Lecture 11

January 13, 2005
Notes by Ivo Dell'Ambrogio

§24 Pairings and Cartier duality

Logically, this section could have followed right after $\S 4$. Let G, G^{\prime} and H be commutative group schemes over a scheme S.

Definition. A morphism $G^{\prime} \times{ }_{S} G \rightarrow H$ of schemes over S is called bilinear if it is additive in each factor, or equivalently, if for every scheme T over S the induced map $G^{\prime}(T) \times G(T) \rightarrow H(T)$ is bilinear in the usual sense. The group of such bilinear morphisms will be denoted by $\operatorname{Bilin}_{S}\left(G^{\prime} \times{ }_{S} G, H\right)$.

Definition. Denote by $\underline{\operatorname{Hom}}_{S}(G, H)$ the contravariant functor

$$
\mathfrak{S c h}_{S} \rightarrow \mathfrak{A k}, T \mapsto \underline{\operatorname{Hom}}_{S}(G, H)(T):=\operatorname{Hom}_{T}\left(G_{T}, H_{T}\right) .
$$

If it is representable, the representing group scheme over S will also be denoted by $\underline{\operatorname{Hom}}_{S}(G, H)$.

Note. One can show that $\underline{\operatorname{Hom}}_{S}(G, H)$ is representable whenever G is finite and flat over S. Unfortunately, the detailed study of $\operatorname{Bilin}_{S}\left(G^{\prime} \times{ }_{S} G, H\right)$ and $\underline{\operatorname{Hom}}_{S}(G, H)$ is beyond the scope of this course because of time constraints.

Proposition 24.1 (Adjunction formula). There exists an isomorphism

$$
\operatorname{Bilin}_{S}\left(G^{\prime} \times_{S} G, H\right) \cong \operatorname{Hom}_{S}\left(G^{\prime}, \operatorname{Hom}_{S}(G, H)\right)
$$

which is functorial in all variables. This of course determines $\underline{\operatorname{Hom}}_{S}(G, H)$ up to natural isomorphism.

Proof. By definition giving a morphism $\varphi: G^{\prime} \rightarrow \underline{\operatorname{Hom}}_{S}(G, H)$ is equivalent to giving a homomorphism $\varphi^{\prime}: G^{\prime} \times{ }_{S} G \longrightarrow G^{\prime} \times{ }_{S} H$ of group schemes over G^{\prime}. Thus φ^{\prime} must be a morphism of schemes over S whose first component is the projection to G^{\prime} and whose second component is a morphism $\psi: G^{\prime} \times{ }_{S} G \rightarrow H$ that is additive in G. Moreover, one easily checks that φ is additive if and only if ψ is additive in G^{\prime}. This sets up the desired bijection, and one easily checks that it is a group isomorphism and functorial in all variables.

Definition. A bilinear morphism $\beta: G^{\prime} \times{ }_{S} G \rightarrow H$ is nondegenerate at G^{\prime} if, for all $T \rightarrow S$ and all $0 \neq g^{\prime} \in G^{\prime}(T)$, the homomorphism $\beta\left(g^{\prime},-\right): G_{T} \rightarrow H_{T}$ is nontrivial. One similarly defines the notion nondegenerate at G.

Note. It is clear that β is nondegenerate at G^{\prime} if and only if the associated homomorphism $G^{\prime} \rightarrow \underline{\operatorname{Hom}}_{S}(G, H)$ is a monomorphism.

Proposition 24.2. If G is finite flat over S, there is a functorial isomorphism $\underline{\operatorname{Hom}}_{S}\left(G, \mathbb{G}_{m, S}\right) \cong G^{*}$, and in particular $\underline{\operatorname{Hom}}_{S}\left(G, \mathbb{G}_{m, S}\right)$ is representable.

