(tk+κ · P)
≥ v(V) + v(W ′)+ q

k
w′
(
v0 q

k
(

1
w′−w− 1

w′
)
− c′q

κ0
w
+λ0 max{h(P), η}

)
.

(107)

Since 0< w < w′, one has 1
w′−w >

1
w′ . Therefore the expression

v0 q
k
(

1
w′−w− 1

w′
)

tends to infinity, and hence so doesv(ε(k; P)). This shows that the seriesf (xi ) is
indeed an entire function onP ∈ E′(K ). �

QUESTION 6.14. Does Thm. 6.13 hold without the assumption thatM andM ′
are pure?

IV. Uniformization lattices

DEFINITION 6.15. AnA-lattice H in E(K ) is a free finitely generated sub-A-
module ofE(K ) which is strictly discrete, i.e. the intersection ofH with any open
disk of finite radius is finite.

THEOREM 6.16. Let E and E′ be pure t-modules of rank r and r′, resp. For
every e∈ Homan(E′, E) is such that e? ∈ Homan(M,M ′) is surjective, the kernel

H := (ker e)(K̄ )

is anA-lattice in E′(K sep) whose rank h satisfies h≤ r − r ′.

PROOF. a) H is strictly discrete.We remark that

cokerτM

is isomorphic to
HomK (Lie(E), K ),

were Lie(E) is the Lie-algebra ofE. Now e? induces a surjective morphism

cokerτM → cokerτM ′
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which shows that Lie(e) : Lie(E′) → Lie(E) is injective. By the inverse function
theorem, kere is therefore a 0-dimensional analytic subvariety ofE ∼= Ad

K . As
affinoid spaces are noetherian, any closed disk contains only a finite number of
points ofH , whence strict discreteness.

b) H is torsion free.By the isomorphism

E[a](K )→ HomK [t ][τ ](M/aM,Hom(A/(a), K ))

for abeliant-modules (cf. [An1]), it follows, for all non-constanta ∈ A, from

M/aM�M ′/aM′

that

E′[a](K ) e
↪→ E[a](K ).

HenceH is torsion free.
c) H is finitely generated.Upon replacingE′ by an inducedt-module, there

exist, by remark 6.12, constantsc1 < 1 andc2 > 1 such that, for all integerss and
all P ∈ E′(K ) with h(P)� 0:

(108) c1 qs/w′ h(P) ≤ h(ts · P) ≤ c2 qs/w′ h(P),

and we can assume thatc1/c2 ≤ q1/w′. The closed disk

D̄η = {P ∈ E′(K ); h(P) ≤ η}
contains only a finite numberµ of elements ofH . As H contains no torsion, we
have that, for allP ∈ H ∩ D̄η, the pointsP, t · P, t2 · P, . . . , tµ · P are all distinct.
This shows thath(tµ0 · P) > 0 for someµ0 ≤ µ, and, a fortiori,

h(tµ
′ · P) > η

for all µ′ > µ0. As it suffices to show thattµ · H is finitely generated, we may
suppose thatH ∩ D̄η = φ, hence the estimates of (108) are valid for allP ∈ H .

SinceH is torsion free,H injects intoV := Fq(t)⊗A H . Let V ′ be a subspace
of V of finite dimensionα and putH ′ := H ∩ V ′. We choose an elementP1 ∈ H ′
with minimal height. We take recursively, for alli ≤ α, a pointPi with minimal
height inH ′ \ H ′i−1, where we put

H ′k :=
⊕

1≤ j≤k

A · Pj ,

for k ≤ i − 1. PutV ′k := Fq(t) · H ′k ⊂ V ′. We will now prove, by induction oni ,
that (P1, . . . , Pk) forms a basis forH ′ ∩ V ′k. For k = 1, the statement is obvious;
we assume that it holds fori ≤ k− 1.

Suppose that
Q ∈ (H ′ ∩ V ′k

) \ H ′k :
there exist{aj }1≤ j≤k ∈ Ar and a non-constantb ∈ A such thatb does not divide all
of theaj and such that

b · Q =
∑

1≤ j≤k

aj · Pj .



