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Introduction

In 1917, Hans Frederik Blichfeldt classified all finite subgroups of PGL3(C) in [Blil7].
There are, up to conjugacy, three maximal finite subgroups. They are isomorphic to
PSLy(7), respectively to Ag and to a group called the Hessian group. We consider the
action of these groups on P? that is induced by the action of PGL3(C).

It is the aim of this Bachelor’s thesis to find irreducible projective algebraic curves of
small degree that are invariant under one of these groups. Furthermore, we want to
study the properties of the curves that we find, such as their automorphism groups, the
fields over which they can be defined and the structure of their Jacobian varieties up to
isogeny.

In the first section, we review various results about algebraic curves, their automorphism
groups and their Jacobian varieties. In the second section, these results are used to find
invariant curves and study their properties.

The prerequisites for this thesis are basic algebraic geometry, as it can be found in
Chapter 1 of [Har77], and basic representation theory of finite groups. An introduction
to the representation theory of finite groups can be found, for example, in [Ser77] or
[JLO1].



1. Properties of curves

In what follows, we work over the field of complex numbers C.

Notation 1.0.1. We denote the n-dimensional affine space over C by A™ and we denote
the n-dimensional projective space over C by P". By I,, we denote the n x n identity
matrix over C. Let p be a prime number. Then we denote the finite field with p elements
by F,. We write Z>( for the non-negative integers and Z~ for the positive integers. The
homogeneous polynomials of degree k in C[X1,...,X,] are denoted by C[X7, ..., X,k
The multiplicative group of C is denoted by C*.

Definition 1.0.2. A projective algebraic curve is a closed one-dimensional subvariety of
P". An affine algebraic curve is a closed one-dimensional subvariety of A™. A projective,

respectively affine, algebraic curve is called plane if it is a subvariety of P?, respectively
A2,

Definition 1.0.3. For any homogeneous ideal I C C[Xy, ..., X,] we denote by
V() :={[xo,...,zn] €P*|VfeETI: f(xo,...,xn) =0}
the projective variety defined by I.

Notation 1.0.4. For any homogeneous p € C[X1,..., X,] we write V(p) shorthand for

V((p))-

Definition 1.0.5. For any projective variety X C P" we denote by I(X) the homoge-
neous ideal of X generated by

{p € C[X,Y, Z]| p is homogeneous and VP € X : p(P) = 0}.

Fact 1.0.6. Let C be a projective algebraic curve. Then the homogeneous ideal I(C)
is principal. If I(C') = (p) for some homogeneous p € C[X,Y,Z], then V(p) = C.
Moreover, the curve C is an irreducible variety if and only if p is irreducible.

Fact 1.0.7. For any non-constant homogeneous p € C[X,Y, Z] the variety V(p) is a
plane projective algebraic curve.

Definition 1.0.8. Let C be a plane projective algebraic curve and let p € C[X,Y, Z]
be homogeneous such that I(C') = (p). Then the degree of C'is the degree of p.

Theorem 1.0.9 (Weak form of Bézout’s theorem). Let Cy and Co be plane projective
algebraic curves. Then C1 N Cy # (.

Proof. If C7 and C5 have an irreducible component in common, this is trivial. Otherwise,
the statement follows directly from Corollary 3.10 in [Kun05]. O



1.1. Smoothness, irreducibility and genus

Definition 1.1.1. Let p € C[X,Y, Z] be homogeneous and non-zero such that (p) =
I(V(p)). Then a point P € V(p) is called a singular point of V(p) or singular if

O py_ P py_ P

ox )= gy ) =57 =0

Otherwise, the point P is called a regular point of V(p) or regular. The curve V(p) is
called regular or non-singular or smooth if all of its points are regular. Otherwise, it is
called singular.

Proposition 1.1.2. If a projective algebraic curve C is smooth, then it is irreducible.

Proof. Assume, for contradiction, that C' is reducible and let C7 and C3 be distinct
irreducible components of C. Let p € C[X,Y, Z] be homogeneous such that V(p) = C.
Let p1,p2 € C[X,Y, Z] be homogeneous such that I(C1) = (p1) and I(C2) = (p2). Then
p1|p and pa|p. Therefore, by the irreducibility of p; and p2, we have p = pipar for some
homogeneous r € C[X,Y, Z]. By , the curves C7 and Cy intersect in some
point P. By the definitions of p; and po, we then have p;(P) = p2(P) = 0. We calculate

d(par)
0X

9
0X

(P) = PP (PYpa(PIr(P) +

- (P)p1(P) = 0.

Similarly, we have (%@(P) = 0 and g—g(P) = 0. It follows that P € C is singular
and therefore C' is not smooth. This is a contradiction to our assumption that C is
smooth. O

Proposition 1.1.3 (Euler’s formula). Let k € Z>o and let p € C[X,Y, Z]. Then

dp dp op

Proof. See Example A.2 in [Kun05]. O
Proposition 1.1.4. Let p € C[X,Y, Z] be homogeneous. If the only solution of

O _ 9 _Op _

oxX oY 07
in A3 is 0, then V(p) is smooth and I(V (p)) = (p).
Proof. If I(V(p)) = (p) and the assumption of the proposition holds, then p is non-
constant and V' (p) is smooth by definition. Thus, it remains to show that I(V (p)) = (p).
We have p € I(V(p)). Let ¢ € C[X,Y, Z] be homogeneous such that I(V(p)) = (q).

Then p = rq for non-zero some homogeneous r € C [X,Y, Z|.
Claim: The polynomial r is constant.



Proof. We have
w o o
ox ~ ox " Yox

and similarly for g—{; and g—g. Let P € V(p). Then ¢(P) = 0 and we have

Ip dq
it — Y4 p
P (P)=r(P)SL(P)
and similarly for g—{i and g—g. Since, by assumption, at least one of %(P), (%@(P) or
9 (P) is non-zero, it follows that r(P) # 0. Therefore V() NV (p) = 0. It follows from
h“heorern 1.0.91 and tFact 1.0.7| that r is constant. ]
In conclusion (p) = (¢) = I(V(p)). O
Definition 1.1.5. For d € Z~( we define
Jd = {g c Zg—gl‘ ‘Q|g1 = d} .
Theorem 1.1.6. For anydy,...,d, € Z~q there is a unique polynomial Res € Z[Ui,j}ie{o,...,n}
Jj€Ja,
called resultant, such that:
1. Let Fy,...,F, € C[Xy,...,X,] be homogeneous and non-zero with
Fi= ) ciaX*
CYGJdi
for alli € {0,...,n}. Then Fy,...,F, have a common non-zero root if and only
if Res(cij)ieqo,...ny = 0-
Jj€Ja,
2. Suppose that Vi € {0,...,n} : F; = X% Then Res(cij)ieo,...ny = 1.
j€da,
3. The polynomial Res is irreducible in Clu; jlicqo,... n}-
J€J4,
Proof. For a proof see Chapter 13 of [GKZ94] or Theorem 2.3 in [CLOO05]. O

We will need the previous theorem in order to check if the assumption of

is true for a certain non-zero homogeneous p € C[X,Y, Z]. For this purpose,

the polynomial Res is evaluated at the coefficients of %’2, %};7 g—g by using Sage [S*14].

Theorem 1.1.7. If a plane projective algebraic curve C is smooth of degree k € Z~g,

then L1
genus(C’)z( ; >

Proof. For a proof see Theorem 14.1 in [Kun05]. O



1.2. Riemann surfaces and holomorphic differential forms

Definition 1.2.1. Any one-dimensional complex manifold is called a Riemann surface.

The connected compact Riemann surfaces are of special interest to us. The following
result is classical:

Theorem 1.2.2. The following categories are equivalent:

1. the category of connected compact Riemann surfaces

2. the category of algebraic function fields of one wvariable over C with the arrows
reversed

3. the category of smooth irreducible projective algebraic curves over C

Proof. See Theorem 4.2.9 in [Nam84]. O

Let M be a Riemann surface.

Definition 1.2.3 (See Definitions IV.1.1-1V.1.3 in [Mir95]). Let {(Ui, p; : U; — Vi) }ier
be the maximal atlas of M. A holomorphic 1-form w on M is a collection of holomorphic
functions f; : V; — C, one for each i € I, such that for any charts (Uj,¢; : Uj — Vj)
and (U, ¢k : Uy — Vi) with j, k € I we have

ar

fk:(fjoT)'g

on ¢ (U; NUy), where T' = @j o cp,?l is the transition map. Locally, on (U;, ¢;) with the
local coordinate z, we write

w = fidz.
Notation 1.2.4. The complex vector space of holomorphic 1-forms on M is denoted by
HO(M, Q).
Theorem 1.2.5. Additionally, suppose that M is connected and compact of genus g > 2.
Then the dimension of H°(M, Q) is g.
Proof. See Proposition I11.5.2. in [FK92]. O

Recall that the automorphism group Aut(M) of M is the group of biholomorphic maps
of M onto itself.

Definition 1.2.6. The canonical representation of Aut(M) on HY(M, Q) is defined
by g := pog~! for p € HO(M, Q) and g € Aut(M). It is denoted by PHO(M,Q,,)- Lhe
character of ppos,,) is denoted by X poar,0,,)-

Theorem 1.2.7 (Lefschetz Fixed Point Formula). Suppose that M is compact and
connected of genus g > 2. For any 1 # h € Aut(M) we have

XHO(MQM)(h) + m =2 -1,

where t is the number of fixed points of h and (-) denotes complex conjugation.

Proof. See Corollary V.2.9. in [FK92]. O



1.3. Automorphism groups

In this subsection, let C' be a smooth irreducible projective algebraic curve of genus
g > 2. Then, by a result of Schwarz, its automorphism group Aut(C) is finite. This
result can be found, for example, in Corollary V.1.2.2. in [FK92]. But we can say even
more about |Aut(C)|:

Theorem 1.3.1 (Hurwitz). We have
|[Aut(C)| < 84(g —1).
Proof. See Theorem V.1.3. in [FK92]. O
Theorem 1.3.2. We have Aut(P?) = PGL3(C).
Proof. See Example I1.7.1.1 in [Har77). O

Theorem 1.3.3. Suppose, in addition, that C' is plane and of degree > 4. Then any
automorphism of C is the restriction of a unique automorphism of P?.

Proof. The existence follows from Theorem 5.3.17(3) in [Nam84]. Let P;,..., Py € C
be four points that are in general linear position. Those exist, because every line in P?
meets C' in only finitely many points. Any 7" € PGL3(C) is uniquely determined by
giving the images P4, ..., Py and the conclusion follows. O

1.4. Quotient curves

In this section, we review the quotient of any smooth irreducible projective algebraic
curve, respectively any connected compact Riemann surface, by a finite group.

Definition 1.4.1. Let X and Y be algebraic varieties and let H be a group acting on
X. A morphism p: X — Y is called a categorial quotient of X by H if

1. Vx € X Vh € H : p(h(x)) = p(x) and

2. for any algebraic variety Z and any morphism f : X — Z, if Ve € X Vh € H :
f(h(z)) = f(=x), then f factors uniquely through p. That is, there is a unique
morphism f :Y — Z such that f = f op.

If a categorial quotient of X by H exists, it is unique up to a unique isomorphism. In
this case, we will sometimes write X /H instead of p: X - Y or Y.

Theorem 1.4.2. Let M be a connected Riemann surface and let H < Aut(M) be a
finite group. The topological quotient space M /H can be endowed with the structure of
a Riemann surface such that the quotient map p : M — M /H is holomorphic.

Moreover, this structure on M /H satisfies the following universal property: let N be
a Riemann surface and let f : M — N be a holomorphic function. If Yx € X Vh €
H : f(h(x)) = f(x), then there is a unique holomorphic map f : M/H — N such that

[ =1Fop.



Proof. By Theorem II1.3.4 in [Mir95], one can endow M /H with the structure of a
Riemann surface such that p is holomorphic.

Since f is constant on the orbits of H, there is a unique continuous map f :M/H — N
such that f = f op. We need to show that f is holomorphic. Let x € M and take
a chart ¢ : U — C of M and a chart ¢ : V — C of M/H such that x € U C M
and p(z) € V € M/H. The map p is open by the Open Mapping Theorem since
it is non-constant and holomorphic. If d%wopo Spil‘z:go(w) # 0, then there is some

open neighborhood U C U of z such that p = p|g is biholomorphic. Since p([j ) is
open and f|p(U) = fop!
d%z/; opop ! }z:w(w) = 0. Then, since the zeros of a non-constant holomorphic function

, it follows that f is holomorphic at z. Otherwise, we have

are isolated, there is an open neighborhood U C U of z such that

~ d .
Vye U\ {x}: @@bopogp 1

z=p(y)

It follows that f is holomorphic on p(U) \ {p(z)}. Since p is open, the image p(U) is an
open neighborhood of p(z). But since f is continuous, the map v o f is bounded on some
neighborhood of p(z) and therefore, by Riemann’s theorem on removable singularities,
the map f is holomorphic at p(z). O

By , we can transfer from the category of connected com-

pact Riemann surfaces to the category of smooth irreducible projective algebraic curves.
On these curves, the quotient we get then satisfies all requirements of lDeﬁnition 1.4.]J
and hence is the categorial quotient.

Definition 1.4.3. Let X be an affine variety and let H be a finite group acting on it.
Let A(X) denote the ring of regular functions of X. Then the subring

AX)T = {fc AX)|Vhe HYz € X : f(ha) = f(x)}
is called the subring of H-invariants.

Proposition 1.4.4. Let X be an affine variety and let H be a finite group acting on
it. Let A(X) denote the ring of reqular functions of X. Then, the categorial quotient is
the morphism of varieties corresponding to the inclusion A(X)" — A(X). In particular
AX/H) = A(X)H.

Proof. See Pages 124-125 in [Har92]. O

Proposition 1.4.5. Let C be a smooth irreducible projective algebraic curve and let H
be a finite group acting on it. Then the categorial quotient C'/H is a smooth irreducible
projective algebraic curve. Moreover, if U C C is an affine H-invariant patch of C, then
C/H is the projective completion of U/H.

Proof. The categorial quotient C'/H exists and it is a smooth irreducible projective
algebraic curve since the quotient exists for connected compact Riemann surfaces by



. Let p: C — C/H be the quotient morphism. The restriction p|y : U —

p(U) = U/H is the quotient morphism for U. From this restriction we can recover p,
because p|y can be uniquely extended to a morphism from the projective completion of
U to the projective completion of U/H. O

Theorem 1.4.6. Let M be a connected compact Riemann surface of genus > 2 and let
H < Aut(M). Denote by HO(M, QM)H C HO(M,Qy) the subspace of points that are
fized by the canonical representation of H. Then HY(M, QM)H = HO(M/H, QM/H).
We have dim HO(M, Q)" = genus(M/H).

Proof. By Proposition V.2.2. in [FK92], we have H°(M, QM)H = HO(M/H, QM/H)-
By Corollary V.2.2. in [FK92], we have dim HO(M, Q)" = genus(M /H). O
1.5. Elliptic curves

Definition 1.5.1. A pair (C, P) is called an elliptic curve if C' is a smooth projective
algebraic curve of genus 1 and P € C.

Theorem 1.5.2. Let (C, P) be an elliptic curve. Then, there is a A € C such that C is
isomorphic as a variety to the plane curve defined by the equation

Y2Z = X(X - Z)(X — \2).
The j-invariant of C' is defined as

A2 = A+1)3

=0

It depends only on the isomorphism class of C. Any elliptic curves (C, P) and (C', P")
are isomorphic as varieties if and only if j(C) = j(C").

