Lecture 2

October 28, 2004 Notes by Stefan Gille

§3 Affine group schemes

Let \Re ings be the category of commutative noetherian rings with 1, called the *category of unitary rings*. Morphisms in this category are maps $\varphi : R \longrightarrow S$ which are additive and multiplicative and satisfy $\varphi(1) = 1$. The last condition is important, but sometimes forgotten. As is well known the assignment $R \longmapsto \operatorname{Spec} R$ is an anti-equivalence of categories:

$$\mathfrak{Rings} \longleftrightarrow \mathfrak{aff}.\mathfrak{Sch},$$

where $\mathfrak{aff}.\mathfrak{Sch}$ denotes the category of affine schemes. Let R be in \mathfrak{Rings} . An object A of \mathfrak{Rings} together with a morphism $R \longrightarrow A$ in \mathfrak{Rings} is called a *unitary* R-algebra. Equivalently A is an R-module together with two homomorphisms of R-modules

$$R \xrightarrow{e} A \xleftarrow{\mu} A \otimes_R A ,$$

such that μ is associative and commutative, i.e.,

$$\mu(a \otimes a') = \mu(a' \otimes a) \text{ and}$$

$$\mu(a \otimes \mu(a' \otimes a'')) = \mu(\mu(a \otimes a') \otimes a''),$$

and e induces a unit, i.e.,

$$\mu(e(1) \otimes a) = a.$$

We denote the category of unitary R-algebras by R- \mathfrak{Alg} . The above antiequivalence restricts to an anti-equivalence

$$R-\mathfrak{Alg} \longleftrightarrow \mathfrak{aff}.R-\mathfrak{Sch},$$

where $\mathfrak{aff}.R$ - \mathfrak{Sch} denotes the category of affine schemes over Spec R. The object $* = \operatorname{Spec} R$ is a final object in $\mathfrak{aff}.R$ - \mathfrak{Sch} .

Definition. Let R be a unitary ring. An *affine commutative group scheme* over Spec R is a commutative group object in the category of affine schemes over Spec R.

Convention. In the following all groups schemes are assumed to be affine and commutative.

Let $G = \operatorname{Spec} A$ be such a group scheme over $\operatorname{Spec} R$. The morphisms associated with the group object G correspond to the following homomorphisms of R-modules:

$$(3.1) R \underbrace{\overset{\epsilon}{\underset{e}{\overbrace{}}} A}_{e} \underbrace{\overset{\mu}{\underset{m}{\overbrace{}}} A \otimes_{R} A}_{m} \cdot A \otimes_{R} A.$$

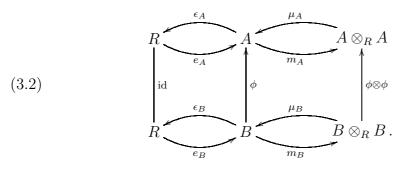
Here μ and e are the structure maps of the *R*-algebra *A*. The map *m*, called the *comultiplication*, corresponds to the group operation $G \times G \to G$. The map ϵ , called the *counit*, corresponds to the morphism $* \longrightarrow G$ yielding the unit in *G*, and ι , the *antipodism*, corresponds to the morphism $G \longrightarrow G$ sending an element to its inverse.

The axioms for a commutative group scheme translate to those in the following table. Here $\sigma : A \otimes_R A \longrightarrow A \otimes_R A$ denotes the switch map $\sigma(a \otimes a') = a' \otimes a$, and the equalities marked $\stackrel{!}{=}$ at the bottom right are consequences of the others.

meaning	axiom	axiom	meaning
μ associative	$\mu \circ (\mathrm{id} \otimes \mu) = \mu \circ (\mu \otimes \mathrm{id})$	$(m \otimes \mathrm{id}) \circ m = (\mathrm{id} \otimes m) \circ m$	m coassociative
μ commutative	$\mu \circ \sigma = \mu$	$\sigma \circ m = m$	m cocommutative
e unit for μ	$\mu \circ (e(1) \otimes \mathrm{id}) = \mathrm{id}$	$(\epsilon \otimes \mathrm{id}) \circ m = 1 \otimes \mathrm{id}$	ϵ counit for m
m homomorphism	$m\circ\mu=(\mu\otimes\mu)\circ(\mathrm{id}\otimes\sigma\otimes\mathrm{id})\circ(m\otimes m)$		
of unitary rings	$m(e(1)) = e(1) \otimes e(1)$	$\epsilon\circ\mu=\epsilon\otimes\epsilon$	ϵ homomorphism
	$\epsilon\otimes e=\mathrm{id}$		of unitary rings
ι homomorphism	$\iota\circ\mu=\mu\circ(\iota\otimes\iota)$	$m\circ\iota=(\iota\otimes\iota)\circ m$	$(xy)^{-1} \stackrel{!}{=} x^{-1}y^{-1}$
of unitary rings	$\iota \circ e = e$	$\epsilon\circ\iota=\epsilon$	$1 \stackrel{!}{=} 1^{-1}$
ι coinverse for m	$e\circ\epsilon=\mu\circ(\mathrm{id}\otimes\iota)\circ m$		

Definition. An *R*-module *A* together with maps μ , ϵ , *e*, *m*, and ι satisfying the above axioms is called an *associative*, *commutative*, *unitary*, *coassociative*, *cocommutative*, *counitary R*-bialgebra with antipodism, or shorter, a *cocommutative R*-Hopf algebra with antipodism.