V. Asymptotic bounds on local heights 119

Upon replacingQ by an element inQ+ H ′k, we can assume that

degaj < degb,

for all j ≤ k. By the estimate (108), it follows from

h(b · Q) ≤ max
j

h(aj · Pj )

that

c1qdegb/w′h(Q) ≤ h(b · Q) ≤ max
j

h(aj · Pj )

≤ c2 max
j

qdegaj /w
′
h(Pj ) ≤ c2 q(degb−1)/w′h(Pk).

(109)

As we assumed thatc2 < qw
−1

, we obtainh(Q) < h(Pk). However, as

Q 6∈ V ′k−1,

we haveh(Q) ≥ h(Pk), which gives a contradiction.
In conclusion, since dimV ′ = α = dimV ′α , we see thatH ′α = H ′, so H ′ is

finitely generated. Next, we observe that

t−1(H ′)/H ′ e
↪→ E[t](K ) ∼=A (A/(t))

r .

Further, the kernel of the mapt−1(H ′)/H ′ → H ′/t (H ′) is isomorphic to(A/(t))r
′
.

Therefore

rkA/(t) H ′/t (H ′) ≤ r − r ′,
which implies that rkH ′ ≤ r − r ′ and hence dimV ′ ≤ r − r ′. We have thus proved,
for all finite dimensional subspaces ofV , that dimV ′ ≤ r − r ′, which shows that
V itself is finite dimensional, with dimV ≤ r − r ′. As H is then finitely generated
overA and torsion free, it is free of rank at mostr − r ′. �

V. Asymptotic bounds on local heights

Let K be a complete valuedFq-field; in this section, we will not assume that
the valuation onK is finite with respect to the characteristicι.

For everyP ∈ E(K ), we can deduce from equations (85) to (100):

v(xi (P)) ≥ v(V)+min j ,κ v(mj (tκ · P));(110)

v(mj (P)) ≥ v(W)+mini,λ0 qλv(xi (P));(111)

qsv(mj (P)) ≥ v(1s)+minu,µ≤µs v(mu(tµ · P));(112)

v(xi (ts · P)) ≥ v(2s)+minw,ν≤νs qνv(xw(P)).(113)

LEMMA 6.17. Let E be an abelian t-module. For allψ > 1, there exists an
integer n> 0 such that: for all P∈ E(K ) with h(P) � 0 and for all nonconstant
a ∈ Fq[tn]:
(114) h

(
a · P) > ψ · h(P) .
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PROOF. The endomorphismτ obviously satisfiesh(τ · P) = q · h(P). The
idea is that, asτ can be expressed in terms of the operator ‘t ’ on M (equation (86)),
there exists, for eachP with h(P) � 0, a powertρ such thath(tρ · P) ∼ q · h(P).
The subtlety is to find aρ which holds for allP.

a) Combining the three inequalities (110) to (112) gives, for alls > 0 and alli :

qsv(xi · P) ≥
(
qsv(V)+ v(1s)+ v(W)

)+ min
i ′

0≤µ≤µs
0≤λ≤λ0
0≤κ≤κ0

qλv(xi ′ (t
µ+κ · P)).

Henceqsh(P)+ qsv(V) + v(1s)+ v(W) ≤ maxµ,λ,κ qλh((tµ+κ · P).
For a givenψ, let us fixs� 0 such thatqs � qλ0ψ. For P with h(P) large

enough, we obtain

(115) ψ · h(P) ≤ max
1≤ρ≤µs+κ0

h(tρ · P).

b) Let us putρ0 := µs + κ0. We deduce from (113) that, for alls,

h(ts · P) ≤ −v(2s)+ qν0h(P).

In particular, we can find, forP with h(P)� 0, a constantχρ0 > 0 such that

(116) max
1≤ρ≤ρ0

h(tρ · P) ≤ χρ0 h(P).

c) We now take, for eachP with h(P) � 0, aρP(1) with 0 < ρP(1) ≤ ρ0
such thath(tρP(1) · P) ≥ ψ h(P), and choose recursively, for allu > 1, someρP(1)
such that

ρP(u− 1) < ρP(u) ≤ ρP(u− 1)+ ρ0

and for which

h(tρP(u) · P) ≥ ψ h(tρP(u−1) · P) ≥ ψuh(P).

