Lecture 2

October 28, 2004
Notes by Stefan Gille

§3 Affine group schemes

Let $\mathfrak{R i n g s}$ be the category of commutative noetherian rings with 1 , called the category of unitary rings. Morphisms in this category are maps $\varphi: R \longrightarrow S$ which are additive and multiplicative and satisfy $\varphi(1)=1$. The last condition is important, but sometimes forgotten. As is well known the assignment $R \longmapsto \operatorname{Spec} R$ is an anti-equivalence of categories:

$$
\mathfrak{R i n g s} \longleftrightarrow \mathfrak{a f f} . \mathfrak{S c h},
$$

where $\mathfrak{a f f}$. $\mathfrak{S c h}$ denotes the category of affine schemes. Let R be in $\mathfrak{R i n g s}$. An object A of $\mathfrak{R i n g s}$ together with a morphism $R \longrightarrow A$ in $\mathfrak{R i n g s}$ is called a unitary R-algebra. Equivalently A is an R-module together with two homomorphisms of R-modules

$$
R \xrightarrow[e]{e} A \stackrel{\mu}{\longleftrightarrow} A \otimes_{R} A,
$$

such that μ is associative and commutative, i.e.,

$$
\begin{aligned}
\mu\left(a \otimes a^{\prime}\right) & =\mu\left(a^{\prime} \otimes a\right) \quad \text { and } \\
\mu\left(a \otimes \mu\left(a^{\prime} \otimes a^{\prime \prime}\right)\right) & =\mu\left(\mu\left(a \otimes a^{\prime}\right) \otimes a^{\prime \prime}\right),
\end{aligned}
$$

and e induces a unit, i.e.,

$$
\mu(e(1) \otimes a)=a .
$$

We denote the category of unitary R-algebras by R - $\mathfrak{A l g}$. The above antiequivalence restricts to an anti-equivalence

$$
R-\mathfrak{A l g} \longleftrightarrow \mathfrak{a f f} \cdot R-\mathfrak{S c h},
$$

where $\mathfrak{a f f} . R-\mathfrak{S c h}$ denotes the category of affine schemes over $\operatorname{Spec} R$. The object $*=\operatorname{Spec} R$ is a final object in $\mathfrak{a f f} . R$ - $\mathfrak{S c h}$.

Definition. Let R be a unitary ring. An affine commutative group scheme over $\operatorname{Spec} R$ is a commutative group object in the category of affine schemes over $\operatorname{Spec} R$.

Convention. In the following all groups schemes are assumed to be affine and commutative.

Let $G=\operatorname{Spec} A$ be such a group scheme over $\operatorname{Spec} R$. The morphisms associated with the group object G correspond to the following homomorphisms of R-modules:

Here μ and e are the structure maps of the R-algebra A. The map m, called the comultiplication, corresponds to the group operation $G \times G \rightarrow G$. The $\operatorname{map} \epsilon$, called the counit, corresponds to the morphism $* \longrightarrow G$ yielding the unit in G, and ι, the antipodism, corresponds to the morphism $G \longrightarrow G$ sending an element to its inverse.

The axioms for a commutative group scheme translate to those in the following table. Here $\sigma: A \otimes_{R} A \longrightarrow A \otimes_{R} A$ denotes the switch map $\sigma\left(a \otimes a^{\prime}\right)=a^{\prime} \otimes a$, and the equalities marked $\stackrel{!}{=}$ at the bottom right are consequences of the others.