Proof. See Theorem IV.4.1. and Proposition IV.4.6. in [Har77]. O
We sometimes omit the point P of an elliptic curve (C, P) when we are only interested
in the isomorphism class of C.

1.6. Abelian varieties and Jacobian varieties

Definition 1.6.1. Any projective connected group variety is called an abelian variety.
For an introduction to abelian varieties see for example [Mil0§].

Proposition 1.6.2. For any elliptic curve (E, P) there is a unique group structure on
FE such that E is an abelian variety with identity element P.

Proof. The curve E is a projective variety. Also FE is connected by Theorem VII.2.2. in
[Shal3]. For the group structure, see for example Proposition IV.4.8. in [Har77]. O

Let C' be a smooth irreducible projective algebraic curve of genus g > 0.

10



Lemma 1.6.3. The first homology group of C with Z-coefficients, denoted by Hi(C,Z),
can be canonically embedded into H°(C,Qc)* by

H1(C,Z) — H(C,Q¢)",
v = <w — /w) .
¥
Proof. See Lemma 11.1.1. in [BLO04]. O
Definition 1.6.4. The Jacobian variety or Jacobian of C is defined as
Jac(C) := H°(C,Q¢)* /H,(C, 7).

The Jacobian variety can be endowed with a unique structure of an abelian variety. See,
for example, Section 11.1 in [BLO4].

Proposition 1.6.5. The dimension of Jac(C) is g.
Proof. See Proposition 2.1. in [Mil0§]. O

Proposition 1.6.6. Let P € C' be any point. Then, there is a canonical morphism
fp: C — Jac(C) with fp(P) = 0 such that the following universal property is satisfied:
let A be an abelian variety and let g : C' — A be a morphism with g(P) = 0. Then there
exists a unique homomorphism g : Jac(C) — A such that g = go fp.

Proof. For the existence of fp see Chapter III, Section 2 in [Mil0g]. For the universal
property see Proposition 6.1. in Chapter III in [Mil0§]. d

Definition 1.6.7. A morphism f : A — B of abelian varieties is called an isogeny if
dim A = dim B and ker f is finite. If such a morphism f : A — B exists, we say that A
is isogenous to B.

Lemma 1.6.8. Being isogenous is an equivalence relation on abelian varieties.

Proof. In Corollary 1.2.7.a) in [BL04] this is shown for complex tori. Since every abelian
variety is a complex torus the conclusion follows. O

Theorem 1.6.9 (Poincaré’s Complete Reducibility Theorem). Let X be a an abelian
variety and let A be an abelian subvariety. Then there is some abelian subvariety B C X
such that X is isogenous to A X B.

Proof. See Theorem 5.3.5. in [BLO04]. O
Theorem 1.6.10. Let X be an abelian variety and let G be a finite group of auto-
morphisms on X. Then, there are simple abelian varieties Aq,...,As such that X is
isogenous to A7 X --- x Al and AT, ..., A are G-simple. Moreover, the varieties
ATV L AT are unique up to permutation and isogeny.

Proof. See Propositions 13.5.4. and 13.5.5. in [BLO4]. O

11



Notation 1.6.11. Let H < Aut(C) and let x be a character of Aut(C'). Then Resg(x)
denotes restriction of y to H.

The following fact follows directly from basic character theory. We will need it when we
study the Jacobian varieties of the curves that we find.

Fact 1.6.12. Suppose that Aut(C) is finite. Let H < Aut(C) and let x1 denote the
trivial character of Aut(C). Then dim HY(C, QC)H =1 if and only if

<ResH (XHO(QQC)) ,ResH(X1)> =1

Furthermore, let 7 : Aut(C) — GL(V) with V. C H°(C,Q¢) be a subrepresentation of
PHYC,Q-) and let ¢ be its character. Then

HY(C, QC)H cCVs <ResH (XHO(QQC)) ,ResH(X1)> = (Resy (¢),Resg(x1)) -

2. Application
2.1. The maximal finite subgroups of PGL3(C)

Notation 2.1.1. We set

w = 627”;/3 e 7_1 + Z\/g’

2
=
1 1
R— :§(w2—w),
1445
M1 =T
_Tl=vE
po = =
B = e?miT,

We let m: GL3(C) — PGL3(C) denote the quotient homomorphism.

Definition / Proposition 2.1.2.

1. Let Gy < SL3(C) be the subgroup generated by

1 0 0 010 e 0 0 1 1 1
Si:=(0 w 0|, T:=[0 0 1|, U:=|0 € 0], V=41 w «?
0 0 w? 1 00 0 0 ew 1 w? w

Its order is 648.

12



2. Let Gy < SL3(C) be the subgroup generated by

010 1 0 0
F1 = 0 0 1 ,FQ = 0 -1 0 y
1 00 0 0 -1
~1 p2 m -1 0 0
F3 = 5 12 M1 -1 71{74 = 0 0 —W
pr =1 po 0 —w? 0

Its order is 1080.
3. Let G < SL3(C) be the subgroup generated by

6 0 0 010 a b ¢
S:=10 g2 0|, T:=|0 0 1|,R:==h|b ¢ al,

0o 0 p4 1 00 c a b
where a = * — B3 and b:= % — % and c:= B — B% and

hi=—(B+ 32+ 34— B0 — 35 — -1 b

B+ +p =B =5 —p) Ne
Its order is 168.
Proof. See Chapter V in [Blil7]. O

Definition 2.1.3. We define
G1:=7(G1), Gy:=n(Ga), G3:=x(Gs3).
The group G is called the Hessian group.
The finite subgroups of PGL3(C) have been classified in 1917 by Blichfeldt in [Blil7].

Up to conjugacy, only three of them are maximal:

Theorem 2.1.4. Let G be a mazimal finite subgroup of PGL3(C). Then G is conjugate
to either G, Gy or G3. The groups G1, G2 and G3 have the following properties:

1. The group Gy is of order 216 and is isomorphic to F3 x SLa(F3), where SLa(F3)
acts naturally on the finite plane F3.

2. The group Go is simple of order 860. It is isomorphic to the alternating group Ag.

3. The group Gy is simple of order 168. It is isomorphic to PSLy(F7). As |G| = 1Gs],
we have Gg = G3.

Proof. See Chapter V in [Blil7] and, for the structure of Gy, see Proposition 4.1 in
[ADO09]. By Proposition 4.14 in [ST00], any simple groups H; and Hs of order 168 are
isomorphic. The fact that PSLy(F7) is simple is stated on Page 145 of [ST00]. O

Corollary 2.1.5. For every i € {1,2}, we cannot find a group G; < GL3(C) such that
W(GZ) = Gz and GZ = GZ

Proof. As can be seen from the character tables in @, the groups G and G2 do not
have faithful 3-dimensional representations. O

13



2.2. Finding invariant curves

Definition 2.2.1. Let G be a group of automorphisms of P2 and let C' be a plane
algebraic curve. The curve C' is invariant under G or G-invariant if Vg € G : gC = C.

Definition 2.2.2. Let V be a complex vector space. For k € Z>, define
SV = Vek)I,
where [ is the subspace generated by
{vi® - @Up — V1)@ Q| 0 € S and vy,..., v €V},
The vector space S*(V) is called the k-th symmetric power of V. We denote the image
of v @+ ®@uwy in S¥(V) by v1 ®--- O vy

Fact 2.2.3. Let n € Z~q, let k € Z>q, let V' be an n-dimensional complex vector space
and let v, ... v, be a basis of V. There is an isomorphism S*(V) — C[X1,..., Xu]x
given by

Vi, @O, = Xy - X5, for any iy, ... i € {1,...,n}.

In what follows, we will often identify S*((C")*) with C[X3, ..., X,]; via this isomor-
phism, where the basis we choose for (C™)* is the dual of the standard basis of C".

Definition 2.2.4. LetNC~7Y < GL,(C) be a subgroup. Then, for any k € Z>(, we define a
representation Skpg : G — GL(S*((C™)*)) given by

g»—>(v1®~--®vkb—>vlog_1®---®vkog_1).
Notation 2.2.5. Let G < GL,(C). We let Skxg denote the character of Skpg.

Fact 2.2.6. For any k € Z>q the representation Skpg induces a representation of G on

ClX1,..., Xk by and therefore it induces an action of G on the homogeneous
elements of C[X1,...,X,]. Let p e C[Xy,...,Xy] be homogeneous and let g € G. Then

for any P € C™ the action can be written as (gp)(P) = p(g~'P) by identifying the
polynomials p and gp with their induced polynomial functions.

Definition 2.2.7. Let G < GL,(C) and let p € C[X1,..., Xk for some k € Zxo. If
gp = p for all g € G, we call p invariant under G or G-invariant.

In order to calculate Skx*é, we have the following proposition:
Proposition 2.2.8. Let G < GL,,(C) be finite, let g € G and let k € Zwo. Let Ay, ..., \n
be the eigenvalues of g counted with their algebraic multiplicities. Then

k

sl = 2 11w
1<i <--<ig<n j=1

where (-) denotes complex conjugation.

14



Proof. Let v1,...,v, be a basis of eigenvectors of g, such that g(v;) = A;jv;. This exists
because g has finite order. Let v],..., v} beits dual basis. Forany 1 <i; <.-- <14, <n
we have

S, @ 0vf) =vjog O @) ogT!

i
k k
_ 1) s . _ N lor o ou
= I3 vioou = TIN v oo
j=1 j=1

The last equality follows from the fact that all eigenvalues of g are roots of unity. There-
fore

{vj, @ 0O}

i1

[1<iy < <ip<n}

is a basis of eigenvectors for Sk,o’é(g). As Skx*é(g) is the sum of the eigenvalues of
Skpg(g), the conclusion follows. O

Definition 2.2.9. Let G be a group and let p : G — GL,,(C) be a representation. A
vector v € C™ is called an eigenvector of p if v is an eigenvector for all elements of p(G).
A linear subspace V' C C" is called an eigenspace of p if all elements of V' are eigenvectors
of p.

Definition 2.2.10. A character x : G — C of a group G is called linear if it has degree
1.

Definition 2.2.11. Let G < GL,(C). For any linear character x of G and any k € Zx>g
we denote by Efz C S¥((C™)*) the maximal eigenspace of S* pg such that G acts on Efé
by multiplication with x. That is

Eiz = {v e SH(CM*)|VgeG:gv= X(g)v} )

Fact 2.2.12. Let G < GL,(C) and let k € Z>o. Then any eigenspace of Skp*G~ is
contained in Efz for some linear character x of G.

Proposition 2.2.13. Let p € C[X,Y, Z] be non-constant and homogeneous such that
(p) = I(V(p)) and let G < PGL3(C) and G < GL3(C) be such that m(G) = G. Then
V(p) is G-invariant if and only if p is an eigenvector of Sdegpp*é.

Proof. We have:
V(p) is G-invariant < Vg € G : gV (p) = V(p)
eVGgeGYPeC*\{0}:p(P)=0— (3 'p)(P)=0
is radical | ,_ = -~
WrETNg e G5 < ()

1EPLBI yi e GIN e C: gp = Mp.
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Notation 2.2.14. For the remainder of this subsection, let G < PGL3(C) and G <
GL3(C) be finite groups such that 7(G) = G. Furthermore, let x1 denote the trivial
character of G.

By [Proposition 2.2.13|, in order to find the G-invariant curves it is sufficient to find the
eigenspaces E’; of S* P*@ for all k € Z~ and all linear characters y of G.

We want to study only one G-invariant curve at a time. If a G-invariant curve comes
within a family of G-invariant curves, given by an eigenspace of S*p* of dimension
greater than 1, then it seems natural to study the family as a whole rather than a single
member of it. We therefore restrict our attention to the dim EQ =1 case for all k € Z~

and all linear characters y of G.

Furthermore, we are only interested in irreducible G-invariant curves since a reducible
G-invariant curve is the union of irreducible G-invariant curves and curves that are not
G-invariant. The latter ones are permuted by the action of G.

To summarize, we are looking for projective algebraic curves that satisfy the following
condition:

Condition 2.2.15. Let C be a projective algebraic curve and let p € C[X,Y, Z]; be
homogeneous such that I(C) = (p). We require that C is irreducible and that there is a
linear character x of G such that p € Ek and dim Ek =1.

2.3. Finding the degrees of the eigenvectors

We use the notation from INotation 2.2.14]. Let x1,...,Xm be the linear characters of
G and let i € {1,...,m}. We know that dim E¥ equals the multiplicity with which x;
appears in the decomposwlon into irreducible characters of Sk . Therefore, we have

) 1
dlmEk = <SkXG,X7,> : |G| Sk ( )Xz(g)
gGG

Thus, in order to find the degrees of the polynomials that are in 1-dimensional eigenspaces
of G, for every j € {1,...,m}, we have to solve the equation

<S’“XG,XJ> —1 (2.3.1)
for k.

Definition 2.3.1. A group H is called perfect if H = [H, H|, where [H, H| is the
commutator subgroup of H.

Example 2.3.2. Let H be any non-abelian simple group, then [H, H] € {1, H} since
[H,H] < H and therefore [H, H| = H, since H is non-abelian. Hence H is perfect. In
particular, the groups G2 and G3 are perfect.

Proposition 2.3.3. The groups 62 and 63 are perfect.
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Proof. Firstly, we know that G3 = Gg and therefore ~G~3 is perfect. Secondly, we
know that m([G2,Ga]) 2 [Ga2,Ga] = Ga. Therefore (G2 @ [Ga,Go]] < 3. But also

Go.Go)| > |Gal, because otherwise [Ga,G2] = Go, which is impossible by

. Additionally, since ker 7|5 is cyclic of order three and ker 7r|[G~2 G, Jker Tl &,
it follows that ker 7T|[G:2 Gy = ker 7T|G~2 and hence [ég, ég] = Gs. O

Proposition 2.3.4. Any linear character of any perfect group H is trivial.

Proof. Let x be a linear character of H. We know that y : H — C* is a homomorphism.
But as the abelianization H/[H, H] of H is trivial and C* is abelian, by the universal
property of the abelianization, the character x must be trivial. O

From the character table of G in @ we see that G has exactly three distinct linear
characters.

Proposition 2.3.5. The only linear characters of G1 are the lifts of the three linear
characters of Gy. All linear characters of Go and Gs are trivial.

Proof. In @ we find, using GAP, that the only linear characters of G, are the lifts of
the three linear characters of Gy. For G2 and (3 the conclusion follows directly from
the previous proposition. O

By calculating explicit formulas for the values of SkXZ:l, S’“Xz;Z and Skxz;3 as done in

, we can find every solutions to () for any G € {G1, G, G3}.
In order to exclude some degrees in which the polynomials we find cannot be irreducible,
we have the following proposition:

Proposition 2.3.6. Leti,j € {1,...,m} and k,l € Z>o and let p € E’;Z and q € Egcj
be homogeneous polynomials. Then pq € E;ng(l] In particular, if dim E’;fxlj =1 and
p # 0 #q, then any r € E)’zjg(lj is reducible.

Proof. For any g € G we have g(pq) = (g9p)(9q) = xi(9)x;(9)pa. O

2.4. Finding the polynomials which are eigenvectors

We use INotation 2.2.14]. Recall that G is finite.

Definition 2.4.1. For any monomial M € C[X,Y, Z] we define

Pré = Z gM.
geé

Proposition 2.4.2. Suppose that dim E>]21 =1.