We fix an integern such thatψ(n/ρ0)−1 > χρ0. For eachP, we take the smallestu
such thatρP(u) > n. We then haveρP(u)− n ≤ ρ0 andu ≥ n/ρ0 and we find that

(117) ψu h(P) ≤ h(tρP(u) · P) = h
(
t(ρP(u)−n) ◦ tn(P)

) ≤ χρ0 h(tn · P),
which shows thath(tn · P) > ψ h(P). If a in Fq[tn], then

h(a · P) = h(tdega · P) ≥ ψ h(P),

for P with h(P)� 0. �

PROPOSITION 6.18. If E is pure of weightw, then there exists a constant
c1 < 1 and an integer n such that, for all P∈ E(K ) with h(P) ≥ η and for
all nonconstant a∈ Fq[tn]:

(118) c1 |a|w−1

∞ h(P) ≤ h(a · P) .
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PROOF. Without loss of generality, we may replace thet-moduleE by an in-
duced module such that, by the previous lemma, for some fixedψ > 1, we have

ψ h(P) < h(t · P)
for h(P) � 0. The essential idea, expressed by Lemma 6.7, is that, for puret-
modulesE and large powerss, the endomorphismτ sw−1

acts, up to lower powers
of t , more or less asts, and henceh(ts · P) ∼ qsw−1

h(P).
a) By lemma 6.7,µs := deg1s ≤ sw + δ, for a fixedδ > 0 and any integer

s > 0 divisible byr andz. Hence, using formulas 86 and 99, we get, ifh(P)� 0:

qsv(mj · P) ≥ v(1s)+ min
u,1≤µ≤sw+δ v(mu(t

µ · P))
≥ v(1s)+ v(W)+ min

i,λ,1≤µ≤sw+δ qλv(xi (t
µ · P))

= v(1s)+ v(W)+ qλ0(−h(tsw+δ · P))
(119)

On the other hand, by (110),−h(P) ≥ v(V)+min j ,κ v(mj (tκ · P)), so we get

−qsh(P) ≥ qsv(V)+ v(1s)+ v(W)+ qλ0 min
0≤κ≤κ0

(−h(tsw+δ+κ · P))
≥ qsv(V)+ v(1s)+ v(W)+ qλ0v(2δ+κ0)− qλ0+νδ+κ0 h(tsw · P).

(120)

b) Notice thatv(1s) ≥ (1+ q + · · · + qs−1)v(11). Hence, for every small
ε > 0, we can takeh(P) large enough such that for alls:

−(qsv(V)+ v(1s)+ v(W)) ≤ εqsh(P).

We then obtain
qλ0+νδ+κ0 h(ts · P) ≥ (1− ε)(qs)w

−1
h(P).

Finally, if we setc1 := (1− ε) q−(λ0+νδ+κ0) < 1, then, for alls divisible byzr,

h
(
tsw(P)

) ≥ c1 qs h(P).

Therefore, puttingn := zdr, we obtain for all nonconstanta ∈ Fq[tzdr], that

h
(
a(P)

) = h(tdega · P) ≥ c1 |a|w−1

∞ h(P).

�

PROPOSITION 6.19. If E is pure of weightw, then there exists a constant
c2 > 1 and an integer n such that, for all P∈ E(K ) with h(P) � 0 and for
all nonconstant a∈ Fq[tn]:

(121) h(a · P) ≤ c2 |a|w−1

∞ h(P) .

PROOF. The essential idea, using Lemma 6.7, is now to expressts, for large
exponentss, in terms of lower powers oft and the endomorphismτ (cf. equation
(86)) and apply the triangle inequality. Let

T s := t−sw1s ∈ Matr×r (K [t, t−1]).