meaning	axiom	axiom	meaning
μ associative	$\mu \circ(\mathrm{id} \otimes \mu)=\mu \circ(\mu \otimes \mathrm{id})$	$(m \otimes \mathrm{id}) \circ m=(\mathrm{id} \otimes m) \circ m$	m coassociative
μ commutative	$\mu \circ \sigma=\mu$	$\sigma \circ m=m$	m cocommutative
e unit for μ	$\mu \circ(e(1) \otimes \mathrm{id})=\mathrm{id}$	$(\epsilon \otimes \mathrm{id}) \circ \mathrm{m}=1 \otimes \mathrm{id}$	ϵ counit for m
m homomorphism	$m \circ \mu=(\mu \otimes \mu) \circ(\mathrm{id} \otimes \sigma \otimes \mathrm{id}) \circ(m \otimes m)$		
of unitary rings	$m(e(1))=e(1) \otimes e(1)$	$\epsilon \circ \mu=\epsilon \otimes \epsilon$	ϵ homomorphism of unitary rings
	$\epsilon \otimes e=\mathrm{id}$		
ι homomorphism	$\iota \sim=\mu \circ(\iota \otimes \iota)$	$m \circ \iota=(\iota \otimes \iota) \circ m$	$(x y)^{-1} \stackrel{!}{=} x^{-1} y^{-1}$
of unitary rings	ι ¢ $=e$	$\epsilon \circ \iota=\epsilon$	$1 \stackrel{!}{=} 1^{-1}$
ι coinverse for m	$e \circ \epsilon=\mu \circ(\mathrm{id} \otimes \iota) \circ m$		

Definition. An R-module A together with maps μ, ϵ, e, m, and ι satisfying the above axioms is called an associative, commutative, unitary, coassociative, cocommutative, counitary R-bialgebra with antipodism, or shorter, a cocommutative R-Hopf algebra with antipodism.

Definition. A homomorphism of group schemes $\Phi: G \longrightarrow H$ over $\operatorname{Spec} R$ is a morphism in $\mathfrak{a f f} . R-\mathfrak{S c h}$, such that the induced morphism $G(Z) \longrightarrow H(Z)$ is a homomorphism of groups for all Z in $\mathfrak{a f f} . R$ - $\mathfrak{S c h}$. For $G=\operatorname{Spec} A$ and $H=\operatorname{Spec} B$ this morphism corresponds to a homomorphism of R-modules $\phi: B \longrightarrow A$ making the following diagram commutative:

Definition. The sum of two homomorphisms $\Phi, \Psi: G \longrightarrow H$ is defined by the commutative diagram

where the upper arrow is the diagonal morphism and the lower arrow the group operation of H. We leave it to the reader to check that $\Phi+\Psi$ is a homomorphism of group schemes.

The category of commutative affine group schemes over $\operatorname{Spec} R$ is additive.

§4 Cartier duality

We now assume that the group scheme $G=\operatorname{Spec} A$ is finite and flat over R, i.e. that A is a locally free R-module of finite type. Let $A^{*}:=\operatorname{Hom}_{R}(A, R)$ denote its R-dual. Dualizing the diagram (3.1), and identifying $R=R^{*}$ and $\left(A \otimes_{R} A\right)^{*}=A^{*} \otimes_{R} A^{*}$ we obtain homomorphisms of R-modules

A glance at the self dual table above shows that the morphisms $e^{*}, m^{*}, \mu^{*}, \epsilon^{*}$, and ι^{*} satisfy the axioms of a cocommutative Hopf algebra with antipodism, and therefore $G^{*}:=\operatorname{Spec} A^{*}$ is a finite flat group scheme over $\operatorname{Spec} R$, too.

Definition. G^{*} is called the Cartier dual of G.
If $\Phi: G \longrightarrow H$ is a homomorphism of finite flat group schemes corresponding to the homomorphism $\phi: B \longrightarrow A$, the symmetry of diagram (3.2) shows that $\phi^{*}: A^{*} \longrightarrow B^{*}$ corresponds to a homomorphism of group schemes $\Phi^{*}: H^{*} \longrightarrow G^{*}$. Therefore Cartier duality is a contravariant functor from the category of finite flat commutative affine group schemes to itself.

Moreover this functor is additive. Indeed, for any two homomorphisms $\Phi, \Psi: G \longrightarrow H$ the equation $(\Phi+\Psi)^{*}=\Phi^{*}+\Psi^{*}$ follows directly by dualizing the diagram (3.3).