1. Let M € C[X,Y, Z] be a monomial of degree k. If py; » # 0, then span(p,,; z) =
EF .
X1

17



2. Let n = dim S*((C®)*) and let My,...,M, € C[X,Y,Z] be the monomials of
degree k. Then, there is some i € {1,...,n} such that Pas, ¢ # 0

Proof. 1. Since Prc 18 G-invariant, it is in E;Zl. Since dimEﬁ1 = 1, we have
Span(pMG) = E)’zl if pyr #0.

2. Let 0 # p € Ef and write p = 2?21 c;jMj for c1,...,c, € C. We have

0#[Glp=> gp= ch > gM; = ZCJPM @

geG Jj=1  ge@

X1

and the conclusion follows.

O]

Therefore, if dim E’;l = 1 for some k € Zs( we can find the G-invariant polynomial of
degree k by calculating p MG for different monomials M until we find a non-zero p MG
Now suppose that x is a non-trivial linear character of G and that there is some k € L~
with dim Efz = 1. Let H := ker x and calculate p), 5 for the monomials M € C[X,Y, 7]
of degree k. If p M. # 0 for some monomial M, we check if p M € E’; by letting G act
on py - If P € E we are done with the given k£ and y.

The calculations to solve () for G € {G1,G3,G3} were done in @ using Sage
[ST14]. The calculations to find the non-zero polynomials which are in 1-dimensional

eigenspaces of G were done using GAP [GAP15] in
We obtain the following results:

G1-invariant curves .
Let x1, x2 and x3 be the linear characters of G;. By lPonsition 2.3.&, they are the lifts
of the respective linear characters of (G; as defined in lA_lI We have:

<SkX81’X1> =1for k=9,12,21,24, 33,
<SkX*G*1;X2> = 1 has no solutions for any k € Z~,

("5, xs) = 1 for k = 6,15,18,27,30,39.

By [Proposition 2.3.6 the polynomials of degrees 15, 18, 21, 24, 27, 30, 33 and 39 are
reducible. This leaves only the degrees 6, 9 and 12. We find the following polynomial in
ES .

X3

=X — 10XV + V0 —10X32° —10Y3 23 + Z°.

The curve V(py) is irreducible by tProposition 2.4& below. The G;-invariant polynomials
of degree 9 and 12 are reducible, as can be seen by a computation in GAP. See
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Ga-invariant curves
Let x1 be the trivial character of Go. This is the only character of Gy by

. We have:

<S’“xg2,xl> — 1 for k = 6,45, 51.

By tProposition 2.3.d the polynomial of degree 51 is reducible. This leaves only the
polynomials of degree 6 and 45. We obtain the following Gs-invariant:

p2 =XC+aX'V2 40XV + YO+ bX' 2% + XV 2P+ aYV' 2P + aXP 2 + 0V 2 + 26,

where
@ =2+ LivB- SVE+ SivBYB
b= g_ﬁ\m V54 SivBV5

c:=15 — 3iv/3V/5.

The curve V(pg) is irreducible by Proposition 2.4.3 below. The Go-invariant polynomial
of degree 45 is reducible, as can be seen by a computation in GAP. See

G3-invariant curves 3 3
Let x1 be the trivial character of Gs. This is the only character of G3 by

. We have:

<SkXZ;3,X1> — 1 for k = 4,6,8,10, 21,25, 27,29, 31.

By lProposition 2.3.d the polynomials of degrees 8, 10, 25, 27, 29 and 31 are reducib~le.
This leaves only the polynomials of degree 4, 6 and 21. We obtain the following G-
invariants:

p3 =XY3+ X3Z24+v2Z3
pa =X°Y + XZ° +Y°Z —5X%Y? 22

The curves V(p3) and V (p4) are irreducible by [Proposition 2.4.51 below. The Gs-invariant
polynomial of degree 21 is reducible, as can be seen by a computation in GAP. See

Proposition 2.4.3. The projective algebraic curve V (p;) is smooth and irreducible for
any i€ {1,...,4}.

Proof. By computing the multipolynomial resultant of the partial derivatives of p;, as
defined in [Theorem 1.1.6, we see that gﬂ’g, g’;’} and 8’” have no non-zero common roots.
The multipolynomial resultant was computed using Sage [E 1;“ IA_7| Using lﬁropo&—

we see that all of them are smooth and hence irreducible by Proposition 1.1.2
and [Fact 1.0.6, 0
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In summary we have:

Proposition 2.4.4.

1. For G = G4, the only curve satisfying |C’0ndz'tz'0n 2.2.15{ is V(p1).

2. For G = Gs, the only curve satisfying |Condz'tz'on 2.2.15 is V(p2).

3. For G = Gs, the only curves satisfying |C'0nditi0n Q.Q.Iﬁ are V(p3) and V (py).

Definition 2.4.5. For any i € {1,...,4} we define
Ci:=V(pi)-

Proposition 2.4.6. We have Aut(Cy) = Gi and Aut(Cy) = Gy and Aut(Cs) =
Aut(C4) = Gg.

Proof. By construction, we have homomorphisms G; — Aut(C7) and Gy — Aut(Cs)
and Gz — Aut(C3) and G3 — Aut(Cy), where the homomorphisms are given by the
restriction of the automorphisms of P? to the curves. By , any automor-
phism of any of the curves is the restriction of a unique automorphism of P?. Thus,
the homomorphisms are injective. Furthermore, since G, G2 and G3 are maximal finite

subgroups of Aut(P?) and Aut(C;) is finite for i € {1,...,4}, the homomorphisms are
surjective, too. U

In the following subsections, we will study the Jacobians of C4, ..., C4 and find the fields
over which C1,...,Cy can be defined.

Notation 2.4.7. For any A € C we denote by Re(\) the real part of A.

2.5. The curve C;
The curve C] is already defined over Q because p; € Q[X,Y, Z].

In what follows, x1,...,x10 denote the irreducible characters of Aut(C}) as defined
in the character table of G; = Aut(C}) in @

Lemma 2.5.1. We have either
XHO(CLQCI) = X4+ Xo

or

Xi(cy,90,) = Xa+ X0

Here deg x4 = 2 and deg x9 = deg x10 = 8 and x9(-) = x10(-) and x2 has values in Z.

20



Proof. We have deg XHo(C1,00,) = deg PHO(C1.0c,) = genus(Cp) = 10 by
and . Since the number of fixed points ¢ of any automorphism in Aut(Cy)

is > 0, the Lefschetz Fixed Point Formula gives us the following upper
bound:

vg € Aut(C) \ {1} : Re (Xgo(cy 00,)(9)) < 1

We know that x HO(C1 00, ) is the sum of irreducible characters of Aut(C1), and the above
»ECY

upper bound restricts the combinations of irreducible characters in the decomposition
of x H(C1.0c, )" By looking at the character table of G; we find that the only characters
20

of Aut(C1) of degree 10 that respect the bound are:

XHO(CLQCl) = X4+ X8
or (2.5.1)
XHo(cr 00, ) = Xi T X5 where ¢ € {4,5,6} and j € {9,10}.

We use the notation from INotation 2.1.]] and lDeﬁnition / Proposition 2.1.ﬂ. In order to
further determine y HO(Cy 0c,) Ve look at the automorphism g == (T251 U ) As T?S5,U
’ 1

has the three different eigenvalues 1, w and w?, all its eigenspaces are 1-dimensional and
therefore ¢ has at most 3 fixed points on C. The fixed points of g in P? are

(1:6:68),(1:64165),(1:67:62).

By evaluating p; at these points, we find that all three of them lie on C;. By
_em 1.2.

, we then have
1
Re (XHO(Cl’ch)(g)) = _5

By evaluating all possible candidates for x HO(Cr 90, ) in (R.5.1) on g using GAP, we find
’ 1
that either
XHO(Cy 00,) = X4 + X9
or

XHO(C1,Qc,) — X4 =+ X10-

The claims about the degrees and values of the characters follow directly from the
character table. g

Let 0 : G1 — (1 denote complex conjugation. This is a well-defined automorphism since
we have for the generators S1, T, U and V of Gy:

T=T and ?1:5;1 and U=U""' and V=V"1L

The automorphism ¢ permutes x4+ x9 and x4+ X10, the two possibilities for x HO(Cy 9, )
»eCy
We will, without loss of generality, restrict us to the case x HY(C1.00,) = X4 + X9 since
’ 1

the cases only differ by an automorphism of G1.
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Proposition 2.5.2. The Jacobian Jac(Cy) is isogenous to ES x B, where B is a two-
dimensional abelian variety that is not the product of two elliptic curves over the rational
numbers and E an elliptic curve given by the equation

Y7 =X+ 27°
with j(E) = 0.
Proof. Let 7o and 73 be the irreducible subrepresentations of p HO(C1.0c,) that correspond

’ 1

to x4, respectively to xo. Let H°(C,Q¢, ) = Va@® V3 be the corresponding decomposition
of HY(CY,Q¢,) with dim Vz = 2 and dim Vg = 8.
The symmetric group S3 acts linearly on C [X, Y, Z] by permuting the variables. Since p;
is a symmetric polynomial, the curve C; = V(p1) is invariant under the induced action

of S3 on PGL3(C) = Aut(P?). Let H < Aut(C;) denote the group of automorphisms of
C} that is induced by the action of S3 on Aut(P?). Using GAP, in @, we find that

<ResH <XH°(C17901)> ,ResH(X1)> = 1= (Resu(x9),Resu(x1)) - (2.5.2)
By , this implies that dimHO(Cl,ch)H =1 and HO(Cl,ch)H C Vi. The
categorial quotient F := Cj/H is a smooth projective algebraic curve by
and has genus 1 by . By a calculation in @, we find that
FE is isomorphic to the curve defined by

Y?Z = X%+ 77,

We have j(E) = 0. Let ¢ : C; — C1/H denote the quotient morphism. The pullback
map ¢* : HY(E,Qg) — H°(C1,9¢,) is injective since q is surjective. The image of ¢* is
HO(C1,90,)". Since 73 is irreducible of degree 8, there are gy, ...,gs in Aut(C}) such
that

8
Vs = P gi(q" (HO(E,Qp))). (2.5.3)
=1

Choose any point P € C and let P := q(if’) and consider the elliptic curve F with
identity P. By the universal property of the Jacobian Jac(C}) in [Proposition 1.6.d7
there is a unique homomorphism g : Jac(C}) — E such that ¢ = §o fz, where f5 is the
unique morphism given by tProposition 1.6.d. Define a morphism

G:=(Gogi-..,Gogs): Jac(Cy) — E¥,

where the action of Aut(C}) on Jac(C1) is induced by the action of Aut(Cy) on H°(Cy, Qe ).
The corresponding pullback map on the holomorphic differentials

¢ H'(E,Qp)®® =2 HO(ES, Qps) — H®(Jac(Ch), Qac(cy)) = HO(C1, Qcy)

is just the injection HY(FE, QE)@S — Vg € H°(C1,Q¢,) given by (M) Therefore ¢*
is injective and it follows that ¢ is surjective. It then follows from [I'heorem 1.6.g that
Jac(C1) is isogenous to E® x B for some abelian variety B.

By a calculation of Professor Pink in , the abelian variety B is not isogenous to E'?
for any elliptic curve E’ defined over Q. It might still be isogenous to E'? for an elliptic
curve E defined over a finite extension of Q. O
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2.6. The curve (,

The polynomial po that defines Cs is not defined over Q. Still, it is possible to find a
rational equation for Cj:

Theorem 2.6.1. Fvery smooth projective algebraic curve C with |Aut(C)| = 360 is
projectively equivalent to the Wiman sextic, which is the projective algebraic curve defined

by
fo:=2725 —135XY Z* —45X%Y27? + 9(X° +Y5)Z +10X3Y3.

That is, there is some T' € PGL3(C) such that T(C) = V(fs).
Proof. See Theorem 2.1 in [DIKO0Q]. O

acter table of G5 in

Denote by x1, ..., X@he irreducible characters of G = Aut(C2) as defined in the char-

Lemma 2.6.2. The representation PHO(Co.00,) is irreducible with XH0(Cy,00,) = XT-
’ 2 ’ 2

Proof. We have deg PHO(Cr020,) = dim H°(Cy, Qc,) = genus(Cy) = 10 by
»oCo
and . Since the number of fixed points for any automorphism is > 0, the

Lefschetz Fixed Point Formula gives us the following upper bound:

Vg € Aut(Co) \ {1} : Re (Xppocy 00,)(9)) < 1.

By looking at the character table of Gg, we find that the only character of G of degree
10 that respects this bound is x7. The conclusion follows. O

Proposition 2.6.3. The Jacobian variety Jac(Cy) is isogenous to E'* where E is the
elliptic curve given by the equation

1053 13365
Y27 = X3+ <i\/15 + 2) XZ?+ (54675i\/15 - 172773) 7Z3.

2
e have 30.5-19 3%.5%-181
J(E) = Ti\/ﬁ -
Proof. Since p HO(Cs 20, is irreducible by , we have that Jac(Cy) is Aut(Cs)-

simple, where Aut(C2) acts on Jac(Cy) by the action induced by p HO(C.920,)" Then, by

h’heorem 1.6.1d, there is a simple abelian variety A and a k € Z~ such that Jac(Cs) is
isogenous to A¥. Define a morphism by

@ : Cy — P?
(X:Y:2)— (X*:Y?:27).

Then ¢(C2) = V(r), where

ri=U3+aU*V +bUV? + U3 + bUW + cUVW + aV?*W + aUW? + bVW? + W3,
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and the coefficients a, b and ¢ are as in the definition of po and U, V and W are the
coordinates in the codomain of ¢. In , using Sage, we obtain the following equation
for a curve E = V(r) of genus 1:

1053 13365
Y27 = X3+ <2i\/15 + 2) X7+ (54675i\/15 - 172773) 7Z3.

We have 6 s o
. 3-5-19, — 3°-5°-181

Choose any P € Cy and let P := ¢(P). Consider the elliptic curve E with identity P.
Then lProposition 1.6.d gives us a morphism fz : Co — Jac(Cs) and a homomorphism
¢ : Jac(C3) — E such that ¢ = ¢ o fz. By , it follows that Jac(Cs)
is isogenous to £ x B where B is some abelian variety. Therefore E x B is isogenous
to A*. But E and A are simple abelian varieties and E is isogenous to a factor of

Ak Therefore A must be isogenous to E. We have k = 10, because dim E = 1 and
dim Jac(Cy) = genus(Cs) = 10. O

2.7. The curve (5

The curve Cj is called the Klein quartic and was studied in 1879 by Felix Klein in
[Kle79]. It is a Hurwitz surface, meaning that its automorphism group has the maxi-
mal order allowed by , which is 168 for a curve of genus 3. In fact, the
Klein quartic is, up to isomorphism, the only Hurwitz surface of genus 3. Furthermore,

there is no Hurwitz surface in genus 2. See, for example, Section 2.2. in [Elk99]. Since
ps € Q[X,Y, Z], the curve Cj is defined over Q.

Denote by x1, ..., xg_the irreducible characters of G5 = Aut(C3) as defined in the char-
acter table of G3 inm

Lemma 2.7.1. The representation PHY(Cs 00, ) is irreducible and either XH0(Cy,00,) = X2
’ 3 ’ 3
or XHO(Cg,ch) = X3-

Proof. The representation PHY(C3.0c,) has degree 3 since genus(C3) = 3. As for the
»eC3

previous curves, we get an upper bound on the real part of x HO(C3.90,) by :
’ 3

Vg € Aut(Cy) \ {1} : Re (xypcy.00,)(9)) < 1

By looking at the character table of G'3, we find that the only characters of G3 of degree
3 that respect this bound are y2 and x3. The conclusion follows. O

Proposition 2.7.2. The Jacobian Jac(Cs3) is isogenous to E3 for the elliptic curve E
that is defined by
Y2Z = X? — 8960X Z* — 401408 Z°.

