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Introduction

The following observation gave the motivation for this thesis:

Lemma: If X is any topological space, then starting from an arbitrary subset
of X one can obtain at most 7 subsets of X, using only the operators C : Y 7→ Y
and I : Y 7→ Y ◦.

Proof: Note that if U ⊂ X is open and V ⊂ X is any subset containing U ,
then U ⊂ V ◦. Similarly, if A ⊂ X is closed and B ⊂ X is contained in A, then
B ⊂ A. Therefore, for all Y ⊂ X we have (C ◦ I ◦ C ◦ I)(Y ) ⊂ (C ◦ I)(Y )
and (I ◦ C)(Y ) ⊂ (I ◦ C ◦ I ◦ C)(Y ). On the other hand, for the same reason,
I(Y ) ⊂ (I ◦ C ◦ I)(Y ) and hence (C ◦ I)(Y ) ⊂ (C ◦ I ◦ C ◦ I)(Y ), as well as
(C ◦ I ◦ C)(Y ) ⊂ C(Y ) and hence (I ◦ C ◦ I ◦ C)(Y ) ⊂ (I ◦ C)(Y ). Thus, the
sets (C ◦ I ◦ C ◦ I)(Y ) and (C ◦ I)(Y ) are equal and the sets (I ◦ C ◦ I ◦ C)(Y )
and (I ◦ C)(Y ) are equal, and the sets

Y,C(Y ), I(Y ), (C ◦ I)(Y ), (I ◦ C)(Y ), (C ◦ I ◦ C)(Y ), (I ◦ C ◦ I)(Y )

are all the potentially different sets that can be obtained starting from Y . 2

In a suitable topological space X and a suitable starting set Y , these 7 sets
really can be mutually distinct, as the following example shows: Let

Y := {0} ∪
(
(1, 2) \ { 3

2}
)
∪

(
[3, 4] ∩ Q

)
⊂ R.

Then

i. C(Y ) = {0} ∪ [1, 2] ∪ [3, 4],

ii. I(Y ) = (1, 2) \ { 3
2},

iii. (C ◦ I)(Y ) = [1, 2],

iv. (I ◦ C)(Y ) = (1, 2) ∪ (3, 4),

v. (C ◦ I ◦ C)(Y ) = [1, 2] ∪ [3, 4] and

vi. (I ◦ C ◦ I)(Y ) = (1, 2).

It is natural to ask how the situation changes if the choice of the operations is
different, in particular if the operator c : Y 7→ X \ Y and the binary operators
∩ and ∪ are added (i.e. if we use all the usual operators that appear in point-
set topology). The structures in which to best examine this sort of problems
are closure algebras; they represent an abstract algebraic description of exactly
these operations. More precisely, a closure algebra is a Boolean algebra (that
is, a set containing two distinguished minimal and maximal elements and two
binary and one unary operations satisfying certain axioms, mimicking ∩,∪ and
c) with a closure operator (i.e. a map from the algebra to itself, satisfying some
axioms mimicking C). The question of how many sets can be generated from a
single subset of a topological space is closely related to the notion of free clo-
sure algebras, meaning closure algebras, in which equations involving a set of
generators hold if and only if they hold in every closure algebra. Such closure
algebras can be shown to exist for any non-empty set of generators, and to
be infinite regardless of the number of generators. Furthermore, every closure
algebra can be realized inside a topological space; this implies that there are
subsets of some topological space X from which one obtains infinitely many
distinct sets, using the operators C, c and ∩. Finally, one can show (through a
more general statement), that X can be taken to be Rn for an arbitrary n > 0;
so there is a subset of Rn that produces infinitely many subsets of Rn using
these operators. All these results can be found in the article The Algebra of

Topology by J.C.C. McKinsey and A. Tarski, Annals of Mathematics, Vol. 45,
(1944), pp. 141 – 181. The contents of this thesis roughly follow this article.
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In the first and second section, we recall the notions of Boolean algebras and
closure algebras. We emphasise the results that every Boolean algebra can be
embedded in the algebra of subsets of some set (following from Stone’s rep-
resentation theorem, which we prove) and that every closure algebra can be
embedded in the closure algebra over some topological space. In the third sec-
tion, we define closure formulas and treat equations of closure formulas. This
constitutes the link to our questions about sets that can be obtained from some
sets using some operations in a topological space. An important result in this
section is that the theory of equations of closure formulas is decidable. In the
fourth section we present the notion of free closure algebras and functionally
free closure algebras and results about Rn in that matter. In the fifth section,
we give examples to our questions, in particular a subset of R that generates
infinitely many sets via the operators C, c and ∩. In the sixth section we show
a rudimentary attempts to describe the free closure formula generated by 1
element, by listing equivalent closure formulas up to a limited size.
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1 Boolean algebras

1 Boolean algebras

Definition: A Boolean algebra is a tuple (A,∧,∨,¬, 0, 1), where A is a set(1.1)
with 0, 1 ∈ A, ¬ : A → A is a unary operation and ∧,∨ : A×A → A are binary
operations, such that

i. ∧,∨ are associative,

ii. ∧,∨ are commutative,

iii. ∧ and ∨ are distributive, i.e. ∀x, y, z ∈ A : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and

iv. ∀x ∈ A : x ∧ ¬x = 0 and x ∨ ¬x = 1.

Example: If S is any set and P(S) is its power set, then(1.2)

(P(S),∩,∪, C, ∅, S),

where C is the map P(S) → P(S),X 7→ S \ X, is a Boolean algebra.

Remark: Note that the axioms of Boolean algebras are symmetric in ∧ and(1.3)
∨, i.e. if (A,∧,∨,¬, 0, 1) is a Boolean algebra, then so is (A,∨,∧,¬, 1, 0), called
its dual Boolean algebra.

Throughout the rest of this section, let (A,∧,∨,¬, 0, 1) be a Boolean algebra.

Lemma: The following statements hold:(1.4)

i. ∀x ∈ A : x ∧ x = x and x ∨ x = x,

ii. ∀x ∈ A : x ∧ 1 = x and x ∨ 0 = x,

iii. ∀x ∈ A : x ∧ 0 = 0 and x ∨ 1 = 1,

iv. ∀x ∈ A : ¬(¬x) = x,

v. ¬0 = 1 and ¬1 = 0 and

vi. ∀x, y ∈ A : ¬(x ∧ y) = ¬x ∨ ¬y and ¬(x ∨ y) = ¬x ∧ ¬y.

Definition: Let B ⊂ A be a subset. Then B is called a subalgebra of A,(1.5)
if 0, 1 ∈ B and if B is closed with respect to the operations ∧,∨,¬, i.e. if
(B,∧|B×B ,∨|B×B ,¬|B , 0, 1) is itself a Boolean algebra. If S ⊂ B is a subset, B
is said to be generated by S, if B is the smallest subalgebra of A containing S.

Definition: Let (B,∧′,∨′,¬′, 0′, 1′) be another Boolean algebra. A map(1.6)
ϕ : A → B is called a homomorphism of Boolean algebras, if

i. ϕ(0) = 0′ and ϕ(1) = 1′,

ii. ∀x, y ∈ A : ϕ(x ∧ y) = ϕ(x) ∧′ ϕ(y) and ϕ(x ∨ y) = ϕ(x) ∨′ ϕ(y) and

iii. ∀x ∈ A : ϕ(¬x) = ¬′ϕ(x).

Remark: If x, y ∈ A, we write x ≤ y, if x∧y = x (or equivalently, if x∨y = y).(1.7)
Note that ≤ is a partial ordering on A.
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1 Boolean algebras

Definition: The Boolean algebra A is called completely additive, if for any(1.8)
subset X ⊂ A there exists a unique smallest element

y =:
∨

x∈X

x ∈ A,

such that x ≤ y for all x ∈ X; or, equivalently if for any subset X ⊂ A there
exists a unique largest element

z =:
∧

x∈X

x ∈ A,

such that z ≤ x for all x ∈ X.

Definition: An element x ∈ A is called an atom of A, if x 6= 0 and if there is(1.9)
no y ∈ A \ {0, x}, such that y ≤ x. The Boolean algebra A is called atomic, if
every non-zero element contains an atom.

Example: Let X be the set of subsets of Q that are both open and closed with(1.10)
respect to the topology induced from R. Then (X ,∩,∪, C, ∅, Q) is a non-atomic
Boolean algebra.

Definition: An ultrafilter on A is a set U ⊂ A, such that(1.11)

i. ∀x, y ∈ A : x ∈ U, x ≤ y ⇒ y ∈ U ,

ii. ∀x, y ∈ U : x ∧ y ∈ U ,

iii. 0 /∈ U and

iv. ∀x ∈ A : x /∈ U ⇒ ¬x ∈ U .

The set of all ultrafilters on A is denoted by U(A).

Remark: A set which only satisfies the first three properties is called a filter.(1.12)
If U is any filter, then it is an ultrafilter if, and only if, there is no finer filter
than U , i.e. if F is a filter, such that U ⊂ F , then U = F .
Also (using ii. and iii.), iv. actually implies

∀x ∈ A : x /∈ U ⇐⇒ ¬x ∈ U.

