Lecture 8

December 9, 2004
Notes by Egon Rütsche

§20 The ring of Witt vectors over \mathbb{Z}

In this section we show that the group scheme structure on $\mathrm{W}_{\mathbb{Z}}$ from Proposition 19.4 is the addition for a certain ring scheme structure on $W_{\mathbb{Z}}$. Set

$$
\begin{equation*}
\Phi_{\ell}(\underline{x}):=\sum_{n=0}^{\ell} p^{n} x_{n}^{p^{\ell-n}}=x_{0}^{p^{\ell}}+p x_{1}^{p^{\ell-1}}+\ldots+p^{\ell} x_{\ell} \tag{20.1}
\end{equation*}
$$

Then using Lemma 19.1 we can rewrite

$$
\begin{aligned}
E(\underline{x}, t) & =\prod_{n \geq 0} \exp \left(-\sum_{m \geq 0} \frac{\left(x_{n} t^{p^{n}}\right)^{p^{m}}}{p^{m}}\right) \\
& =\exp \left(-\sum_{n, m \geq 0} p^{n} x_{n}^{p^{m}} \cdot \frac{t^{p^{n+m}}}{p^{n+m}}\right)=\exp \left(-\sum_{\ell \geq 0} \Phi_{\ell}(\underline{x}) \cdot \frac{t^{p^{\ell}}}{p^{\ell}}\right)
\end{aligned}
$$

The relation in Proposition 19.4 becomes

$$
\log E(\underline{x}, t)+\log E(\underline{y}, t)=\log E(\underline{s}(\underline{x}, \underline{y}), t)
$$

which is equivalent to

$$
-\sum_{\ell \geq 0} \Phi_{\ell}(\underline{x}) \frac{t^{p^{\ell}}}{p^{\ell}}-\sum_{\ell \geq 0} \Phi_{\ell}(\underline{y}) \frac{t^{p^{\ell}}}{p^{\ell}}=-\sum_{\ell \geq 0} \Phi_{\ell}(\underline{s}(\underline{x}, \underline{y})) \frac{t^{p^{\ell}}}{p^{\ell}}
$$

By equating coefficients, we deduce that Proposition 19.4 is equivalent to
Proposition 20.2. The above group law on $W_{\mathbb{Z}}$ is the unique one for which each $\Phi_{\ell}: \mathrm{W}_{\mathbb{Z}} \longrightarrow\left(\mathbb{A}_{\mathbb{Z}}^{1},+\right)$ is a homomorphism.

Remark. We write this group law additively, i.e. $\underline{s}(\underline{x}, \underline{y})=: \underline{x}+\underline{y}$.
Terminology. An element $\underline{x}=\left(x_{0}, x_{1}, \ldots\right) \in \mathrm{W}(R)$ is called a Witt vector, and the x_{0}, x_{1}, \ldots its components. The expressions $\Phi_{\ell}(\underline{x})$ are called phantom components. The reason for this is that over $\mathbb{Z}\left[\frac{1}{p}\right]$, giving the x_{ℓ} is equivalent to giving the $\Phi_{\ell}(\underline{x})$, because we have an isomorphism

$$
\begin{equation*}
\mathrm{W}_{\mathbb{Z}\left[\frac{1}{p}\right]} \longrightarrow \prod_{\ell=0}^{\infty} \mathbb{A}_{\mathbb{Z}\left[\frac{1}{p}\right]}^{1}, \underline{x} \mapsto\left(\Phi_{\ell}(\underline{x})\right)_{\ell} . \tag{20.3}
\end{equation*}
$$

But the expressions reduce to $\Phi_{\ell}(\underline{x}) \equiv x_{0}^{p^{\ell}} \bmod p$, so only a "phantom" of what was there remains.

Proposition 20.2 also generalizes as follows, with an independent proof:
Theorem 20.4. There are unique morphisms $+, \cdot: \mathrm{W}_{\mathbb{Z}} \times \mathrm{W}_{\mathbb{Z}} \longrightarrow W_{\mathbb{Z}}$ defining a unitary ring structure, such that each $\Phi_{\ell}: W_{\mathbb{Z}} \longrightarrow \mathbb{A}_{\mathbb{Z}}^{1}$ is a unitary ring homomorphism (and + coincides with that from Propositions 19.4 and 20.2).

