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§3 Affine group schemes

Let Rings be the category of commutative noetherian rings with 1, called the
category of unitary rings. Morphisms in this category are maps ϕ : R −→ S
which are additive and multiplicative and satisfy ϕ(1) = 1. The last condition
is important, but sometimes forgotten. As is well known the assignment
R 7−→ Spec R is an anti-equivalence of categories:

Rings ←→ aff.Sch ,

where aff.Sch denotes the category of affine schemes. Let R be in Rings.
An object A of Rings together with a morphism R −→ A in Rings is called
a unitary R-algebra. Equivalently A is an R-module together with two ho-
momorphisms of R-modules

R
e // A A⊗R A ,

µoo

such that µ is associative and commutative, i.e.,

µ(a⊗ a′) = µ(a′ ⊗ a) and

µ(a⊗ µ(a′ ⊗ a′′)) = µ(µ(a⊗ a′)⊗ a′′) ,

and e induces a unit, i.e.,

µ(e(1)⊗ a) = a.

We denote the category of unitary R-algebras by R-Alg. The above anti-
equivalence restricts to an anti-equivalence

R-Alg ←→ aff.R-Sch ,

where aff.R-Sch denotes the category of affine schemes over Spec R. The
object ∗ = Spec R is a final object in aff.R-Sch.

Definition. Let R be a unitary ring. An affine commutative group scheme

over Spec R is a commutative group object in the category of affine schemes
over Spec R.
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Convention. In the following all groups schemes are assumed to be affine
and commutative.

Let G = Spec A be such a group scheme over Spec R. The morphisms
associated with the group object G correspond to the following homomor-
phisms of R-modules:

(3.1) R
e

88 A

ι

FF
m

44

ε

xx
A⊗R A .

µ

vv

Here µ and e are the structure maps of the R-algebra A. The map m, called
the comultiplication, corresponds to the group operation G × G → G. The
map ε, called the counit, corresponds to the morphism ∗ −→ G yielding the
unit in G, and ι, the antipodism, corresponds to the morphism G −→ G
sending an element to its inverse.

The axioms for a commutative group scheme translate to those in the
following table. Here σ : A ⊗R A −→ A ⊗R A denotes the switch map

σ(a ⊗ a′) = a′ ⊗ a, and the equalities marked
!
= at the bottom right are

consequences of the others.

meaning axiom axiom meaning

µ associative µ ◦ (id⊗µ) = µ ◦ (µ ⊗ id) (m ⊗ id) ◦ m = (id⊗m) ◦ m m coassociative

µ commutative µ ◦ σ = µ σ ◦ m = m m cocommutative

e unit for µ µ ◦ (e(1) ⊗ id) = id (ε ⊗ id) ◦ m = 1 ⊗ id ε counit for m

m homomorphism m ◦ µ = (µ ⊗ µ) ◦ (id⊗σ ⊗ id) ◦ (m ⊗ m)

of unitary rings m(e(1)) = e(1) ⊗ e(1) ε ◦ µ = ε ⊗ ε ε homomorphism

ε ⊗ e = id of unitary rings

ι homomorphism ι ◦ µ = µ ◦ (ι ⊗ ι) m ◦ ι = (ι ⊗ ι) ◦ m (xy)−1 !
= x−1y−1

of unitary rings ι ◦ e = e ε ◦ ι = ε 1
!
= 1−1

ι coinverse for m e ◦ ε = µ ◦ (id⊗ι) ◦ m
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Definition. An R-module A together with maps µ, ε, e, m, and ι satisfying
the above axioms is called an associative, commutative, unitary, coassocia-

tive, cocommutative, counitary R-bialgebra with antipodism, or shorter, a
cocommutative R-Hopf algebra with antipodism.

Definition. A homomorphism of group schemes Φ : G −→ H over Spec R is
a morphism in aff.R-Sch, such that the induced morphism G(Z) −→ H(Z)
is a homomorphism of groups for all Z in aff.R-Sch. For G = Spec A and
H = Spec B this morphism corresponds to a homomorphism of R-modules
φ : B −→ A making the following diagram commutative:

(3.2)

R
eA

88 A
mA

44

εA

xx
A⊗R A

µA

vv

R

id

eB

88 B
mB

44

εB

xx

φ

OO

B ⊗R B .

µB

vv

φ⊗φ

OO

Definition. The sum of two homomorphisms Φ, Ψ : G −→ H is defined by
the commutative diagram

(3.3)

G //

Φ+Ψ

��

G×G

Φ×Ψ
��

H H ×H ,oo

where the upper arrow is the diagonal morphism and the lower arrow the
group operation of H . We leave it to the reader to check that Φ + Ψ is a
homomorphism of group schemes.

The category of commutative affine group schemes over SpecR is additive.

§4 Cartier duality

We now assume that the group scheme G = Spec A is finite and flat over R,
i.e. that A is a locally free R-module of finite type. Let A∗ := HomR(A, R)
denote its R-dual. Dualizing the diagram (3.1), and identifying R = R∗ and
(A⊗R A)∗ = A∗ ⊗R A∗ we obtain homomorphisms of R-modules

(4.1) R

ε∗

77 A∗

ι∗

FF

µ∗

44

e∗

xx
A∗ ⊗R A∗ .

m∗

uu
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A glance at the self dual table above shows that the morphisms e∗, m∗, µ∗, ε∗,
and ι∗ satisfy the axioms of a cocommutative Hopf algebra with antipodism,
and therefore G∗ := Spec A∗ is a finite flat group scheme over Spec R, too.