Remark: The set of ultrafilters on A can be thought of as something similar(1.13)
to the set S in the Boolean algebra of sets from (1.2), and and ultrafilter as
something similar to an element of S. For instance, if A is already a Boolean
algebra of subsets of some set S′, then any s ∈ S′ generates an ultrafilter
Us = {x ∈ A | s ∈ x}. However, not every ultrafilter is really of that form; for
example, the set of all co-finite subsets of N is a filter on P(N) and (by Zorn’s
Lemma) can be refined to an ultrafilter U . The intersection of all elements of
U is empty.

Remark: If U is an ultrafilter on A and x1, . . . , xn ∈ A, such that
∨n

i=1 xi ∈ U ,(1.14)
then xi ∈ U for some i. Indeed, if x, y ∈ A, such that x, y /∈ U , then ¬x,¬y ∈ U
by (1.12). Hence ¬x ∧ ¬y ∈ U , i.e. x ∨ y = ¬(¬x ∧ ¬y) /∈ U . From this, the
claim follows by induction.

Definition: The Stone topology on U(A) is the topology induced by the base(1.15)
consisting of all sets of the form

Vx := {U ∈ U(A) | x ∈ U},

for some x ∈ A.

2



1 Boolean algebras

Remark: Note that these sets really are a base of a topology on U(A), since(1.16)
they obviously cover U(A) and since Vx ∩ Vy = Vx∧y.

Proposition: With respect to the Stone topology, U(A) is a totally discon-(1.17)
nected compact Hausdorff space.

Proof:

i. By (1.12), the complement of Vx is V¬x, so the sets Vx are also closed.
Furthermore, if X ⊂ U(A) is any subset with at least two points, then
∃x ∈ A such that Vx ∩ X and V¬x ∩ X are non-empty. Clearly, they are
also disjoint and open in X (with the subspace topology). Hence U(A) is
totally disconnected.

ii. Let U,U ′ ∈ U(A), with U 6= U ′. By (1.12), the ultrafilters U and U ′ are not
contained in each other, i.e. ∃x, y ∈ A, such that x ∈ U \U ′ and y ∈ U ′ \U .
Clearly, x 6≤ y and y 6≤ x, so x∧ (¬y) and y∧ (¬x) are non-zero. Therefore,
Vx∧(¬y) contains U , but not U ′, and Vy∧(¬x) contains U ′, but not U . Hence,
U(A) is Hausdorff.

iii. Let V = (Vx)x∈X be a basic open covering of U(A), where X ⊂ A. Sup-
pose that ∄x1, . . . , xn ∈ X, such that

∨n
i=1 xi = 1. Then, there exists

an ultrafilter U , such that U ∩ X = ∅. This implies in particular that
∀x ∈ X : U /∈ Vx, i.e. U /∈

⋃
x∈X Vx; contradiction. So let x1, . . . , xn ∈ X,

such that
∨n

i=1 xi = 1. Then ∀U ∈ U(A) :
∨n

i=1 xi ∈ U , so xi ∈ U for some
i by (1.14), i.e. U ∈ Vxi

; therefore {Vx1
, . . . , Vxn

} is a finite subcovering of
V. Hence U(A) is compact.

2

Stone’s representation theorem: There is an equivalence of the category(1.18)
of Boolean algebras and the category of totally disconnected compact Hausdorff
spaces, given by the contra-variant functor

F :
A 7→ U(A)

(ϕ : A → B) 7→
(
U(ϕ) : U(B) → U(A), U 7→ ϕ−1(U)

)

from Boolean algebras to disconnected compact Hausdorff spaces. The converse
functor is given by

G :
X 7→ C(X)

(f : X → Y ) 7→
(
C(f) : C(Y ) → C(X), V 7→ f−1(V )

)
,

where C(X) denotes the Boolean algebra of all subsets of X, that are both open
and closed.

Proof: As seen in the previous remark, U(A) is a totally disconnected compact
Hausdorff space, and if ϕ : A → B is a homomorphism of Boolean algebras and
U ⊂ B is an ultrafilter, then so is ϕ−1(U) ⊂ A. Furthermore, for any x ∈ A,
the preimage of Vx with respect to U(ϕ) is Vϕ(x); hence U(ϕ) is continuous.
Therefore, F is a functor.
On the other hand, if V, V ′ ⊂ X are open and closed, then so are V ∩V ′, V ∪V ′

and X \ V , so C(X) is a subalgebra of P(X). If f : X → Y is a continuous
map, and V ⊂ Y is open and closed, then so is f−1(V ). Furthermore, clearly
f−1(V ∩ V ′) = f−1(V ) ∩ f−1(V ′), as well as f−1(V ∪ V ′) = f−1(V ) ∪ f−1(V ′)
and f−1(Y \ V ) = X \ f−1(V ); hence C(f) is a homomorphism of Boolean
algebras. Therefore, G is a functor.
Let A be a Boolean algebra and let ϕ : A → C

(
U(A)

)
be the map x 7→ Vx.

Clearly, ϕ(0) = ∅ and ϕ(1) = U(A). It is also clear that ϕ(x∧ y) = ϕ(x)∩ϕ(y)
and ϕ(¬x) = U(A)\ϕ(x), and it follows from (1.14) that ϕ(x∨y) = ϕ(x)∪ϕ(y);
so ϕ is a homomorphism of Boolean algebras. Furthermore, let x, y ∈ A, such

3



1 Boolean algebras

that x 6= y. Without loss of generality x 6≤ y and hence x ∧ ¬y 6= 0. Therefore,
x ∧ ¬y is contained in an ultrafilter U , which also contains x, but not y; so
ϕ(x) 6= ϕ(y), i.e. ϕ is injective. Now, if V ∈ C

(
U(A)

)
, i.e. V ⊂ U(A) is

open and closed, then it is a union of basic open subsets Vx, and since V is
compact (being a closed subset of a compact space), there are x1, . . . , xn, such
that V =

⋃n
i=1 Vxi

= Vx = ϕ(x), where x =
∨n

i=1 xi; so ϕ is also surjective.
Therefore, ϕ is an isomorphism.
Conversely, let X be a totally disconnected compact Hausdorff space, and let
f : X → U

(
C(X)

)
be the map x 7→ {V ∈ C(X) | x ∈ V } ∈ U

(
C(X)

)
. Let

W ⊂ U
(
C(X)

)
be a basic open subset, i.e.

W = WV = {U ∈ U
(
C(X)

)
| V ∈ U},

where V ⊂ X is some open and closed subset. The preimage of WV is V , so f is
continuous. Conversely, if V ⊂ X is a basic open subset, then f(V ) = WV , so f
is open. Now let x, y ∈ X, such that x 6= y. Because X is Hausdorff and totally
disconnected there exists an open and closed subset of X containing x, but not
y, so f(x) 6= f(y), i.e. f is injective. On the other hand, let U ∈ U

(
C(X)

)
be an

ultrafilter. Suppose that
⋂

V ∈U V = ∅. Then, of course,
⋃

V ∈U X \V = X, and
because X is compact, there are V1, . . . , Vn ∈ U , such that

⋃n
i=1 X \ Vi = X,

or equivalently
⋂n

i=1 Vi = ∅; contradiction. So let x ∈
⋂

V ∈U V . By definition,
U ⊂ f(x), and hence U = f(x) by (1.12); so f is also surjective. Therefore, f is
a homeomorphism. 2

Corollary: Every Boolean algebra is isomorphic to a subalgebra of the Boolean(1.19)
algebra P(S) of subsets of some set S, namely S = U(A).
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2 Closure algebras

2 Closure algebras

Definition: Let A be a Boolean algebra. A map(2.1)

C : A → A

is called closure operator, if

i. C(0) = 0,

ii. ∀x ∈ A : x ≤ Cx,

iii. ∀x ∈ A : Cx = CCx and

iv. ∀x, y ∈ A : C(x ∨ y) = Cx ∨ Cy.

Remark: If A = P(X) for some set X, then these are exactly the Kuratowski(2.2)
closure axioms for a topological space on X. It is well known that they are
equivalent to giving the collection of all closed sets, or equivalently a topology,
on X.

Remark: Note that for the definition of closure operators, the operations ∧(2.3)
and ¬ on A are irrelevant; so closure operators can be defined on any partially
ordered set S containing a minimal element 0 ∈ S, and with the property that
for any x, y ∈ S there is a unique smallest upper bound x ∨ y for x and y.

Definition: A closure algebra is a pair (A,C), where A is a Boolean algebra(2.4)
and C : A → A is a closure operator.

Remark: We will usually denote a closure algebra simply by A instead of(2.5)
(A,C), without specifying the closure operator, unless it is necessary.

Example: Let X be a topological space. Then P(X) together with the closure(2.6)
operator C : P(X) → P(X), Y 7→ Y is a closure algebra, called the closure
algebra over X.

Definition: Let A be a closure algebra. Let I denote the map(2.7)

I : A → A, x 7→ ¬(C(¬x)).

