Lecture 6

November 25, 2004 Notes by Charles Mitchell

§14 Frobenius and Verschiebung

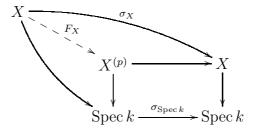
Definition. The absolute Frobenius morphism $\sigma_X : X \to X$ of a scheme over \mathbb{F}_p is the identity on points and the map $a \mapsto a^p$ on sections. Note that this is functorial: for all morphisms $\varphi : X \to Y$ of schemes over \mathbb{F}_p , the diagram

$$\begin{array}{c|c} X \xrightarrow{\varphi} Y \\ \sigma_X \middle| & \sigma_Y \middle| \\ \chi \xrightarrow{\varphi} Y \end{array}$$

commutes. Also, absolute Frobenius is compatible with products in the sense that $\sigma_{X \times Y} = \sigma_X \times \sigma_Y$.

For the following we fix a field k of characteristic p. All tensor products and fiber products are taken over k, unless explicitly stated.

Definition. For any scheme X over Spec k define $X^{(p)}$ as the fiber product and F_X as the induced morphism in the following commutative diagram:



 F_X is called the *relative Frobenius morphism* of X over Spec k.

Proposition 14.1. (a) F_X is functorial in X: for all morphisms $\varphi : X \to Y$ of schemes over k, the following diagram commutes:

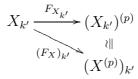
(b) F_X is compatible with products, i.e., the following diagram commutes:

$$X \times_{k} Y \xrightarrow{F_{X} \times F_{Y}} X^{(p)} \times_{k} Y^{(p)}$$

$$\downarrow \parallel$$

$$(X \times_{k} Y)^{(p)}$$

(c) F_X is compatible with base extensions $k \hookrightarrow k'$, i.e., the following diagram commutes:



Corollary 14.2. For any group scheme G over k, the morphism $F_G: G \to G^{(p)}$ is a homomorphism.

Now let G be a finite commutative group scheme over k. Then the Frobenius morphism of G^* induces a homomorphism $F_{G^*}: G^* \to (G^*)^{(p)} \cong (G^{(p)})^*$.

Definition. The homomorphism $V_G : G^{(p)} \to G$ dual to F_{G^*} is called the *Verschiebung of G*.

Frobenius and Verschiebung are thus two morphisms going in opposite directions. It seems natural to attempt

- (a) to extend the definition of the Verschiebung to arbitrary affine group schemes, and
- (b) to determine the composites $V_G \circ F_G$ and $F_G \circ V_G$.

To achieve (a), we write $G = \operatorname{Spec} A$ and let $\operatorname{Sym}^p A$ denote the *p*-th symmetric power of A over k. We can then expand the definition of F_G on coordinate rings as the composite in the top line of the commutative diagram

$$x \cdot a^{p} \longleftrightarrow [x(a \otimes \cdots \otimes a)] \longleftrightarrow a \otimes x$$

$$A \xleftarrow{} Sym^{p} A \xleftarrow{} A \otimes_{k,\sigma} k$$

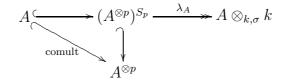
$$\downarrow^{h}_{A^{\otimes p}}$$

We claim that the formula on the upper right defines a k-linear homomorphism. Indeed, only the additivity needs to be checked. But the mixed terms in the expansion

$$x(a+b) \otimes \cdots \otimes (a+b) = x(a \otimes \cdots \otimes a) + x(b \otimes \cdots \otimes b) + \text{mixed terms}$$

can be grouped into orbits under the symmetric group S_p , and since the length of each orbit is a multiple of p, the corresponding sums vanish in $\operatorname{Sym}^p A$, proving the claim.

If A is finite-dimensional over k, we can take the above diagram for A^* instead of A and dualize it over k to represent Verschiebung as the composite in a commutative diagram



Here λ_A is the unique k-linear map taking any element $x \cdot (a \otimes \cdots \otimes a)$ to $a \otimes x$. One easily verifies that this map exists for any k-vector space A, so the above diagram can be constructed for any affine commutative group scheme G = Spec A. It can be checked that the composite map $A \to A \otimes_{k,\sigma} k$ is a homomorphism of k-algebras compatible with the comultiplication. It therefore corresponds to a homomorphism of group schemes $V_G : G^{(p)} \to G$.

Definition. This V_G is the Verschiebung for general G.