Proof. For all schemes T over S we must construct a natural isomorphism $\operatorname{Hom}_{T}\left(G_{T}, \mathbb{G}_{m, T}\right) \cong G^{*}(T)$. By passing to an affine covering of T it suffices to do this when T itself is affine. After replacing $G \rightarrow S$ by $G_{T} \rightarrow T$, we may also assume that $T=S$. As usual, we then write $S=\operatorname{Spec} R, G=\operatorname{Spec} A$, and $G^{*}=\operatorname{Spec} A^{*}$, where $A^{*}=\operatorname{Hom}_{R}(A, R)$. By definition, $\operatorname{Hom}_{S}\left(G, \mathbb{G}_{m, S}\right)$ is the group of morphisms $\varphi: G \rightarrow \mathbb{G}_{m, S}$ of schemes over S such that the left hand side of the following diagram commutes:

Since every homomorphism maps the unit element to the unit element, the whole diagram then commutes. Next, these morphisms are in bijection to morphisms $\varphi: G \rightarrow \mathbb{A}_{S}^{1}$ of schemes over S such that

commutes; in fact, every such $\varphi: G \rightarrow \mathbb{A}_{S}^{1}$ automatically lands inside $\mathbb{G}_{m, S}$, because for every point g of G we have $\varphi(g) \varphi\left(g^{-1}\right)=\varphi\left(g g^{-1}\right)=\varphi(\epsilon)=1$, showing that $\varphi(g)$ is invertible. These morphisms in turn correspond to R-algebra homomorphisms $R[T] \rightarrow A$ such that

commutes. But giving an R-algebra homomorphism $R[T] \rightarrow A$ is equivalent to giving the image a of T, so we obtain a bijection to the set

$$
\{a \in A \mid m(a)=a \otimes a, \epsilon(a)=1\} .
$$

By biduality $A \cong A^{* *}$ we can identify this with the set
$\left\{\alpha \in \operatorname{Hom}_{R}\left(A^{*}, R\right) \mid \forall \ell, \ell^{\prime} \in A^{*}: \alpha\left(m^{*}\left(\ell \otimes \ell^{\prime}\right)\right)=\alpha(\ell) \cdot \alpha\left(\ell^{\prime}\right), \alpha\left(\epsilon^{*}(1)\right)=1\right\}$.
Finally, these conditions say precisely that $\alpha: A^{*} \rightarrow R$ is a homomorphism of R-algebras, i.e., corresponding to a point in $G^{*}(S)$. The additivity and functoriality are left to the reader.

Proposition 24.3. If G^{\prime} and G are both finite flat over S, then a bilinear morphism $\beta: G^{\prime} \times{ }_{S} G \rightarrow \mathbb{G}_{m, S}$ is nondegenerate at G^{\prime} and G if and only if its adjoint $G^{\prime} \rightarrow \underline{\operatorname{Hom}}_{S}\left(G, \mathbb{G}_{m, S}\right)=G^{*}$ is an isomorphism.

Proof. We have seen that β is nondegenerate at G^{\prime} if and only if its adjoint $\varphi: G^{\prime} \rightarrow G^{*}$ is a monomorphism. Similarly, β is nondegenerate at G if and only if its adjoint (after having swapped G^{\prime} and $G!$) $\varphi^{\prime}: G \rightarrow G^{\prime *}$ is a monomorphism. After the conscientious reader has checked that $\varphi^{\prime}=\varphi^{*}$, she will see that the second fact is equivalent to φ being an epimorphism.

§25 Cartier duality of finite Witt group schemes

From this section onwards we will again work over a perfect field k of characteristic $p>0$. Our aim is to construct natural isomorphisms $\left(W_{m}^{n}\right)^{*} \cong W_{n}^{m}$ for all m and n and to describe their relation with the action of E and with all transition maps. The existence of an isomorphism $\left(W_{m}^{n}\right)^{*} \cong W_{n}^{m}$ alone can be proved without the following technicalities, merely by characterizing W_{n}^{m} up to isomorphism by a few simple properties. This makes a nice exercise for the interested reader.