For any element x ∈ A, the element Cx is called closure and Ix is called interior

of x. The element x is called closed, if x = Cx and it is called open, if x = Ix.

Remark: It can easily be shown that usual properties for open and closed ele-(2.8)
ments hold; for instance, any union and any finite intersection of open elements
is open and any intersection and any finite union of closed elements is closed.
Furthermore, if P(X) is a closure algebra over a topological space X, then an
element of the closure algebra is open, closed etc. if, and only if, it is as subset
of the topological space.

Definition: Let A be a closure algebra. A subset B ⊂ A is called a subalgebra(2.9)
of A, if it is a subalgebra as a Boolean algebra and C|B is well-defined as a map
B → B. If S ⊂ B is a subset, B is said to be generated by S, if B is the smallest
subalgebra of A containing S.

Definition: Let A,A′ be closure algebras. A map ϕ : A → A′ is called a(2.10)
homomorphism of closure algebras, if it is a homomorphism of Boolean algebras
and if ϕ(Cx) = C ′ϕ(x) for all x ∈ A.

5



2 Closure algebras

Definition: Let A be a closure algebra and x ∈ A. The closure algebra(2.11)

Ax := {y ∈ A | y ≤ x}

with the original operations ∧x = ∧,∨x = ∨ and ¬xy := ¬y ∧ x, as well as
0x = 0 and 1x = x and with the closure operator

Cx : Ax → Ax, y 7→ Cy ∧ x

is called closure algebra relative to x.

Remark: Note that a closure algebra relative to some element x is not a(2.12)
subalgebra, unless x = 1. Instead, if A is the closure algebra over a topological
space X, a closure algebra relative to some element of A, i.e. a subset Y ⊂ X,
is the closure algebra over the subspace Y .

Definition: A closure algebra A is called(2.13)

i. connected, if 0 and 1 are the only elements of A that are both open and
closed, or

ii. totally disconnected, if there is no non-zero open element x ∈ A, such that
the closure algebra Ax relative to x is connected.

Lemma: Let A be a completely additive Boolean algebra and let B ⊂ A be a(2.14)
subset containing the element 0 and with the property that the union x ∨ y of
any two elements x, y of B is also contained in B. Let C̃ : B → B be a closure
operator, in the sense of (2.3). Then there exists a closure operator C : A → A,

such that C|B = C̃.

Proof: Set C0 := 0 and for an arbitrary non-zero element x ∈ A set

Cx :=
∧

y∈B

x≤ eCy

C̃y.

By definition, C0 = 0, and obviously ∀x ∈ A : x ≤ Cx.
In particular, this implies that ∀x ∈ A : Cx ≤ CCx. Conversely, if x ∈ A and
y ∈ B, such that x ≤ C̃y, then by definition,

Cx = C̃y ∧
∧

z∈B\{y}

x≤ eCz

C̃z,

hence Cx ≤ C̃y and therefore CCx ≤ Cx.
Furthermore, if x, y ∈ A, then

Cx ∨ Cy =
∧

z∈B

x≤ eCz

C̃z ∨
∧

w∈B

y≤ eCw

C̃w

=
∧

z∈B

x≤ eCz

∧

w∈B

y≤ eCw

(C̃z ∨ C̃w)

=
∧

t∈B

x∨y≤ eCt

C̃t

= C(x ∨ y).

(Note that for the second equality, the fact is used that infinite distributive laws
hold in a Boolean algebra, if all involved intersections and unions exist; this
follows for example from Stone’s representation theorem.)
So C : A → A is a closure operator.
Finally, let x ∈ B. Then x ≤ C̃x, hence Cx ≤ C̃x. But on the other hand, if
y ∈ B, such that x ≤ C̃y, then C̃x ≤ C̃y, because C̃ is a closure operator, so
C̃x ≤ Cx. 2
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2 Closure algebras

Remark: Note that the closure operator C defined in the proof is the maximal(2.15)
extension of C̃ in the sense of the lemma. Indeed, if C ′ is another such closure
operator, then whenever an element x is contained in C̃y for some y, then so is
C ′x. Therefore,

C ′x ≤
∧

y∈B

x≤ eCy

C̃y = Cx.

Proposition: Every closure algebra is isomorphic to a subalgebra of the clo-(2.16)
sure algebra over a topological space.

Proof: Let A be a closure algebra with closure operator C. By (1.18), there
is an isomorphism ϕ of Boolean algebras from A to a subalgebra B of the
Boolean algebra P(X) of subsets of the set X = U(A). For x ∈ B define

C̃x := ϕ
(
C(ϕ−1(x))

)
. Clearly, C̃ is a closure operator on B, so by the previous

lemma it can be extended to a closure operator C : P(X) → P(X). By (2.2), C
defines a topology on X and by construction, B is a subalgebra of the closure
algebra over X and A is isomorphic to B. 2

Remark: There is actually a stronger statement, that every closure algebra(2.17)
is isomorphic to a subalgebra of the closure algebra over a Hausdorff space.
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3 Formulas and equations in closure algebras

3 Formulas and equations in closure algebras

Notation: Let X = {X1,X2, . . .} be a countably infinite set. The elements(3.1)
Xi ∈ X are called symbols.

Definition: For any n ≥ 1, the set Fn of closure formulas in n variables is(3.2)
defined as the smallest set of words over the alphabet

X ∪ {∧,∨,¬, (, ), C},

satisfying

i. the symbols Xi are elements of Fn for 1 ≤ i ≤ n, and

ii. if α, β ∈ Fn, then ¬α,Cα, (α ∧ β), (α ∨ β) ∈ Fn.

The set F of all closure formulas is defined as

F :=

∞⋃

n=1

Fn.

Remark: Note that the operations ∧,∨,¬, C are well-defined on Fn and F .(3.3)

Remark: It can be shown that if α is a closure formula, then exactly one of(3.4)
the following statements is true:

i. The formula α is a symbol.

ii. There is a formula β, such that α = ¬β.

iii. There is a formula β, such that α = Cβ.

iv. There are formulas β, β′, such that α = (β ∧ β′).

v. There are formulas β, β′, such that α = (β ∨ β′).

In other words, the way of building the formula α is unique.

Remark: If A is a closure algebra, then any closure formula in n variables(3.5)
α ∈ Fn defines a map

fA
α : An → A

as follows: Let (x1, . . . , xn) ∈ An. For 1 ≤ i ≤ n, let fA
Xi

(x1, . . . , xn) = xi and

for any α, β ∈ Fn, let fA
α∧β(x1, . . . , xn) = fA

α (x1, . . . , xn) ∧ fA
β (x1, . . . , xn) and

define fA
¬α, fA

Cα and fA
α∨β analogously.

By the previous remark, for any closure formula α the function fA
α is well-

defined.
Such a function fA

α is called a closure function on A in n variables.

Definition: Let α ∈ Fn be a closure formula in n variables. A sequence(3.6)
β1, . . . , βr of closure formulas in n variables is called a chain of length r for α, if
βr = α and if for 1 ≤ i ≤ r, the formula βi is either a symbol Xj with 1 ≤ j ≤ n,
or (βk ∧ βl), (βk ∨ βl),¬βk or Cβk, with k, l < j.
The length of the shortest chain for α is called the order of α.

Definition: Let A be a closure algebra. Two closure formulas α, β in n vari-(3.7)
ables are called A-equivalent, if fA

α = fA
β . We then write α ≡A β. The formula

α is said to vanish in A, if fA
α is the constant zero function.
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3 Formulas and equations in closure algebras

Remark: Note that the relation ≡A is an equivalence relation on Fn, and any(3.8)
two closure formulas are in the same equivalence class if and only if they define
the same closure function on A. The operations ∧,∨,¬, C are well-defined on
the equivalence classes, and with respect to these operations, Fn/≡A

is a closure
algebra, that can be considered the closure algebra of closure functions on A in n
variables. Furthermore, since F1 ⊂ F2 ⊂ . . . is a filtration of F , the equivalence
relation ≡A extends to F , and as before, F/≡A

is a closure algebra, that can
be considered the closure algebra of all closure functions on A.

Lemma: Let (A,C) be a closure algebra and let x1, . . . , xn ∈ A. Then there(3.9)

exists a subset B ⊂ A and a map C̃ : B → B, such that

i. (B, C̃) is a closure algebra,

ii. x1, . . . , xn ∈ B,

iii. ∀x ∈ B : Cx ∈ B ⇒ C̃x = Cx and

iv. |B| ≤ 22n

.

Proof: Let B ⊂ A be the the set of elements of A that can be obtained
from x1, . . . , xn using the operations ∧,∨,¬, i.e. the Boolean subalgebra of A
generated by {x1, . . . , xn}. Since B is finitely generated, it must be atomic, and
any atom b ∈ B must be of the form

b = y1 ∧ y2 ∧ . . . ∧ yn,

where for 1 ≤ i ≤ n, the element yi is either xi or ¬xi. Therefore, B contains
at most 2n atoms and hence at most 22n

elements.
Let B̃ := {x ∈ B | Cx ∈ B} ⊂ B. Note that if x ∈ B̃, then CCx = Cx ∈ B,

so Cx ∈ B̃, as well. Therefore, C| eB
: B̃ → B̃ is a closure operator, and since B

is finite and therefore completely additive, by (2.14), C| eB
can be extended to a

closure operator C̃ : B → B. Obviously B is a closure algebra with respect to
C̃, and by construction ∀x ∈ B : Cx ∈ B ⇒ C̃x = Cx. 2

Proposition: Let α be a closure formula in n variables of order r, such that(3.10)
α ≡B 0 for any closure algebra B with at most 22n+r

elements. Then α ≡A 0
for every closure algebra A.