Proposition 14.3. (a) V_G is functorial in G, i.e., the following diagram commutes:

$$\begin{array}{c|c} G^{(p)} \xrightarrow{V_G} G \\ \varphi^{(p)} & \downarrow \varphi \\ H^{(p)} \xrightarrow{V_H} H \end{array}$$

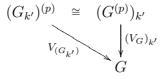
(b) V_G is compatible with products, i.e., the following diagram commutes:

$$(G \times H)^{(p)} \cong G^{(p)} \times H^{(p)}$$

$$\bigvee_{V_G \times H}$$

$$G \times H$$

(c) V_G is compatible with base extensions, i.e., the following diagram commutes:

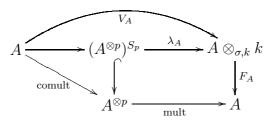


We are now in a position to tackle the above question (b).

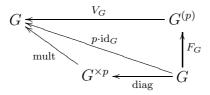
Theorem 14.4. For any affine commutative group scheme G,

- (a) $V_G \circ F_G = p \cdot \mathrm{id}_G$,
- (b) $F_G \circ V_G = p \cdot \operatorname{id}_{G^{(p)}}$.

Proof. (a) By the above constructions, Frobenius and Verschiebung correspond to the maps F_A and V_A in the following diagram:



The definition of λ_A implies that the right hand square commutes. In terms of group schemes, this diagram becomes



where the composite is by definition $p \cdot id_G$.

(b) As Verschiebung is compatible with base change, we have $(V_G)^{(p)} = V_{G^{(p)}}$. The functoriality of Frobenius thus implies that the diagram

$$\begin{array}{c|c} G^{(p)} \xrightarrow{F_G(p)} G^{(p^2)} \\ V_G \bigvee & & \downarrow (V_G)^{(p)} = V_{G^{(p)}} \\ G \xrightarrow{F_G} G^{(p)} \end{array}$$

commutes; its diagonal is already known by (a) to be $p \cdot id_{G^{(p)}}$.

Examples. • F_G and V_G are zero for $G = \alpha_{p,k}$.

- F_G is zero and V_G an isomorphism for $G = \mu_{p,k}$.
- F_G is an isomorphism for $G = \underline{\mathbb{Z}}/n\mathbb{Z}_k$.

§15 The canonical decomposition

Let G be a finite commutative group scheme over k.

Proposition 15.1. The following are equivalent:

- (i) $G_{k^{\text{sep}}}$ is constant.
- (ii) G is étale.
- (iii) F_G is an isomorphism.

Proof. The equivalence (i) \Leftrightarrow (ii) has already been shown in Proposition 12.1. To show (ii) \Leftrightarrow (iii), note that the group scheme G is étale iff its tangent space at 0 is trivial. As the absolute and relative Frobenius morphisms are zero on this tangent space, the étaleness of G is equivalent to F_G being an infinitesimal isomorphism, which — as F_G is a bijection on points — is in turn equivalent to F_G being an isomorphism as such.

Dualizing Proposition 15.1 yields:

Proposition 15.2. The following are equivalent:

- (i) $G_{k^{\text{sep}}}$ is a direct sum of $\mu_{n_i,k^{\text{sep}}}$ for suitable n_i .
- (ii) G^* is étale.
- (iii) V_G is an isomorphism.

Proposition 15.3. The connected component G^0 of the zero section in G is a closed subgroup scheme, and G/G^0 is étale.

Proof. Since the unique point in G^0 is defined over the base field k, the product $G^0 \times G^0$ over k is connected. It is also open in $G \times G$; therefore it is the connected component of zero in $G \times G$. Thus the restriction to $G^0 \times G^0$ of the multiplication morphism $G \times G \to G$ factors through G^0 , showing that G^0 is a (closed) subgroup scheme of G.

To show that G/G^0 is étale, we may assume without loss of generality that k is algebraically closed. Then G decomposes as $\coprod_{g \in G(k)} G^0 \cdot g$ and we can infer that

$$G/G^0 = \coprod_{g \in G(k)} \operatorname{Spec} k,$$

which is the constant group scheme $\underline{G(k)}_{k}$, and therefore étale.

From now on we impose the standing

Assumption. The field k is perfect.

Proposition 15.4. The reduced closed subscheme $G^{\text{red}} \subset G$ with the same support as G is a closed subgroup scheme, and the map $(g, g') \mapsto g + g'$ defines an isomorphism $G^0 \oplus G^{\text{red}} \xrightarrow{\sim} G$.