By Proposition 24.3 it suffices to construct a nondegenerate pairing $W_{n}^{m} \times$ $W_{m}^{n} \rightarrow \mathbb{G}_{m, k}$, and for this we use the multiplication of Witt vectors. Recall our notation $W_{n}=W / V^{n} W$ and $W_{n}^{m}=\operatorname{ker}\left(F^{m} \mid W_{n}\right)$. For all n and m consider the morphisms

$$
\tau_{n}^{m}: W_{n}^{m} \rightarrow W,\left(x_{0}, \ldots, x_{n-1}\right) \mapsto\left(x_{0}, \ldots, x_{n-1}, 0,0, \ldots\right)
$$

Their images form a system of infinitesimal neighborhoods of 0 inside W, and we are interested in the formal scheme $\widehat{W}:=\bigcup_{n, m} \tau_{n}^{m}\left(W_{n}^{m}\right)$. Its points over any k-algebra R are the elements $\underline{x} \in W(R)$ such that all components x_{i} are nilpotent and almost all are zero.
Lemma 25.1. (a) Addition in W induces a morphism $\widehat{W} \times \widehat{W} \rightarrow \widehat{W}$.
(b) Multiplication in W induces a morphism $W \times \widehat{W} \rightarrow \widehat{W}$.

In other words, $\widehat{W}(R)$ is an ideal in $W(R)$ for all R.

Proof. The phantom component $\Phi_{n}(\underline{x})=x_{0}^{p^{n}}+p x_{1}^{p^{n-1}}+\cdots+p^{n} x_{n}$ is an isobaric polynomial of degree p^{n}, if we set $\operatorname{deg}\left(x_{i}\right)=p^{i}$. Recall that addition in W is given by $\underline{x}+\underline{y}=\underline{s}=\left(s_{0}, s_{1}, \ldots\right)$, where the s_{i} are polynomials in $\mathbb{Z}[\underline{x}, \underline{y}]$ characterized by $\Phi_{n}(\underline{s})=\Phi_{n}(\underline{x})+\Phi_{n}(\underline{y})$, this last being the usual addition. Thus $\Phi_{n}(\underline{s})$ is isobaric of degree p^{n} when $\operatorname{deg}\left(x_{i}\right)=\operatorname{deg}\left(y_{i}\right)=p^{i}$, which in turn implies by induction that s_{n} is isobaric of degree p^{n}. Plugging in any $\underline{x}, \underline{y} \in \widehat{W}(R)$, we deduce that $s_{i}(\underline{x}, \underline{y})$ is nilpotent for all i and that it is zero for $i \gg 0$. This proves (a).

For (b) we similarly note that multiplication in W is given by $\underline{x} \cdot \underline{y}=\underline{p}$ $=\left(p_{0}, p_{1}, \ldots\right)$, where $\Phi_{n}(\underline{p})=\Phi_{n}(\underline{x}) \cdot \Phi_{n}(\underline{y})$. One finds that $p_{n} \bar{\in} \overline{\mathbb{Z}}[\underline{x}, \underline{y}]$ is isobaric of degree p^{n} when $\operatorname{deg}\left(y_{i}\right)=p^{i}$ and $\operatorname{deg}\left(x_{i}\right)=0$, and then one concludes with the same argument.

Note. Lemma 25.1 (a) defines an additive group structure on the formal scheme \widehat{W}, making it a "group formal scheme", that is, a group object in the category of formal schemes. However, the morphisms $\tau_{n}^{m}: W_{n}^{m} \rightarrow \widehat{W}$ are no group homomorphisms and their images no group subschemes, so \widehat{W} should not be confused with the ind-object " $\lim _{m, n} W_{n}^{m} "$ from Proposition 23.9!