Proof: Suppose that A is a closure algebra such that α 6≡A 0. Then there
exist x1, . . . , xn ∈ A with

fA
α (x1, . . . , xn) 6= 0.

Since α is of order r, there is a chain β1, . . . , βr for α, and for 1 ≤ i ≤ r let

yi := fA
βi

(x1, . . . , xn) ∈ A.

By the previous lemma, there is a subset B ⊂ A with at most 22n+r

elements,
containing x1, . . . , xn, y1, . . . yr, and a closure operator C̃ : B → B, such that
∀x ∈ B : Cx ∈ B ⇒ C̃x = Cx.
If βi = Cβj , then Cyj = yi ∈ B, therefore C̃yj = Cyj and hence for 1 ≤ i ≤ r:

yi = fB
βi

(x1, . . . , xn) ∈ B.

Finally,

fB
α (x1, . . . , xn) = fB

βr
(x1, . . . , xn) = yr = fA

βr
(x1, . . . , xn) = fA

α (x1, . . . , xn) 6= 0,

contradiction. Therefore α ≡A 0. 2
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3 Formulas and equations in closure algebras

Corollary: Let α, β be closure formulas in n variables of order r and s, re-(3.11)
spectively. If α ≡B β for any closure algebra B with at most 22n+r+s+5

elements,
then α ≡A β for every closure algebra A.

Proof: Clearly,

α ≡A β ⇐⇒ (α ∧ ¬β) ∨ (¬α ∧ β) ≡A 0.

If γ1, . . . γr and γ′
1, . . . , γ

′
s are chains for α and β, respectively, then

γ1, . . . , γr, γ
′
1, . . . , γ

′
s,¬γ′

s, (γr ∧ ¬γ′
s),¬γr, (¬γr ∧ γ′

s), (γr ∧ ¬γ′
s) ∨ (¬γr ∧ γ′

s)

is a chain for (α∧¬β)∨ (¬α∧β), so the order of (α∧¬β)∨ (¬α∧β) is at most
r + s + 5, and the claim follows from the previous proposition. 2

Definition: Let α, β be closure formulas in n variables. Then α, β are called(3.12)
equivalent, if they are A-equivalent in every closure algebra A. We then write
α ≡ β. The formula α is said to vanish identically, if vanishes in every closure
algebra.

Corollary: The theory of equations of closure formulas (without quantors) is(3.13)
decidable.

Proof: By (3.11), to see whether two given closure formulas are equivalent, it
is sufficient to test if they are A-equivalent in a finite number of finite closure
algebras A. 2

10



4 Free closure algebras

4 Free closure algebras

Definition: Let F be a closure algebra and S ⊂ F be a subset. Then F is(4.1)
called free closure algebra generated by S, if F is generated by S and if for all
positive integers n, for any α, β ∈ Fn and for all pairwise distinct x1, . . . , xn ∈ S:

fF
α (x1, . . . , xn) = fF

β (x1, . . . , xn) ⇐⇒ α ≡ β.

Example: The free closure algebra generated by ∅ has just one element. It(4.2)
can be identified with the closure algebra over the empty topological space.

Example: As for ≡A, the relation ≡ is an equivalence relation on Fn, and(4.3)
two closure formulas are in the same equivalence class if and only if they define
the same closure function in every closure algebra. The operations ∧,∨,¬ and
C are well-defined on the equivalence classes of ≡, and with respect to these
operations, Fn/≡ is a free closure algebra generated by X1, . . . ,Xn. Similarly,
the set F/≡ of equivalence classes of all closure formulas is a free closure algebra
generated by X .

Proposition: Let F be a closure algebra and S ⊂ F . Then F is a free(4.4)
closure algebra generated by S if, and only if, it satisfies the following universal
property: If A is any closure algebra and ϕ : S → A is any map, then there is a
unique homomorphism ϕ̂ : F → A, such that ϕ̂ ◦ i = ϕ, where i : S →֒ F is the
inclusion map.

S
ϕ

//

i

��

A

F

bϕ

??
~

~

~

~

Furthermore, F is unique with respect to this universal property up to canonical
isomorphism.

Proof: Suppose that F is a free closure algebra generated by S. Let x ∈ F
be any element. Since F is generated by S, there are a closure formula α in
n variables, with n ≤ |S|, and mutually distinct elements x1, . . . , xn ∈ S, such
that x = fF

α (x1, . . . , xn). For any s ∈ S, let s := ϕ(s) ∈ A, and let

ϕ̂(x) := fA
α

(
x1, . . . , xn

)
∈ A.

Note that ϕ̂(x) does not depend on the choice of α. Indeed, let β be an-
other closure formula in m variables, with m ≤ |S|, and let x′

1, . . . , x
′
m be

mutually different elements of S, such that x = fF
β (x′

1, . . . , x
′
m). After pos-

sible renumeration of xi and x′
i, we can assume that xi = x′

i for 1 ≤ i ≤ k
for some k, and that x1, . . . , xn, x′

k+1, . . . , x
′
m are mutually distinct. The for-

mulas α and β can be augmented to formulas α̃ and β̃ in n + m − k ≤ |S|
variables, simply ignoring the additional arguments. Because F is a free clo-
sure algebra, fF

eα (x1, . . . , xn, x′
k+1, . . . x

′
m) = fF

eβ
(x′

1, . . . , x
′
m, xk+1, . . . xn) implies

fA
eα (x1, . . . , xn, x′

k+1, . . . x
′
m) = fA

eβ
(x′

1, . . . , x
′
m, xk+1, . . . xn) and hence

fA
α (x1, . . . , xn) = fA

β (x′
1, . . . , x

′
m).

Therefore, ϕ̂ : F → A is a well-defined map, and it is clear that it satisfies
ϕ̂ ◦ i = ϕ. Also, if fF

α (x1, . . . , xn) = x, then ¬x = fF
¬α(x1, . . . , xn), hence

ϕ̂(¬x) = fA
¬α(x1, . . . , xn) = ¬ϕ̂(x), and similarly ϕ̂(Cx) = Cϕ̂(x), as well as

ϕ̂(x∧y) = ϕ̂(x)∧ϕ̂(y) and ϕ̂(x∨y) = ϕ̂(x)∨ϕ̂(y); so ϕ̂ is a homomorphism. Since
F is generated by S, every homomorphism is fixed by the images of elements
from S, so ϕ̂ is unique in satisfying ϕ̂◦i = ϕ. Therefore, F satisfies the universal
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4 Free closure algebras

property.
Conversely, let F be a closure algebra satisfying the universal property. Let A
be a free closure algebra generated by S and let j : S →֒ A be the inclusion map.
Then there is a unique homomorphism ĵ : F → A, such that ĵ ◦ i = j. Assume
that there are α, β ∈ Fn, with α 6≡ β, and x1, . . . , xn mutually different, such
that fF

α (x1, . . . , xn) = fF
β (x1, . . . xn). Then

fA
α (x1, . . . , xn) = ĵ

(
fF

α (x1, . . . , xn)
)

= ĵ
(
fF

β (x1, . . . , xn)
)

= fA
β (x1, . . . , xn),

contradiction; so F is a free closure algebra generated by S.
Finally, if F and F ′ are two closure algebras satisfying the universal property,
and if i : S → F and j : S → F ′ are the inclusion maps, then there are
homomorphisms ĵ : F → F ′ and î : F ′ → F , such that ĵ ◦ i = j and î ◦ j = i. In
particular, (̂i ◦ ĵ)|S and (ĵ ◦ î)|S are equal to the identity map on S, and since

F and F ′ are generated by S, this means that ĵ ◦ î = idF ′ and î ◦ ĵ = idF , so
these maps are canonical isomorphisms between F and F ′. 2

Proposition: Every free closure algebra is infinite.(4.5)

Proof: It is sufficient to give an infinite set of pairwise inequivalent closure
formulas α1, α2, . . . ∈ F1. The following such example is due to Prof. Pink.
Let α1 := X1 and for n ≥ 2 let

αn :=
(
αn−1 ∩ C(Cαn−1 ∩ ¬αn−1)

)
.

Let X be the set of positive integers and let any non-empty A ⊂ X be closed if,
and only if, there is an n ∈ X, such that A = An := {k ∈ X | k ≥ n}. Clearly,
this defines a topology on X. For any n ≥ 1 let

Yn := {2k − 1 | k ≥ n} ⊂ X.