122 6. Analytic morphisms oft-motives

a) For an appropriateδ′ > δ, to be fixed later, we approximate

tδ
′
(T s)−1 ⊂ Matr×r (K [t, t−1])

by a matrixAs with coefficients inK [t] such that

deg(As − tδ
′
(T s)−1) < 0.

If we put

(122) Bs := 1sAs − tsw+δ′ = 1s · (As− tδ
′
(T s)−1) ∈ Matr×r (K [t])

then degBs < sw + δ.
b) We expandAs =∑δ+δ′

i=0 As
i t

i , introducing matrices

As
i = (Au,s

j ,i )u, j
∈ Matr ′×r ′ (K )

and set
v(As) = min

u, j ,i
v(Au,s

j ,i ).

Similarly, we definev(Bs), v(T s). First, we need an estimate ofv(As).
Upon replacingm by some scalar multiple, we may suppose that

v(11) ≥ 0

and hence thatv(T s) = v(1s) ≥ 0 as well. If T s is the adjoint ofT s, then
v(T s) ≥ 0, and

(T s)−1 = (detT s)−1T s.

On the other hand, if we set det11 = ω · (t − θ)d with v(ω) ≥ 0, then

(123) detT s = ω1+···+qs−1
(1− θ t−1) · · · (1− θqs−1

t−1).

If we write out det(T s)−1 =∑∞j=0 dj t− j , then, for alln,

(124) min
1≤ j≤n

v(dj ) ≥ qs(−v(ω)+ n min{v(θ),0}).

As As is the ‘integer part’ of

tδ
′
(T s)−1 = tδ

′
(detT s)−1T s =

∞∑
i=−δ


∑
−δ≤k
0≤ j

k+ j=i

dj (T s)k

 t−i+δ′ ,

it follows that

(125) v(As) ≥ qsγ and v(Bs) ≥ qsγ,

whereγ := (−v(ω)+ (δ + δ′)min{v(θ),0}).
c) The morphismτ s is represented byτ s(m) = m · 1s, hence, by equation

(122):

(126) τ s(m) ·As = m · (tsw+δ′ +Bs).
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Let us seta = (a1, . . . ,ar ) := τ (m) ·As andb = (b1, . . . ,br ) := m ·Bs. As for
the right hand side, we will soon (seee)) that, upon evaluating the equation

a= m ◦ tsw+δ′ + b

at a pointP with h(P)� 0, the termm ◦ tsw+δ′ is dominant. More precisely:

(127) min
j ,0≤κ≤κ0

v(mj (t
sw+δ′+κ · P)) < min

j ,0≤κ≤κ0
v(bj (t

κ · P)),

for all j . There we will use the result of the previous lemma to ‘bound’ the action
of the lower powers oft . It follows from (127) that

(128) min
j ,κ
v(aj (t

κ · P)) = min
j ,κ
v(mj (t

sw+δ′+κ · P)).

We now calculate

v(aj (P)) = v
 δ′∑
µ=0

Au,s
j ,µ τ

s ◦mu(t
µ · P)


≥ v(As)+ min

u,0≤µ≤δ′
qsv

(
mu(t

µ · P))
≥ qsγ + qsv(W)− qs+λ0h(tδ

′ · P)

(129)

d) On the other hand, combining (110) and (129), we get

−h(tsw+δ′ · P) ≥ v(V) +min
j ,κ
v(mj (t

sw+δ′+κ · P))
= v(V) +min

j ,κ
v(aj (t

κ · P))

≥ v(V) + qsv(W)+ qsγ − qs+λ0 max
0≤κ≤κ0

h(tδ
′+κ · P).

