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83 Affine group schemes

Let fRings be the category of commutative noetherian rings with 1, called the
category of unitary rings. Morphisms in this category are maps ¢ : R — S
which are additive and multiplicative and satisfy ¢ (1) = 1. The last condition
is important, but sometimes forgotten. As is well known the assignment
R —— Spec R is an anti-equivalence of categories:

Rings «—— aff.Sch,

where aff.Gch denotes the category of affine schemes. Let R be in Rings.
An object A of Rings together with a morphism R — A in Rings is called
a unitary R-algebra. Equivalently A is an R-module together with two ho-
momorphisms of R-modules

R < A - A ®R A )
such that pu is associative and commutative, i.e.,

pla®a) = pld ®a) and
pla®p(a’ ®ad”)) = plpla®d)®a’),

and e induces a unit, i.e.,
ue()) @ a) =

We denote the category of unitary R-algebras by R-2lg. The above anti-
equivalence restricts to an anti-equivalence

R-Alg «—— aff.R-Gch,

where aff.R-Sch denotes the category of affine schemes over Spec R. The
object * = Spec R is a final object in aff. R-Gch.

Definition. Let R be a unitary ring. An affine commutative group scheme
over Spec R is a commutative group object in the category of affine schemes
over Spec R.



Convention. In the following all groups schemes are assumed to be affine
and commutative.

Let G = Spec A be such a group scheme over Spec R. The morphisms
associated with the group object G correspond to the following homomor-
phisms of R-modules:

€ 2

T
(3.1) R A5 AemA.
\g/UY

Here p and e are the structure maps of the R-algebra A. The map m, called
the comultiplication, corresponds to the group operation G x G — G. The
map ¢, called the counit, corresponds to the morphism * — G yielding the
unit in G, and ¢, the antipodism, corresponds to the morphism G — G
sending an element to its inverse.

The axioms for a commutative group scheme translate to those in the
following table. Here ¢ : A ®p A — A ®r A denotes the switch map

ola®d) = d ® a, and the equalities marked = at the bottom right are
consequences of the others.

meaning axiom axiom meaning
1 associative po (ideu) = po (p®id) (m®id) om = (id®@m) om m coassociative
© commutative nHoo=pu ocom=m m cocommutative
e unit for p po(e(l)®id) =id (e®id)om=1®id € counit for m
m homomorphism mop=(p®p)o (id®c ®id) o (m ® m)
of unitary rings m(e(l)) =e(1l) ® e(1) cop=€eQe € homomorphism
e®e=1id of unitary rings
¢ homomorphism top=po(t®u) motr=_(®t)om (zy)~ 1t !::z:_ly_l
of unitary rings Loe=e €oL=¢€ 1=1"1
¢ coinverse for m eoe=po(id®)om




Definition. An R-module A together with maps p, €, e, m, and ¢ satisfying
the above axioms is called an associative, commutative, unitary, coassocia-
tive, cocommutative, counitary R-bialgebra with antipodism, or shorter, a
cocommutative R-Hopf algebra with antipodism.

Definition. A homomorphism of group schemes ® : G — H over Spec R is
a morphism in aff. R-&ch, such that the induced morphism G(Z) — H(Z)
is a homomorphism of groups for all Z in aff.R-&ch. For G = Spec A and
H = Spec B this morphism corresponds to a homomorphism of R-modules
¢ : B — A making the following diagram commutative:

€A HnA

= T~
R A< AsgA
S~ 7 T~
eA ma
(3.2) id ¢ $@¢
/P\ KB
R B BaxB.
\/ \’/
en mpg

Definition. The sum of two homomorphisms ®, ¥ : G — H is defined by
the commutative diagram

G—Gx(G
(3.3) CH\PL l@x\lf
H~—HXxH |,

where the upper arrow is the diagonal morphism and the lower arrow the
group operation of H. We leave it to the reader to check that & + ¥ is a
homomorphism of group schemes.

The category of commutative affine group schemes over Spec R is additive.

84 Cartier duality

We now assume that the group scheme G = Spec A is finite and flat over R,
i.e. that A is a locally free R-module of finite type. Let A* := Hompg(A, R)
denote its R-dual. Dualizing the diagram (3.1), and identifying R = R* and
(A®pr A)* = A* ®r A* we obtain homomorphisms of R-modules

/8\ /IL\
(4.1) R A* A* @p A*.
T T
e* - /»‘L*



A glance at the self dual table above shows that the morphisms e*, m*, u*, €*,
and ¢* satisfy the axioms of a cocommutative Hopf algebra with antipodism,
and therefore G* := Spec A* is a finite flat group scheme over Spec R, too.

