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§17 Group orders

Recall from Theorem 15.5 that every finite commutative group scheme pos-
sesses a unique and functorial decomposition

G = Grr ⊕Gr` ⊕G`r ⊕G``

where the direct summands are of reduced-reduced, reduced-local, local-
reduced, and local-local type, respectively.

Theorem 17.1. (a) The group orders in the above decomposition are, re-
spectively: prime to p for Grr, and a power of p for Gr`, G`r and G``.

(b) (“Lagrange”) |G| · idG = 0.

Proof. The statements are invariant under base extension; hence we may as-
sume that k is separably closed. Recall that the group order is multiplicative
in any short exact sequence 0 → G′ → G → G′′ → 0. Similarly, if the
Lagrange equation holds for G′ and G′′, one easily shows that it also holds
for G. Therefore both statements reduce to the case of simple G.

If G is also reduced, then it must be the constant group scheme associated
to a simple finite commutative group, and therefore G ∼= Z/`Z for a prime `.
Its Cartier dual is then G∗ ∼= µµ`,k, which is reduced if and only if ` 6= p. This
determines the simple reduced group schemes up to isomorphism, and by
Cartier duality also those of local-reduced type. Taking Theorem 16.3 into
account, we deduce that the simple finite commutative group schemes over
a separably closed field up to isomorphism are the following:

Type Group Order

reduced-reduced Z/`Z ` 6= p

reduced-local Z/pZ p

local-reduced µµp,k p

local-local ααp,k p

In each case G is annihilated by its order, and the proposition follows.
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§18 Motivation for Witt vectors

Let R be a complete discrete valuation ring with quotient field of character-
istic zero, maximal ideal pR, and residue field k = R/pR. Then we can write
all elements of R as power series in p. In fact, for any given (set theoretic)
section s : k → R we have a bijection

∞
∏

n=0

k −→ R, (xn) 7−→
∞

∑

n=0

s(xn) · pn.

A natural problem is then to describe the ring structure of R in terms of the
coefficients xn. This of course depends on the choice of s, so the question is:
How can this be done canonically? For the following we shall again assume
that k is a perfect field.

Proposition 18.1. Let R be a complete noetherian local ring with perfect
residue field k of characteristic p and maximal ideal m. Then there exists a
unique section i : k → R with the equivalent properties:

(a) i(xy) = i(x)i(y) for all x, y ∈ k,

(b) i(x) = limn→∞ s(x
p−n

)pn

for any section s and any x ∈ k.

The image i(x) is called the Teichmüller representative of x.

Proof. The main point is to show that the limit in (b) is well-defined. First
notice that for all n ≥ 1 and x, y ∈ R we have

x ≡ y mod m
n ⇒ xp ≡ yp mod m

n+1.

This is because with z := y − x ∈ m
n the binomial formula implies that

yp − xp = (z + x)p − xp ∈ (zp, pz) ⊂ m
n+1.

By induction on n we deduce for all n ≥ 0 and x, y ∈ R that

x ≡ y mod m ⇒ xpn

≡ ypn

mod m
n+1.

Note also that the assumptions imply that R ∼= lim
←− n

R/mn.

Now consider any section s : k → R. Then for all x ∈ k and n ≥ 1 we have
s(xp−n

)p ≡ s(xp1−n

) mod m and therefore s(xp−n

)pn

≡ s(xp1−n

)pn−1
mod m

n.
This shows that the sequence in (b) converges. If s′ : k → R is another
section, we have s(y) ≡ s′(y) mod m for all y ∈ k; hence s(xp−n

)pn

≡
s′(xp−n

)pn

mod m
n+1 for all x ∈ k and n ≥ 0, and so the limits coincide.

Thus we have proved (b), and to prove that (b) is equivalent to (a) one
proceeds similarly.
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In order to reconstruct the ring R from k, the main problem is now to
describe its additive structure in terms of i. Once this is done, the multipli-
cation can be deduced from Proposition 18.1 (a) and the distributive law:

(

∑

n

i(xn)pn
)

·
(

∑

m

i(ym)pm
)

=
∑

n,m

i(xnym)pn+m.

