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November 25, 2004

Notes by Charles Mitchell

§14 Frobenius and Verschiebung

Definition. The absolute Frobenius morphism σX : X → X of a scheme over
Fp is the identity on points and the map a 7→ ap on sections. Note that this
is functorial: for all morphisms ϕ : X → Y of schemes over Fp, the diagram

X
ϕ //

σX

��

Y

σY

��
X

ϕ // Y

commutes. Also, absolute Frobenius is compatible with products in the sense
that σX×Y = σX × σY .

For the following we fix a field k of characteristic p. All tensor products
and fiber products are taken over k, unless explicitly stated.

Definition. For any scheme X over Spec k define X(p) as the fiber product
and FX as the induced morphism in the following commutative diagram:

X σX

&&

%%

FX

&&M

M

M

M

M

M

X(p) //

��

X

��
Spec k

σSpec k // Spec k

FX is called the relative Frobenius morphism of X over Spec k.

Proposition 14.1. (a) FX is functorial inX: for all morphisms ϕ : X → Y
of schemes over k, the following diagram commutes:

X
FX //

ϕ

��

X(p) = X ⊗k,σ k

ϕ(p) = ϕ⊗id
��

Y
FY

// Y (p) = Y ⊗k,σ k
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(b) FX is compatible with products, i.e., the following diagram commutes:

X ×k Y

FX×Y **U

U

U

U

U

U

U

U

U

U

U

FX×FY // X(p) ×k Y
(p)

(X ×k Y )(p)

o‖

(c) FX is compatible with base extensions k ↪→ k′, i.e., the following dia-
gram commutes:

Xk′

FX
k′ //

(FX)k′
''O

O

O

O

O

O

O

O

O

(Xk′)(p)

o‖

(X(p))k′

Corollary 14.2. For any group scheme G over k, the morphism FG : G →
G(p) is a homomorphism.

Now let G be a finite commutative group scheme over k. Then the Frobe-
nius morphism of G∗ induces a homomorphism FG∗ : G∗ → (G∗)(p) ∼= (G(p))∗.

Definition. The homomorphism VG : G(p) → G dual to FG∗ is called the
Verschiebung of G.

Frobenius and Verschiebung are thus two morphisms going in opposite
directions. It seems natural to attempt

(a) to extend the definition of the Verschiebung to arbitrary affine group
schemes, and

(b) to determine the composites VG ◦ FG and FG ◦ VG.

To achieve (a), we write G = SpecA and let SympA denote the p-th
symmetric power of A over k. We can then expand the definition of FG on
coordinate rings as the composite in the top line of the commutative diagram

x · ap [x(a⊗ · · · ⊗ a)]�oo a⊗ x�oo

A Symp Aoooo A⊗k,σ k? _oo

A⊗p

mult

ggggO
O

O

O

O

O

O

O

O

O

O

O

O

O

OOOO

We claim that the formula on the upper right defines a k-linear homomorph-
ism. Indeed, only the additivity needs to be checked. But the mixed terms
in the expansion

x(a + b) ⊗ · · · ⊗ (a+ b) = x(a⊗ · · · ⊗ a) + x(b⊗ · · · ⊗ b) + mixed terms
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can be grouped into orbits under the symmetric group Sp, and since the
length of each orbit is a multiple of p, the corresponding sums vanish in
Symp A, proving the claim.

If A is finite-dimensional over k, we can take the above diagram for A∗

instead of A and dualize it over k to represent Verschiebung as the composite
in a commutative diagram

A
� � //
s�

comult &&M

M

M

M

M

M

M

M

M

M

M

M

(A⊗p)Sp
λA // //

_�

��

A⊗k,σ k

A⊗p

Here λA is the unique k-linear map taking any element x · (a ⊗ · · · ⊗ a) to
a ⊗ x. One easily verifies that this map exists for any k-vector space A,
so the above diagram can be constructed for any affine commutative group
scheme G = SpecA. It can be checked that the composite map A→ A⊗k,σ k
is a homomorphism of k-algebras compatible with the comultiplication. It
therefore corresponds to a homomorphism of group schemes VG : G(p) → G.

Definition. This VG is the Verschiebung for general G.

Proposition 14.3. (a) VG is functorial in G, i.e., the following diagram
commutes:

G(p)

ϕ(p)

��

VG // G

ϕ

��
H(p)

VH

// H

(b) VG is compatible with products, i.e., the following diagram commutes:

(G×H)(p) ∼=

VG×H ''P

P

P

P

P

P

P

P

P

P

P

P

G(p) ×H(p)

VG×VH

��
G×H

(c) VG is compatible with base extensions, i.e., the following diagram com-
mutes:

(Gk′)(p)

V(G
k′

)
%%L

L

L

L

L

L

L

L

L

L

L

∼= (G(p))k′

(VG)k′

��
G
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We are now in a position to tackle the above question (b).

Theorem 14.4. For any affine commutative group scheme G,

(a) VG ◦ FG = p · idG,

(b) FG ◦ VG = p · idG(p).