(130)

If we takeh(P) big enough for a fixed smallε > 0, then it follows that

h(tsw · P) ≤ h(tsw+δ′ · P) ≤ qs+λ0h(tδ
′+κ0 · P)− (v(V)+ qsv(W)+ qsγ )

≤ qs
(
(1− ε)qλ0h(tδ

′+κ0 · P)
)

≤ ((1− ε)χδ′+κ0qλ0
)

qsh(P);

(131)

we recall that the constantχδ′+κ0 was introduced in (116). If we put

c2 :=
(
(1− ε)χδ′+κ0qλ0

)
,

then this proves that

h(tsw · P) ≤ c2 (q
s)h(P),

for all s divisible byz andr . Finally, if we putn = zdr, then, for all nonconstant
a ∈ Fq[tn],

h(a · P) = h(tdega · P) ≤ c2 |a|w−1

∞ h(P).
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e) It remains to prove formula 127. Takingh(P) � 0, we calculate, using the
estimates (125) and (99):

v(bj (P)) = v
sw+δ∑
µ=0

Bv,s
j ,µ mv(t

µ · P)


≥ v(Bs)+ min
v,0≤µ≤sw+δ v(mv(t

µ · P))
≥ qsγ + v(W)− qλ0h(tsw+δ · P)
≥ −(1− ε)qλ0h(tsw+δ · P)

(132)

Thus

v
(
bj (t

κ · P)) ≥ −(1− ε)qλ0h(tsw+δ+κ · P),
for all κ ≥ 0. By lemma 6.18, we can find aδ′ � δ such that, if

c1q(δ
′−δ−κ0)/w > qλ0,

then

qλ0h(tsw+δ · P) > h(tsw+δ′+κ)
for all κ ≤ κ0. Thus

min
j ,κ
v
(
bj (t

κ · P)) > −(1− ε)h(tsw+δ′+κ · P).

Finally, if h(P)� 0, then

min
j ,κ
v(mj ◦ tsw+δ′+κ · P) ≤ −h(tsw+δ′ · P)− v(V) ≤ −(1− ε)h(tsw+δ′ · P)

and hence minj ,κ v(mj ◦ tsw+δ′+κ · P) < min j ,κ
(
bj (tκ · P)

)
indeed. �

REMARK 6.20. a) Suppose thatE is ad-dimensionalt-module such that, for
somen, we have, with respect to the coordinate basisx:

tn :=
m∑

i=0

8i τ
i ,

where8i ∈ Matd×d(K ) and8m invertible; thet-moduleE is then pure, and hence
abelian. As explained in [Den] in the case of global heights, this implies the exis-
tence of a constantca > 0, depending ona ∈ A, andη > 0 such that

|a|w−1

∞ h(P)− ca ≤ h
(
a(P)

) ≤ |a|w−1

∞ h(P) + ca

for h(P) > η. This allows us to define a unique canonical local height function

ĥ(P) := lim→ q−sw−1
h(ts · P)

which satisfieŝh
(
a(P)

) = |a|w−1

∞ ĥ(P) for all a ∈ Fq[tn], and such that̂h − h is
bounded forh(P) > η.
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b) In general, however, it is not possible to define a canonical heightĥ such
thatĥ− h is bounded. Consider for example the 2-dimensional puret-motive E of
weight one given by:

(φE(t)− θ)
(

x1
x2

)
=
(
τ θτµ

0 τ

)(
x1
x2

)
,

wherev(θ) = 1 andµ ≥ 1. For pointsPx :=
(

0
x

)
, with v(x) < 0, we obtain

that

h(ts(Px)) = qµ+sh(Px)− 1,

for all s. Therefore, the constantc2 in (98) is at leastqµ, and, if ĥ is defined, then
the functionĥ− h cannot be bounded.

VI. Semistability of Drinfeld modules

Upon replacingK by a finite totally ramified extension, every Drinfeld mod-
ule φ defined overK is isomorphic to a Drinfeld module8 with coefficients inR
and which isstable in the following sense: it has coefficients inR, and its reduc-
tion 8̄modulo the maximal ideal ofR is a Drinfeld module over the residue fieldk,
of rankr ′ ≤ r . A Drinfeld moduleφ is calledgood if it is stable andr ′ = r .

PROPOSITION6.21 (Tate uniformization (Drinfeld, [Dr1] §5)).
For every stable Drinfeld module8, there exists a unique good Drinfeld module8′
with rank r′ and a unique non-trivial morphism

e8 ∈ Homan(8′,8)

such that e8 is the identity on the Lie algebraLie(Ga,K ).