One may wonder here: Does the addition depend on further structural
invariants of R, or is it given by universal formulae? A hint towards the
second option is given by the fact that the addition in the ring of p-adic
integers Zp ⊂ R is already unique. Indeed the latter is the case, and the
problem is solved by the so-called ring of Witt vectors. This solution actually
turnes everything around and defines a natural ring structure on

∏∞
n=0 k

without prior presence of R. Notice that this produces a ring of characteristic
zero from a field of characteristic p!

The construction is related to the fact that, although the additive group
of the ring of power series k[[t]] is annihilated by p, its multiplicative group
of 1-units 1 + t · k[[t]] is torsion free! Thus some aspect of characteristic zero
is present in characteristic p.

The strategy is to first use power series over Q to produce some formulae
which—somewhat miraculously—turn out to be integral at p, and then to
reduce these formulae mod p.

§19 The Artin-Hasse exponential

Recall the Möbius function defined for integers n ≥ 1 by

µ(n) =

{

(−1)(number of prime divisors of n) if n is square-free,
0 otherwise.

It is also characterized by the basic property

∑

d|n

µ(d) =

{

1 if n = 1,
0 otherwise.

Lemma 19.1. In 1 + t · Q[[t]] we have the equality

exp(−t) =
∏

n≥1

(1 − tn)
µ(n)

n ,

where the factors are evaluated by the binomial series.
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Proof. Taking logarithms the equality follows from the calculation

∑

n≥1

µ(n)

n
log(1 − tn) =

∑

n≥1

µ(n)

n

∑

m≥1

(

−
tnm

m

)

d=nm
= −

∑

d≥1

(

∑

n|d

µ(n)
)td

d
= −t.

Note. On the right hand side above, all denominators come from the powers
of µ(n)

n
in the binomial series. The following definition will separate the p-part

of these denominators from the non-p-part. Observe that the localization Z(p)

is the ring of rational numbers without p in the denominator.

Definition. F (t) :=
∏

p-n

(1 − tn)
µ(n)

n ∈ 1 + t · Z(p)[[t]].

Lemma 19.2. F (t) = exp
(

−
∑

m≥0

tp
m

pm

)

.

Note. Thus we have the interesting situation that F (t) is a power series
without p in the denominators, but its logarithm has only powers of p in the
denominators, while of course the logarithm and exponential series have all
primes in their denominators. Insofar the definition of F (t) is not as artificial
as it might seem.

Proof. We again apply the logarithm:

logF (t) =
∑

p-n

µ(n)

n
· log(1 − tn)

19.1
= −t−

∑

p|n

µ(n)

n
· log(1 − tn)

n=mp
= −t−

∑

m

µ(mp)

mp
· log(1 − tmp)

(∗)
= −t+

1

p

∑

p-m

µ(m)

m
log(1 − tmp)

= −t+
1

p
logF (tp)

where (∗) uses the observation that if p|m, then mp is not square free and
hence µ(mp) = 0. The lemma follows by iterating this formula.
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Lemma 19.3. There exist unique polynomials ψn ∈ Z[x, y] such that:

F (xt) · F (yt) =
∏

n≥0

F
(

ψn(x, y) · tp
n)

.

Proof. Since the power series F (t) is congruent to 1 − t mod t2 and has
coefficients in Z(p), by successive approximation we find unique polynomials
λd ∈ Z(p)[x, y] such that

F (xt) · F (yt) =
∏

d≥1

F
(

λd(x, y) · t
d
)

.

Taking logarithm on both sides and using Lemma 19.2, this formula is equiv-
alent to

−
∑

m≥0

(xpm

+ ypm

) ·
tp

m

pm
= −

∑

d≥1

∑

m≥0

λd(x, y)
pm

·
tdpm

pm

= −
∑

e≥1

(

∑

m≥0
pm|e

λe/pm(x, y)pm

pm

)

· te.