Remark. On Witt vectors + and • will always denote the above morphisms, not the componentwise addition and multiplication.

Proof. The isomorphism (20.3) shows that the theorem holds over $\mathbb{Z}\left[\frac{1}{p}\right]$. To prove it over \mathbb{Z} we must show that + and \cdot, as well as the respective identity sections and the additive inverse, are morphisms defined over \mathbb{Z}. For + and - this is achieved conveniently by Lemma 20.5 below. One easily checks that $\underline{0}=(0,0, \ldots)$ and $\underline{1}=(1,0,0, \ldots)$ are the additive and multiplicative identity sections. For the additive inverse the reader is invited to adapt Lemma 20.5. Finally, once all morphisms are defined over \mathbb{Z}, the ring and homomorphism axioms over \mathbb{Z} follow directly from those over $\mathbb{Z}\left[\frac{1}{p}\right]$.

Lemma 20.5. For every morphism $u: \mathbb{A}_{\mathbb{Z}}^{1} \times \mathbb{A}_{\mathbb{Z}}^{1} \longrightarrow \mathbb{A}_{\mathbb{Z}}^{1}$ there exists a unique morphism $\underline{v}: \mathrm{W}_{\mathbb{Z}} \times \mathrm{W}_{\mathbb{Z}} \longrightarrow \mathrm{W}_{\mathbb{Z}}$ such that for all $\ell \geq 0: \Phi_{\ell} \circ \underline{v}=u \circ\left(\Phi_{\ell} \times \Phi_{\ell}\right)$.
Proof. By the isomorphism (20.3) there exist unique $\underline{v}=\left(v_{0}, v_{1}, \ldots\right)$ with $v_{n} \in \mathbb{Z}\left[\frac{1}{p}\right]\left[x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n}\right]$ satisfying the desired relations. It remains to show that $v_{n} \in A:=\mathbb{Z}\left[x_{0}, \ldots, y_{0}, \ldots\right]$. Since $\Phi_{0}(\underline{x})=x_{0}$, this is clear for $v_{0}=u\left(x_{0}, y_{0}\right)$. So fix $n \geq 0$ and assume that $v_{i} \in A$ for all $i \leq n$. For any sequence $\underline{x}=\left(x_{0}, x_{1}, \ldots\right)$ we will abbreviate $\underline{x}^{p}=\left(x_{0}^{p}, x_{1}^{p}, \ldots\right)$. Then the definition (20.1) of Φ_{ℓ} implies that

$$
\Phi_{n+1}(\underline{x})=\Phi_{n}\left(\underline{x}^{p}\right)+p^{n+1} x_{n+1} .
$$

Using this and the relation defining \underline{v} we deduce that

$$
\begin{aligned}
\Phi_{n}\left(\underline{v}^{p}\right)+p^{n+1} v_{n+1} & =\Phi_{n+1}(\underline{v}) \\
& \stackrel{\text { def }}{=} u\left(\Phi_{n+1}(\underline{x}), \Phi_{n+1}(\underline{y})\right) \\
& =u\left(\Phi_{n}\left(\underline{x}^{p}\right)+p^{n+1} x_{n+1}, \Phi_{n}\left(\underline{y}^{p}\right)+p^{n+1} y_{n+1}\right) .
\end{aligned}
$$

Here note that the right hand side and $\Phi_{n}\left(\underline{v}^{p}\right)$ are already in A. Thus we have $p^{n+1} v_{n+1} \in A$ and

$$
\begin{align*}
p^{n+1} v_{n+1} & \equiv u\left(\Phi_{n}\left(\underline{x}^{p}\right), \Phi_{n}\left(\underline{y}^{p}\right)\right)-\Phi_{n}\left(\underline{v}^{p}\right) \quad \bmod p^{n+1} A \\
& \stackrel{\text { def }}{=} \Phi_{n}\left(\underline{v}\left(\underline{x}^{p}, \underline{y}^{p}\right)\right)-\Phi_{n}\left(\underline{v}^{p}\right) . \tag{20.6}
\end{align*}
$$

To evaluate this further recall that $v_{i} \in A$ for all $0 \leq i \leq n$; hence

$$
v_{i}\left(\underline{x}^{p}, \underline{y}^{p}\right) \equiv v_{i}(\underline{x}, \underline{y})^{p} \quad \bmod p A
$$

