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§24 Pairings and Cartier duality

Logically, this section could have followed right after §4. Let G, G′ and H
be commutative group schemes over a scheme S.

Definition. A morphism G′ ×S G → H of schemes over S is called bilinear

if it is additive in each factor, or equivalently, if for every scheme T over S
the induced map G′(T ) × G(T ) → H(T ) is bilinear in the usual sense. The
group of such bilinear morphisms will be denoted by BilinS(G′ ×S G,H).

Definition. Denote by HomS(G,H) the contravariant functor

SchS → Ab, T 7→ HomS(G,H)(T ) := HomT (GT , HT ).

If it is representable, the representing group scheme over S will also be de-
noted by HomS(G,H).

Note. One can show that HomS(G,H) is representable whenever G is finite
and flat over S. Unfortunately, the detailed study of BilinS(G′×S G,H) and
HomS(G,H) is beyond the scope of this course because of time constraints.

Proposition 24.1 (Adjunction formula). There exists an isomorphism

BilinS(G′ ×S G,H) ∼= HomS(G′,HomS(G,H)),

which is functorial in all variables. This of course determines HomS(G,H)
up to natural isomorphism.

Proof. By definition giving a morphism ϕ : G′ → HomS(G,H) is equivalent
to giving a homomorphism ϕ′ : G′×SG −→ G′×SH of group schemes over G′.
Thus ϕ′ must be a morphism of schemes over S whose first component is the
projection to G′ and whose second component is a morphism ψ : G′×SG→ H
that is additive in G. Moreover, one easily checks that ϕ is additive if and
only if ψ is additive in G′. This sets up the desired bijection, and one easily
checks that it is a group isomorphism and functorial in all variables.

Definition. A bilinear morphism β : G′×SG→ H is nondegenerate at G′ if,
for all T → S and all 0 6= g′ ∈ G′(T ), the homomorphism β(g′,−) : GT → HT

is nontrivial. One similarly defines the notion nondegenerate at G.
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Note. It is clear that β is nondegenerate at G′ if and only if the associated
homomorphism G′ → HomS(G,H) is a monomorphism.

Proposition 24.2. If G is finite flat over S, there is a functorial isomorphism
HomS(G,Gm,S) ∼= G∗, and in particular HomS(G,Gm,S) is representable.

Proof. For all schemes T over S we must construct a natural isomorphism
HomT (GT ,Gm,T ) ∼= G∗(T ). By passing to an affine covering of T it suffices
to do this when T itself is affine. After replacing G→ S by GT → T , we may
also assume that T = S. As usual, we then write S = SpecR, G = SpecA,
and G∗ = SpecA∗, where A∗ = HomR(A,R). By definition, HomS(G,Gm,S)
is the group of morphisms ϕ : G→ Gm,S of schemes over S such that the left
hand side of the following diagram commutes:

G×S G
m //

ϕ×ϕ

��

G

ϕ

��

S
εoo

1}}{{
{
{
{
{
{
{

Gm,S ×S Gm,S
m // Gm,S

Since every homomorphism maps the unit element to the unit element, the
whole diagram then commutes. Next, these morphisms are in bijection to
morphisms ϕ : G→ A1

S of schemes over S such that

G×S G
m //

ϕ×ϕ

��

G

ϕ

��

S
εoo

1����
�
�
�
�
�
�

A1
S ×S A1

S
m // A1

S

commutes; in fact, every such ϕ : G → A1
S automatically lands inside Gm,S,

because for every point g of G we have ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(ε) = 1,
showing that ϕ(g) is invertible. These morphisms in turn correspond to
R-algebra homomorphisms R[T ] → A such that

A⊗ A A
moo ε // R

R[T ] ⊗ R[T ]

OO

R[T ]

OO

T⊗T←pToo
T 7→1

::
t

t
t

t
t

t
t

t
t

t

commutes. But giving an R-algebra homomorphism R[T ] → A is equivalent
to giving the image a of T , so we obtain a bijection to the set

{
a ∈ A

∣∣ m(a) = a⊗ a, ε(a) = 1
}
.

60



By biduality A ∼= A∗∗ we can identify this with the set

{
α ∈ HomR(A∗, R)

∣∣ ∀`, `′∈A∗ : α(m∗(`⊗`′)) = α(`) ·α(`′), α(ε∗(1)) = 1
}
.