Then CYn = A2n−1 and ¬Yn = X \ Yn = {1, 2, . . . , 2n − 2, 2n, 2n + 2, . . .}, so
CYn ∩ ¬Yn = {2k | k ≥ n}. Therefore, C(CYn ∩ ¬Yn) = A2n and hence

Yn+1 = Yn ∩ C(CYn ∩ ¬Yn).

Clearly Yi 6= Yj if i 6= j, so fX
αi

(Y1) 6= fX
αj

(Y1), i.e. αi and αj are not equal in
the closure algebra over X if i 6= j. 2

Definition: Let A be a closure algebra and let n ≥ 1. Then A is called(4.6)
functionally free of order n, if

∀α, β ∈ Fn : α ≡A β ⇐⇒ α ≡ β

Furthermore, A is called functionally free, if it is functionally free of every order.

Remark: If F is a free closure algebra generated by S, then F is obviously(4.7)
functionally free of order n, if n ≤ |S|. In particular, F is functionally free if S
is infinite. On the other hand, it can be shown that F is not functionally free if
S is finite. Conversely, the closure algebra

A =

∞⊕

n=1

Fn/≡ = {(xn)∞n=1 | xn ∈ Fn/≡ and xn = 0 for almost all n},

on which all operations are defined component-wise, is an example for a func-
tionally free closure algebra that is not free (generated by any subset).

Remark: Recall that a topological space is called perfect, if it has no isolated(4.8)
points.

12



4 Free closure algebras

Proposition: Let X be a perfect second-countable normal topological space(4.9)
(e.g. X = Rn for an arbitrary n > 0). The following statements hold:

i. For any finite closure algebra A there exists an open subset U ⊂ X, such
that A is isomorphic to a subalgebra of the closure algebra over U .

ii. If in addition, X is totally disconnected (e.g. X = Q), then U can be taken
to be equal to X.

iii. The closure algebra over X is functionally free.

iv. The closure algebra over X contains a free closure algebra with countably
many generators.

Proof:

i. See McKinsey & Tarski, Theorem 3.5 and Theorem 3.12.

ii. See McKinsey & Tarski, Theorem 3.5 and Theorem 3.8.

iii. If α ∈ Fn does not vanish identically, then there is a finite closure algebra
A and elements x1, . . . , xn ∈ A such that fA

α (x1, . . . , xn) 6= 0. By i., there
is an open subset U ⊂ X and an embedding ϕ : A →֒ B into the closure
algebra B over U . Clearly, fB

α

(
ϕ(x1), . . . , ϕ(xn)

)
6= 0, and if y1, . . . , yn ∈ B,

such that yi ∩ a = ϕ(xi) for 1 ≤ i ≤ n, then

fB
α (y1, . . . , yn) = a ∩ fB

α

(
ϕ(x1), . . . , ϕ(xn)

)
6= 0.

Therefore, by contraposition, if α ∈ Fn vanishes in the closure algebra
over X, then α vanishes identically. From this follows the claim, since
∀α, β ∈ Fn : α ≡A β ⇐⇒ (α ∧ ¬β) ∨ (¬α ∧ β) ≡A 0.

iv. See McKinsey & Tarski, Theorem 5.17.

2

Proposition: There are subsets Y1, Y2, . . . ⊂ R (and equally of Rm for any(4.10)
m ≥ 1) with the property that any equation of closure formulas involving n
variables is satisfied for all subsets of all topological spaces if and only if it is
satisfied for Y1, . . . , Yn.

Proof: Note that the sets Fn are countably infinite and that there are there-
fore only countably many equations (Ei)i≥1 of closure formulas. If some equation
Ei is not satisfied for all subsets of all topological spaces, then by (3.11), there
are elements of a finite closure algebra Ai for which Ei is not satisfied. Then,
by i. from the previous proposition, there are subsets of R (and equally of Rm

for any m ≥ 1) for which the equation Ei does not hold. Because there are
only countably many equations Ei, these sets can be mapped homeomorphically
into disjoint intervals (ai, bi). This way, we get subsets Y1, Y2, . . . ⊂ R with the
desired property. 2
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5 Examples

Remark: Recall that in the proof of (4.5), the following example for a subset(5.1)
of a topological space X, which generates an infinite subalgebra of the closure
algebra over X, was given: Let X = Z≥1, and let A ⊂ X be closed if and only
if there is an n ∈ X, such that A = An := {x ∈ X | x ≥ n}. Then the subsets
Yn := {2k − 1 | k ≥ n} ⊂ X are obviously pairwise distinct, and furthermore,
Yn = Yn−1 ∩ C(C(Yn−1) \ Yn−1), for any n ≥ 2. We will use this example
to find an example of subsets Y1, Y2 . . . ⊂ R that satisfy the same recursive
formula; hence, Y1 will be an example of a subset of R that generates an infinite
subalgebra of the closure algebra over R.

Example: Note that it is possible to replace the formula X ∧ C(CX ∧ ¬X)(5.2)
in (4.5) by the simpler formula CX ∧ ¬X. Instead of the sets

Yn = {2k − 1 | k ≥ n}

we will then obtain the sets

Yn =

{
{2k − 1 | k ≥ n+1

2 }, if n is odd,
{2k | k ≥ n

2 }, if n is even.

We have chosen to use the somewhat more complicated formula in (4.5) and in
the following example for the sake of a slightly easier description.

Example: Define the subsets A1, A2, . . . ⊂ [0, 1) as follows: Let A1 := {0}(5.3)
and for n ≥ 2 let An be the union of the monotone convergent sequences (not
including their limit points)

{x0 + (x1 − x0)2
−k | k ∈ Z≥1},

for x0 ∈ An−1 and x1 = sup{x ∈ [0, 1) | (x0, x) ∩ An−1 = ∅}. Explicitly,

An = {2−k2(1 + 2−k3(1 + 2−k4(1 + . . . (1 + 2−kn) . . .))) | k2, . . . , kn ∈ Z≥1}.

A1

A2

A3

A4

.

.

.

.

.

.

b

b b b b b b b b

b b b b b b bb b b b b bb b b b bb b b bb b bb bbbb

b b b b b bb b b b bb b b bb b bb bbbb b b b bb b b bb b bb bbbb b b bb b bb bbbb b bb bbbb bbbb bbbb

Note that the sets Aj are mutually exclusive and that the set of limit points of
An is A1 ∪ . . . ∪ An−1. Therefore, the closure of An in [0, 1) is A1 ∪ . . . ∪ An.
Let

Xn :=

n⋃

i=1

A2i−1.

By what was just said, the closure C(Xn) of Xn is A1 ∪ . . . ∪ An, so

C(Xn) \ Xn =
n−1⋃

i=1

A2i,

and hence
Xn ∩ C

(
C(Xn) \ Xn

)
= Xn−1.

Let

Y :=
∞⋃

n=1

(n + Xn) ⊂ R.
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5 Examples

Furthermore, let Y1 := Y and

Yn+1 := Yn ∩ C
(
C(Yn) \ Yn

)
.

Then for all i, j ≥ 1, the sets Yi and Yj are unequal, whenever i 6= j. Indeed, if
j > i, then Yj ∩ [j, j + 1) = j + Xj 6= j + Xi = Yi ∩ [j, j + 1). This means that
Y is a subset of R that generates an infinite subalgebra of the closure algebra
over R.

Lemma: Let Zn be the closure algebra over {1, . . . , n} with the induced topol-(5.4)
ogy from Z≥1 from (4.5), i.e. an element of Zn is closed if and only if it is of
the form {k, k + 1, . . . , n} for some k. Let Bn be the subalgebra of the closure
algebra over R, that is generated by A1, . . . , An. Then the following statements
are true:

i. The atoms of Zn are precisely the elements {k} ∈ Zn, with 1 ≤ k ≤ n.

ii. The atoms of Bn are precisely the element Ak ∈ Bn, with 1 ≤ k ≤ n.

iii. The map h : Bn → Zn that is defined on atoms as Ai 7→ {n − i} is an
isomorphism.

Proof:

i. Obvious.

ii. This follows directly from the definition of Bn, since the elements Aj are
mutually exclusive.

iii. Because h is defined on the atoms of Bn, it is clear that it is a homomor-
phism of Boolean algebras. Let x ∈ Bn, i.e. x =

⋃k
m=1 Aim

for 1 ≤ k ≤ n

and 1 ≤ i1 < i2 < . . . < ik ≤ n. Then Cx =
⋃ik

i=1 Ai. Therefore,

h(Cx) = h
( ik⋃

i=1

Ai

)
=

ik⋃

i=1

h(Ai)︸ ︷︷ ︸
{n−i}

= {n − ik, n − ik + 1, . . . , n}.

On the other hand, h(x) = {n − ik, n − ik−1, . . . , n − i1}, so

Ch(x) = {n − ik, n − ik + 1, . . . n},

i.e. h(Cx) = Ch(x). Hence, h is a homomorphism. It is obvious that h is
bijective; thus it is an isomorphism.