Definition. G∗ is called the Cartier dual of G.

If Φ : G −→ H is a homomorphism of finite flat group schemes corre-
sponding to the homomorphism φ : B −→ A, the symmetry of diagram (3.2)
shows that φ∗ : A∗ −→ B∗ corresponds to a homomorphism of group schemes
Φ∗ : H∗ −→ G∗. Therefore Cartier duality is a contravariant functor from
the category of finite flat commutative affine group schemes to itself.

Moreover this functor is additive. Indeed, for any two homomorphisms
Φ, Ψ : G −→ H the equation (Φ+Ψ)∗ = Φ∗+Ψ∗ follows directly by dualizing
the diagram (3.3).

Remark. The Cartier duality functor is involutive. Indeed, the natural
evaluation isomorphism id −→∗∗ induces a functorial isomorphism G ' G∗∗.

§5 Constant group schemes

Let Γ be a finite (abstract) abelian group, whose group structure is written
additively. We want to associate to Γ a finite commutative group scheme
over Spec R. The obvious candidate for its underlying scheme is

G := “Γ× Spec R” :=
∐

γ∈Γ

Spec R ,

the disjoint union of |Γ| copies of the final object ∗ = Spec R in the category
aff.R-Sch. The group operation on G is defined by noting that

G×G ∼= “Γ× Γ× Spec R” :=
∐

γ,γ′∈Γ

Spec R ,

and mapping the leaf Spec R of G × G indexed by (γ, γ′) identically to the
leaf of G indexed by γ + γ′. One easily sees that this defines a finite flat
commutative group scheme over Spec R.

Definition. This group scheme is called the constant group scheme over R
with fiber Γ and denoted ΓR.

Let us work out this construction on the underlying rings. The ring of
regular functions on ΓR is naturally isomorphic to the ring of functions

RΓ := { f : Γ −→ R | f is a map of sets } ,
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whose addition and multiplication are defined componentwise, and whose
0 and 1 are the constant maps with value 0, respectively 1. The comulti-
plication m : RΓ −→ RΓ ⊗R RΓ ∼= RΓ×Γ is characterized by the formula
m(f)(γ, γ′) = f(γ + γ′), the counit ε : RΓ → R by ε(f) = f(1), and the
coinverse ι : RΓ → RΓ by ι(f)(γ) = f(−γ).

Next observe that the following elements {eγ}γ∈Γ constitute a canonical
basis of the free R-module RΓ:

eγ : Γ −→ R, γ′ 7−→

{

1 if γ = γ′

0 otherwise.

One checks that µ, ε, e, m, and ι are given on this basis by

µ(eγ ⊗ eγ′) =

{

eγ if γ = γ′

0 otherwise

ε(eγ) =

{

1 if γ = 0

0 otherwise

e(1) =
∑

γ∈Γ

eγ

m(eγ) =
∑

γ′∈Γ

eγ′ ⊗ eγ−γ′

ι(eγ) = e−γ

To calculate the Cartier dual of ΓR let {êγ}γ∈Γ denote the basis of (RΓ)∗

dual to the one above, characterized by

êγ(eγ′) =

{

1 if γ = γ′

0 otherwise.

The dual maps are then given by the formulas

µ∗(êγ) = êγ ⊗ êγ

ε∗(1) = ê0

e∗(êγ) = 1

m∗(êγ ⊗ êγ′) = êγ+γ′

ι∗(êγ) = ê−γ

The formulas for m∗ and ε∗ show that (RΓ)∗ is isomorphic to the group ring
R[Γ] as an R-algebra, such that e∗ corresponds to the usual augmentation
map R[Γ] −→ R.
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Example. Let Γ := Z/Zn be the cyclic group of order n ∈ N. Then with
X := ê1 the above formulas show that (RΓ)∗ ∼= R[X]/(Xn − 1) with the
comultiplication µ∗(X) = X ⊗X. Thus we deduce that

( Z/Zn
R
)∗ ∼= µµn,R.

Example. Assume that p · 1 = 0 in R for a prime number p. Recall that
ααp,R = Spec A with A = R[T ]/(T p) and the comultiplication m(T ) = T ⊗1+
1⊗T . In terms of the basis {T i}0≤i<p all the maps are given by the formulas

µ(T i ⊗ T j) =

{

T i+j if i + j < p

0 otherwise

ε(T i) =

{

1 if i = 0

0 otherwise

e(1) = T 0

m(T i) =
∑

0≤j≤i

(

i

j

)

· T j ⊗ T i−j

ι(T i) = (−1)i · T i

Let {ui}0≤i<p denote the dual basis of A∗. Then using the above formulas
one easily checks that the R-linear map A∗ −→ A sending ui to T i/i! is an
isomorphism of Hopf algebras. Therefore

(ααp,R)∗ ∼= ααp,R.

Proposition. For any field k of characteristic p > 0, the group schemes
Z/Zp

k
, µµp,k, and ααp,k are pairwise non-isomorphic.

Proof. The first one is étale, while both µµp,k = Spec k[X]/(Xp − 1) and
ααp,k = Spec k[T ]/(T p) are non-reduced. Although the underlying schemes of
the latter two are isomorphic, the examples above show that this is not the
case for their Cartier duals. The proposition follows.
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