By the theory of entire analytic functions onA1, the analytic mape is surjective
overK sep. The kernelH := ker(e)(K̄ ) is anA-lattice in8′(K ); its rank is exactly
equal tor − r ′ (see Drinfeld, [Dr1] §5, and compare with Theorem 6.16).

Let us denote byM resp.M ′ thet-motives associated to8 and8′. By Theorem
6.3, the morphisme induces a morphisme?φ ∈ Homan(M,M ′).

THEOREM 6.22. The Tate uniformization morphism e?φ ∈ Homan(M,M ′) in-
duces an exact sequence

(133) 0→ Ñ→ M̃
e?−→ M̃ ′ → 0

of τ -modules over K〈〈t〉〉, where theτ -moduleÑ is trivial over a finite extension
of K .

We recall that an analyticτ -module is calledtrivial if it is isomorphic to a
direct sum of copies of(K 〈〈t〉〉, τ ).

PROOF. a) Surjectivity of e?. As finitely generated ideals inK 〈〈t〉〉 are princi-
pal, the kernel̃N := kere? is finitely generated (hence free) by – a proper analog of
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– the structure theorem for finitely generated modules over a principal ideal domain.
For each non-constanta ∈ A, the sequence

0→ H → 8′(K̄ )→ 8(K̄ )→ 0

induces the following short exact sequence of(A/a)[0K ]-modules:

0→ 8′[t] → 8[t] → H/a · H → 0.

For every maximal ideal̀ of A, let A` denote thè -adic completion ofA; idem for
K [t]` andH`. We obtain an exact sequence of the Tate modules

0→ T̀ (8′)→ T̀ (8)→ H`→ 0.

We setM̂` := K [t]`⊗K 〈〈t〉〉 M̃ (idem forM̃ ′ andÑ); by the contravariant correspon-
dence between Galois representations and smooth`-adicτ -modules (Prop. 0.7), this
yields

(134) 0→ N̂` → M̂` → M̂ ′̀ → 0.

In particular, this shows that the sub-τ -modulee?(M̃) of M̃ ′ over K 〈〈t〉〉 has the
same rankr ′. As finitely generated ideals inK 〈〈t〉〉 are principal, there exists an
α ∈ K 〈〈t〉〉 such that

∧r ′e?(M̃) = α · ∧r ′ M̃ ′.
Now detτe?(M̃) divides detτM̃ , which is, up to a unit inK×, equal to

detτM̃ ′ ∼ (t − θ).
Hence it follows from the equation

σα ·
(
detτe?(M̃)

)
= α · (detτM̃ ′

)
thatα, up to a unit, is inA. By (134), we conclude thatα is not contained in any
maximal ideal ofA, and hencee? is a surjective analytic morphism.

b) N is potentially trivial. As H is strictly discrete, the action of0K on H ,
hence onH` as well, is finite. Upon replacingK by a finite extension, we may
assume that this action is trivial, i.e.H ⊂ K . If the residue fieldk is finite, then,
by (an analytic version of) the Galois criterion for trivial reduction (Thm.4.8), the
τ -sheaf obtained from̃N has good trivial reduction, asT̀ (Ñ) = H` is trivial. By
the analytic lifting theorem [Ga3], Thm. 2.3, this implies that̃N contains a trivial
τ -module. Arguing with the determinant, as above, we conclude that this trivial
sub-τ -module is in fact saturated.

c) N is potentially trivial(II). We now give a proof in the general case (k not
necessarily finite). We recall (cf. [Dr1], §5) that, for a Drinfeld moduleφ′ de-
fined overK , everyA-lattice H in φ′(K sep) defines a unique Drinfeld moduleφ1
over K and a unique morphismeH ∈ Homan(φ′, φ1) defined overK with kernel
(kereH )(K sep) = H . More precisely,eH is given by

eH (x) = x ·
∏

Q∈H\{0}

(
1− x

Q

)
.
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Let now(Pi )1≤i≤r−r ′ be a successively minimal basis forH0 := H (cf. [Tag2],
§4). We consider the free direct summandJ1 := A · P1 ⊂ H of rank 1, and put

H ′1 := ⊕2≤i≤r−r ′A · Pi .