2

Example: The closure algebra Z over Z≥1 and the subalgebra B of the closure(5.5)
algebra over R that is generated by the subset Y1 ⊂ R are not free. In both
cases, there is an open atom: In Z it is the element {1}, and in B the element
can be obtained accordingly, using the map h. Furthermore, this atom is dense;
therefore, in both cases every element x satisfies

C
(
Ix ∪ I(X \ x)

)
= X,

where X = Z≥1 in the first case and X = R in the second case. In other words,
the closure formulas

C
(
¬C¬X1 ∨ ¬CX1

)
and X1 ∨ ¬X1

are Z-equivalent and B-equivalent. But they clearly cannot be equivalent in
every closure algebra; over R, for instance, C

(
IQ ∪ I(R \ Q)

)
= ∅.

15
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6 Equivalence classes of closure formulas

Definition: A closure formula in n variables is said to have depth 1 if it is(6.1)
a symbol, and for any other closure formula α we define its depth recursively
as the unique integer k such that there is a closure formula β of depth k − 1
with α = ¬β or α = Cβ, or such that there are closure formulas β, β′ with
max{depthβ,depth β′} = k − 1, with α = (β ∧ β′) or α = (β ∨ β′).

Remark: In (4.5) we have seen that there are infinitely many equivalence(6.2)
classes of closure formulas of any number of variables, and it is obvious that they
all contain infinitely many elements. In this section we will list closure formulas
in just one variable in ascending depth and decide if they are equivalent to a
closure formula already given or not.

Example: There is only one closure formula of depth 1 in F1, namely the(6.3)
symbol X = X1. We call its equivalence class K1. There are two closure
formulas of order 2, namely ¬X and CX. They are clearly not equivalent to X
or to each other. We call their equivalence classes K2 and K3, respectively.

Remark: There are actually two more closure formulas of depth 2, namely(6.4)
X ∧X and X ∨X; they are clearly equivalent to X. We are going to omit such
superfluous closure formulas, when their equivalence to some easier formula
is more than obvious and they are really nothing but a silly way of writing
something in a more complicated way. Hence, we will not list (nor give any
commentary about) formulas that include a union or intersection of a formula
with itself or its closure, nor formulas that include one of the operators ¬ and
C applied twice in a row. Also, we will choose a closure formula (with minimal
order) from every equivalence class, and allow no other closure formulas of this
equivalence class to be used in chains for other closure formulas. Furthermore,
we use commutativity where it is possible and we will not write brackets when
they are not needed.

Example: There are two closure formulas of depth 3 obtained by application(6.5)
of a unary operator, namely ¬CX and C¬X. They are clearly not equivalent
to each other or to a previously listed closure formula (take e.g. x = [0, 1) ⊂ R).
We call their equivalence classes K4 and K5, respectively. There are four closure
formulas of depth 3 obtained by application of either ∧ or ∨, namely 0 = X∧¬X,
1 = X ∨ ¬X, ¬X ∧ CX and ¬X ∨ CX. The last one is equivalent to X ∨ ¬X,
the first three are not equivalent to each other or to a previously listed closure
formula (again, take e.g. x = [0, 1) ⊂ R). We call their equivalence classes
K6,K7 and K8, respectively.

Remark: We will not list any closure formula that has X ∧¬X or X ∨¬X in(6.6)
a minimal chain, because these will clearly be equivalent to a formula of smaller
depth, since all operations are trivial on those two formulas.

Example: There are four closure formulas of depth 4 obtained by applica-(6.7)
tion of a unary operator, namely IX = ¬C¬X, ¬(¬X ∧ CX), C¬CX and
C(¬X ∧ CX). The first two are not equivalent to each other or to any previ-
ously listed formula (take e.g x = [0, 1) ⊂ R). We call their equivalence classes
K9 and K10, respectively. The third one is not equivalent to a previously listed
formula either (take e.g. x = [0, 1) \ { 1

2} ⊂ R); we call its equivalence class K11.
Finally, the fourth one is not equivalent to any previously listed formula (take
e.g. x = [0, 1) ∩ Q ⊂ R); we call its equivalence class K12.

Example: There are 11 closure formulas of depth 4 obtained by application(6.8)
of the operator ∧, namely X ∧ ¬CX ∈ K6, X ∧ C¬X, X ∧ (¬X ∧ CX) ∈ K6,
¬X ∧ ¬CX ∈ K4, ¬X ∧ (¬X ∧ CX) ∈ K8, CX ∧ ¬CX ∈ K6, CX ∧ C¬X,

16
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CX ∧ (¬X ∧ CX) ∈ K8, ¬CX ∧ C¬X ∈ K4, ¬CX ∧ (¬X ∧ CX) ∈ K6 and
C¬X ∧ (¬X ∧ CX) ∈ K8. The formulas X ∧ C¬X and ∂X = CX ∧ C¬X
are not equivalent to each other or to any previously listed formula (take e.g.
x = [0, 1) ⊂ R). We call their equivalence classes K13 and K14, respectively.

Example: There are 11 closure formulas of depth 4 obtained by applica-(6.9)
tion of the operator ∨, namely X ∨ ¬CX, X ∨ C¬X ∈ K7, X ∨ (¬X ∧ CX),
¬X ∨ ¬CX ∈ K2, ¬X ∨ (¬X ∧CX) ∈ K2, CX ∨¬CX ∈ K7, CX ∨ C¬X ∈ K7,
CX ∨ (¬X ∧ CX) ∈ K3, ¬CX ∨ C¬X ∈ K5, ¬CX ∨ (¬X ∧ CX) and
C¬X ∨ (¬X ∧ CX) ∈ K5. By de Morgan’s law, ¬(¬X ∧ CX) ≡ X ∨ ¬CX,
so X ∨ ¬CX ∈ K10. Furthermore, X ∨ (¬X ∧CX) ∈ K3, because of the equiv-
alence X ∨ (¬X ∧ CX) ≡ (X ∧ CX) ∨ (¬X ∧ CX) ≡ (X ∨ ¬X) ∧ CX ≡ CX.
Finally, ¬CX ∨ (¬X ∧ CX) ≡ (¬CX ∨ ¬X) ∧ (¬CX ∨ CX) ≡ ¬X ∈ K2.

Example: There are 4 closure formulas of depth 5 obtained by application(6.10)
of the operator ¬, namely ¬C¬CX = (I ◦ C)X, ¬C(¬X ∧ CX), ¬(X ∧ C¬X)
and ¬(CX ∧ C¬X) = ¬∂X. None of them are equivalent to each other or any
previously listed formula (take e.g. x = [0, 1) \ { 1

2} ⊂ R for the first, third and
fourth and x = [0, 1) ∩ Q ⊂ R for the second). We call their equivalence classes
K15 through K18.

Example: There are 4 closure formulas of depth 5 obtained by application of(6.11)
the operator C, namely C¬C¬X = (C◦I)X, C(X∨¬CX) ≡ CX∨C¬CX ∈ K7,
C(X ∧ C¬X) and C(CX ∧ C¬X) = C∂X ≡ ∂X ∈ K14. The first one and the
third one are not equivalent to each other or to any previously listed formula
(take e.g. x = [0, 1) ∪ ([2, 3) ∩ Q) ⊂ R). We call their equivalence classes K19

and K20, respectively.

Example: There are 50 closure formulas of depth 5 obtained by application(6.12)
of the operator ∧, namely X ∧¬C¬X ∈ K9, X ∧ (X ∨¬CX) ∈ K1, X ∧C¬CX,
X ∧C(¬X ∧CX), X ∧ (X ∧C¬X) ∈ K13, X ∧ (CX ∧C¬X) ≡ X ∧C¬X ∈ K13,
¬X ∧ ¬C¬X ∈ K6, ¬X ∧ (X ∨ ¬CX) ≡ ¬X ∧ ¬CX ∈ K4, ¬X ∧ C¬CX,
¬X∧C(¬X∧CX), ¬X∧(X∧C¬X) ∈ K6, ¬X∧(CX∧C¬X) ≡ CX∧¬X ∈ K8,
CX ∧ ¬C¬X ∈ K9, CX ∧ (X ∨ ¬CX) ≡ X ∈ K1, CX ∧ C¬CX,
CX∧C(¬X∧CX) ∈ K12, CX∧(X∧C¬X) ∈ K13, CX ∧ (CX ∧ C¬X) ∈ K14,
¬CX ∧ ¬C¬X ∈ K6, ¬CX ∧ (X ∨ ¬CX) ∈ K4, ¬CX ∧ C¬CX ∈ K4,
¬CX∧C(¬X∧CX) ∈ K6, ¬CX∧(X∧C¬X) ∈ K6, ¬CX∧(CX∧C¬X) ∈ K6,
C¬X ∧ ¬C¬X ∈ K6, C¬X ∧ (X ∨ ¬CX), C¬X ∧ C¬CX ∈ K11,
C¬X ∧ C(¬X ∧ CX) ∈ K12, C¬X ∧ (X ∧ C¬X) ∈ K13, C¬X ∧ ∂X ∈ K14,
(¬X∧CX)∧¬C¬X ∈ K6, (¬X∧CX)∧(X∨¬CX) ∈ K6, (¬X∧CX)∧C¬CX,
(¬X ∧CX)∧ (X ∧C¬X) ∈ K6, (¬X ∧CX)∧ (CX ∧C¬X) ≡ ¬X ∧CX ∈ K8,
IX ∧ (X ∨ ¬CX) ≡ IX ∈ K9, ¬C¬X ∧ C¬CX ∈ K6, IX ∧ C(¬X ∧ CX),
IX ∧ (X ∧ C¬X) ∈ K6, IX ∧ (CX ∧ C¬X) ∈ K6, (X ∨ ¬CX) ∧ C¬CX,
(X ∨¬CX)∧C(¬X ∧CX), (X ∨¬CX)∧ (X ∧C¬X) ∈ K13, (X ∨¬CX)∧∂X,
C¬CX∧C(¬X∧CX), C¬CX∧C¬X, C¬CX∧∂X, C(¬X∧CX)∧(X∧C¬X),
C(¬X ∧ CX) ∧ (CX ∧ C¬X) ∈ K14 and (X ∧ C¬X) ∧ (CX ∧ C¬X) ∈ K13.
The formulas X ∧ C¬CX, X ∧ C(¬X ∧ CX), ¬X ∧ C¬CX, CX ∧ C¬CX,
C¬X ∧ (X ∨ ¬CX), (¬X ∧ CX) ∧ C¬CX, (X ∨ ¬CX) ∧ C¬CX and
C¬CX ∧ C(¬X ∧ CX) are not equivalent to each other or to any previously
listed formula (take e.g. x = [0, 1) \ { 1