We have j(E) = —3375 = —33 - 53,
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Proof. The representation PHO(Cs 90, ) is irreducible by . Therefore, the Ja-
»iC3
cobian Jac(C3) is Aut(Cs)-simple. where Aut(C3) acts on Jac(C3) by the action induced
by PHO(Cs 00, )" Then, by 'I‘heorem 1.6.1d, there is a simple abelian variety A and a
»iC3

k € Z~o such that Jac(C3) is isogenous to A*.

The alternating group As acts linearly on C[X,Y, Z] by permuting the variables. Since
ps is invariant under this action, the curve C3 = V/(p3) is invariant under the induced
action of A3 on PGL3(C) = Aut(P?). Let H < Aut(Cs3) denote the group of automor-
phisms of C3 that is induced by the action of A3 on Aut(P?). In , we calculate that
E := (C3/H is a curve of genus 1 that isomorphic to the curve defined by

Y27 = X3 —8960X Z% — 40140823,

and j(E) = —33-5%. Let ¢ : C3 — E be the quotient morphism. Choose any P € C; and
let P := ¢(P). Consider the elliptic curve E with identity P. Then Proposition 1.6.6
gives us a morphism : C3 — Jac(Cs) and a homomorphism ¢ : Jac(Cs3) — E such
that ¢ = Go f5. By , it follows that Jac(C3) is isogenous to E x B where
B is some abelian variety. Therefore E x B is isogenous to A*. But E and A are simple

abelian varieties and F is isogenous to a factor of A*. Therefore A must be isogenous
to E. We have k = 3, because dim F = 1 and dim Jac(C3) = genus(C3) = 3.

d

2.8. The curve C;
The curve Cjy is defined over Q because py € Q[X,Y, Z].

Let x1,-..,xqs denote the irreducible characters of G5 as defined in the character ta-
ble of Gg in)m

Lemma 2.8.1. We have either

XHO(C4,QC4) =X2+ X5
or

XHO(C4 0c,) = X3 T X5

Also, deg xo = degxs =3 and degxs = 7.
Proof. The representation PHO(Cs 00, has degree 10 because genus(Cy) = 10 by
»eCy

Erem 1.1.7. As for the previous curves, we get an upper bound on the real part of
Xio(C 00, ) b [Cheorem 1.2.7;

vg € Aut(C) \ {1} : Re (Xpoc00,)(9)) < 1

By looking at the character table of G3 = Aut(Cy), we find that the only characters of
Aut(Cy) that respect the bound are x2 + x5 and x3 + x5. The claims about the degrees
and values of the characters follow directly from the character table. O
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Let 0 : G3 — (3 denote complex conjugation. This is a well-defined automorphism since
we have for the generators S, T and R of Gs:

T=T and S=S' and R=R.

The automorphism o permutes x2+ x5 and x3+ X5, the two possibilities for y HO(C1.90,)"
»0y
We will, without loss of generality, restrict us to the case x HO(Cs920,) = X2 + x5 since
»40y
the cases only differ by an automorphism of Gj.

Proposition 2.8.2. The Jacobian Jac(Cy) is isogenous to ET x E3 for elliptic curves
FEy and E5 where Ey is defined by

Y2Z =X+ (%i\ﬁ+ 55) X72 - (mz'ﬁJr 5843) 73
2 6 3 27
and Fy is defined by
YV2Z = (X +72) (X? - 7XZ +142?).
We have

. 53.113  5%.113.
](El):_ 925 - 25 .7 Zﬁa

§(F9) = —3% .53,

Proof. We use the notation from l];)eﬁnition / Proposition 2.1.2. Let V := (TS3)(SR)(TS?)!
and W := (T'S)R(TS)? and let Hy := (W, V?) < G3. Denote by Hi < Aut(Cy) the sub-
group of automorphisms of Cy4 that is induced by Hi. Using GAP, in , we find
that

(Resi, (Xuo(cy 00, ) - Res (1)) = 1= (Res, (x3), Res, (x1)) (2.8.1)

Let 73 and 7; be the irreducible subrepresentations of PHY(C4.00,) that correspond to
’ 4

X2, respectively to xs. Let H°(Cy,Qc,) = Va3 @ V7 be the corresponding decomposi-
tion of HY(Cy, Q) with dim V3 = 3 and dimV; = 7. By Fact 1.6.12, we have that
dim H°(Cy, Qc,)™ =1 and HO(Cy, Q¢, )™ C V4. The categorial quotient By := Cy/H

is a smooth projective algebraic curve by tProposition 1.4.5 and has genus 1 by
. By a calculation of Professor Pink in |A.11), we see that E is defined by

1
448
By using Sage, in , we see that a Weierstrass equation of F; is

(X —5)Y?= (=7+50v7) (37X +iv7 - 8X2 417X +3) (VT - 4X — 1)

55 55 145 5843
2 3 . o . _
Y2-X +<2zf7+6>x i 7 R
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We get that

, 5%.113  51.113

J(Er) = — 5% T 957 V7.
Let ¢1 : C4 — Ep denote the quotient morphism. Pick any point Py € C4 and let
Py := ¢1(P1). Cousider the elliptic curve E; with identity P;. In a way that is analogous
to the proof of [Proposition 2.5d, we get that there is a surjective homomorphism ¢ :
Jac(Cy) — Eq and g1, ..., g7 € Aut(Cy) such that the morphism

qu = (q~1 ©4g1,--- 7q~1 097) . Jac(C4) - E17

is surjective. By rfheorem 1.6.q and tProposition 1.6.5, the Jacobian Jac(Cjy) is then
isogenous to E7 x B for some abelian variety B of dimension 3.

By a calculation in GAP in , we see that there is no K < Aut(Cy4) such that
C4/K is a curve of genus 1 and H(Cy, Qc,)™ € Vi. Therefore, we cannot determine
the structure of B in a way that is analogous to the way in which we determined the
structure of the 7-dimensional factor of Jac(Cy). Let Hy := (V) < Gs and denote by

Hy < Aut(Cy) the group of automorphisms of Cy that is induced by Hs. By a calculation
in GAP in , we find that

(Resi, (Xpo(0, 00, Resm (x1) ) = 2, (2.8.2)

and therefore the quotient Cy/H is a smooth projective curve of genus 2 by Eroposi:l
kion 1.4.5| and 'Theorem 1.4.6. By a calculation of Professor Pink in |A.11), there is a
surjective morphism Cy/Hy — C’, where C” is the hyperelliptic curve defined by

Y274 = 2X? + XZ + 734X —17X3Z + 19X 22 + 9X 73 + 7).

In the same calculation we see that there is a morphism from this hyperelliptic curve
onto an elliptic curve Ey defined by

Y2Z = (X +72) (X?—7XZ +142Z%)

with j(FE2) = —33 .53, Therefore, there is a surjective homomorphism ¢ : Cy — FEbs.
Pick any P, € C4 and let Py := q2(f~’2). Consider the elliptic curve Ey with identity
P,. By tProDosition 1.6.d, we get a surjective morphism ¢z : Jac(Cy) — FEs3. Therefore,
by [Theorem 1.6.97 the curve Fj is isogenous to a factor of Jac(Cy). Note that Ej
and Fj are not isogenous because the denominators of j(Ep) and j(E2) have distinct
prime factors. Therefore Fs has to be isogenous to a factor of B, because it cannot
be a factor of Ef. The group Aut(Cy) acts on Jac(Cy) because the contragredient

representation p’;lo(@ ;) descends to the quotient Jac(Cy) = H°(Cy, Qc,)” /H1(Cy, 7).
NECy

Let A C Jac(Cy) be an Aut(Cy)-simple abelian subvariety. Then the preimage of A in
H°(Cy,Q0,)" is the representation space of some subrepresentation of p*HO( of the

C1.00,)

same dimension as A. Since p’;{o( ) has exactly two irreducible subrepresentations

047QC4
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74 and 77 of dimension 3 and 7, respectively, by ITheorem 1.6.1d, the Jacobian Jac(Cy)
is either the power of one simple abelian variety or it is of the form A]fl X ASQ where
Ay and A, are simple abelian varieties with dim Alfl = 7 and dim A/;€2 = 3. But since
we already know two non-isogenous simple components of Jac(Cy) the second case has
to be true. It follows that A; is isogenous to Fy and As is isogenous to Fo, because we
already know that E] is a factor of Jac(Cy). O

A. Appendix

A.1. Character tables

The following table was computed by using GAP [GAP15] using the command
Display(CharacterTable(Gltilde/Group(E(3)*IdentityMat(3))));

after defining G1tilde using the code in @ The character table of the Hessian group
G is:

Classsize |1 12 54 9 8 12 36 24 36 24
X1 1 1 1 1 1 1 1 1 1 1
X2 1l ¢ 1 1 1 &1 o o a1 o1
X3 1 a7 1 1 1 oo a1 a1 a1 o
X4 2 -1 0o -2 2 -1 1 —1 1 -1
X5 2 —an 0 =2 2 -0 v -y ay —ai
X6 2 —aq 0 -2 2 -—-oq o -0 a1 —aq
X7 3 0 -1 3 3 0 0 0 0 0
s 8§ 2 0 0 -1 2 0 -1 0 -1
X9 8 a9 0 0 -1 o 0 —ag 0 —o
xo |8 @ 0 0 -1 as 0 —a; 0 —ar

Here ap = *™/3 and ay = 2¢27/3,

The character table of Gy = Ag is taken from page 424 in [JLOL]:

Class representative | 1 (12)(34) (123) (123)(456) (1234)(56) (12345) (123456)

Class size 1 45 40 40 90 72 72
X1 1 1 1 1 1 1 1
X2 5 1 2 -1 -1 0
Y3 5 1 1 2 -1 0 0
X4 8 0 —1 —1 0 (65} a9
X5 8 0 -1 -1 0 (6% (6751
Y6 9 1 0 0 1 1 1
X7 10 -2 1 1 0 0 0

Here o = 1_2‘/5 and ag = 1+V5
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The character table of G5 = PSLy(7) is taken from the pages 313 and 318 in [JLOL]:

Class size 1 21 42 56 24 24
Order of representatives |1 2 4 3 7 7
Y1 1 1 1 1 1 1
Yo 3 -1 1 0 a a
X3 3 -1 1 0 a «
X4 6 2 0 0 -1 -1
X5 7T -1 -1 1 0 0
X6 8 0 0 -1 1 1

Here a = A%ﬁ

A.2. Values of S*p;. , S*p;; and S’“pg3

We use the notation from INotation 2.1.]J and lDeﬁnition / Proposition 2.1.ﬂ.

Corollary A.2.1. If n = 3, lProposition 223 simplifies to

o

<.

SEXE(9) =30 D NN
i=0 j

I
o

Let i € {1,2}.

Fact A.2.2. By m; : G; — G; we denote the projection homomorphism. Let C be a
conjugacy class of Gi. Then either w; *(C)) is a conjugacy class in G;, or m1(C) =CrU
CyUC3, where Cy, Cy and Cs3 are conjugacy classes in Gy with |C1| = |Ca| = |C3| = |C|.
In the latter case we have C; = wCy = wW?Cs.

Also, the linear characters of G; are lifts of linear characters of G; by [Proposition 2.3.5*.
Therefore, they are constant on the preimages of conjugacy classes of G;.

Let C be a conjugacy class of GG; such that 777;_1(0) = C1 U Cy U O3, where C1, Cy and
Cs are conjguacy classes of G;. Let y be some linear character of G;. Then, to calculate

<Skxg_,x>, it is sufficient to calculate Skx’é_(C’l) for the case when k = 3n for some
n € Z~g. This is because for £k Z 0 mod 3 we have

3 3
D 1GiISFXg (COX(Cr) = [Cilx(C1) Y SFx (O
I=1 =1
= [C1X(C1)(1 +w" +w*)SExG (C1) = 0.
So the terms for C'1, Cy, and C'5 cancel out in <San_7X>- Also we have
S (C1) = S (Co) = S5 (C),

so it is sufficient to calculate S3nxg_ for one of Cq, Cy, Cs.
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Notation A.2.3. In the following tables for G; we have the following conventions: if
the union of three conjugacy classes C1, Cs and Cj5 is the preimage of one conjugacy
class in Gj, as in only a row for one of the classes is shown and the classes
are named (1 = C; and Cjo = C and Cj 3 = C3 for some | € Z~¢. If the name of a

conjugacy class only has one index in the table, it is the preimage of a conjugacy class
of Gz

A.2.1. Values of 5"‘3,0'*G~1

Denote by x1 the trivial character of G1 and by x2 and x3 the non-trivial linear characters
of GG1. The following table lists the conjugacy classes of G, their size, the eigenvalues
of the representatives, values of xo, x3 and Skxqu or Sgnx*él. We use the conventions

from Notation A.2.3.

Table A.2.4: Conjugacy classes of Gy

Representative | Class Order | Eigenvalues | x2 | x3 Skx*dl(-) or S3”X*G.1(.)
2
2
Cia=1s 1 1,1,1 1] 1 57X (Cia) = M
1 if k=0 mod 3
Co:=T7 24 1,w,w? 1)1 Skxr (Co) =
2 Xa, () =1, ifk=1,2 mod3
2(3n +1)(—1)*" + 1+ (—1)*"
Csp = V2 9 L-1,-1 | 1|1 S5 X% (Can) = (3 + 1)( )4 1+ (=1
1 if3n=0,1 mod 4
Cap =TS, TV? 54 1,4, — 1|1 5% (Can) = ’
ot ! h X (@) =10 it3n=23 mod 4
2 7 2 3n. * w" —(3n + 1)‘*’”“
Cs,1:= (S17)°TU 12 €, €, € w | w S Xg, (Cs1) = T
Ce :=TS1TU 72 1,w,w? w | w? Skx*dl (Cs) = Skx*dl (C2)

o2 2 4 4 2 3n. % _ D)"w" (1+(-1)"w w+(-1)"w
Cra:=S{TUV 36 —€,—€",¢€ w |w | S Xé, (C71) = - ( Tre 3
Cs = T28,TU? 12 e, e, e W | w 5% x5, (Cs1) = S3nx, (Cs)

Cy = S§212U? 72 1, w,w? W w Skx*dl (Co) = Skx*dl (C2)
Cho1 := S1TU?V? 36 S -, —e | W | w 5%"xgG, (Cro) = S3rxg (Cra)

The columns labeled “Representative”, “Class Order”, “Eigenvalues”, “xs’

)

and “Xs 7

were computed using GAP in The values of SS”Xgl and Skxz;l were calculated

by hand using k]orollary A.2.]J. Let i € {1,2,3}. The following identities, which can
be proven by direct calculations, are useful to evaluate <Sk‘xél, X1), <Skx*G~l, x2) and

(S™xg, - x3):

2 3n=0,15 mod 18

Sgn * CZ+SSn (O ) =
Xg, (Cri) Xg, (Choi) —1 3n=3,6,9,12 mod 18
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XQ((3'7,1‘)5’?’")(81 (C74) + x2(C10.4)S*"x

X3(C7.0)5%" X, (Cri) + x3(Cr0,:)S™"x

S3n (05 1) + S3n

(C5 Z)sSn

5 (Cs1) + x2(Cs, z)Sgn

Xa(C5.)5¥X (Cs.) + x3(Cs.0) S X5

A.2.2. Values of S*p%.