Lemma 25.2. (a) The Artin-Hasse exponential induces a group homomorphism $\widehat{W} \rightarrow \mathbb{G}_{m, k}, \underline{x} \mapsto E(\underline{x}, 1)$.
(b) For all $\underline{x} \in W(R)$ and $\underline{y} \in \widehat{W}(R)$, we have $E((V \underline{x}) \cdot \underline{y}, 1)=E(\underline{x} \cdot(F \underline{y}), 1)$.
(c) For all $n \geq 1$, all $\underline{x}, \underline{x}^{-} \in W(R)$ with the same image in $W_{n}(R)$, and all $\underline{y} \in \widehat{W}(R)$ such that $F^{n} \underline{y}=0$, we have $E(\underline{x} \cdot \underline{y}, 1)=E\left(\underline{x}^{\prime} \cdot \underline{y}, 1\right)$.
Proof. (a) By definition $E(\underline{x}, t)=\prod_{n \geq 0} F\left(x_{n} t^{p^{n}}\right) \in 1+t \mathbb{Z}[\underline{x}][[t]]$, where $F(t)=1-t \pm \cdots \in 1+t \mathbb{Z}_{(p)}[[t]]$. Thus for any $\underline{x} \in \widehat{W}(R)$ the series $E(\underline{x}, t)$ is actually a polynomial in t with constant term 1 . In particular it can be evaluated at $t=1$, yielding an element $E(\underline{x}, 1) \in \mathbb{G}_{m}(R)$. Thus the morphism in question is defined, and it is a homomorphism because E itself defines a group homomorphism from $W=W_{k}$ to the multiplicative group scheme $\Lambda_{k}=" 1+t \mathbb{A}_{k}^{1}[[t]]$ ".
(b) follows from Proposition $21.1(\mathrm{~g})$ by setting $t=1$.
(c) By assumption $\underline{x}-\underline{x}^{\prime}$ maps to zero in $W_{n}(R)$, so it must be of the form $\underline{x}-\underline{x}^{\prime}=V^{n} \underline{z}$ for some $\underline{z} \in W(R)$. Thus $\underline{x}=\underline{x}^{\prime}+V^{n} \underline{z}$. We deduce that $E(\underline{x} \underline{y}, 1)=E\left(\left(\underline{x}^{\prime}+V^{n} \underline{z}\right) \underline{y}, 1\right)=E\left(\underline{x}^{\prime} \underline{y}+\left(V^{n} \underline{z}\right) \underline{y}, 1\right)=E\left(\underline{x}^{\prime} \underline{y}, 1\right) \cdot E\left(\left(V^{n} \underline{z} \underline{y}, 1\right)\right.$, where we have also used the distributive law in W, Lemma 25.1, and the homomorphy of E. But (b) implies that the last factor is

$$
E\left(\left(V^{n} \underline{z}\right) \underline{y}, 1\right)=E\left(\underline{z}\left(F^{n} \underline{y}\right), 1\right)=1,
$$

since $F^{n} \underline{y}=0$ by assumption.

Theorem 25.3. For all $n, m \geq 1$ there is a well-defined nondegenerate bilinear morphism

$$
W_{n}^{m} \times W_{m}^{n} \rightarrow \mathbb{G}_{m, k},(\underline{x}, \underline{y}) \mapsto\langle\underline{x}, \underline{y}\rangle:=E\left(\tau_{n}^{m}(\underline{x}) \cdot \tau_{m}^{n}(\underline{y}), 1\right),
$$

and it satisfies the following relations:
(a) $\langle\underline{x}, \underline{y}\rangle=\langle\underline{y}, \underline{x}\rangle$,
(b) $\langle\underline{v}, \underline{x}\rangle=\langle\underline{x}, f \underline{y}\rangle$,
(c) $\langle\underline{r}, \underline{y}\rangle=\langle\underline{x}, \underline{i} \overline{\bar{y}}$,
(d) $\langle V \underline{x}, \underline{y}\rangle=\langle\underline{x}, \bar{F} \underline{y}\rangle$,
(e) $\langle\xi \underline{x}, \underline{y}\rangle=\langle\underline{x}, \xi \underline{y}\rangle$ for all $\xi \in W(k)$.