This implies that

$$
\begin{aligned}
v_{i}\left(\underline{x}^{p}, \underline{y}^{p}\right)^{p^{n-i}} & \equiv\left(v_{i}(\underline{x}, \underline{y})^{p}\right)^{p^{n-i}} \bmod p^{n-i+1} A, \text { hence } \\
p^{i} v_{i}\left(\underline{x}^{p}, \underline{y}^{p}\right)^{p^{n-i}} & \equiv p^{i}\left(v_{i}(\underline{x}, \underline{y})^{p}\right)^{p^{n-i}} \bmod p^{n+1} A, \text { and therefore } \\
\Phi_{n}\left(\underline{v}\left(\underline{x}^{p}, \underline{y}^{p}\right)\right) & \equiv \Phi_{n}\left(\underline{p}^{p}\right) \bmod p^{n+1} A .
\end{aligned}
$$

Together with (20.6) we deduce that $p^{n+1} v_{n+1} \in p^{n+1} A$, and hence $v_{n+1} \in A$. The lemma follows by induction on n.

Examples. We write $\underline{s}=\left(s_{0}, s_{1}, \ldots\right)$ for the morphism + , and $\underline{p}=\left(p_{0}, p_{1}, \ldots\right)$ for the morphism \cdot Using the relations $\Phi_{0}(\underline{x})=x_{0}$ and $\Phi_{1}(\underline{x})=x_{0}^{p}+p x_{1}$, elementary calculation shows that

$$
\begin{aligned}
s_{0}(\underline{x}, \underline{y}) & =x_{0}+y_{0}, \\
p_{0}(\underline{x}, \underline{y}) & =x_{0} \cdot y_{0}, \\
s_{1}(\underline{x}, \underline{y}) & =x_{1}+y_{1}+\frac{1}{p}\left(x_{0}^{p}+y_{0}^{p}-\left(x_{0}+y_{0}\right)^{p}\right) \\
& =x_{1}+y_{1}-\sum_{i=0}^{p-1} \frac{1}{p}\binom{p}{i} x_{0}^{i} y_{0}^{p-i}, \\
p_{1}(\underline{x}, \underline{y}) & =x_{0}^{p} y_{1}+x_{1} y_{0}^{p}+p x_{1} y_{1} .
\end{aligned}
$$

As one can see, the formulas are quickly becoming very complicated. One should not use them directly, but think conceptually.

For use in the next section we note:
Proposition 20.7. The morphism $\tau: \mathbb{A}_{\mathbb{Z}}^{1} \longrightarrow \mathrm{~W}_{\mathbb{Z}}, x \mapsto(x, 0, \ldots)$ is multiplicative, i.e., it satisfies $\tau(x y)=\tau(x) \cdot \tau(y)$.
Proof. It is enough to check this over $\mathbb{Z}\left[\frac{1}{p}\right]$, i.e., after applying each Φ_{ℓ}. But $\Phi_{\ell}(\tau(x))=x^{p^{\ell}}$ is obviously multiplicative.

Finally, we introduce Witt vectors of finite length $n \geq 1$. For this recall that the m-th components of $\underline{x}+\underline{y}$ and $\underline{x} \cdot \underline{y}$ and $-\underline{x}$ depend only on the first m components of \underline{x} and \underline{y}. Thus the same formulas define a ring structure on $W_{n, R}:=\prod_{m=0}^{n-1} \mathbb{A}_{R}^{1}$ for any ring R, such that the truncation map

$$
\begin{equation*}
W_{R} \longrightarrow W_{n, R}, \underline{x} \mapsto\left(x_{0}, \ldots, x_{n-1}\right) \tag{20.8}
\end{equation*}
$$

is a ring homomorphism.