Proof. (a) By the above constructions, Frobenius and Verschiebung corre-
spond to the maps FA and VA in the following diagram:

A

VA

%%
//

comult &&M

M

M

M

M

M

M

M

M

M

M

M

M

(A⊗p)Sp

� _

��

λA // A⊗σ,k k

FA

��
A⊗p

mult
// A

The definition of λA implies that the right hand square commutes. In terms
of group schemes, this diagram becomes

G G(p)VGoo

G×p

mult

ddH
H

H

H

H

H

H

H

H

H

G

FG

OO

diag
oo

p·idG

jjT
T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

where the composite is by definition p · idG.
(b) As Verschiebung is compatible with base change, we have (VG)(p) =

VG(p) . The functoriality of Frobenius thus implies that the diagram

G(p)
F

G(p) //

VG

��

G(p2)

(VG)(p) = V
G(p)

��
G

FG

// G(p)

commutes; its diagonal is already known by (a) to be p · idG(p).

Examples. • FG and VG are zero for G = αp,k.

• FG is zero and VG an isomorphism for G = µp,k.

• FG is an isomorphism for G = Z/nZ
k
.
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§15 The canonical decomposition

Let G be a finite commutative group scheme over k.

Proposition 15.1. The following are equivalent:

(i) Gksep is constant.

(ii) G is étale.

(iii) FG is an isomorphism.

Proof. The equivalence (i) ⇔ (ii) has already been shown in Proposition 12.1.
To show (ii) ⇔ (iii), note that the group scheme G is étale iff its tangent
space at 0 is trivial. As the absolute and relative Frobenius morphisms are
zero on this tangent space, the étaleness of G is equivalent to FG being an
infinitesimal isomorphism, which — as FG is a bijection on points — is in
turn equivalent to FG being an isomorphism as such.

Dualizing Proposition 15.1 yields:

Proposition 15.2. The following are equivalent:

(i) Gksep is a direct sum of µni,ksep for suitable ni.

(ii) G∗ is étale.

(iii) VG is an isomorphism.

Proposition 15.3. The connected component G0 of the zero section in G is
a closed subgroup scheme, and G/G0 is étale.

Proof. Since the unique point in G0 is defined over the base field k, the
product G0 ×G0 over k is connected. It is also open in G×G; therefore it is
the connected component of zero in G×G. Thus the restriction to G0 ×G0

of the multiplication morphism G×G→ G factors through G0, showing that
G0 is a (closed) subgroup scheme of G.

To show that G/G0 is étale, we may assume without loss of generality
that k is algebraically closed. Then G decomposes as

∐
g∈G(k)G

0 · g and we
can infer that

G/G0 =
∐

g∈G(k)

Spec k,

which is the constant group scheme G(k)
k
, and therefore étale.

From now on we impose the standing
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Assumption. The field k is perfect.

Proposition 15.4. The reduced closed subscheme Gred ⊂ G with the same
support as G is a closed subgroup scheme, and the map (g, g′) 7→ g + g′

defines an isomorphism G0 ⊕Gred ∼→ G.

Proof. As k is perfect, all residue fields of Gred are separable over k, implying
that Gred × Gred ⊂ G × G is again reduced. Therefore the restriction to
Gred×Gred of the multiplication morphism G×G→ G factors through Gred,
showing that Gred is a (closed) subgroup scheme of G.

To prove the second assertion it suffices to show that the morphism
Gred → G/G0 is an isomorphism. Since the formation of both sides is com-
patible with base extension, we may assume that k is separably closed. Then
Gred → G/G0 is a bijective homomorphism between constant group schemes
and hence an isomorphism.

Example. Regard an inseparable field extension k′ = k( p
√
u) ) k. Set

Gi := Spec k[t]/(tp − ui) and define a group operation on G :=
∐p−1

i=0 Gi by

Gi ×Gj → Gi+j, (t, t′) 7→ tt′ if i+ j < p,

Gi ×Gj → Gi+j−p, (t, t′) 7→ tt′/u if i+ j ≥ p.

Then G0 = G0
∼= µµp,k, and we have a short exact sequence

0 → µµp,k → G→ Fp
k
→ 0.

This sequence is non-split, because Gi
∼= Spec k′ 6∼= G0 for i 6= 0.

Example. With k′/k as above, set Gi := Spec k[t]/(tp − iu) and define a
group operation on G :=

∐p−1
i=0 Gi by

Gi ×Gj → Gi+j, (t, t′) 7→ t+ t′.

Then G0 = G0
∼= ααp,k, and we have a short exact sequence

0 → ααp,k → G→ Fp
k
→ 0.

This sequence is non-split, because Gi
∼= Spec k′ 6∼= G0 for i 6= 0.

Definition. A finite commutative group scheme G is called local if G = G0

and reduced if G = Gred. It is called of x-y type if G is x and G∗ is y.

Theorem 15.5. There is a unique and functorial decomposition of G as

G = Grr ⊕Gr` ⊕G`r ⊕G``

where the direct summands are of reduced-reduced, reduced-local, local-
reduced, and local-local type, respectively.
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Proof. The decomposition G = G0 ⊕Gred is functorial in G, as both G0 and
Gred are. Applying this functoriality in turn to G∗ and dualizing back using
the equality (G⊕H)∗ = G∗ ⊕H∗ completes the proof.