Proof. As k is perfect, all residue fields of G^{red} are separable over k, implying that $G^{\text{red}} \times G^{\text{red}} \subset G \times G$ is again reduced. Therefore the restriction to $G^{\text{red}} \times G^{\text{red}}$ of the multiplication morphism $G \times G \to G$ factors through G^{red} , showing that G^{red} is a (closed) subgroup scheme of G.

To prove the second assertion it suffices to show that the morphism $G^{\text{red}} \to G/G^0$ is an isomorphism. Since the formation of both sides is compatible with base extension, we may assume that k is separably closed. Then $G^{\text{red}} \to G/G^0$ is a bijective homomorphism between constant group schemes and hence an isomorphism.

Example. Regard an inseparable field extension $k' = k(\sqrt[p]{u}) \supseteq k$. Set $G_i := \operatorname{Spec} k[t]/(t^p - u^i)$ and define a group operation on $G := \coprod_{i=0}^{p-1} G_i$ by

$$G_i \times G_j \to G_{i+j}, \quad (t,t') \mapsto tt' \qquad \text{if } i+j < p, \\ G_i \times G_j \to G_{i+j-p}, \quad (t,t') \mapsto tt'/u \qquad \text{if } i+j \ge p.$$

Then $G^0 = G_0 \cong \mu_{p,k}$, and we have a short exact sequence

This sequence is non-split, because $G_i \cong \operatorname{Spec} k' \not\cong G_0$ for $i \neq 0$.

Example. With k'/k as above, set $G_i := \operatorname{Spec} k[t]/(t^p - iu)$ and define a group operation on $G := \coprod_{i=0}^{p-1} G_i$ by

$$G_i \times G_j \to G_{i+j}, \ (t,t') \mapsto t+t'.$$

Then $G^0 = G_0 \cong \boldsymbol{\alpha}_{p,k}$, and we have a short exact sequence

$$0 \to \boldsymbol{\alpha}_{p,k} \to G \to \underline{\mathbb{F}_p}_k \to 0.$$

This sequence is non-split, because $G_i \cong \operatorname{Spec} k' \not\cong G_0$ for $i \neq 0$.

Definition. A finite commutative group scheme G is called *local* if $G = G^0$ and *reduced* if $G = G^{\text{red}}$. It is called *of* x-y type if G is x and G^* is y.

Theorem 15.5. There is a unique and functorial decomposition of G as

$$G = G_{rr} \oplus G_{r\ell} \oplus G_{\ell r} \oplus G_{\ell \ell}$$

where the direct summands are of reduced-reduced, reduced-local, localreduced, and local-local type, respectively. *Proof.* The decomposition $G = G^0 \oplus G^{\text{red}}$ is functorial in G, as both G^0 and G^{red} are. Applying this functoriality in turn to G^* and dualizing back using the equality $(G \oplus H)^* = G^* \oplus H^*$ completes the proof.

Remark. The functoriality includes the fact that any homomorphism between groups of different types is zero. The decomposition is also invariant under base extension.

Definition. The n-th iterates of Frobenius and Verschiebung are the composite homomorphisms

$$F_G^n: \quad G \xrightarrow{F_G} G^{(p)} \xrightarrow{F_{G^{(p)}}} \dots \longrightarrow G^{(p^n)},$$
$$V_G^n: \quad G^{(p^n)} \longrightarrow \dots \xrightarrow{V_G^{(p)}} G^{(p)} \xrightarrow{V_G} G.$$

We call F_G nilpotent if $F_G^n = 0$ for some $n \ge 0$, and similarly for V_G .

Proposition 15.6. We have the following equivalences:

- (a) G is reduced-reduced \Leftrightarrow both F_G and V_G are isomorphisms.
- (b) G is reduced-local $\Leftrightarrow F_G$ is an isomorphism and V_G is nilpotent.
- (c) G is local-reduced $\Leftrightarrow F_G$ is nilpotent and V_G is an isomorphism.
- (d) G is local-local \Leftrightarrow both F_G and V_G are nilpotent.

Proof. Consider the decomposition $G = G^0 \oplus G^{\text{red}}$ from Proposition 15.4. Since the maximal ideal at the unit element of G^0 is nilpotent, it is annihilated by some power of the absolute Frobenius, and hence by the same power of the relative Frobenius. Thus Frobenius is nilpotent on G^0 , while by Proposition 15.1 it is an isomorphism on G^{red} . From this it follows formally that G is reduced, resp. local, if and only if F_G is an isomorphism, resp. nilpotent. Applying this to G^* as well finishes the proof.

Note. By §12 we already understand G_{rr} and $G_{r\ell}$, and by duality also $G_{\ell r}$. So the goal now is to understand $G_{\ell\ell}$. The problem is the complicated extension structure of such groups!