§21 Witt vectors in characteristic p

From now on let k be a perfect field of characteristic $p>0$. For any scheme X over \mathbb{F}_{p} we abbreviate $X_{k}:=X \times_{\text {Spec }_{\mathbb{F}_{p}}}$ Spec k. Then there is a natural isomorphism $X_{k}^{(p)} \cong X_{k}$ which turns the relative Frobenius of X_{k} into the endomorphism $\sigma_{X} \times$ id of X_{k}, where σ_{X} denotes the absolute Frobenius of X. Indeed, this follows from the definition of Frobenius from $\S 14$ and the fact that the two rectangles in the following commutative diagram are cartesian:

In particular we can apply this to $W_{k}=W_{\mathbb{F}_{p}} \times_{\text {Spec }_{p}} \operatorname{Spec} k$. Thus the Frobenius and Verschiebung for the additive group of W_{k} become endomorphisms satisfying $F \circ V=V \circ F=p \cdot$ id. The following proposition collects some of their properties.

Proposition 21.1. (a) $F\left(\left(x_{0}, x_{1}, \ldots\right)\right)=\left(x_{0}^{p}, x_{1}^{p}, \ldots\right)$.
(b) $V\left(\left(x_{0}, x_{1}, \ldots\right)\right)=\left(0, x_{0}, x_{1}, \ldots\right)$.
(c) $p \cdot\left(x_{0}, x_{1}, \ldots\right)=\left(0, x_{0}^{p}, x_{1}^{p}, \ldots\right)$.
(d) $F(\underline{x}+\underline{y})=(F \underline{x})+(F \underline{y})$.
(e) $F(\underline{x} \cdot \underline{y})=(F \underline{x}) \cdot(F \underline{y})$.
(f) $\underline{x} \cdot(V \underline{y})=V((F \underline{x}) \cdot \underline{y})$.
(g) $E(\underline{x} \cdot(V \underline{y}), t)=E\left((F \underline{x}) \cdot \underline{y}, t^{p}\right)$.

Remark. Part (b) is probably the reason why V is called Verschiebung.
Proof. (a), (d), and (e) are clear from the definition and functoriality of F. (b) is equivalent to (c) by the relation $p \cdot \underline{x}=V F \underline{x}$, because $F: \mathrm{W}_{k} \rightarrow \mathrm{~W}_{k}$ is an epimorphism. For (c) we cannot use the phantom components, because we are in characteristic $p>0$. Instead we use the Artin-Hasse exponential
$E(\underline{x}, t)=\prod_{n=0}^{\infty} F\left(x_{n} t^{p^{n}}\right)$. Recall that it defines a homomorphism and a closed embedding $W_{\mathbb{Z}_{(p)}} \rightarrow \Lambda_{\mathbb{Z}_{(p)}}$, and hence also $W_{k} \rightarrow \Lambda_{k}$. Therefore

$$
\begin{aligned}
E(p \cdot \underline{x}, t)=E(\underline{x}, t)^{p} & =\prod_{n=0}^{\infty} F\left(x_{n} t^{p^{n}}\right)^{p} \stackrel{(*)}{=} \prod_{n=0}^{\infty} F\left(x_{n}^{p} t^{p^{n+1}}\right) \\
& =\prod_{n=1}^{\infty} F\left(x_{n-1}^{p} t^{p^{n}}\right)=E\left(\left(0, x_{0}^{p}, x_{1}^{p}, \ldots\right), t\right)
\end{aligned}
$$

where ($*$) follows from the fact that we are working over k and that F has coefficients in $\mathbb{Z}_{(p)}$. This shows (c). Next, since F is an epimorphism, it suffices to prove (f) for $\underline{y}=F \underline{z}$. But for this it follows from the calculation

$$
\begin{aligned}
\underline{x} \cdot(V \underline{y}) & =\underline{x} \cdot(V F \underline{z})=\underline{x} \cdot(p \cdot \underline{z})=p \cdot(\underline{x} \cdot \underline{z}) \\
& =V F(\underline{x} \cdot \underline{z}) \stackrel{(e)}{=} V((F \underline{x}) \cdot(F \underline{z}))=V((F \underline{x}) \cdot \underline{y}) .
\end{aligned}
$$

Finally, (g) results from

$$
E(\underline{x} \cdot(V \underline{y}), t) \stackrel{(\mathrm{f})}{=} E(V((F \underline{x}) \cdot \underline{y}), t) \stackrel{\text { def. of }}{=} E\left((F \underline{x}) \cdot \underline{y}, t^{p}\right) .
$$

Theorem 21.2. $\mathrm{W}(k)$ is a complete discrete valuation ring with uniformizer p and residue field k.