Remark. The functoriality includes the fact that any homomorphism be-
tween groups of different types is zero. The decomposition is also invariant
under base extension.

Definition. The n-th iterates of Frobenius and Verschiebung are the com-
posite homomorphisms

F n
G : G

FG−→ G(p)
F

G(p)−→ . . . −→ G(pn),

V n
G : G(pn) −→ . . .

V
G(p)−→ G(p) VG−→ G.

We call FG nilpotent if F n
G = 0 for some n ≥ 0, and similarly for VG.

Proposition 15.6. We have the following equivalences:

(a) G is reduced-reduced ⇔ both FG and VG are isomorphisms.

(b) G is reduced-local ⇔ FG is an isomorphism and VG is nilpotent.

(c) G is local-reduced ⇔ FG is nilpotent and VG is an isomorphism.

(d) G is local-local ⇔ both FG and VG are nilpotent.

Proof. Consider the decomposition G = G0 ⊕ Gred from Proposition 15.4.
Since the maximal ideal at the unit element ofG0 is nilpotent, it is annihilated
by some power of the absolute Frobenius, and hence by the same power of the
relative Frobenius. Thus Frobenius is nilpotent on G0, while by Proposition
15.1 it is an isomorphism on Gred. From this it follows formally that G is
reduced, resp. local, if and only if FG is an isomorphism, resp. nilpotent.
Applying this to G∗ as well finishes the proof.

Note. By §12 we already understand Grr and Gr`, and by duality also G`r.
So the goal now is to understand G``. The problem is the complicated ex-
tension structure of such groups!

§16 Split local-local group schemes

(This section was actually presented on December 16, but logically belongs here.)

Proposition 16.1. There is a natural isomorphism End(ααp,k) ∼= k.
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Proof. There are natural homomorphisms k → End(ααp,k) → k, the first rep-
resenting the multiplication action of k, the second the action on the tangent
space of ααp,k. Clearly their composite is the identity, so the second map is
surjective. On the other hand, consider an endomorphism ϕ ∈ End(ααp,k) with
dϕ = 0. Then kerϕ has a non-zero tangent space, so it is a non-zero sub-
group scheme of ααp,k. Since ααp,k is simple by Proposition 13.3, it follows that
kerϕ = ααp,k and hence ϕ = 0. This shows that the second map is injective.
We conclude that the two maps are mutually inverse isomorphisms.

Proposition 16.2. Any finite commutative group scheme G with FG = 0
and VG = 0 is isomorphic to a direct sum of copies of ααp,k.

Proof. In fact we will prove that G ∼= αα⊕n
p,k for n := dimk TG,0. For this write

G = SpecA and A = k ⊕ I, where I is the augmentation ideal. Then the
isomorphy TG,0

∼= (I/I2)∗ implies that I is generated by n elements. On the
other hand, since FG = 0, we have ξp = 0 for every ξ ∈ I. In particular
I is nilpotent; hence its n generators generate A as a k-algebra. (This is
a standard result from commutative algebra, and a nice exercise!) Write
A = k[X1, . . . , Xn]/J and I = (X1, . . . , Xn)/J for some ideal J . ThenXp

i ∈ J
for all 1 ≤ i ≤ n, and therefore A is a quotient of k[X1, . . . , Xn]/(Xp

1 , . . . , X
p
n).

In particular |G| = dimk A ≤ pn.
Next note that for any homomorphism ϕ : G∗ → Ga,k, the functoriality

of Frobenius and the assumption VG = 0 imply that

FGa,k
◦ ϕ 14.1

= ϕ(p) ◦ FG∗ = ϕ(p) ◦ (VG)∗ = 0.

Thus ϕ factors through the kernel of FGa,k
, that is, through ααp,k. Taking

Proposition 13.1 into account, we find that

n = dimk TG,0 = dimk Hom(G∗,Ga,k) = dimk Hom(G∗, ααp,k).

We claim that there exists an epimorphism G∗
� αα⊕n

p,k . Indeed, suppose that

an epimorphism ψ : G∗
� αα⊕i

p,k has been constructed for some 0 ≤ i < n.

Then the induced linear map ki ∼= Hom(αα⊕i
p,k, ααp,k) ↪→ Hom(G∗, ααp,k) is a

proper embedding. Any homomorphism ϕ : G∗ → ααp,k not in the image
has a non-trivial restriction to kerψ, and since ααp,k is simple, the combined
homomorphism (ψ, ϕ) : G∗ → αα⊕i

p,k ⊕ ααp,k is again an epimorphism. Thus
the claim follows by induction on i. Finally, by Cartier duality the claim
yields a monomorphism αα⊕n

p,k ↪→ G. By the above inequality |G| ≤ pn, this
monomorphism must be an isomorphism, finishing the proof.

Theorem 16.3. Every simple finite commutative group scheme of local-local
type is isomorphic to ααp,k.

Proof. Combine Propositions 15.6 (d) and 16.2.
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