Remark. The Cartier duality functor is involutive. Indeed, the natural evaluation isomorphism id $\longrightarrow{ }^{* *}$ induces a functorial isomorphism $G \simeq G^{* *}$.

$\S 5$ Constant group schemes

Let Γ be a finite (abstract) abelian group, whose group structure is written additively. We want to associate to Γ a finite commutative group scheme over $\operatorname{Spec} R$. The obvious candidate for its underlying scheme is

$$
G:=" \Gamma \times \operatorname{Spec} R ":=\coprod_{\gamma \in \Gamma} \operatorname{Spec} R,
$$

the disjoint union of $|\Gamma|$ copies of the final object $*=\operatorname{Spec} R$ in the category $\mathfrak{a f f} \cdot R-\mathfrak{S c h}$. The group operation on G is defined by noting that

$$
G \times G \cong " \Gamma \times \Gamma \times \operatorname{Spec} R ":=\coprod_{\gamma, \gamma^{\prime} \in \Gamma} \operatorname{Spec} R,
$$

and mapping the leaf Spec R of $G \times G$ indexed by $\left(\gamma, \gamma^{\prime}\right)$ identically to the leaf of G indexed by $\gamma+\gamma^{\prime}$. One easily sees that this defines a finite flat commutative group scheme over $\operatorname{Spec} R$.

Definition. This group scheme is called the constant group scheme over R with fiber Γ and denoted $\underline{\Gamma}_{R}$.

Let us work out this construction on the underlying rings. The ring of regular functions on $\underline{\Gamma}_{R}$ is naturally isomorphic to the ring of functions

$$
R^{\Gamma}:=\{f: \Gamma \longrightarrow R \mid f \text { is a map of sets }\},
$$

whose addition and multiplication are defined componentwise, and whose 0 and 1 are the constant maps with value 0 , respectively 1 . The comultiplication $m: R^{\Gamma} \longrightarrow R^{\Gamma} \otimes_{R} R^{\Gamma} \cong R^{\Gamma \times \Gamma}$ is characterized by the formula $m(f)\left(\gamma, \gamma^{\prime}\right)=f\left(\gamma+\gamma^{\prime}\right)$, the counit $\epsilon: R^{\Gamma} \rightarrow R$ by $\epsilon(f)=f(1)$, and the coinverse $\iota: R^{\Gamma} \rightarrow R^{\Gamma}$ by $\iota(f)(\gamma)=f(-\gamma)$.

Next observe that the following elements $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ constitute a canonical basis of the free R-module R^{Γ} :

$$
e_{\gamma}: \Gamma \longrightarrow R, \quad \gamma^{\prime} \longmapsto \begin{cases}1 & \text { if } \gamma=\gamma^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

One checks that μ, ϵ, e, m, and ι are given on this basis by

$$
\begin{aligned}
\mu\left(e_{\gamma} \otimes e_{\gamma^{\prime}}\right) & = \begin{cases}e_{\gamma} & \text { if } \gamma=\gamma^{\prime} \\
0 & \text { otherwise }\end{cases} \\
\epsilon\left(e_{\gamma}\right) & = \begin{cases}1 & \text { if } \gamma=0 \\
0 & \text { otherwise }\end{cases} \\
e(1) & =\sum_{\gamma \in \Gamma} e_{\gamma} \\
m\left(e_{\gamma}\right) & =\sum_{\gamma^{\prime} \in \Gamma} e_{\gamma^{\prime}} \otimes e_{\gamma-\gamma^{\prime}} \\
\iota\left(e_{\gamma}\right) & =e_{-\gamma}
\end{aligned}
$$

To calculate the Cartier dual of $\underline{\Gamma}_{R}$ let $\left\{\hat{e}_{\gamma}\right\}_{\gamma \in \Gamma}$ denote the basis of $\left(R^{\Gamma}\right)^{*}$ dual to the one above, characterized by

$$
\hat{e}_{\gamma}\left(e_{\gamma^{\prime}}\right)= \begin{cases}1 & \text { if } \gamma=\gamma^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