Proof. Since k is perfect, we have $p^{n} \mathrm{~W}(k)=V^{n}(\mathrm{~W}(k))$ for all $n \geq 1$. By iterating Proposition 21.1 (b) this is also the kernel of the truncation homomorphism $W(k) \rightarrow W_{n}(k)$ from (20.8). Thus $W(k) / p^{n} W(k) \cong W_{n}(k)$ and $W(k) / p W(k) \cong W_{1}(k) \cong k$. Using this, by induction on n one shows that $W_{n}(k)$ is a $W(k)$-module of length n. Since clearly $W(k) \cong \lim _{{ }_{n}} W_{n}(k)$, the theorem follows.

Theorem 21.3 (Witt). Let R be a complete noetherian local ring with residue field k.
(a) There exists a unique ring homomorphism $u: \mathrm{W}(k) \longrightarrow R$ such that the following diagram commutes:

(b) If R is a complete discrete valuation ring with uniformizer p, then u is an isomorphism.

Proof. Recall that by Proposition 18.1 there are unique multiplicative sections

Since u is also multiplicative, it must therefore satisfy the equation $i=u \circ \tau$. By Proposition 20.7 we have $\tau(x)=(x, 0, \ldots)$. In view of Proposition 21.1 (c) this implies that any element $\underline{x}=\left(x_{0}, x_{1}, \ldots\right) \in \mathrm{W}(k)$ has the power series expansion

$$
\underline{x}=\tau\left(x_{0}\right)+p \cdot \tau\left(x_{1}^{1 / p}\right)+p^{2} \cdot \tau\left(x_{2}^{1 / p^{2}}\right)+\ldots
$$

So the ring homomorphism u must be given by

$$
u(\underline{x})=i\left(x_{0}\right)+p \cdot i\left(x_{1}^{1 / p}\right)+p^{2} \cdot i\left(x_{2}^{1 / p^{2}}\right)+\ldots .
$$

In particular u is unique, but we must verify that this formula does define a ring homomorphism. For this, let \mathfrak{m} be the maximal ideal of R, which contains p, and calculate:

$$
\begin{aligned}
u(\underline{x}) & \equiv i\left(x_{0}\right)+p \cdot i\left(x_{1}^{1 / p}\right)+\ldots+p^{n} \cdot i\left(x_{n}^{1 / p^{n}}\right) \quad \bmod \mathfrak{m}^{n+1}, \\
& =i\left(x_{0}^{p^{-n}}\right)^{p^{n}}+p \cdot i\left(x_{1}^{p^{-n}}\right)^{p^{n-1}}+\ldots+p^{n} \cdot i\left(x_{n}^{p^{-n}}\right) \\
& =\Phi_{n}\left(i\left(x_{0}^{p^{-n}}\right), \ldots, i\left(x_{n}^{p^{-n}}\right)\right) .
\end{aligned}
$$

It is enough to show that this defines a ring homomorphism $W(k) \rightarrow R / \mathfrak{m}^{n+1}$ for any n, because R is complete noetherian and hence $R=\lim R / \mathfrak{m}^{n+1}$. Since Frobenius defines a ring automorphism of $W(k)$, this is equivalent to showing that $\Phi_{n}\left(i\left(x_{0}\right), \ldots, i\left(x_{n}\right)\right)$ defines a ring homomorphism $W(k) \rightarrow R / \mathfrak{m}^{n+1}$. But $\Phi_{n}: \mathrm{W}(R) \rightarrow R$ is a ring homomorphism by the construction of Witt vectors. Moreover, we have $\Phi_{n}\left(x_{0}, \ldots, x_{n}\right) \in \mathfrak{m}^{n+1}$ if all $x_{i} \in \mathfrak{m}$, by the definition of Φ_{n}. Thus the composite homomorphism in the diagram

vanishes on the kernel of the left vertical map; hence it factors through a ring homomorphism along the lower edge. The lower arrow is then given explicitly by $\Phi_{n}\left(i\left(x_{0}\right), \ldots, i\left(x_{n}\right)\right) \bmod \mathfrak{m}^{n+1}$ for any section i, in particular for the canonical one. Therefore this defines a ring homomorphism, proving (a).
(b) follows from the fact that any homomorphism of complete discrete valuation rings with the same uniformizer and the same residue field is an isomorphism.