0101 =

0101 =
CSZ
CSz

C8z

2 3n=3,6 mod 18

-1 3n=0,9,12,15 mod 18
2 3n=9,12 mod 18

-1 3n=0,3,6,15 mod 18
3n+2 3n=0 mod9
-1 3n=3 mod?9
-3n—-—1 3n=6 mod9
-1 3n=0 mod?9
—-3n—1 3n=3 mod9
3n+ 2 3n=6 mod9
—3n—1 3n=0 mod9
3n+ 2 3n=3 mod?9
-1 3n=6 mod9

The following table lists the conjugacy classes of Ga, their size, the eigenvalues of the

representatives and the values of Skxg2

notation from [Notation A.2.3.

3n . *
or S XG,:

2mi/5

Here, v = ¢ We use the

Table A.2.5: Conjugacy classes of Gs

Representative Class Order | Eigenvalues SkXZjQ () or S3HXZ¢2(')
3n)% +9n +2
Cyq = I3 1 1,1,1 $¥x5, (C11) = (”)%’”
3n+1)(=1)3" + 14 (-1)3"
Con = FaFy Py FyFy Fy Fy 45 1,-1,-1 x5, (Ca) = 2B0 1N )4 +1+(=1)
Cs1 = FF2Fy Py Fy Fy Py Fy F 72 Lt | Sy (Caa) = i (L e oy
3,1 ‘= Lal'i 'slo 1431721 , U, XG2 3,1 T 1,1 1=,
1 1— V76n72 1— V712n74
L 2 2 3 3n 6n+2
04,1 = F1F2F3F2F1F4 72 1,1/ , V S XG2(C4 1) 1_ .2 ( 1_,-—2 -V 1,1 )
. " 1 3n=0,1 mod4
Cs,1 = IRy FEFs Py FyFs )y 90 1,4, —1i S37y &, (Cs1) = {0 n=23 mod4
1 k=0 mod3
R 2 k
Co = BEEE, 120 Lw,w "X, (Co) = {0 k=12 mod 3
Cr = F3Fy FiFyFy 120 Lw,w SkXE;'Q (Cr) = S*xe (Cﬁ)

The columns labeled “Representative”, “Class Order” and “Eigenvalues” were computed

using GAP in |A.5.
borollary A2

Let i € {1,2

3

1

The values of S3nxg2 and S* 82 were calculated by hand using
,3}. The following identity, which can be proven by direct



calculation, is useful to evaluate (S¥y* |, x1), where y; is the trivial character of Ga:
XG,» X

2 3n=0,2 modb
S3nx*G~2(C'37¢) + S3nxg2 (Csi) =<1 3n=1 mod5
0 3n=3,4 mod5

A.2.3. Values of S* 5
3

The following table lists the conjugacy classes of G3, their size, the eigenvalues of the
representatives and the values of Skxzq[ . The representatives of the conjugacy classes
were found by trying different elementas, using the orders of the class representatives
from the character table in @ and the fact that elements in the same class must have
the same eigenvalues.

Table A.2.6: Conjugacy classes of G

Representative | Class Order | Eigenvalues Skxég )
k* +3k+2
k. *
Iy ! 111 S, (1) = —HIEE2
- 2(k + 1)(=D* +1+ (-1)"
R 21 1,-1,-1 S*xs, (R) = .
1 k=0 mod3
T 56 1, w,w? Skxx (T) =
“w Xe,(T) {0 k=12 mod 3
1 k=01 d 4
RS 42 1,i,—i Skx% (RS) = ) o
3 0 k=2,3 mod4
2 S | Lkl =B a1 g
S 24 67576 SXg"3(S)*1_ﬁ2 fB 1_53 B 1_ﬁ
B 3 1 _ 1— /Bd(k-‘rl) B 1— 62(1€+1)
1 3 35 6 k% 1y _ 6k _ g—5k+1
S 24 ﬁ767/3 SXGE'(S ) 1_B<ﬂ 1_53 6 1_52

The following identity, which can be proven by direct calculation, is useful to evaluate
<Skx*G~3, X1), where x1 is the trivial character of Gs:

2 k=0,4 mod?7
-1 k=1,3 mod?7
-2 k=2 mod?7

0 k=5,6 mod?7

k. * k. x —1\
S (S) + SFx (57 =

A.3. Definition of G, G, and G5 in GAP
The following code GAP code defines él, GNQ and G~32
Listing A.3.1: DefineGroups.g

omega:=E(3);
epsilon:=E(9)~2;

32



S1:=[[1,0,0],[0,omega,0],[0,0,omega~2]];
rho:=1/(omega-omega~2) ;

T:=[[0,1,0],[0,0,1]1,[1,0,01];
U:=[[epsilon,0,0],[0,epsilon,0],[0,0,epsilon*omegall;
V:=rhox*[[1,1,1],[1,0omega,omega”2],[1,omega"2,omegall;
Gitilde :=Group(S1,T,U,V);

F1:=[[0,1,0],[0,0,1],[1,0,0]11;
F2:=[[1,0,0],[0,-1,0],[0,0,-1]1];

mul:=(-1+Sqrt (5))/2;

mu2:=(-1-8qrt(5))/2;

F3:=[[-1,mu2,mull, [mu2,mul,-1], [mul,-1,mu2]1/2;
F4:=[[-1,0,0],[0,0,-omega],[0,-omega~2,0]1];
G2tilde :=Group(F1,F2,F3,F4);

beta:=E(7);
S:=[[beta,0,0],[0,beta~2,0],[0,0,beta"4]];
T:=([0,1,0],[0,0,1]1,[1,0,0]1];

a:=beta"4-beta”3;

b:=beta"2-beta”5;

c:=beta-beta”6;
h:=-(betat+tbeta"2+beta~4-beta~6-beta~5-beta~3) ~(-1);
R:=[[a,b,c],[b,c,al,[c,a,b]l]l*h;

G3tilde:=Group(S,T,R);

A.4. Linear characters of le
The following GAP code computes and outputs the number of linear characters of Gy:

Listing A.4.1: LinearCharactersGltilde.g

Read("DefineGroups.g");

Print ("There,are ") ;

Print (Size(LinearCharacters(Gltilde)));

Print (", different_linear,,characters of Giltilde.");

The output is:

Listing A.4.2: Output of LinearCharactersGltilde.g

There are 3 different linear characters of Gltilde.

A.5. Conjugacy classes of G, and G,
The following GAP code computes and outputs the data needed for Table .

Listing A.5.1: ConjugacyClasses.g

Read ("DefineGroups.g");

homGltilde :=EpimorphismFromFreeGroup(Gltilde:names:=["S1","T","U","V"]);
CCGltilde:=ConjugacyClasses (Gltilde);
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CCGltildeWords:=List (CCGltilde ,x->PreImagesRepresentative (homGltilde,
Representative(x)));

Print("Theurepresentativesuofutheuconjugacyuclassesuoqultildeuare:u");

Print (CCG1ltildeWords) ;

Print ("\n");

Print ("The_sizesof the ,conjugacy ,classesare:,");

Print (List (CCGltilde ,x->Size(x)));

Print ("\n");

Print ("The_eigenvalues of the_ representatives of the conjugacy,");

Print ("classesywith multiplicitiesgare: ");

Print (List (CCGltilde ,x->[List (Eigenspaces (CF(36) ,Representative(x)),
y->Dimension(y)) ,Eigenvalues (CF(36) ,Representative(x))]));

Print ("\n");

LC:=LinearCharacters(Gitilde);

Print ("The linear characters evaluated, on the conjugacy  classesgare:,");

Print (List (CCGltilde ,x->[Representative (x) ~(LC[2]),
Representative (x) “(LC[3]1)1));

Print ("\n");

homG2tilde:=EpimorphismFromFreeGroup (G2tilde:names:=["F1","F2" ,"F3","F4"]);

CCG2tilde:=ConjugacyClasses (G2tilde);

CCG2tildeWords:=List (CCG2tilde ,x->PreImagesRepresentative (homG2tilde,
Representative(x)));

Print ("The_ representatives of the conjugacy classes of ,G2tilde are: ") ;

Print (CCG2tildeWords) ;

Print ("\n");

Print ("The,sizesof  the ,conjugacy ,classesare:,");

Print (List (CCG2tilde ,x->Size(x)));

Print ("\n");

Print ("The_eigenvalues of the_ representatives of the conjugacy,");

Print ("classes with multiplicitiesgare: ");

Print (List (CCG2tilde ,x->[List (Eigenspaces (CF(60) ,Representative(x)),
y->Dimension(y)) ,Eigenvalues (CF(60) ,Representative(x))]));

A.6. Finding the degrees of the invariant curves

The code in this section solves () for each of the groups Gy, Gy and G3 and each
of their linear characters.

The following Sage code computes the degrees of~ the Gj-invariant polynomials
that are in 1-dimensional eigenspaces of the action of G; on the homogeneous elements
of C[X,Y, Z]:

Listing A.6.1: G1l.sage

from itertools import product

print """Calculating, degrees of,tilde(Gl)-invariant
polynomials,in l1-dimensional_eigenspaces"""
var('k"')

# The following definitions list the wvalues of the characters of the
# symmetric power representation:
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# The format is [value,n such that value is walid for n mod m,m]

optionsforCl=[[(k~2+3xk+2)/(2*216) ,0,3]]

optionsforC2C6C9=[[1/27+1/9+1/9,0,3]]

optionsforC3=[[(2*(k+1)+2)/(4%24) ,0,2],[-2*x(k+1)/(4*24) ,1,2]]

optionsforC4=[[1/4,0,4]1,[1/4,1,4]1,[0,2,4]1,[0,3,4]1]

optionsforC5C8=[[(k+2)/18,0,9],[-1/18,3,9],[(-k-1)/18,6,9]1]

optionsforC7C10
=[[2/6,0,18],[2/6,15,18],[-1/6,3,18],[-1/6,6,18],[-1/6,9,18],[-1/6,12,18]]

# We only need to consider k=0 (mod 3) because the inner product is 0 in
# the other cases.

for i1,i2,i3,i4,i5,i6 in product (optionsforCl,optionsforC2C6C9,
optionsforC3,optionsforC4,optionsforC5C8,optionsforC7C10):
for di in range(1,2): # The range spectifies
# the dimension of the eigenspaces we look for.
sols=solve (i1 [0]+i2[0]+i3[0]+i4[0]+i5[0]+i6[0]==di,k,solution_dict=
True)
for sol in sols:
if soll[k] in ZZ:
if (s0l[k]>0 and mod(soll[k],i1[2])==i1[1] and
mod (sol[k],i2[2])==i2[1] and
mod (sol[k],i3[2])==i3[1] and
mod (sol[k],i4[2])==i4[1] and
mod (sol[k],i5[2])==i5[1] and
mod (sol[k],i6[2])==i6[1]):
print "="+str(di)+"_ for k="+str (sol[k])
print "Done!"

Denote by o the lift of the second linear character of Gy to Gi. The following Sage
code computes all k € Z~( such that dim E§2 = 1. None are found.

Listing A.6.2: G1chi2.sage

from itertools import product

print "Calculating,degrees_ of polynomials_ ing,l-dimensional eigenspaces of,
chi2"

var('k"')

# The following definitions list the walues of the characters of the

# symmetric power representation:

# The format is [value,n such that value is walid for n mod m,m]

optionsforCl=[[(k~2+3xk+2)/(2*216) ,0,3]]

optionsforC2C6C9=[[1/27-1/9,0,3]]

optionsforC3=[[(2*(k+1)+2)/(4%24) ,0,2],[-2*(k+1) /(4%24) ,1,2]]

optionsforC4=[[1/4,0,4],[1/4,1,4],[0,2,4]1,[0,3,4]1]

optionsforC5C8=[[(k+2)/18,3,9]1,[-1/18,6,91,[(-k-1)/18,0,9]1]

optionsforC7C10
=[[2/6,9,18],[2/6,12,18],[-1/6,0,18],[-1/6,3,18],[-1/6,6,18],[-1/6,15,18]]

# We only need to constider k=0 (mod 3) because the inner product is 0 in
# the other cases.

35




for i1,i2,i3,i4,i5,i6 in product (optionsforCl,optionsforC2C6C9,
optionsforC3,optionsforC4,optionsforC5C8,optionsforC7C10):
for di in range(1,2): # The range spectifies
# the dimension of the eigenspaces we look for.
sols=solve (i1 [0]+i2[0]+i3[0]+i4[0]+i5[0]+i6[0]==di,k,solution_dict=
True)
for sol in sols:
if soll[k] in ZZ:
if (sol[k]>0 and mod(soll[k],i1[2])==i1[1] and
mod (sol[k],i2[2])==i2[1] and
mod (sol[k],i3[2])==i3[1] and
mod(sol[k],i4[2])==i4[1] and
mod (sol[k],i5[2])==i5[1] and
mod (sol[k],i6[2])==1i6[1]):
print "="+str(di)+"_ for_k="+str(sol[k])
print "Done!"

Denote by 3 the lift of the third linear character of Gy to G;. The following Sage code
computes all k € Z~q such that dim Efz?) =1.

Listing A.6.3: G1chi3.sage

from itertools import product

print "Calculating,degrees_ of polynomials_ in,l-dimensional eigenspaces of,
chi3"

var ('k"')

# The following definitions list the walues of the characters of the

# symmetric power representation:

# The format 4s [value,n such that value is walid for n mod m,m]

optionsforCl=[[(k~2+3xk+2)/(2*216) ,0,3]]

optionsforC2C6C9=[[1/27-1/9,0,3]]

optionsforC3=[[(2*(k+1)+2)/(4%24) ,0,2],[-2*(k+1) /(4%24) ,1,2]]

optionsforC4=[[1/4,0,4],[1/4,1,4],[0,2,4]1,[0,3,4]1]

optionsforC5C8=[[(k+2)/18,6,9],[-1/18,0,9],[(-k-1)/18,3,9]1]

optionsforC7C10
=[[2/6,3,18],[2/6,6,18],[-1/6,0,18],[-1/6,9,18],[-1/6,12,18],[-1/6,15,18]]

# We only need to constider k=0 (mod 3) because the inner product is 0 in
# the other cases.

for i1,i2,i3,i4,i5,i6 in product (optionsforCl,optionsforC2C6C9,
optionsforC3,optionsforC4,optionsforC5C8,optionsforC7C10):
for di in range(1,2): # The range specifies
# the dimension of the eigenspaces we look for.
sols=solve (i1 [0]+i2[0]+i3[0]+i4[0]+i5[0]+i6[0]==di,k,solution_dict=
True)
for sol in sols:
if sol[k] in ZZ:
if (sol[k]>0 and mod(soll[k],i1[2])==i1[1] and
mod (sol[k],i2[2])==i2[1] and
mod (sol[k],i3[2])==i3[1] and

36




mod (sol[k],i4[2])==i4[1] and
mod (sol[k],i5[2])==i5[1] and
mod (sol[k],i6[2])==1i6[1]):
print "="+str(di)+"_ for_ k="+str(sol[k])
print "Done!"