Comparing coefficients, this shows that each λe is given recursively as a
polynomial over Z[1

p
] in x, y, and λe′ for certain e′ < e. Thus by induction

on e we deduce that λe lies in Z[1
p
][x, y]. Since a priori it is also in Z(p)[x, y],

we find that actually λe ∈ Z[x, y].
Moreover, suppose that λe 6= 0 for some e ≥ 1 which is not a power of p.

Then there exists a smallest e with this property, and for this e the above
formula shows that λe is a Q-linear combination of λpm

e/pm for m > 0 with pm|e.
But all those terms vanish by the minimality of e, yielding a contradiction.
Therefore λe = 0 whenever e is not a power of p, and so the lemma follows
with ψn := λpn.

Now for any ring R we set

ΛR :=
∏

d≥1

A1
R = SpecR[U1, U2, · · · ].

This is a scheme over R, only not of finite type. Identifying sequences
(u1, u2, . . .) with power series 1 + u1t+ u2t

2 + . . . turns ΛR
∼= “1 + t ·A1

R[[t]]”
into a commutative group scheme over R by the usual multiplication of power
series

(1+u1t+u2t
2+. . .)·(1+v1t+v2t

2+. . .) = 1+(u1+v1)t+(u2+u1v1+v2)t
2+. . . .
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Lemma 19.3 suggests that products of the form
∏

n≥0 F (xn· t
pn

) form a sub-
group of ΛR. For any ring R we let

WR :=
∏

n≥0

A1
R = SpecR[X0, X1, . . .]

and write points in it in the form x = (x0, x1, . . .).

Definition. The Artin-Hasse exponential is the morphism E given by

WZ(p)
−→ ΛZ(p)

, x 7→ E(x, t) :=
∏

n≥0

F (xn · t
pn

).

Proposition 19.4. There exists unique polynomials sn ∈ Z[x0, . . . , xn, y0,
. . . , yn] such that E(x, t) ·E(y, t) = E(s(x, y), t) with s = (s0, s1, . . .). More-
over, the morphism s : WZ ×WZ → WZ defines the structure of a commuta-
tive group scheme over Z.

Proof. The first part is proved by successive approximation using Lemma
19.3. For the “moreover” part we must produce the unit section and the
inversion morphism of WZ. The former is defined as 0 = (0, 0, . . .) and
satisfies E(0, t) = 1. For the latter we first show by explicit calculation that

F (t)−1 =

{

F (−t) if p 6= 2,
∏

n≥0 F
(

−tp
n
)

if p = 2,

taking logarithms and using Lemma 19.2. By successive approximation we
then find a unique morphism i : WZ → WZ satisfying E(x, t)−1 = E(i(x), t).
It remains to verify the group axioms for s, 0, and i, and that in turn can
be done over Z(p). But it is clear by construction that the Artin-Hasse ex-
ponential defines a closed embedding E : WZ(p)

↪→ ΛZ(p)
. Thus by the above

formulas relating E with s, 0, and i the desired group axioms follow at once
from those in ΛZ(p)

, finishing the proof.

The next proposition will not be needed in the sequel, but it serves as an
illustration of what is going on here.

Proposition 19.5. The morphism below is an isomorphism of group schemes:
∏

p-m

WZ(p)

∼
−→ ΛZ(p)

, (xm)m 7→
∏

p-m

E(xm, t
m) =

∏

p-m
n≥0

F (xmn · tmpn

).

Proof. Easy, using Proposition 19.4.

Note. One can show that WZ(p)
is an indecomposable group scheme over Z(p);

hence by Proposition 19.5 it can be regarded as the unique indecomposable
component of ΛZ(p)

up to isomorphism. This illustrates a certain canonicity
of WZ(p)

, independent of the precise choice of F in its construction.
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