Let81 be the Drinfeld module andu1 ∈ Homan(8′,81) the morphism associated
to J1. By the minimality of the base(Pi ), we have

v(Q+ Q′) = min{v(Q), v(Q′)}
for Q ∈ J1 andQ′ ∈ H ′1. Since

u1(x) = x ·
∏

Q∈J1\{0}

(
1− x

Q

)
,

we obtainv(u1(Q′)) ≤ v(Q′), for all Q′ ∈ H ′1. This shows that the free sub-A-
module

H1 := u1(H ) = u1(H
′
1)

of φ′(K ) is strictly discrete, and hence it is a lattice, of rankr−r ′−1. The associated
entire mape1 := eH1 satisfiese= e1 ◦ u1, and hence yields the morphism

e2 : 81→ 8.

By induction, we thus construct Drinfeld modules8i of rankr ′ + i , for everyi
satisfying 1≤ i ≤ r − r ′ (with80 := 8′ and8r−r ′ := 8), together with surjective
morphisms

ui ∈ Homan(8i−1,8i ),

whose kernels areA-lattices inφi−1(K ) or rank 1. LetM̃i denote the respective
analytict-motives. By Thm. 6.3, theui induce surjective morphisms

u?i ∈ Homan(M̃i , M̃i−1).

As one sees from the determinant, each subquotientÑi = keru?i is a trivial τ -
module overK 〈〈t〉〉. Consequently,̃N is an extension of trivialτ -modules over
K 〈〈t〉〉. Every such extension is analytically trivial over theK sep〈〈t〉〉 (cf. [An1],
lemma 2.7.2). NowT̀ (Ñ) = H` is a trivial representation for all̀, and henceN̂(t)
is trivial overK [[t]]. This implies that̃N is actually already trivial overK 〈〈t〉〉. �

VII. Tate uniformization of pure t-motives

Let E be an abeliant-module with associatedt-motive M. In this section, we
want to raise some questions concerning the analytic structure ofE. Let

(135) 0= Ñ0 ⊂ Ñ1 ⊂ . . . ⊂ Ñs−1 ⊂ Ñs = M̃

be a filtration ofM̃ by saturated sub-τ -modules ofM̃ overK 〈〈t〉〉.
The key example is provided by the filtration (133) oft-motives associated

with Drinfeld modules, which we discussed in the previous chapter (Thm. 6.22).
For generalt-motives, such filtrations arise from the reduction theory ofτ -sheaves,
cf. Thm. 1.26.
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We want to study how the analytic structure of at-motiveM can give rise to an
analytic description of thet-moduleE. Unfortunately, the only well-understood ex-
ample is given by Drinfeld modules; not even for tensor products of sucht-modules
do we have enough arguments to work out the ideas we sketch below. In spite of
their very speculative nature, I think that these ideas, supported by analogies with
the theory of Anderson uniformization (cf. [An1] Thm. 4, [Ga3] §4), can help to
give some insight into this matter.

a) We cannot resist the temptation to call a trivialτ -module overK [t] a (pure)
t-motive of weight0. A first question is:

QUESTION6.23. Are the subquotients in such a filtration induced by algebraic
τ -modules,t-motives, puret-motives even?

We now suppose there is a filtration{Ñi } for M̃ such that all subquotients are
puret-motives. For 0< i ≤ n, we putM̃i := M̃/Ñi−1 and

M̃ ′i := Ñi /Ñi−1.

Let wi , r i , di = wi · r i denote the weight, rank and dimension of the puret-
motive Mi inducing M̃i , and, ifwi > 0, let Ei be the associatedt-module; idem
for M̃ ′i with associatedM ′i ,w′i , r ′i , di and, ifw′i > 0, E′i .

b) From Thm. 6.9 we can extract some information on the weights. The exact
sequences

0→ M̃ ′i → M̃i → M̃i+1→ 0

imply, by thatw′i ≤ wi ≤ wi+1; in particular, it follows that

0< w = w1 ≤ wi ,

for all i . On the other hand, the exact sequences

(136) 0→ M̃ ′i → Ñi+1/Ñi−1→ M̃ ′i+1→ 0

yield thatw′i ≤ w′i+1. for everyi . In particular, there exists anm with 0 ≤ m ≤ s
such thatw′i = 0 if and only if i ≤ m.