Definition. A homomorphism of group schemes $\Phi : G \longrightarrow H$ over Spec R is a morphism in $\mathfrak{aff}.R$ - \mathfrak{Sch} , such that the induced morphism $G(Z) \longrightarrow H(Z)$ is a homomorphism of groups for all Z in $\mathfrak{aff}.R$ - \mathfrak{Sch} . For $G = \operatorname{Spec} A$ and $H = \operatorname{Spec} B$ this morphism corresponds to a homomorphism of R-modules $\phi : B \longrightarrow A$ making the following diagram commutative:



Definition. The *sum* of two homomorphisms $\Phi, \Psi : G \longrightarrow H$ is defined by the commutative diagram

$$(3.3) \qquad \begin{array}{c} G \longrightarrow G \times G \\ \Phi + \Psi & \downarrow \Phi \times \Psi \\ H \longleftarrow H \times H \end{array},$$

where the upper arrow is the diagonal morphism and the lower arrow the group operation of H. We leave it to the reader to check that $\Phi + \Psi$ is a homomorphism of group schemes.

The category of commutative affine group schemes over Spec R is additive.

§4 Cartier duality

We now assume that the group scheme $G = \operatorname{Spec} A$ is finite and flat over R, i.e. that A is a locally free R-module of finite type. Let $A^* := \operatorname{Hom}_R(A, R)$ denote its R-dual. Dualizing the diagram (3.1), and identifying $R = R^*$ and $(A \otimes_R A)^* = A^* \otimes_R A^*$ we obtain homomorphisms of R-modules

(4.1)
$$R \underbrace{\stackrel{e^*}{\overbrace{}}}_{\epsilon^*} A^* \underbrace{\stackrel{m^*}{\overbrace{}}}_{\mu^*} A^* \otimes_R A^*.$$

A glance at the self dual table above shows that the morphisms $e^*, m^*, \mu^*, \epsilon^*$, and ι^* satisfy the axioms of a cocommutative Hopf algebra with antipodism, and therefore $G^* := \operatorname{Spec} A^*$ is a finite flat group scheme over $\operatorname{Spec} R$, too.

Definition. G^* is called the *Cartier dual* of G.

If $\Phi: G \longrightarrow H$ is a homomorphism of finite flat group schemes corresponding to the homomorphism $\phi: B \longrightarrow A$, the symmetry of diagram (3.2) shows that $\phi^*: A^* \longrightarrow B^*$ corresponds to a homomorphism of group schemes $\Phi^*: H^* \longrightarrow G^*$. Therefore Cartier duality is a contravariant functor from the category of finite flat commutative affine group schemes to itself.

Moreover this functor is additive. Indeed, for any two homomorphisms $\Phi, \Psi: G \longrightarrow H$ the equation $(\Phi + \Psi)^* = \Phi^* + \Psi^*$ follows directly by dualizing the diagram (3.3).

Remark. The Cartier duality functor is involutive. Indeed, the natural evaluation isomorphism id \longrightarrow^{**} induces a functorial isomorphism $G \simeq G^{**}$.

§5 Constant group schemes

Let Γ be a finite (abstract) abelian group, whose group structure is written additively. We want to associate to Γ a finite commutative group scheme over Spec *R*. The obvious candidate for its underlying scheme is

$$G := ``\Gamma \times \operatorname{Spec} R" := \prod_{\gamma \in \Gamma} \operatorname{Spec} R,$$

the disjoint union of $|\Gamma|$ copies of the final object $* = \operatorname{Spec} R$ in the category aff. R- \mathfrak{Sch} . The group operation on G is defined by noting that

$$G \times G \cong ``\Gamma \times \Gamma \times \operatorname{Spec} R" := \prod_{\gamma, \gamma' \in \Gamma} \operatorname{Spec} R,$$

and mapping the leaf Spec R of $G \times G$ indexed by (γ, γ') identically to the leaf of G indexed by $\gamma + \gamma'$. One easily sees that this defines a finite flat commutative group scheme over Spec R.

Definition. This group scheme is called the *constant group scheme over* R with fiber Γ and denoted $\underline{\Gamma}_R$.

Let us work out this construction on the underlying rings. The ring of regular functions on $\underline{\Gamma}_R$ is naturally isomorphic to the ring of functions

$$R^{\Gamma} := \{ f : \Gamma \longrightarrow R \, | \, f \text{ is a map of sets } \},\$$

whose addition and multiplication are defined componentwise, and whose 0 and 1 are the constant maps with value 0, respectively 1. The comultiplication $m : R^{\Gamma} \longrightarrow R^{\Gamma} \otimes_R R^{\Gamma} \cong R^{\Gamma \times \Gamma}$ is characterized by the formula $m(f)(\gamma, \gamma') = f(\gamma + \gamma')$, the counit $\epsilon : R^{\Gamma} \to R$ by $\epsilon(f) = f(1)$, and the coinverse $\iota : R^{\Gamma} \to R^{\Gamma}$ by $\iota(f)(\gamma) = f(-\gamma)$.