Finally, these conditions say precisely that α : A∗ → R is a homomorphism
of R-algebras, i.e., corresponding to a point in G∗(S). The additivity and
functoriality are left to the reader.

Proposition 24.3. If G′ and G are both finite flat over S, then a bilinear
morphism β : G′ ×S G → Gm,S is nondegenerate at G′ and G if and only if
its adjoint G′ → HomS(G,Gm,S) = G∗ is an isomorphism.

Proof. We have seen that β is nondegenerate at G′ if and only if its adjoint
ϕ : G′ → G∗ is a monomorphism. Similarly, β is nondegenerate at G if
and only if its adjoint (after having swapped G′ and G!) ϕ′ : G → G′∗ is
a monomorphism. After the conscientious reader has checked that ϕ′ = ϕ∗,
she will see that the second fact is equivalent to ϕ being an epimorphism.

§25 Cartier duality of finite Witt group schemes

From this section onwards we will again work over a perfect field k of charac-
teristic p > 0. Our aim is to construct natural isomorphisms (W n

m)∗ ∼= Wm
n

for allm and n and to describe their relation with the action of E and with all
transition maps. The existence of an isomorphism (W n

m)∗ ∼= Wm
n alone can

be proved without the following technicalities, merely by characterizing Wm
n

up to isomorphism by a few simple properties. This makes a nice exercise
for the interested reader.

By Proposition 24.3 it suffices to construct a nondegenerate pairing Wm
n ×

W n
m → Gm,k, and for this we use the multiplication of Witt vectors. Recall

our notation Wn = W/V nW and Wm
n = ker(Fm|Wn). For all n and m

consider the morphisms

τm
n : Wm

n →W, (x0, . . . , xn−1) 7→ (x0, . . . , xn−1, 0, 0, . . .).

Their images form a system of infinitesimal neighborhoods of 0 inside W ,
and we are interested in the formal scheme Ŵ :=

⋃
n,m τ

m
n (Wm

n ). Its points
over any k-algebra R are the elements x ∈ W (R) such that all components
xi are nilpotent and almost all are zero.

Lemma 25.1. (a) Addition in W induces a morphism Ŵ × Ŵ → Ŵ .

(b) Multiplication in W induces a morphism W × Ŵ → Ŵ .

In other words, Ŵ (R) is an ideal in W (R) for all R.
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Proof. The phantom component Φn(x) = xpn

0 + pxpn−1

1 + · · · + pnxn is an
isobaric polynomial of degree pn, if we set deg(xi) = pi. Recall that addition
in W is given by x + y = s = (s0, s1, . . .), where the si are polynomials in
Z[x, y] characterized by Φn(s) = Φn(x) + Φn(y), this last being the usual
addition. Thus Φn(s) is isobaric of degree pn when deg(xi) = deg(yi) = pi,
which in turn implies by induction that sn is isobaric of degree pn. Plugging
in any x, y ∈ Ŵ (R), we deduce that si(x, y) is nilpotent for all i and that it
is zero for i� 0. This proves (a).

For (b) we similarly note that multiplication in W is given by x · y = p
= (p0, p1, . . .), where Φn(p) = Φn(x) · Φn(y). One finds that pn ∈ Z[x, y]
is isobaric of degree pn when deg(yi) = pi and deg(xi) = 0, and then one
concludes with the same argument.

Note. Lemma 25.1 (a) defines an additive group structure on the formal

scheme Ŵ , making it a “group formal scheme”, that is, a group object in the
category of formal schemes. However, the morphisms τm

n : Wm
n → Ŵ are no

group homomorphisms and their images no group subschemes, so Ŵ should
not be confused with the ind-object “ lim

−→m,n
Wm

n ” from Proposition 23.9!

Lemma 25.2. (a) The Artin-Hasse exponential induces a group homomorph-

ism Ŵ → Gm,k, x 7→ E(x, 1).

(b) For all x ∈W (R) and y ∈ Ŵ (R), we have E
(
(V x) ·y, 1

)
= E

(
x ·(Fy), 1

)
.

(c) For all n ≥ 1, all x, x′ ∈ W (R) with the same image in Wn(R), and all

y ∈ Ŵ (R) such that F ny = 0, we have E(x · y, 1) = E(x′ · y, 1).