The dual maps are then given by the formulas

$$
\begin{aligned}
\mu^{*}\left(\hat{e}_{\gamma}\right) & =\hat{e}_{\gamma} \otimes \hat{e}_{\gamma} \\
\epsilon^{*}(1) & =\hat{e}_{0} \\
e^{*}\left(\hat{e}_{\gamma}\right) & =1 \\
m^{*}\left(\hat{e}_{\gamma} \otimes \hat{e}_{\gamma^{\prime}}\right) & =\hat{e}_{\gamma+\gamma^{\prime}} \\
\iota^{*}\left(\hat{e}_{\gamma}\right) & =\hat{e}_{-\gamma}
\end{aligned}
$$

The formulas for m^{*} and ϵ^{*} show that $\left(R^{\Gamma}\right)^{*}$ is isomorphic to the group ring $R[\Gamma]$ as an R-algebra, such that e^{*} corresponds to the usual augmentation map $R[\Gamma] \longrightarrow R$.

Example. Let $\Gamma:=\mathbb{Z} / \mathbb{Z} n$ be the cyclic group of order $n \in \mathbb{N}$. Then with $X:=\hat{e}_{1}$ the above formulas show that $\left(R^{\Gamma}\right)^{*} \cong R[X] /\left(X^{n}-1\right)$ with the comultiplication $\mu^{*}(X)=X \otimes X$. Thus we deduce that

$$
\left(\underline{\mathbb{Z} / \mathbb{Z} n_{R}}\right)^{*} \cong \mu_{n, R} .
$$

Example. Assume that $p \cdot 1=0$ in R for a prime number p. Recall that $\boldsymbol{\alpha}_{p, R}=\operatorname{Spec} A$ with $A=R[T] /\left(T^{p}\right)$ and the comultiplication $m(T)=T \otimes 1+$ $1 \otimes T$. In terms of the basis $\left\{T^{i}\right\}_{0 \leq i<p}$ all the maps are given by the formulas

$$
\begin{aligned}
\mu\left(T^{i} \otimes T^{j}\right) & =\left\{\begin{array}{cl}
T^{i+j} & \text { if } i+j<p \\
0 & \text { otherwise }
\end{array}\right. \\
\epsilon\left(T^{i}\right) & = \begin{cases}1 & \text { if } i=0 \\
0 & \text { otherwise }\end{cases} \\
e(1) & =T^{0} \\
m\left(T^{i}\right) & =\sum_{0 \leq j \leq i}\binom{i}{j} \cdot T^{j} \otimes T^{i-j} \\
\iota\left(T^{i}\right) & =(-1)^{i} \cdot T^{i}
\end{aligned}
$$

Let $\left\{u_{i}\right\}_{0 \leq i<p}$ denote the dual basis of A^{*}. Then using the above formulas one easily checks that the R-linear map $A^{*} \longrightarrow A$ sending u_{i} to T^{i} / i ! is an isomorphism of Hopf algebras. Therefore

$$
\left(\boldsymbol{\alpha}_{p, R}\right)^{*} \cong \boldsymbol{\alpha}_{p, R} .
$$

Proposition. For any field k of characteristic $p>0$, the group schemes $\underline{\mathbb{Z} / \mathbb{Z} p}{ }_{k}, \mu_{p, k}$, and $\boldsymbol{\alpha}_{p, k}$ are pairwise non-isomorphic.

Proof. The first one is étale, while both $\mu_{p, k}=\operatorname{Spec} k[X] /\left(X^{p}-1\right)$ and $\boldsymbol{\alpha}_{p, k}=\operatorname{Spec} k[T] /\left(T^{p}\right)$ are non-reduced. Although the underlying schemes of the latter two are isomorphic, the examples above show that this is not the case for their Cartier duals. The proposition follows.