§16 Split local-local group schemes

(This section was actually presented on December 16, but logically belongs here.)

Proposition 16.1. There is a natural isomorphism $\operatorname{End}(\alpha_{p,k}) \cong k$.

Proof. There are natural homomorphisms $k \to \operatorname{End}(\boldsymbol{\alpha}_{p,k}) \to k$, the first representing the multiplication action of k, the second the action on the tangent space of $\boldsymbol{\alpha}_{p,k}$. Clearly their composite is the identity, so the second map is surjective. On the other hand, consider an endomorphism $\varphi \in \operatorname{End}(\boldsymbol{\alpha}_{p,k})$ with $d\varphi = 0$. Then ker φ has a non-zero tangent space, so it is a non-zero subgroup scheme of $\boldsymbol{\alpha}_{p,k}$. Since $\boldsymbol{\alpha}_{p,k}$ is simple by Proposition 13.3, it follows that ker $\varphi = \boldsymbol{\alpha}_{p,k}$ and hence $\varphi = 0$. This shows that the second map is injective. We conclude that the two maps are mutually inverse isomorphisms.

Proposition 16.2. Any finite commutative group scheme G with $F_G = 0$ and $V_G = 0$ is isomorphic to a direct sum of copies of $\boldsymbol{\alpha}_{p,k}$.

Proof. In fact we will prove that $G \cong \boldsymbol{a}_{p,k}^{\oplus n}$ for $n := \dim_k T_{G,0}$. For this write $G = \operatorname{Spec} A$ and $A = k \oplus I$, where I is the augmentation ideal. Then the isomorphy $T_{G,0} \cong (I/I^2)^*$ implies that I is generated by n elements. On the other hand, since $F_G = 0$, we have $\xi^p = 0$ for every $\xi \in I$. In particular I is nilpotent; hence its n generators generate A as a k-algebra. (This is a standard result from commutative algebra, and a nice exercise!) Write $A = k[X_1, \ldots, X_n]/J$ and $I = (X_1, \ldots, X_n)/J$ for some ideal J. Then $X_i^p \in J$ for all $1 \leq i \leq n$, and therefore A is a quotient of $k[X_1, \ldots, X_n]/(X_1^p, \ldots, X_n^p)$. In particular $|G| = \dim_k A \leq p^n$.

Next note that for any homomorphism $\varphi : G^* \to \mathbb{G}_{a,k}$, the functoriality of Frobenius and the assumption $V_G = 0$ imply that

$$F_{\mathbb{G}_{a,k}} \circ \varphi \stackrel{14.1}{=} \varphi^{(p)} \circ F_{G^*} = \varphi^{(p)} \circ (V_G)^* = 0.$$

Thus φ factors through the kernel of $F_{\mathbb{G}_{a,k}}$, that is, through $\alpha_{p,k}$. Taking Proposition 13.1 into account, we find that

$$n = \dim_k T_{G,0} = \dim_k \operatorname{Hom}(G^*, \mathbb{G}_{a,k}) = \dim_k \operatorname{Hom}(G^*, \boldsymbol{\alpha}_{p,k}).$$

We claim that there exists an epimorphism $G^* \to \mathbf{a}_{p,k}^{\oplus n}$. Indeed, suppose that an epimorphism $\psi : G^* \to \mathbf{a}_{p,k}^{\oplus i}$ has been constructed for some $0 \leq i < n$. Then the induced linear map $k^i \cong \operatorname{Hom}(\mathbf{a}_{p,k}^{\oplus i}, \mathbf{a}_{p,k}) \to \operatorname{Hom}(G^*, \mathbf{a}_{p,k})$ is a proper embedding. Any homomorphism $\varphi : G^* \to \mathbf{a}_{p,k}$ not in the image has a non-trivial restriction to ker ψ , and since $\mathbf{a}_{p,k}$ is simple, the combined homomorphism $(\psi, \varphi) : G^* \to \mathbf{a}_{p,k}^{\oplus i} \oplus \mathbf{a}_{p,k}$ is again an epimorphism. Thus the claim follows by induction on *i*. Finally, by Cartier duality the claim yields a monomorphism $\mathbf{a}_{p,k}^{\oplus n} \hookrightarrow G$. By the above inequality $|G| \leq p^n$, this monomorphism must be an isomorphism, finishing the proof.

Theorem 16.3. Every simple finite commutative group scheme of local-local type is isomorphic to $\boldsymbol{\alpha}_{p,k}$.

Proof. Combine Propositions 15.6 (d) and 16.2.