c) By Theorem 6.3, the surjective homomorphism̃Mi → M̃i+1 induces an
entire analytic morphismei ∈ Homan(Ei+1, Ei ). Let Hi denote the kernel ofei ,
which, by Thm. 6.16, is anA-lattice in Ei+1(K sep), whose rankh satisfies

0≤ h ≤ r − r ′.
The exact sequence (136) induces also, for every maximal ideal` of A, an exact

sequence ofA`[0K ]-modules

(137) 0→ T̀ (Mi+1)→ T̀ (Mi )→ T̀ (M ′i )→ 0.

As thet-moduleE can be defined over a finitely generated extensionK of Fq(t),
and we can hence assume thatK is not algebraically closed, this provides useful
information.

d) Suppose thati ≤ m. From (137) it follows, considering̀-torsion modules
for some maximal ideal̀ of A that

0→ Ei+1[`] → Ei [`] → W→ 0,
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whereW is a trivial (A/`)[0K ] module (w′i = 0). This suggests, in analogy with
Tate uniformization of Drinfeld modules, thatW should be associated to the lat-
tice Hi by W ∼= Hi /`Hi . That triggers the following suggestion:

QUESTION 6.24. Is the complex 0→ Hi → Ei+1(K sep) → Ei (K sep) → 0
exact?

REMARK 6.25. If we suppose that this complex is exact, i.e.

Ei+1(K
sep)→ Ei (K

sep)

is surjective, then the exact sequence

0→ Hi → Ei+1(K
sep)→ Ei (K

sep)→ 0

induces, for alla ∈ A, the short exact sequence

0→ E′[a] e−→ E[a] → H/a · H → 0

of (A/a)-modules; and this then shows thatH has full rankr − r ′.
e) If i > m, then the sequencẽM ′i → M̃i → M̃i+1 induces, by Thm. 6.3, a

complex

(138) 0→ Ei+1(K
sep)→ Ei (K

sep)→ E′i (K sep)→ 0.

The exact sequence

0→ T̀ (Ei+1)→ T̀ (Ei )→ T̀ (E′i )→ 0,

which comes from (137), suggests the question:

QUESTION 6.26. Is the complex (138) exact?

Suppose the answer to the above questions could be proved to hold, then we
would obtain a notion of ‘Tate uniformizability’, an analytic structure ofE, which
we can axiomatize as follows:

DEFINITION 6.27. ATate uniformization of E consists of
1) ann-tuple(E := E1, E2 . . . , En) of abeliant-modules,
2) entire morphismsei : Ei+1→ Ei , for 1≤ i ≤ n− 1,
3) an integerm ≤ n, and, fori ≤ m, anA-lattice Hi of Ei+1(K ),
4) an(n−m− 1)-tuple(E′m+1, . . . , E′n−1) of abeliant-modules and
5) entire morphismse′i : Ei → E′i , for m+ 1≤ i ≤ n− 1,
such that the following sequences are exact:

0→ H1→ E2→ E1→ 0

...

0→ Hm→ Em+1→ Em→ 0

0→ Em+2→ Em+1→ E′m+1→ 0

...

0→ En→ En−1→ E′n−1→ 0.

(139)
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With his discovery of mathematics,
Galois became absorbed and neglected his other courses.

Before enrolling in M. Vernier’s class, typical comments about him had been:
Religious duties – Good

Conduct – Good
Disposition – Happy

Work – Sustained
Progress – Marked

Character – Good, but singular

After a trimester in M. Vernier’s class, the comments were:
Religious duties – Good

Conduct – Passable
Disposition – Happy

Work – Inconstant
Progress – Not very satisfactory
Character – Closed and original

The words “singular”, “bizarre”, “original” and “closed” would appear more and more
frequently during the course of Galois’s career at Louis-le-Grand.

P. Dupuy (cf. [Rot])
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