2} ∪ ([2, 3)∩Q) ⊂ R); we call their equiv-
alence classes K21 through K28.
On the other hand, ¬x∧C(¬x∧Cx) ≤ ¬x∧Cx for any element x of any closure
algebra, since C(¬x∧Cx) ≤ Cx, and conversely, ¬x ∧ Cx ≤ ¬x ∧ C(¬x ∧ Cx),
because ¬x ∧ Cx ≤ ¬x and ¬x ∧ Cx ≤ C(¬x ∧ Cx); therefore we have
¬X ∧ C(¬X ∧ CX) ≡ ¬X ∧ CX ∈ K8. Furthermore, for any x as before,
Ix ∧ C(¬x ∧ Cx) ≤ Ix ∧ C¬x = 0, so IX ∧ C(¬X ∧ CX) ∈ K6. Also,

(X ∨ ¬CX) ∧ C(¬X ∧ CX) ≡ (X ∧ C(¬X ∧ CX)) ∨ (¬CX ∧ C(¬X ∧ CX))

≡ X ∧ C(¬X ∧ CX) ∈ K22.
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Furthermore,

(X ∨ ¬CX) ∧ (CX ∧ C¬X) ≡ (X ∧ C¬X) ∨ (¬CX ∧ CX ∧ C¬X)

≡ X ∧ C¬X ∈ K13,

and C¬CX ∧ (X ∧ C¬X) ≡ C¬CX ∧ X ∈ K21. Similarly, we have
C¬CX ∧ (CX ∧C¬X) ≡ C¬CX ∧CX ∈ K24. Finally C(¬x∧CX) ≤ C¬x for
any x as before, and hence C(¬X∧CX)∧(X∧C¬X) ≡ C(¬X∧CX)∧X ∈ K22.

Example: There are 50 closure formulas of depth 5 obtained by applica-(6.13)
tion of the operator ∨, namely X ∨ ¬C¬X ∈ K1, X ∨ (X ∨ ¬CX) ∈ K10,
X ∨ C¬CX, X ∨ C(¬X ∧ CX), X ∨ (X ∧ C¬X) ∈ K1, X ∨ ∂X ≡ CX ∈ K3,
¬X ∨ IX, ¬X ∨ (X ∨ ¬CX) ∈ K7, ¬X ∨ C¬CX, ¬X ∨ C(¬X ∧ CX),
¬X ∨ (X ∧ C¬X) ∈ K5, ¬X ∨ ∂X ≡ C¬X ∈ K5, CX ∨ IX ∈ K3,
CX ∨ (X ∨ ¬CX) ∈ K7, CX ∨ C¬CX ∈ K7, CX ∨ C(¬X ∧ CX) ∈ K3,
CX ∨ (X ∧ C¬X) ∈ K3, CX ∨ ∂X ∈ K3, ¬CX ∨ IX ≡ ¬(CX ∧ C¬X) ∈ K18,
¬CX ∨ (X ∨ ¬CX) ∈ K10, ¬CX ∨ C(¬X ∧ CX), ¬CX ∨ (X ∧ C¬X) ∈ K25,
¬CX ∨ ∂X ∈ K5, C¬X ∨ ¬C¬X ∈ K7, C¬X ∨ (X ∨ ¬CX) ∈ K7,
C¬X ∨ C¬CX ∈ K5 C¬X ∨ C(¬X ∧ CX) ∈ K5, C¬X ∨ (X ∧ C¬X) ∈ K5,
C¬X ∨ ∂X ∈ K5, (¬X ∧ CX) ∨ IX, (¬X ∧ CX) ∨ (X ∨ ¬CX) ∈ K7,
(¬X∧CX)∨C¬CX, (¬X∧CX)∨C(¬X∧CX) ∈ K12, (¬X∧CX)∨(X∧C¬X) ≡
∂X ∈ K14, (¬X ∧ CX) ∨ (CX ∧ C¬X) ∈ K14, IX ∨ (X ∨ ¬CX) ∈ K10,
IX ∨C¬CX, IX ∨C(¬X ∧CX), IX ∨ (X ∧C¬X) ≡ X ∧ (IX ∨C¬X) ∈ K1,
IX ∨ ∂X ∈ K3, (X ∨ ¬CX) ∨ C¬CX ≡ X ∨ C¬CX ∈ K21,
(X ∨ ¬CX) ∨ C(¬X ∧ CX) ∈ K7, (X ∨ ¬CX) ∨ (X ∧ C¬X) ∈ K10,
(X∨¬CX)∨∂X ∈ K7, C¬CX∨C(¬X∧CX), C¬CX∨(X∧C¬X), C¬CX∨∂X,
C(¬X∧CX)∨(X∧C¬X), C(¬X∧CX)∨∂X ∈ K14 and (X∧C¬X)∨∂X ∈ K14.
The formulas X ∨C¬CX, ¬X ∨C¬CX, ¬X ∨C(¬X ∧CX), (¬X ∧CX)∨ IX,
IX ∨ C¬CX, IX ∨ C(¬X ∧ CX) and C¬CX ∨ (X ∧ C¬X) are not equivalent
to each other or to any previously listed formula (again, take e.g.
x = [0, 1) \ { 1

2} ∪ ([2, 3) ∩ Q) ⊂ R). We call their equivalence classes K29

through K35.
On the other hand, Cx = x∨(¬x∧Cx) ≤ x∨C(¬x∧Cx) ≤ Cx for any element
x of any closure algebra, hence X ∨ C(¬X ∧ CX) ≡ CX ∈ K3. Furthermore,
¬X∨IX ≡ ¬(X∧C¬X) ∈ K17 and ¬CX∨C(¬X∧CX) ≡ ¬X∨C(¬X∧CX),
because for any x as before,

(
¬x ∨ C(¬x ∧ Cx)

)
∧ ¬

(
¬Cx ∨ (¬x ∧ Cx)

)
= (¬x ∧ Cx) ∧ ¬C(¬x ∧ Cx) = 0,

i.e. ¬x ∨ C(¬x ∧ Cx) ≤ ¬Cx ∨ C(¬x ∧ Cx); the converse is clear. Hence
¬CX ∨ C(¬X ∧ CX) ∈ K31. Also,

(¬X∧CX)∨C¬CX ≡ (¬X∨C¬CX)∧(CX∨C¬CX) ≡ (¬X∨C¬CX) ∈ K30,

and

C¬CX ∨ C(¬X ∧ CX) ≡ C(¬CX ∨ (¬X ∧ CX)) ≡ C¬X ∈ K5.

Finally, C¬CX ∨ (CX ∧ C¬X) ≡ (C¬CX ∨ CX) ∧ C¬X ∈ K5 and for any
x as before, ∂x = (¬x ∧ Cx) ∨ (x ∧ C¬x) ≤ C(¬x ∧ Cx) ∨ (x ∧ C¬x) and
C(¬x ∧ Cx) ∨ (x ∧ C¬x) ≤ C((¬x ∧ Cx) ∨ (x ∧ C¬x)) = ∂x, so we have
C(¬X ∧ CX) ∨ (X ∧ C¬X) ∈ K14.