In particular, its adjoint is a canonical isomorphism $W_{n}^{m} \xrightarrow{\sim}\left(W_{m}^{n}\right)^{*}$.
Proof. Lemmas 25.1 (b) and 25.2 (a) imply that the morphism is well-defined. To see that it is bilinear, consider any $\underline{x}, \underline{x}^{\prime} \in W_{n}^{m}(R)$ and $\underline{y} \in W_{m}^{n}(R)$. Then $\tau_{n}^{m}\left(\underline{x}+\underline{x}^{\prime}\right)$ and $\tau_{n}^{m}(\underline{x})+\tau_{n}^{m}\left(\underline{x}^{\prime}\right)$, even though they might be different in $\widehat{W}(R)$, have the same image in $W_{n}(R)$. Thus using Lemma 25.2 (a) and (c) one directly computes that $\left\langle\underline{x}+\underline{x}^{\prime}, \underline{y}\right\rangle=\langle\underline{x}, \underline{y}\rangle+\left\langle\underline{x}^{\prime}, \underline{y}\right\rangle$, as desired.

The same reasoning with $\tau_{n}^{\bar{m}}(\xi \underline{x})$ and $\xi \cdot \tau_{n}^{m}(\underline{x})$ works for (e), and with $\tau_{n}^{m}(r \underline{x})$ and $\tau_{n+1}^{m}(\underline{x})$ for $\underline{x} \in W_{n+1}^{m}(R)$ it works for (c). Part (b) results from the calculation

$$
\begin{aligned}
&\langle v \underline{x}, \underline{y}\rangle=E\left(\tau_{n+1}^{m}(v \underline{x}) \cdot \tau_{m}^{n+1}(\underline{y}), 1\right)=E\left(\left(V \tau_{n}^{m}(\underline{x})\right) \cdot \tau_{m}^{n+1}(\underline{y}), 1\right) \\
& \quad \stackrel{25.2}{=} E\left(\tau_{n}^{m}(\underline{x}) \cdot\left(F \tau_{m}^{n+1}(\underline{y})\right), 1\right)=E\left(\tau_{n}^{m}(\underline{x}) \cdot \tau_{m}^{n}(\underline{f y}), 1\right)=\langle\underline{x}, f \underline{y}\rangle
\end{aligned}
$$

for any $\underline{x} \in W_{n}^{m}(R)$ and $\underline{y} \in W_{m}^{n+1}(R)$. Moreover, (a) is obvious, and (d) follows from (b) and (c) and the relations $V=r v$ and $F=f i$ from $\S 22$.

It remains to prove nondegeneracy, and for this we begin with the case $n=m=1$. Since $W_{1}^{1}=\boldsymbol{a}_{p}$ is simple, it suffices to prove that the pairing is nontrivial. But in this case we have

$$
\langle x, y\rangle=E\left(\tau_{1}^{1}(x) \cdot \tau_{1}^{1}(y), 1\right) \stackrel{20.7}{=} E\left(\tau_{1}^{1}(x y), 1\right)=F(x y)=1-x y \pm \ldots
$$

which is not identically 1 for (x, y) in $\boldsymbol{a}_{p} \times \boldsymbol{a}_{p}$, as desired.
The general case can be deduced from this in two ways. One way is to perform induction over n and m, by relating the short exact sequences from the beginning of $\S 22$ and their Cartier duals, using the adjunctions in (b) and (c), and then applying the five lemma. Another way is to first show that every non-zero subgroup scheme $G \subset W_{n}^{m}$ contains $i^{m-1} v^{n-1}\left(W_{1}^{1}\right)$. Indeed, this follows at once from Lemma 22.1 and the fact that G must possess a subgroup scheme isomorphic to $\boldsymbol{a}_{p} \cong W_{1}^{1}$. By symmetry, it is then enough to show that $\langle-,-\rangle$ is non-trivial on $i^{m-1} v^{n-1}\left(W_{1}^{1}\right) \times W_{m}^{n}$, which follows from the special case $n=m=1$ by (b) and (c).