Proof. (a) By definition E(x, t) =
∏

n≥0 F (xnt
pn

) ∈ 1 + tZ[x][[t]], where

F (t) = 1 − t ± · · · ∈ 1 + tZ(p)[[t]]. Thus for any x ∈ Ŵ (R) the series
E(x, t) is actually a polynomial in t with constant term 1. In particular it
can be evaluated at t = 1, yielding an element E(x, 1) ∈ Gm(R). Thus the
morphism in question is defined, and it is a homomorphism because E itself
defines a group homomorphism from W = Wk to the multiplicative group
scheme Λk = “1 + tA1

k[[t]]”.
(b) follows from Proposition 21.1 (g) by setting t = 1.
(c) By assumption x − x′ maps to zero in Wn(R), so it must be of the

form x− x′ = V nz for some z ∈W (R). Thus x = x′ + V nz. We deduce that

E
(
xy, 1

)
= E

(
(x′+V nz)y, 1

)
= E

(
x′y+(V nz)y, 1

)
= E

(
x′y, 1

)
·E

(
(V nz)y, 1

)
,

where we have also used the distributive law in W , Lemma 25.1, and the
homomorphy of E. But (b) implies that the last factor is

E
(
(V nz)y, 1

)
= E(z(F ny), 1) = 1,

since F ny = 0 by assumption.
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Theorem 25.3. For all n,m ≥ 1 there is a well-defined nondegenerate bi-
linear morphism

Wm
n ×W n

m → Gm,k, (x, y) 7→ 〈x, y〉 := E
(
τm
n (x) · τn

m(y), 1
)
,

and it satisfies the following relations:
(a) 〈x, y〉 = 〈y, x〉,
(b) 〈vx, y〉 = 〈x, fy〉,
(c) 〈rx, y〉 = 〈x, iy〉,
(d) 〈V x, y〉 = 〈x, Fy〉,
(e) 〈ξx, y〉 = 〈x, ξy〉 for all ξ ∈W (k).

In particular, its adjoint is a canonical isomorphism Wm
n

∼
→ (W n

m)∗.

Proof. Lemmas 25.1 (b) and 25.2 (a) imply that the morphism is well-defined.
To see that it is bilinear, consider any x, x′ ∈ Wm

n (R) and y ∈W n
m(R). Then

τm
n (x+x′) and τm

n (x)+τm
n (x′), even though they might be different in Ŵ (R),

have the same image in Wn(R). Thus using Lemma 25.2 (a) and (c) one
directly computes that 〈x+ x′, y〉 = 〈x, y〉 + 〈x′, y〉, as desired.

The same reasoning with τm
n (ξx) and ξ · τm

n (x) works for (e), and with
τm
n (rx) and τm

n+1(x) for x ∈ Wm
n+1(R) it works for (c). Part (b) results from

the calculation

〈vx, y〉 = E
(
τm
n+1(vx) · τ

n+1
m (y), 1

)
= E

(
(V τm

n (x)) · τn+1
m (y), 1

)

25.2 (b)
= E

(
τm
n (x) · (Fτn+1

m (y)), 1
)

= E
(
τm
n (x) · τn

m(fy), 1
)

= 〈x, fy〉

for any x ∈ Wm
n (R) and y ∈ W n+1

m (R). Moreover, (a) is obvious, and (d)
follows from (b) and (c) and the relations V = rv and F = fi from §22.

It remains to prove nondegeneracy, and for this we begin with the case
n = m = 1. Since W 1

1 = ααp is simple, it suffices to prove that the pairing is
nontrivial. But in this case we have

〈x, y〉 = E
(
τ 1
1 (x) · τ 1

1 (y), 1
) 20.7

= E
(
τ 1
1 (xy), 1

)
= F (xy) = 1 − xy ± . . . ,

which is not identically 1 for (x, y) in ααp × ααp, as desired.
The general case can be deduced from this in two ways. One way is to

perform induction over n and m, by relating the short exact sequences from
the beginning of §22 and their Cartier duals, using the adjunctions in (b)
and (c), and then applying the five lemma. Another way is to first show that
every non-zero subgroup scheme G ⊂ Wm

n contains im−1vn−1(W 1
1 ). Indeed,

this follows at once from Lemma 22.1 and the fact that G must possess a
subgroup scheme isomorphic to ααp

∼= W 1
1 . By symmetry, it is then enough to

show that 〈−,−〉 is non-trivial on im−1vn−1(W 1
1 ) ×W n

m, which follows from
the special case n = m = 1 by (b) and (c).
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