The following Sage code computes the degrees of the Ga-invariant polynomials that

are in 1-dimensional eigenspaces of the action of Go on the homogeneous elements of
C[X,Y, Z]:

Listing A.6.4: G2.sage

from itertools import product

print """Calculating, degrees,of,tilde(G2)-invariant
polynomials;;in;;1-dimensional  eigenspaces"""
var('k');

optionsforC1l_1=[[((k~2+3*k+2)/2)/360,0]]
optionsforC2_1=[[(k+2)/16,0],[(k+2)/16,2],[(-k-1)/16,11,[(-k-1)/16,3]11]
optionsforC3_1C4_1=[[2/5,0],[2/5,2],[1/5,1],[0,3],[0,4]]
optionsforCs_1=[[1/4,0]1,[1/4,1],[0,2],[0,3]]
optionsforC6=[[120/1080,01]

optionsforC7=[[120/1080,0]]

for i1,i2,i3,i4,i5,i6 in product (optionsforCl_1,optionsforC2_1,
optionsforC3_1C4_1,optionsforC5_1,optionsforC6,optionsforC7):
for di in range(1,2):
sols=solve (i1 [0]+i2[0]+i3[0]+i4[0]+i5[0]+i6[0]==di, k,
solution_dict=True)
for sol in sols:
if (sol[k] in ZZ and sol[k]>0 and
mod (sol[k],len(optionsforC2_1))==i2[1] and
mod (sol[k],len(optionsforC3_1C4_1))==i3[1] and
mod (sol[k],len(optionsforC5_1))==i4[1] and
mod (sol[k],3)==0):
print "="+str(di)+" for k="+str(sol[k])
print "Done!"

The following Sage code computes the degrees of the Gs-invariant polynomials that

are in 1-dimensional eigenspaces of the action of G3 on the homogeneous elements of
C[X,Y, Z]:

Listing A.6.5: G3.sage

from itertools import product

print """Calculating, degrees of ,tilde(G3)-invariant
polynomials,in l1-dimensional_ eigenspaces"""
var('k');

optionsforl=[[(k~2+3*k+2)/336,0]]

optionsforR=[[(-k-1)/16,1], [(k+2)/16,0]]
optionsforRS=[[0,2],[0,3],[1/4,0],[1/4,1]]
optionsforT=[[0,1],[0,2],[1/3,0]]
optionsforSSinv=[[2/7,0],[2/7,4],[-1/7,1]1,[-1/7,3],[-2/7,2]1,[0,5],[0,6]]
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for i1,i2,i3,i4,i5 in product (optionsforl,optionsforR,optionsforRS,
optionsforT,optionsforSSinv):
for di in range(1,2):
sols=solve (i1 [0]+i2[0]+i3[0]+i4 [0]+i5[0]==di,k,
solution_dict=True)
for sol in sols:
if (sol[k] in ZZ and sol[k]>0 and
mod (sol[k],len(optionsforR))==i2[1] and
mod (sol[k],len(optionsforRS))==1i3[1] and
mod (sol[k],len(optionsforT))==i4[1] and
mod (sol [k],len(optionsforSSinv))==1i5[1]):
print "="+str(di)+"_ for_ k="+str(sol[k])
print "Done!"

A.7. Finding the invariant curves

The following GAP [GAP15] code computes the invariant curves that satisfy
for the groups G, Go and G3. We use the method that is described in .4,
We only compute curves in the degrees that we found in the previous section of the
appendix and that we cannot not rule out by tProposition 2.3.4.

Listing A.7.1: InvariantCurves.g

Read("DefineGroups.g");

ActOnPoly:=function(g,p,indets)
return Value(p,indets,g~(-1)*indets);
end;

x:=Indeterminate (Cyclotomics,"x")
y:=Indeterminate (Cyclotomics,"y");
z:=Indeterminate (Cyclotomics,"z")

>

3
Print ("Invariant, curves for Gi:\n");

lin:=LinearCharacters(Gitilde) ;
chi2:=1in[2];
chi3:=1in[3];

CharKer :=KernelOfCharacter (chi2) ;

Print ("We,get: pl=");

pl:=Sum(List (CharKer),g->ActOnPoly(g,x"6,[x,y,2]1))/12;

Print ("Gitildeyactsy on,pl,with,chi3:\n");

Print (Filtered(List (Gltilde,g->ActOnPoly(g,pl,[x,y,2z])-(g " chi3)*pl),p->not p
=0%*x));

p9G1:=Sum(List (Gltilde) ,g->ActOnPoly(g,x"6xy~3,[x,y,2]1));

Print ("The, invariant curve of degree 9, ,is reducible:\n");
Factors (p9G1);

38




p12G1:=Sum(List (Gltilde) ,g->ActOnPoly(g,x"10*y*z,[x,y,2z]));

Print ("Theyinvariant_ polynomial of degree 12,isdivisible by, x,and therefore
reducible:");

IsPolynomial (p12G1/x);

Print ("\n");

Print ("Invariant curves_ for_ G2:\n");

p2:=Sum(List (G2tilde) ,g->ActOnPoly(g,x"6,[x,y,2z]1))*(2/135);

coeffA:=15/8+(15/8) *E(4) *Sqrt (3) -(9/8) *Sqrt (5) +(3/8) *E(4) *Sqrt (3) *Sqrt (5) ;

coeffB:=15/8-(15/8) *E(4) *Sqrt (3) +(9/8) *Sqrt (5) +(3/8) *E(4) *Sqrt (3) *Sqrt (5) ;

coeffC:=15-3*E(4) *Sqrt (3) *Sqrt (5) ;

Print ("p2,isindeedof the form,given,in, Section;,2.2:\n");

x"6+coeffA*xx"4d*xy 2+coeffB*x 2%y 4+y 6+coeffB*x 4%z 2+coeffCxx 2%y 2xz" 2+
coeffA*xy 4xz"2+coeffA*x"2*xz"4+coeffB*xy " 2*xz"4+z"6-p2;

Print ("We_now,compute the invariant_ polynomial of ,degree 45, (this takes
several_ minutes)_ and_show, that it isyirreducible");

p45G2:=Sum(List (G2tilde) ,g->ActOnPoly(g,x"41xy~3*z,[x,y,2z]));

IsPolynomial (p45G2/x);

Print ("\n");

Print ("Invariant curves_ for_ ,G3:\n");

p3:=Sum(List (G3tilde) ,g->ActOnPoly(g,x*y~3,[x,y,2z]1))/56;
p4:=Sum(List (G3tilde),g->ActOnPoly(g,x 5%y, [x,y,2z]))/36;

p21G3:=Sum(List (G3tilde) ,g->ActOnPoly(g,x"21,[x,y,2]1));

Print ("The,invariant polynomial of degree 21, ,is reducible ,(the factor was
found_usingSage):");

IsPolynomial (p21G3/((x7™3 - 2%x72*%y - x*y 2 + y~3 - x72%z + Bxx*xy*z — 2%y 2%z
- 2%x*z72 - y*z”"2 + 273)));

The following Sage [S*14] code verifies the irreducibility of p1,. .., ps by computing the
resultant defined in . Since all resultants are non-zero, the polynomials
are irreducible.

Listing A.7.2: Irreducibility.sage

K.<sqrtm3>=NumberField (x~2+3)

L.<sqrt5>=K.extension(x~2-5)

R.<X,Y,Z>=PolynomialRing (L)

pl=X"6 - 10*xX"3*Y"3 + Y 6 - 10*xX"3*%Z"3 - 10*xY"3*xZ"3 + Z76

a=15/8+(15/8) *sqrtm3-(9/8) *sqrt5+(3/8) *sqrtm3*sqrtb

b=15/8-(15/8) *sqrtm3+(9/8) *sqrt5+(3/8) *sqrtm3*sqrtb

c=15-3*sqrtm3*sqrtb

p2=X"6+a*xX " 4*Y 2+b*xX"2*Y 4+Y 6+b*X"4*Z"2+c*XT2xY " 2%xZ " 2+a*Y " 4*xZ"2+a*xX " 2*%Z " 4+Dbx*
Y 2%Z74+Z76

p3=X*Y " 3+X"3*%Z+Y*Z"3

p4=X"5xY+X*Z"5+Y 5*xZ-5%xX"2*xY"2%Z"2

print (R.macaulay_resultant (diff (pl,X),diff(pl,Y) ,diff(pl1,Z)))
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print (R.macaulay_resultant (diff (p2,X),diff(p2,Y),diff(p2,2)))
print (R.macaulay_resultant (diff (p3,X) ,diff (p3,Y) ,diff (p3,Z)))
print (R.macaulay_resultant (diff (p4,X),diff (p4,Y) ,diff(p4,Z2)))

A.8. The Jacobian of
The following GAP [GAP15] code verifies (2.5.9):

Listing A.8.1: QuotientCurveGroupCl.g

Read("DefineGroups.g");

p1:=-[[1,0,0],[0,0,1]1,[0,1,01];

p2:=[[0,1,0],[0,0,1],[1,0,0]1];

Htilde :=Group(P1,P2);

IsSubgroup(Gitilde ,Htilde);

Gl:=G1ltilde/Group (E(3)*IdentityMat (3));

hom:=NaturalHomomorphism(G1) ;;

H:=Image (hom,Htilde) ;

irr:=Irr(G1l);

chiHolDiff:=irr[4]+irr[9];

chi9:=irr[9];

Print (ScalarProduct (RestrictedClassFunction(chiHolDiff ,H),TrivialCharacter (H)
));

Print (ScalarProduct (RestrictedClassFunction(chi9,H),TrivialCharacter (H)));

Using the notation from the proof of [Proposition 2.5.j, we calculate an equation of
C1/H: the subring of invariants C [X,Y, Z]H is generated by the elementary symmetric
polynomials si, so and s3. We have

p1 = 88 — 6stsy + 65353 + 95753 + 18515953 — 1255 — 2753
Take new coordinates
X' =X+Y+ 2,
Y =Y,
7' = Z.
In these new coordinates we have s; = X’. After dehomogenizing p; by setting X' =1
we get,
Pi(Y', Z") =1— 655+ 65’3 + 955 + 1855’3 — 125'5 — 2753,
where s’9 and s’3 are the dehomogenizations of sy and s3. This equation can be readily
verified by expanding s'1, 8’2 and s’s. Denote by C] the affine curve defined by pj. An

action of H on Cf is induced by the action of H on C; since affine patch X’ # 0 is
H-invariant. We have

AC)HT = C[sh, s5]/(p)) = C[X,Y]/(q0) where qp := 1—6X+6Y +9X24+18XY —12X3-27Y?
as s, and s§ are algebraically independent. We find a nicer form for V(go) in Sage:

Listing A.8.2: NormalFormEllipticCurveC1l.sage
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R.<X,Y>=PolynomialRing (QQ)
E=1-6*%X+6*Y+9*%X " 2+18*%X*Y-12%X"3-27*Y"2
J=Jacobian (E)

print("J:")

print (J)

E2=Y"2-X"3-1

J2=Jacobian (E2)

print("J2:")

print (J2)

print ("The,two,curves are isomorphic:")
print(J.j_invariant()) # Outputs 0
print (J2.j_invariant()) # Outputs 0

Therefore

A(C{)H >~ C[X,Y]/(q}) where ¢} :=Y? — X3 — 1.

By homogenizing and using tProposition 1.4.5], we get the following curve of genus 1 that
is isomorphic to C1/H:

o =Y?Z - X 7%

The j-invariant of this elliptic curve is 0.

The following Maple worksheet by Professor Pink shows that the two-dimensional factor
of Jac(C1) is not isogenous to E'? for any elliptic curve E’ defined over Q:
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[> restart:
| Consider the curve C in P*2(C) defined by this polynomial:
> F := X"6+Y"6+2"6-10*X"3*Y"3-10*X"3*Z2"3-10*Y"3*Z2"3;
F=X"—10XyY-10xXZ+v" -1y 2 +2
:This calculation shows that C is nonsingular:
> solve([diff(F,X),diff(F,Y),diff(F,2)1,[X,¥,2]);
[[X=0,Y=0,Z=0]]

:Having degree 0, it therefore has genus 10.
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| Where does C have good reduction?
| Consider a prime p. By symmetry C is smooth over F_p iff the affine part with Z=1 is smooth.
> F1 := subs(Z=1,F);
FI=xX—10X Y+ —10xX —107> +1
;So we must find the primes p modulo which the equations
> F1;

F1X := factor(diff(F1l,X));
F1lY := factor(diff(Fl,Y));

X 10X r+y—10x 107 +1
FIX=6X (X’ —5Y—5)
FIY=-6Y (5X° -7’ +5)
jhave no common solution.

[Modulo 2 the equation F already factors
Factor (F) mod 2;

2
(X¥+v +2)
| Note that the elliptic curve X 47 + 7°=0 has good reduction at 2.

;Modulo 3 the equation already factors
> Factor(F) mod 3;

(X+Y+2)°
:So assume p>3. A common solution in characteristic p with X=0 is one of

> F10 := subs(X=0,Fl);
F1X0 := subs(X=0,F1lY);

FIO=Y'—10Y> +1
FIX0:=-6Y" (-Y’ +5)
> ifactor(resultant (F10,F1X0,Y));

i -(2)" 3)
;So there is none. By symmetry also none with Y=0. Simplify the remaining equations
> Gl := subs([X=U"(1/3),¥Y=V~(1/3)]1,F1l);

G2 ;; subs ([X=U"(1/3),¥=V"(1/3)],F1X/X"2/6);
G3 := subs([X=U"(1/3),¥=V~(1/3)],F1Y/¥"2/6);

GIl=U"—10UV+17—10U—-10V+1
G2=U—-5V—75
G3=-5U+V—5

15 9

> Vsol := solve(G3,V);
Vsol =5U+5

[> Gls := factor(subs(V=Vsol,Gl));
G2s := factor(subs(V=Vsol,G2));
Gls =-12(U+2)(2U+1)

G2s = -24 U — 30
> ifactor (resultant(Gls,G2s,U));

5
(2)” (3)

jSo Fl and F1X and F1Y have no common zeros over any field of characteristic >3.

5

:Conclusion: C has good reduction outside p=2 and p=3.
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| Count rational points over F_p for p>3:
> PtsC := proc(p)

nops ([msolve(subs(Z=1,F),p)])+

nops ([msolve(subs([2=0,Y=1],F),p)1);
L end proc:
| Dito for the elliptic curve
[> E := X"3+2"3-Y"2*Z;

E=X-Y'7Z+7

> PtsE := proc(p)

nops ([msolve(subs(Z=1,E),p)])+

nops ([msolve (subs ([2=0,Y=1],E),p)]);

L end proc:

The jacobian of C has a factor isogenous to E*8. Suppose the rest is isogenous to E12 for an elliptic
curve E1. Then E1 must also have good reduction at all p>3. Let PtsE(p) denote the number of F_p-
rational points of E1. Then by the Lefschetz trace formula we have

p+1-PtsC(p) = trace(Frob_p|H"1(C))

p+1-PtsE(p) = trace(Frob_p|H*1(E))

p+1-PtsEl(p) = trace(Frob_p/H"1(E1))
and hence

p+1-PtsC(p) = 8*(p+1-PtsE(p)) + 2*(p+1-PtsE1(p)).
| Thus PtsE1(p) is given by

> PtsEl := proc(p)
p+l - ( (p+l1-PtsC(p)) - 8*(p+1-PtsE(p)) )/2
| end proc:
> for i from 3 to 20 do [ithprime(i),PtsC(ithprime(i)),PtsE
(ithprime(i) ) ,PtsEl(ithprime(i))] od;
[5,6,6,6]

[7,0,12, -12]
[11,12,12,12]
[13,54,12,42]
[17,18, 18, 18]
[19,72,12,78]
[23, 24,24, 24]
[29, 30, 30,30]

[31,0,36,0]

[37, 126, 48,42]

[41,42,42,42]

[43, 0,36, 54]

[47,48, 48, 48]

[53, 54,54, 54]

[59, 60, 60, 60]

[61,54,48,114]

[67,0,84, -30]

[71,72,72,72]
=For p=7 or 67 we get PtsE1(p)<0, which is a contradiction. Conclusion: The other factor of the
jacobian of C is not isogenous to E12 for an elliptic curve E1 over Q.