Definition. G* is called the Cartier dual of G.

If ®: G — H is a homomorphism of finite flat group schemes corre-
sponding to the homomorphism ¢ : B — A, the symmetry of diagram (3.2)
shows that ¢* : A* — B* corresponds to a homomorphism of group schemes
®* . H* — G*. Therefore Cartier duality is a contravariant functor from
the category of finite flat commutative affine group schemes to itself.

Moreover this functor is additive. Indeed, for any two homomorphisms
®, U : G — H the equation (®+W¥)* = &* 4 U* follows directly by dualizing
the diagram (3.3).

Remark. The Cartier duality functor is involutive. Indeed, the natural
evaluation isomorphism id —** induces a functorial isomorphism G ~ G**.

85 Constant group schemes

Let T" be a finite (abstract) abelian group, whose group structure is written
additively. We want to associate to I' a finite commutative group scheme
over Spec R. The obvious candidate for its underlying scheme is

G = “I' x Spec R” = H Spec R,

~yel’

the disjoint union of |T'| copies of the final object * = Spec R in the category
aff. R-&ch. The group operation on G is defined by noting that

GxG =T xI xSpecR” := H Spec R,

and mapping the leaf Spec R of G x G indexed by (v,~’) identically to the
leaf of G indexed by v + 7/. One easily sees that this defines a finite flat
commutative group scheme over Spec R.

Definition. This group scheme is called the constant group scheme over R
with fiber I and denoted I'j.

Let us work out this construction on the underlying rings. The ring of
regular functions on I'j is naturally isomorphic to the ring of functions

R := {f:T — R|f is a map of sets },
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whose addition and multiplication are defined componentwise, and whose
0 and 1 are the constant maps with value 0, respectively 1. The comulti-
plication m : R — R @z R' = R'™ ! is characterized by the formula,
m(f)(v,7) = f(y +7'), the counit ¢ : R — R by ¢(f) = f(1), and the
coinverse ¢ : RY — RY by «(f)(7) = f(—).

Next observe that the following elements {e.},cr constitute a canonical
basis of the free R-module R

1 ify=+
e, : ' — R, v — '
0 otherwise.

One checks that p, €, e, m, and ¢ are given on this basis by

e, fy=7
e, Rey) =
i K 7) { 0 otherwise

1 ify=0
ele,) = { !

0 otherwise

e(l) = Z ey

yel’

m(e,) = Ze“/@e%w’
v er

ey) = e

To calculate the Cartier dual of Ty let {é,},cr denote the basis of (R')*
dual to the one above, characterized by

(o) 1 ify=+
E~\E~t ) =
e 0 otherwise.

The dual maps are then given by the formulas

préy) = e, ®é,
(1) = é
e'(éy) =1
My ®€y) = CEyiy
Uey) = ey

The formulas for m* and €* show that (R!)* is isomorphic to the group ring
R[I'] as an R-algebra, such that e* corresponds to the usual augmentation
map R[] — R.

10



Example. Let ' := Z/Zn be the cyclic group of order n € N. Then with
X := ¢, the above formulas show that (R')* = R[X]/(X™ — 1) with the
comultiplication p*(X) =X ® X. Thus we deduce that

(Z/Zn,)" = por.

Example. Assume that p-1 = 0 in R for a prime number p. Recall that
a, p = Spec A with A = R[T']/(T?) and the comultiplication m(7) =T ® 1+
1®T. In terms of the basis {T"}<;<, all the maps are given by the formulas

‘ . TH ifid+j<p
wI"eT’) = .
0 otherwise

‘ 1 ifi=0
e(T") = {

0 otherwise

e(l) = T°
m(T") = Z‘(;)-TjéaTi‘j

(TY) = (-1 T

Let {u;}o<i<, denote the dual basis of A*. Then using the above formulas
one easily checks that the R-linear map A* — A sending u; to 7%/i! is an
isomorphism of Hopf algebras. Therefore

(ap.r)" = ay .

Proposition. For any field £ of characteristic p > 0, the group schemes
7/ Zpk, My 1, and ay, ;. are pairwise non-isomorphic.

Proof. The first one is étale, while both m,, = Speck[X]/(X? — 1) and
a,, . = Spec k[T]/(T?) are non-reduced. Although the underlying schemes of
the latter two are isomorphic, the examples above show that this is not the
case for their Cartier duals. The proposition follows. O
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