Remark: Let α be a closure formula in one variable. If A is a closure algebra(6.14)
and x1 ∈ A is any element, define the sequence (xn)n≥1 of elements of A recur-
sively as xn := fA

α (xn−1), for n ≥ 2. Note that this sequence actually depends
only on the equivalence class of α.
Clearly, either the elements xi are pairwise different, or the sequence becomes
periodic after finitely many iterations. The answer to the question of which is
the case may differ, depending on the closure algebra A and the element x1 ∈ A.
However, we make the following observations: If the sequence becomes periodic
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in every closure algebra and for every starting element, then there is a maximal

period length. Indeed, if there were closure algebras Ai and elements x
(i)
1 , such

that the period length of the sequence (x
(i)
n )n≥1 is at least i, then the sequence

in
∏∞

i=1 Ai starting with (x
(1)
1 , x

(2)
1 , . . .) would not be periodic. On the other

hand, if the sequence becomes periodic in every closure algebra and for every
starting element, then the period length of every such sequence is a divisor of
the maximal period length. Similarly, if the sequence becomes periodic in every
closure algebra and for every starting element, then there is a maximal prepe-
riod.
Therefore, for any equivalence class K of closure formulas, we can define d(K)
as the maximal period length and r(K) as the maximal preperiod of a sequence
(xn)n≥1 as above, starting from any element of any closure algebra. We set
d(K) = ∞ and r(K) = ∞, if there is an element x1 ∈ A in a closure algebra A,
such that the sequence (xn)n≥1 is not periodic.

Example: Clearly, d(K1) = 1 and r(K1) = 0. Furthermore, d(K2) = 2 and(6.15)
r(K2) = 0, as well as d(K3) = 1 and r(K3) = 1.

Example: Note that for any element x of any closure algebra, ¬C¬x is equal(6.16)
to Ix; hence ¬C¬Cx = (I ◦C)x. We have seen already in the introduction that
(I ◦C ◦I ◦C)x = (I ◦Cx), therefore, d(K4) ≤ 2 and r(K4) ≤ 2, and the example
x = R \ [0, 1] ∪ {1

2} ⊂ R shows that we have equality in both cases.
Similarly, C¬C¬x = (C ◦I)x and (C ◦I ◦C ◦I)x = (C ◦I)x, therefore d(K5) ≤ 2
and r(K5) ≤ 2, and the example x = [0, 1]\{ 1

2} ⊂ R shows that we have equality
in both cases.
Obviously, d(K6) = 1 and r(K6) = 1, as well as d(K7) = 1 and r(K7) = 1.
We have seen in the example (5.2), that d(K8) = r(K8) = ∞.

Example: The formula ¬C¬X ∈ K9 is equivalent to IX and I is idempotent(6.17)
(and non-trivial), so d(K9) = 1 and r(K9) = 1. Clearly, r(K10) ≥ 1, and
(X ∨ ¬CX) ∨ ¬(X ∨ ¬CX) ≡ X ∨ ¬CX ∨ (¬CX ∧ (I ◦ C)X) ≡ X ∨ ¬CX, so
r(K10) = 1 and d(K10) = 1. We have C¬C(C¬CX) ≡ (C ◦ I ◦C)X and as seen
in the introduction (C ◦ I ◦ C)

(
(C ◦ I ◦ C)X

)
≡ (C ◦ I ◦ C)X, so d(K11) ≤ 2

and r(K11) ≤ 1, and the example x = [0, 1) ⊂ R shows that we have equality in
both cases. Furthermore, r(K12) ≥ 1 and

C
(
¬C(¬X ∧ CX) ∧ CC(¬X ∧ CX)

)
≡ C

(
¬C(¬X ∧ CX) ∧ C(¬X ∧ CX)

)

≡ C(0) ≡ 0

and C(¬0 ∧ C(0)) = 0, hence d(K12) = 1 and r(K12) = 1. Clearly, r(K13) ≥ 1
and

(X ∧ C¬X) ∧ C¬(X ∧ C¬X) ≡ (X ∧ C¬X) ∧ (C¬X ∨ (C ◦ I)X)

≡ X ∧ C¬X,

since (X ∧C¬X) ≤ C¬X ≤ (C¬X ∨ (C ◦ I)X), so d(K13) = 1 and r(K13) = 1.
Finally, we claim that ∂∂∂X ≡ ∂∂X. Indeed,

∂∂∂X ≡ CX ∧ C¬X ∧ C¬(CX ∧ C¬X)

∧ C¬
(
CX ∧ C¬X ∧ C(¬(CX ∧ C¬X))

)

≡ ∂∂X ∧ ¬I(CX ∧ C¬X ∧ C¬(CX ∧ C¬X))

≡ ∂∂X ∧ ¬
(
(I ◦ C)X ∧ (I ◦ C)¬X ∧ (I ◦ C)(¬(CX ∧ C¬X))

)

and hence ∂∂∂X ≡ ∂∂X as claimed, because for any element x of any closure
algebra

∂∂x ∧
(
(I ◦ C)x ∧ (I ◦ C)¬x ∧ (I ◦ C)¬(Cx ∧ C¬x)

)

= Cx ∧ C¬x ∧ (I ◦ C)x ∧ (I ◦ C)¬x ∧ C¬(Cx ∧ C¬x) ∧ (I ◦ C)¬(Cx ∧ C¬x)

= (I ◦ C)x ∧ (I ◦ C)¬x ∧ (I ◦ C)¬(Cx ∧ C¬x)

= I∂x ∧ (I ◦ C)¬∂x = 0.
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6 Equivalence classes of closure formulas

Therefore, d(K14) = 1 and r(K14) ≤ 2, and the example x = [0, 1] ∩ Q ⊂ R
shows that we have equality.

Example: We have seen in the introduction that d(K15) = d(K19) = 1 and(6.18)
r(K15) = r(K19) = 1. Because for any element x1 of any closure algebra, the
element x2 = ¬C(¬x1 ∧Cx1) is open and hence (¬x1 ∧Cx1) is closed, starting
from x2 the sequence generated by K16 is the same as the sequence generated
by K10. Therefore, d(K16) = 1 and r(K16) = 2. With the same argument with
K20 and K13, using that C(x1 ∧C¬x1) is always closed, we see that d(K20) = 1
and r(K20) = 2. Furthermore, ¬∂¬∂¬∂X ≡ ¬∂∂∂X ≡ ¬∂∂X ≡ ¬∂¬∂X, so
d(K18) = 1 and r(K18) ≤ 2, and the example x = [0, 1] ∩ Q ⊂ R shows that we
have equality. It is easy to check that d(K24) = r(K24) = 1, d(K28) = r(K28) = 1
and d(K29) = r(K29) = 1. On the other hand, we have already seen that
d(K22) = r(K22) = ∞, and the same example x = {2k − 1 | k ∈ Z≥1} ⊂ Z≥1

with the topology from (4.5) also shows that d(K17) = r(K17) = ∞, as well
as d(K25) = r(K25) = ∞ and d(K32) = r(K32) = ∞. Moreover, the example
x = {2k − 1 | k ∈ Z≥2} ⊂ Z≥1 shows that d(K26) = r(K26) = ∞.
For the remaining equivalence classes, we do not calculate d and r, but only give
a lower bound using the examples that have been used throughout this section,
as well as combinations of them; see the following table.

Corollary: The following is a complete list of equivalence classes of closure(6.19)
formula that contain a closure formula of depth at most 5:

Depth Number Representant d r
1 K1 X 1 0
2 K2 ¬X 2 0
2 K3 CX 1 1
3 K4 ¬CX 2 2
3 K5 C¬X 2 2
3 K6 X ∧ ¬X 1 1
3 K7 X ∨ ¬X 1 1
3 K8 ¬X ∧ CX ∞ ∞
4 K9 ¬C¬X 1 1
4 K10 (X ∨ ¬CX) 1 1
4 K11 C¬CX 1 2
4 K12 C(¬X ∧ CX) 1 1
4 K13 X ∧ C¬X 1 1
4 K14 CX ∧ C¬X 1 2
5 K15 ¬C¬CX 1 1
5 K16 ¬C(¬X ∧ CX) 1 2
5 K17 ¬(X ∧ C¬X) ∞ ∞
5 K18 ¬(CX ∧ C¬X) 1 2
5 K19 C¬C¬X 1 1
5 K20 C(X ∧ C¬X) 1 2
5 K21 X ∧ C¬CX ≥ 1 ≥ 1
5 K22 X ∧ C(¬X ∧ CX) ∞ ∞
5 K23 ¬X ∧ C¬CX ≥ 2 ≥ 4
5 K24 CX ∧ C¬CX 1 1
5 K25 C¬X ∧ (X ∨ ¬CX) ∞ ∞
5 K26 (¬X ∧ CX) ∧ C¬CX ∞ ∞
5 K27 (X ∨ ¬CX) ∧ C¬CX ≥ 2 ≥ 2
5 K28 C¬CX ∧ C(¬X ∧ CX) 1 1
5 K29 X ∨ C¬CX 1 1
5 K30 ¬X ∨ C¬CX ≥ 2 ≥ 3
5 K31 ¬X ∨ C(¬X ∧ CX) ≥ 2 ≥ 2
5 K32 (¬X ∧ CX) ∨ ¬C¬X ∞ ∞
5 K33 ¬C¬X ∨ C¬CX ≥ 2 ≥ 1
5 K34 ¬C¬X ∨ C(¬X ∧ CX) ≥ 2 ≥ 2
5 K35 C¬CX ∨ (X ∧ C¬X) ≥ 2 ≥ 2.
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