By irreducibility it cannot have any elliptic curve E1 as factor; so it is a simple abelian surface. It might
| still conceivably be isogenous to E1"2 over a finite extension of @, but that seems unlikely.
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A.9. The Jacobian of C,
The following Sage [ST14] code verifies that the curve of genus 1 defined by
X%+ aX?Y +bXY? + X° +bX?Z + cXYZ +aY?Z +aXZ*+bYZ* + Z° =0

is isomorphic to the curve defined by

1053 13365
200015+ ) X724+ (54675¢\/B _ 172773) 73

Y27 = X3
+ ( 2 2

and calculates the j-invariant. The constant a, b and c are defined as in the definition
of py in R.4.

Listing A.9.1: NormalFormEllipticCurveC2.sage

K.<sqrtm3>=NumberField (x~2+3)
L.<sqrt5>=K.extension(x~2-5)
R.<X,Y,Z>=PolynomialRing (L)

a=15/8+(15/8) *sqrtm3-(9/8) xsqrt5+(3/8) *sqrtm3*sqrtb

b=15/8-(15/8) *sqrtm3+(9/8) *sqrt5+(3/8) *sqrtm3*sqrth
c=15-3*sqrtm3*sqrtb
E=X"3+a*X"2%Y+b*X*Y " 2+Y " 3+b*X 2% Z+c*kX*Y*xZ+a*xY " 2xZ+a*xX*Z " 2+bxY*xZ"2+Z"3

J=Jacobian (E)

print (J) #Outputs:

#Elliptic Curve defined by y 2 = ©73 + (1053/2%sqrtm3*sqrt5+13365/2) *x +
#(54675%sqrtm3*sqrt5-172773) over Number Field in sqrtb5 with defining#

# polynomial 72 - 5 over its base field

print (J.j_invariant())
#O0utputs: 69255/128*sqrtm3*sqrtbh - 122175/128

A.10. The Jacobian of (4

We use the notation from the proof of tProposition 2.7.i We calculate an equation for
Cs3/H.

Proposition A.10.1. Consider the action of A, on C[Xy,...,X,]| by permutation of
the variables. Then

(C[le s 7Xn]An = C[Sla .. '7Snadn]a

where s1,...,S, are the elementary symmetric polynomials in X1,...,X, and
dn:ZZ II ()Q’—AX3)
1<i<j<n

Proof. The elementary symmetric polynomials and d,, are clearly invariant under the
action of A,. Let p € C[Xy,...,X,]". Let 1 < i < j < n and let Tj; denote the
transposition that exchanges ¢ and j. Let

1

1
ps =5 @+ Typ)  and  pa:=5(p—Tip).
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Since Tj; has order 2 we get that Tj;ps = ps and Tj;pq = —pq. It follows that (X;—X;)|pq.
For any 1 < k < I < n we have T;;Typ = p since T;;Tj; € A, and therefore Tjp =
(T;5)"'p = T;jp. It follows that p, is symmetric and that (X — X;)|ps. It follows that
dp|pe. The polynomial p,/d,, is symmetric because

Ty (pa/dn) = (Tklpa)/(Tkldn) = _pa/(_dn) = pa/dn

and {Tp| 1 < a < b < n} generates S,,. Thus, we can write p, = sd,, where s is symmet-
ric. We have p = ps + pq = ps + sdy,. This finishes the proof since ps is symmetric. [

Because p3 is invariant under the action of the alternating group As by permuting
variables, we have ps € C[s1, s2, s3,d3] by [Proposition A.lO.]J, where s1, so, s3 and d3
are defined as in the proposition. Take new coordinates

X' =X+Y+Z.

Y =Y,

7' = 2.
We now have s; = X’. The affine patch defined by X’ # 0 is invariant under the action of
As. Denote by p'5, 8’9, '3, d’'s the dehomogenizations of ps, s9, s3,ds with X’ = 1. Denote

by C4 the affine patch of C3 defined by p}. We calculate A(C%)43 = C[ss,5'3,d'3]/(p'3)
using Singular [DGPS12]:

Listing A.10.2: QuotientCurveKleinQuartic.sing

LIB "finvar.lib";

ring R= 0,(x,y,z),dp;

poly c=(1-y-z)*xy~3+(1-y-2z) "3*z+y*z"3;

qring S=c;

ideal invar=-y 2-y*z-z 2+y+z,-y 2%z-y*z 2+y*z ,2%y " 3+3*y " 2%z-3*y*z " 2-2%z"3-3*y
T243%z72+y-z;

ring T=0,(x,y,z),dp;

setring S;
map phi=T,invar;
alg_kernel (phi,T,"kerPhi");

setring T;

print (kerPhi); //We get:

//kerPhi [1]=40xy-54y2+4{zz-222-¢-Ty+z

//kerPhi [2]=2z2-z+y+2

//kerPhi [3]=4374y3+660222-324xyz+120x22+162y22+20x2+101xy+687y2-430x2+1569y2
+41022-160y

ideal ker2=kerPhi[1],kerPhil[2];

// We have ker2==kerPhi :

reduce (ker2,std(kerPhi)); //ker2 is in kerPhi
reduce (kerPhi,std(ker2)); //kerPhi is in ker2
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We get that
A(C:/’))AS :(C[S/27 8:/37 dé]/(pg) = (C[X7 Y7 Z]/(le QQ)v
where

qu:=40XY —54Y? +4XZ - 27> - X —TY + Z
g =2X>’—-X+Y+Z

After homogenizing again, by [Proposition 1.4.51, we have that

E=C3/H=V(40XY —54Y? +4XZ — 227 = XW — 1YW + ZW,2X* — XW + YW + ZW))..

Following Section 1.4.3 in [Con99], we find that this intersection of quadrics is isomorphic
to the curve of genus 1 defined by the following equation that we obtain by eliminating
W:

(—X —TY +2)(2X?) — (=X +Y + Z)(40XY — 54Y% 44X Z — 27%) = 0
The following Sage code calculates a Weierstrass form F and its j-invariant:

Listing A.10.3: NormalFormEllipticCurveC3.sage

R.<X,Y,Z>=PolynomialRing(QQ)

E=(-X-7*Y+Z) * (2%X72) = (-X+Y+Z) * (40*X*Y-54*Y " 2+4*xX*Z-2*Z"2)

J=Jacobian (E)

print (J) #0utputs:

#Elliptic Curve defined by y 2 = 73 - 8960*x - 401408 over Ratiomnal Field

print(J.j_invariant()) # Outputs: -3375

We obtain the following equation for E:
Y2Z = X3 — 8960X Z% — 40140873,

We have j(E) = —33 - 53.

A.11. The Jacobian of C,

We verify () using GAP and verify that there is no subgroup K < Aut(Cjy) such
that

<ReSK (XHO(C4,QC4)> ,ResK(X1)> = 1= (Resg(x2), Resx(x1)) -
Additionally, we verify ()

Listing A.11.1: QuotientCurveGroupC4.g

Read ("DefineGroups.g");
W:=(T*S)*R*x (T*S) "2;
V:=(T*S"3)*(S*R) *(T*S~3) ~(-1);
H1:=Group(W,V~2);;
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G3:=G3tilde; #G3 is tsomorphic to G3tilde

irr:=Irr(G3);

CharHolDiff:=irr[2]+irr [5];

chib5:=irr[5];

Print (ScalarProduct (RestrictedClassFunction(CharHolDiff ,H1) ,TrivialCharacter(
H1))); # Outputs 1

Print (ScalarProduct (RestrictedClassFunction(irr[5],H1),TrivialCharacter (H1)))
; # Outputs 1

subgroups:=List (ConjugacyClassesSubgroups (G3) ,Representative);

# Since characters are constant on conjugacy classes, it suffices to compute
the inner products for one subgroup from each conjugacy class of
subgroups:

Print (List (subgroups,S->[ScalarProduct (RestrictedClassFunction(CharHolDiff ,S)
,TrivialCharacter(S)),ScalarProduct (RestrictedClassFunction(irr[2],8S),
TrivialCharacter(S))1));

# We see that there s no subgroup with both inner products equal to 1.

H2:=Group (V) ;;
Print (ScalarProduct (RestrictedClassFunction (CharHolDiff ,H2),TrivialCharacter (
H2))); # Outputs 2

We use the notation from the proof of [Proposition 2.8.j. The following Maple worksheet
by Professor Pink calculates the quotient F; := C4/H; and a elliptic curve Es, not
isogenous to E7, that Cy maps onto:
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| Consider the simple group of order 168.
According to [Blichfeldt, H. F. Finite collineation groups. University of Chicago Press, Chicago,
1917], §82, p.113, the simple group of order 168 embeds into
=GL_3((C) by these generators:
> alias(zeta=RootOf (X"6+X"5+X"4+X"3+X"2+X+1,X)):
alpha := zeta"4-zeta”3:
beta := zeta"2-zeta”5:
unprotect ('gamma'):
gamma := zeta”l-zeta”6:
zetatzeta”2+zeta”4-zeta”3-zeta"5-zeta”6:
[a=zeta*a,b=zeta”2*b,c=zeta”4*c]:
[a=b,b=c,c=a]:
[a=h* (alpha*a+beta*b+gamma*c) /7,
b=h* (beta*a+gamma*b+alpha*c)/7,
L c=h* (gamma*a+alpha*b+beta*c)/7]:
| with the relations $°7=T"3=R"2=(RS)"4=1, TST"(-1)=5"4, TR=RT"2:
> simplify(subs(R,subs(R,[a,b,c])));
simplify (subs (R, subs (S, subs(R,subs(S,subs(R,subs(S,subs(R,subs
(5,[a,b,c1)))))))));
simplify(subs (T, subs(S,subs(T,subs(T,subs(S,subs(S,subs(S,[a,b,

<IN
simplify(subs(T,subs(R,subs(T,subs(R,[a,b,c])))));

omH®nS

[a, b, c]
[a, b, c]
[a, b, c]
[a, b, c]

[ The given representation of dimension 3 is one half of a cuspidal representation of GL(2,7) of
| dimension 6, and it requires no central extension.
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;Thefbﬂowdngequaﬁonisinvaﬁantunder(h

> L6 := a”5*b-5*a”"2*b"2*c”2+a*c”"5+b"5*c;
simplify(subs(R,L6))-L6;
simplify(subs(S,L6))-L6;
simplify(subs(T,L6))-L6;

L6=a’b—5da b F+ac +bc
0
0
0
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| Consider the elements R and W := (TS)R(TS)"2 and V := (TS*3)(SR)(TS"3)*(-1):
> Rop := proc(f)
simplify(subs(R,f))
end proc:
Wop := proc(f)
simplify(subs(T,subs(S,subs(R,subs(T,subs(S,subs(T,subs(S,£f))))
))))
end proc:
Vop := proc(f)
simplify(subs(T,subs(S,subs(S,subs(S,subs(S,subs(R,subs(S,subs
(S,subs(S,subs(S,subs(T,subs(T,£)))))))))))))
end proc:

:They are non-trivial

> Rop([a,b,c]);
Wop([a,b,c]);
Vop([a,b,c]);

2 .5 1 s 3 .5 3 .4 2 4 1 .4 3 .3 2.3 1 .3

2 .2 1 .2 3 2 4 2 1 1 s 3 .5 2 .5
—7§a—7§b+7cc—7a—7b—7c,—7§a+7§b—7§c

2 4 1 .4 3 4 2 .3 1 .3 3 .3 1 .2 3 2

2 2 2 1 4 3 .5 2 .5 1 s 1 .4 3 4
—7CC—7Q—7b—7C,7Ca—7Cb—7€C+7§a—7C,b

2 4 1 .3 3 3 2 .3 3 2 2 2 1 2 1 4

— >+ = — =0 b+ — — — = b— — ——a— —b
+ 7 C c+ - Ca 7 b+ 7 e+ 7 Ca 7 g 7 Cc 7 a 7
_2,

7 c

3 2 2 2 2 .5 2 .5 3 .5
Cb—fgc—fa—7b—7c,7c a—7§ b+7c C

3 4 2 .3 3 .3 1 .2 2 2 1 .2
3

1 4 1 2 .5
7 AT

5 1 .4 1 .4 1 .4
b+7C, §c+7Ca+7Cb+7§c
1

3 1.3 1 .2 4 2 3 .2 3 1

1 .5 | 1 .4 4 4 3 .4 1

3
Ca+

\l‘v—‘
i)
|
)
>
|

~|
)
o

7
4 1 1 1 1
Co+>Ce+ SCa+ T0h+ 2 let Tar b2 Cam 2 Cb

7
2 .5 4 4 1 .4 2 .3 1.3 2 2 2 2 2 2
4 2 2 1 2 1 1 s 2.5 3 .4 2 .4
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1 .3 1 .3 1 .3 3 2 2 2 2 2 1 2 1

1 2
[and satisfy the relations
RM2=1
Wr2=1
V~A2=R
L(WV)"2=1
[> Rop(Rop([a,b,c]));

Wop (Wop([a,b,c]));

Rop (Vop (Vop([a,b,c1)));

Wop (Vop (Wop (Vop([a,b,c]))));

,b, c]

,b, c]
a, b, c]
[a, b, c]

=Thus <R,W> is a Klein 4 group, and V has order 4, and together they generate a D4 group H := <V>
X <W>,

a
a

[
[
[
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| To find simpler representations of these elements we change coordinates:

> Wfixl := simplify(solve(Wop([a,b,c])-[a,b,c]));

Wfix2 := simplify(solve(Wop([a,b,c])+[a,b,c]));

Wixl = {a:a,b: —§2a (C2+§+ 1),c:§a (§2+ 1>}
Wfix2 = {a=a,b= —Qsa—C50—§4c—§20—Ca—c,c=c}

[> VE£ixl := simplify(solve(Vop([a,b,c])-[a,b,c]));

Vfix2 := simplify(solve(Vop([a,b,c])+[a,b,c]));

Vfix3 := simplify(solve(Vop([a,b,c])-[I*a,I*b,I*c]

viixd :=

simplify(solve(Vop([a,b,c])+[I*a,I*b,I*C];;

Viixl = {a:a,b:—Csa—cza—a,czgza(@"' 1)
Vix2 = {a=0,b=0,c=0}

Vfix3 == {a:a,b:a(CS—I€4+C4—IC3+§3_21Q2+C2_21C_1)5C:‘a(CS‘I'zQ
2180 420 =210+ —210—-1-1)}

Vit ={a=ab=a (C+10 +C +10 + 0 + 2180+ +210+1), = -a (C +2¢
F200 420 4210 +C+210—1+41)}