Next observe that the following elements $\{e_{\gamma}\}_{\gamma\in\Gamma}$ constitute a canonical basis of the free *R*-module R^{Γ} :

$$e_{\gamma} : \Gamma \longrightarrow R, \qquad \gamma' \longmapsto \begin{cases} 1 & \text{if } \gamma = \gamma' \\ 0 & \text{otherwise.} \end{cases}$$

One checks that μ , ϵ , e, m, and ι are given on this basis by

$$\mu(e_{\gamma} \otimes e_{\gamma'}) = \begin{cases} e_{\gamma} & \text{if } \gamma = \gamma' \\ 0 & \text{otherwise} \end{cases}$$
$$\epsilon(e_{\gamma}) = \begin{cases} 1 & \text{if } \gamma = 0 \\ 0 & \text{otherwise} \end{cases}$$
$$e(1) = \sum_{\gamma \in \Gamma} e_{\gamma}$$
$$m(e_{\gamma}) = \sum_{\gamma' \in \Gamma} e_{\gamma'} \otimes e_{\gamma - \gamma'}$$
$$\iota(e_{\gamma}) = e_{-\gamma}$$

To calculate the Cartier dual of $\underline{\Gamma}_R$ let $\{\hat{e}_{\gamma}\}_{\gamma\in\Gamma}$ denote the basis of $(R^{\Gamma})^*$ dual to the one above, characterized by

$$\hat{e}_{\gamma}(e_{\gamma'}) = \begin{cases} 1 & \text{if } \gamma = \gamma' \\ 0 & \text{otherwise.} \end{cases}$$

The dual maps are then given by the formulas

$$\mu^*(\hat{e}_{\gamma}) = \hat{e}_{\gamma} \otimes \hat{e}_{\gamma}$$

$$\epsilon^*(1) = \hat{e}_0$$

$$e^*(\hat{e}_{\gamma}) = 1$$

$$m^*(\hat{e}_{\gamma} \otimes \hat{e}_{\gamma'}) = \hat{e}_{\gamma+\gamma'}$$

$$\iota^*(\hat{e}_{\gamma}) = \hat{e}_{-\gamma}$$

The formulas for m^* and ϵ^* show that $(R^{\Gamma})^*$ is isomorphic to the group ring $R[\Gamma]$ as an *R*-algebra, such that e^* corresponds to the usual augmentation map $R[\Gamma] \longrightarrow R$.

Example. Let $\Gamma := \mathbb{Z}/\mathbb{Z}n$ be the cyclic group of order $n \in \mathbb{N}$. Then with $X := \hat{e}_1$ the above formulas show that $(R^{\Gamma})^* \cong R[X]/(X^n - 1)$ with the comultiplication $\mu^*(X) = X \otimes X$. Thus we deduce that

$$(\underline{\mathbb{Z}}/\underline{\mathbb{Z}}n_R)^* \cong \mu_{n,R}.$$

Example. Assume that $p \cdot 1 = 0$ in R for a prime number p. Recall that $\boldsymbol{\alpha}_{p,R} = \operatorname{Spec} A$ with $A = R[T]/(T^p)$ and the comultiplication $m(T) = T \otimes 1 + 1 \otimes T$. In terms of the basis $\{T^i\}_{0 \leq i < p}$ all the maps are given by the formulas

$$\mu(T^{i} \otimes T^{j}) = \begin{cases} T^{i+j} & \text{if } i+j
$$\epsilon(T^{i}) = \begin{cases} 1 & \text{if } i=0 \\ 0 & \text{otherwise} \end{cases}$$
$$e(1) = T^{0}$$
$$m(T^{i}) = \sum_{0 \le j \le i} {i \choose j} \cdot T^{j} \otimes T^{i-j}$$
$$\iota(T^{i}) = (-1)^{i} \cdot T^{i}$$$$

Let $\{u_i\}_{0 \le i < p}$ denote the dual basis of A^* . Then using the above formulas one easily checks that the *R*-linear map $A^* \longrightarrow A$ sending u_i to $T^i/i!$ is an isomorphism of Hopf algebras. Therefore

$$(\boldsymbol{\alpha}_{p,R})^* \cong \boldsymbol{\alpha}_{p,R}$$

Proposition. For any field k of characteristic p > 0, the group schemes $\mathbb{Z}/\mathbb{Z}p_k$, $\mu_{p,k}$, and $\alpha_{p,k}$ are pairwise non-isomorphic.

Proof. The first one is étale, while both $\mu_{p,k} = \operatorname{Spec} k[X]/(X^p - 1)$ and $\alpha_{p,k} = \operatorname{Spec} k[T]/(T^p)$ are non-reduced. Although the underlying schemes of the latter two are isomorphic, the examples above show that this is not the case for their Cartier duals. The proposition follows.