> basu := subs (a=u,subs (Vfixl,[a,b,c]));

basv := subs(a=v,subs(Wfixl,[a,b,c]));
basw := simplify(subs(a=w,subs(Wfixl,Vop([a,b,c]))));

f

basu = [u,—csu—czu—u,czu<c3+l)]
basv = [v, —QZV(C2+C+1)>§V(C2+1>]

basw:=[w<§5+§3+C2+C+1),W<§5+§4+C3+C2+§+1),W(€2+C+1)]
> mysub := basu+basv+basw:
mysub := [a=mysub[1l],b=mysub[2],c=mysub[3]];

mysub:=[a=w(§5+c3+§2+§+1)+v+u,b=w(§5+c4+c3+cz+§+1)
v+ 1) —Cu—Cu—uwe=w(C+e+ 1)+ (C+1)+Cult
+1)]

;This change of coordinates transforms the equation L6 into this one:
> L6a := collect(simplify(subs(mysub,L6)),[u,v,w]);

Léa=(-220 -8 —28C 420 —70) u® + ((-105C +35¢ =105 —70¢
—35) v+ (1058 +35¢ =105 =700 —35) w?) u* + (708 —35¢" +35¢C
+350+70) v+ (2800 +280¢" — 1400 + 2808 — 140 L — 140) w* v + (70
350 +350 +350+70) w*) P+ (-280 —a2t =700 — 42 —28¢) VO + (
S1408 =105 =700 4350 +105¢+35) W + (-1408 — 105 — 708
+350 +1050+35) w4+ (<280 —42¢ =708 — 420 —28¢) w°

:This is indeed invariant under the substitutions corresponding to V and W:

> simplify(subs([u=u,v=w,w=-v],L6a)-L6a);

simplify(subs([u=-u,v=v,w=-w],L6a)-L6a);
0

0

3
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| Simplify coefficients:
> L6b := collect(simplify(L6a/coeff(L6a,u,6)),[u,v,w]);

5 15 5 5 15
L6b =’ + ([10C2+ S 5c;5+5§4+10Q3)v2+ [10§2+ >+t

5.5 4 3 55 2 15 5 4 85 .3
+ 50 +5¢ +10§Jw2ju4+((7§ — 5 +50+200 +40¢ +7C]v4

1
+(-808 —210¢" =280 — 2508 — 130 L — 20) w2 + [52—5§2—75+5§

+20§5+40c4+i—sc3)w“)u2+(25§5+56§4+70c3+56§2+25c) v6+(—105

155 2 195

225 .4 155 2
5 & 08+ —

C+ S50 +35§3jw2v4+(—105—TC —140¢

195 225
+Tc5+T§4+35§3jw4v2+(25@5+56§4+70§3+56§2+25§)w6

> L6b4 := factor(coeff(L6b,u,4));

L6b2 := factor(coeff(L6b,u,2));

L6b0 := factor(coeff(L6b,u,0));

5
L6b4::5(4§2+1+3§+C5+2C4+4§3) (V + w?)

L6b2::%(11@2—3+2C+8§5+16§4+17§3) Vw20 wW 202w+

—-4v2w24—w4)
1 4 3 2 2 2 4 2 2 2 2 2
L6b()::5§(25g +560 +708 +56C+25) (V+w?) (5C Vw450 VP w

+'SC‘;M;-¥2\A4-3V2W24-2MA>
[> t2 := coeff(L6b4,v,2)/5;
t4 := coeff(L6b2,v,4)/5;
t6 := coeff(L6bO,v,6);
2 1 3 1 s 4 3
t2.—2§+5+?§+5c+c +2¢
11 2 3 5 4 17 .3
[4.—7C—E+C+4§+8€+7C
6=0(25¢ +560 +700 +56C +25)
> simplify(t4/t272);
simplify(t6/t273);
3
L (C+g+1)
G+l +g-2
[> L6c := collect(simplify(subs(u=u*t,L6b)),[u,v,w]);
2.5 15 5 4 3 2.5 15
L6c:=u6t6+((10§+?+7C+5C5+5C+10C_,)t4v2+(10§+5+7c

+%§5+5C4+10C3jw2t4]u4+[[%CZ—ITS+SC+20CS+4OC4

+8275C3]t2v4+(_SOCS—210§4—280§3_250§2—130@—20)w2t2v2+(%QZ
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SR P +40§+—§) ju2+(25§5+56§4+70§3+56§2

2
+25C)v6+[ 105—£§ —1402;+ﬁ§ +22—5g +35¢ jw2v4+(—105
—EC —1402;+ﬁ§ +£§ +35¢ jw4v2+(25§5+56§4+70§3

+560 +25¢) w'
[> L6d := subs(t=sqrt(s),Léc);

1 1
L6d:=u6s3+[[10§2+%+752;+%§5+5§4+10§3js2v2+(10§2+—5 +—25 ¢
5 .5 4 3 2 2 4 15
_,_72@_,_5@_,_10@ wosT | u + 7c_72 +5§+20§ +40§

+8—5§3]sv“+(—80<;5—210§4—280§3—250@2—130@—2o)wzsv2+[52—5c2

—12—5+5§+20c +40¢ +—§) ju2+(25C5+56C4+70C3+56§2

+25C)v6+( IOS—EQ —1402;—!—&@ —I—EQ +35¢ jwzv4+(-1()5
1 1 2

—ig2—14og+ﬂ§5+—5§4+35§ jw“v2+(25§5+56§4+702;3

+560 +25¢) w®

> Lée := collect (simplify(subs(s=t2,L6d/t2"3)),[u,v,w]);
6 2 2\ 4 et o2 4 4 2

Loe=u"+ (5 +5w)u + ((-5¢ =5 =50 v+ (30 +30C +30¢
+20) w4 (-5 =5 —50)whH) P+ (C+C+¢—2) v+ (-5¢ =5
—se—10) w4 (-5 =5 —sc—10) w4 (CH+C+c—2)

| Maple does not recognize this simplification:

[> simplify(zeta+zeta”2+zeta4=(sqrt(-7)-1)/2);
evalf (zetatzeta”2+zeta™4-(sqrt(-7)-1)/2);

3 1 1
C(C+g+1) =517 -

210 + 0.1

| So I do it by hand copy and paste:

> L6e := u"6+(5*v"2+5*w"2)*u”4+((-5*Zeta”4-5*Zeta”2-5*Zeta) *v" 4+
(30*Zeta”4+30*Zeta”2+30*Zeta+20) *w"2*v"2+(-5*Zeta”4-5*Zeta”2-5*
Zeta)*w"4)*u”2+(Zeta"4+Zeta”2+Zeta-2)*v"6+(-5*Zeta”4-5*Zeta”2-5*
Zeta-10)*w"2*v"4+(-5*Zeta”4-5*Zeta”2-5*Zeta-10) *w"4*v"2+(Zeta" 4+
Zeta”2+Zeta-2)*w"6;

Lée=uS+ (52 +5w)ut+ (-5 =5 —s5¢) v+ (30 +308 +30¢
+20) w2+ (-5 =50 —sO) W)+ (C+C+c-2)V+ (-5 =5
—se—10) w4 (-5 =5 —sc—10) w4 (CHC+r—2) W

> L6f := collect(simplify(Lée, [Zetat+Zeta”2+Zeta™4=(sqrt(-7)-1)/2]
) [u,v,wl);
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L6/':=u6 + (5 v+ 5w2) u

+ %)w“)zﬂﬂ- (—

15
2

Jut o+ (-

+(151\/7+5)w2v2+(-%

15

2

]w2v4+ (—

Bl
2

7

o6




| Dehomogenize by setting u:=1:
> L6fd := subs(u=1,L6f);

5 5 5
L6fd =145 + 5w + (—ZlﬁJr z)v4+ (1517 +5) w* v + (—Elﬁ
SVt (S e L s (S o5 e (S
+2)w+[ 2+21ﬁ)v+( 17 2)wv+( 17
15 4 2 5 1 6
z)wv-‘r( 2+21\/7)w
;Now V(v,w) = (w,-v) and W(v,w)=(-v,w).
Calculate subrings of invariants of C[v,w]:
under <V/"2> the invariants are C[v"2,vw,w"2].
under <W> the invariants are C[v"2,w].
under <V"2,W> the invariants are C[v"2,w"2].

under <V> the invariants are C[v"2+w"2,v*2w"2,vw(v/"2-w"2)].
under <V,W> the invariants are C[v"2+w"2,v*2w"2].
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| Find equation for the curve divided by <V"2,W>:
> solve([v"2+w"2-r,v"2-w"2-s],[V,W]):
L6fe := simplify(subs(%[],L6£fd));

1
L6fe::—51\/7r3+1\/7s2r+%Iﬁrz—SIﬁsz—%r3+%r2+5r+1

:On this V acts by (r,s) — (r,-s) and the further quotient has the equation
> L6ff := simplify(subs(s=t"(1/2),L6fe));

1 5 5 5
Léﬁ::—zlﬁr3+1\/7n+Elﬁrz—ﬂﬁt—5r3+5r2+5r+1

;S olving this for t yields a rational parametrization of this quotient:
> factor(solve(L6ff,t));

1 (7451 7) (31T r+1Y7 =87 +17,+3) (1J7 —4r—1)

448 r—>5

;So the quotient by <V/2,W> has this equation of genus 1:
> s”2=factor(solve(L6ff,t));

2o b (-74+51J7) B1YyT r4+1J7 =87 +17r+3) (1J7 —4r—1)

448 r—5

The quotient by <V> involves three variables

r=v"2+w"2,

X = v 2w"2,

y = vw(v"2-w"2)

satisfying the relation y*2=x(r"2-4x).
| Using t = (v*2-w”2)"2 = r"2-4x this quotient is therefore described by the two equations in r, X, y:
[> rxyeq := y*2-x*(r"2-4*x);

L6fg := simplify(subs(t=r"2-4*x,L6ff));
rxyeq ::y2 —X (r2 — 4x)

1 5 5 5
L6@::51ﬁ1’3—41\/7rx—51\/7;’2—0—201\/7)(—Er3+§r2+5r+l

;Eliminate X:
> solve(L6fg,x);
L6fh := numer (factor(subs(x=%,rxyeq)));

51—61(1ﬁr3—51ﬁr2—5r3+5r2+10r+2)ﬁ
r—>5
L6fh= -8 +307° — 25/ +28/7 3% — 20" — 280 73" — 30/ +700)" — 107 — 1
> L6fi := solve(L6fh,y)[1];
1 J56/° =210/ + 175/ + 140 ° + 2102 + 707 + 7

Lo6fi = —
0= 14 rF—5

;This describes the quotient by a hyperelliptic equation.
> L6fj := simplify((14*(r-5)*L6£fi)"2/7);
y2"2 = factor(L6fj);

L6f=8r° =30/ +25/ +20° +30/2+10r+ 1
y2 =2+ r+1) (44 =177 4197 +9r+1)
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This curve should map onto an elliptic curve. The smallest possible degree of such a map is 2, and
| such a map of degree 2 exists iff the 6 ramified points satisfy a certain symmetry.
;Change coordinates:
> L6fk := 512*factor(subs(r=(rl-1)/4,L6£fj));
Lofk:= (r1* +7) (r1* =217 + 133 71 — 63 11 + 14)
;Find symmetries between the 6 ramified points, beginning with the last 4:
> L6fk4 := rl174-21*r173+133*r1”°2-63*rl+14;
L6fkd =r1* — 21 r1° + 133 11> — 63 11 + 14

> collect (expand (numer (factor (subs(rl=(a*rl+b)/(c*rl+d),L6£fk4)))),
rl);

(a* =21 c+133> P —63a’ +14*) ri* + (4’ b—21ad— 63 a° be+2664° cd
+266abc® —189actd—63bc +56¢d) ri® + (6d* b* —63a° bd + 133 a° d*
—63ab’c+532abcd—189acd +1336** —189b 7 d+ 847 d°) ri* + (4a b’
—63ab*d+266abd —63ad —21b° c+266b°cd—189bcd +56cd’) rl + b
— 216 d+ 1330 d* —63bd +14d"

> subsol := solve([coeffs(collect(%-coeff(%,rl,4)*L6fks,rl),rl)],
[a,b,c,d]);

subsol = [[a:d,b:O,CZO,d:d], [a=-d,b=21d,c=3d,d=d], |a=-d, b=

- % d (7 RootOf (35 Z* + 154 Z+67) +2),c= %RaotOf(ESS 7P+ 154 Z+67)d,

d= d], [a=RootOf (7' —21 Z°+133 7> — 63 Z+14) ¢, b=RootOf( Z* —21 7*

+133 72 —63 Z+14)d,c=c,d=d|

> i := 2:
rlsub := factor(subs(subsol[i], (a*rl+b)/(c*rl+d)))
factor (numer (factor (subs (rl=rlsub,L6fk))))/512/512

rl —21
risub = - W

(P> +7) (r1* =217 + 133717 — 6371 + 14)

;This substitution has order 2:
> factor(subs(rl=rlsub,rlsub));

.
r
.
14

rl

> solve(rl-rlsub);

r2sub := (3*rl-7)/(rl+3);

invr2sub := solve(r2=r2sub,rl);

numer (factor (subs (rl= 1nvr25ub L6fk)))/1024/32-

7
—, -3
3
3rl —7
2 =
r2sub 13
ey 32T
invr2sub = 23
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(r2 +7) (r2* —=7,2* +14)

| The total substitution from r to 12 is

[> rsub := factor(subs(rl=invr2sub, (rl-1)/4));
r2+1
r2—3

rsub = -

iand the resulting polynomial is
[> L6£f1 := numer (factor (subs(r=rsub,L6£j)))/64;
Lofl=(r2 +7) (r2* = 7,2 +14)

:which is invariant under the symmetry r2 — -r2.
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| Rename coordinates a:= 12 and b:=y2; so the hyperelliptic curve now has the equation

> L6fm := b"2 - subs(r2=a,L6fl);

L6fin =b* — (a* +7) (a* —7d* + 14)

:and the four automorphisms (a,b) — (+a,xb).
:Of these (a,b) — (a,-b) is the hyperelliptic involution with quotient P"1.
;The quotient by (a,b) — (-a,b) is the elliptic curve with equation

> Ell1 := subs(a=sqrt(c),L6fm);

Elll =b"— (c+7) (¢ —Tc+14)

;The quotient by (a,b) — (-a,-b) is the elliptic curve with equation

> E112 := c*factor(subs([a=sqrt(c),b=d/sqrt(c)],L6£fm));

Eli2:= - +358 +d° — 98¢

[ Determine their j-invariants:

> with(algcurves):

> ifactor(j_invariant(Elll,b,c))
ifactor(j_invariant (E11l2,c,d))

i (7)

:S ince one of them is integral and the other isn't, the elliptic curves are not isogenous.
:Also the second one does not have complex multiplication.

:Check existing lists to determine whether the first one has complex multiplication.
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The following Sage calculates a Weierstrass form of Ey and j(E1):

Listing A.11.2: NormalFormEllipticCurveC4.sage

K.<sqrtm7>=NumberField (x~2+7)

R.<X,Y>=PolynomialRing (K)

E1=(X-5)*Y"2+(1/448) *(-7+b*sqrtm7) * (3*sqrtm7*X+sqrtm7 -8*X"2+17xX+3) *(sqrtm7
-4%X-1)

J=Jacobian (E1)

print (J) # Outputs:

# Elliptic Curve defined by y 2 = ©°3 + (55/2*sqrtm7+55/6) %z +

# (-145/3%sqrtm7-5843/27) over Number Field in sqrtm7

# with defining polynomial =72 + 7

print(J.j_invariant ()) #Outputs:
#-831875/224*sqrtm7 - 166375/32
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