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§20 The ring of Witt vectors over Z

In this section we show that the group scheme structure on WZ from Propo-
sition 19.4 is the addition for a certain ring scheme structure on WZ. Set

(20.1) Φ`(x) :=
∑̀

n=0

pnxp`−n

n = xp`

0 + pxp`−1

1 + . . . + p`x`.

Then using Lemma 19.1 we can rewrite

E(x, t) =
∏

n≥0

exp
(

−
∑

m≥0

(xntp
n

)pm

pm

)

= exp
(

−
∑

n,m≥0

pnxpm

n ·
tp

n+m

pn+m

)

= exp
(

−
∑

`≥0

Φ`(x) ·
tp

`

p`

)

.

The relation in Proposition 19.4 becomes

log E(x, t) + log E(y, t) = log E(s(x, y), t),

which is equivalent to

−
∑

`≥0

Φ`(x)
tp

`

p`
−

∑

`≥0

Φ`(y)
tp

`

p`
= −

∑

`≥0

Φ`

(

s(x, y)
)tp

`

p`
.

By equating coefficients, we deduce that Proposition 19.4 is equivalent to

Proposition 20.2. The above group law on WZ is the unique one for which
each Φ` : WZ −→

(

A
1
Z
, +

)

is a homomorphism.

Remark. We write this group law additively, i.e. s(x, y) =: x + y.

Terminology. An element x = (x0, x1, . . .) ∈ W(R) is called a Witt vector,
and the x0, x1, . . . its components. The expressions Φ`(x) are called phantom

components. The reason for this is that over Z[1
p
], giving the x` is equivalent

to giving the Φ`(x), because we have an isomorphism

(20.3) W
Z[ 1

p
] −→

∞
∏

`=0

A
1
Z[ 1

p
]
, x 7→

(

Φ`(x)
)

`
.
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But the expressions reduce to Φ`(x) ≡ xp`

0 mod p, so only a “phantom” of
what was there remains.

Proposition 20.2 also generalizes as follows, with an independent proof:

Theorem 20.4. There are unique morphisms +, · : WZ ×WZ −→ WZ defin-
ing a unitary ring structure, such that each Φ` : WZ −→ A

1
Z

is a unitary ring
homomorphism (and + coincides with that from Propositions 19.4 and 20.2).

Remark. On Witt vectors + and · will always denote the above morphisms,
not the componentwise addition and multiplication.

Proof. The isomorphism (20.3) shows that the theorem holds over Z[1
p
]. To

prove it over Z we must show that + and ·, as well as the respective identity
sections and the additive inverse, are morphisms defined over Z. For + and
· this is achieved conveniently by Lemma 20.5 below. One easily checks that
0 = (0, 0, . . .) and 1 = (1, 0, 0, . . .) are the additive and multiplicative identity
sections. For the additive inverse the reader is invited to adapt Lemma 20.5.
Finally, once all morphisms are defined over Z, the ring and homomorphism
axioms over Z follow directly from those over Z[1

p
].

Lemma 20.5. For every morphism u : A
1
Z
×A

1
Z
−→ A

1
Z

there exists a unique
morphism v : WZ ×WZ −→ WZ such that for all ` ≥ 0 : Φ`◦v = u◦(Φ`×Φ`).

Proof. By the isomorphism (20.3) there exist unique v = (v0, v1, . . .) with
vn ∈ Z[1

p
][x0, . . . , xn, y0, . . . , yn] satisfying the desired relations. It remains

to show that vn ∈ A := Z[x0, . . . , y0, . . .]. Since Φ0(x) = x0, this is clear for
v0 = u(x0, y0). So fix n ≥ 0 and assume that vi ∈ A for all i ≤ n. For
any sequence x = (x0, x1, . . .) we will abbreviate xp = (xp

0, x
p
1, . . .). Then the

definition (20.1) of Φ` implies that

Φn+1(x) = Φn(xp) + pn+1xn+1.

Using this and the relation defining v we deduce that

Φn(vp) + pn+1vn+1 = Φn+1(v)
def
= u

(

Φn+1(x), Φn+1(y)
)

= u
(

Φn(xp) + pn+1xn+1, Φn(yp) + pn+1yn+1

)

.

Here note that the right hand side and Φn(vp) are already in A. Thus we
have pn+1vn+1 ∈ A and

pn+1vn+1 ≡ u
(

Φn(xp), Φn(yp)
)

− Φn(vp) mod pn+1A

def
= Φn

(

v(xp, yp)
)

− Φn(vp).(20.6)
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To evaluate this further recall that vi ∈ A for all 0 ≤ i ≤ n; hence

vi(x
p, yp) ≡ vi(x, y)p mod pA.

This implies that

vi(x
p, yp)pn−i

≡
(

vi(x, y)p
)pn−i

mod pn−i+1A, hence

pivi(x
p, yp)pn−i

≡ pi
(

vi(x, y)p
)pn−i

mod pn+1A, and therefore

Φn

(

v(xp, yp)
)

≡ Φn(vp) mod pn+1A.

Together with (20.6) we deduce that pn+1vn+1 ∈ pn+1A, and hence vn+1 ∈ A.
The lemma follows by induction on n.

Examples. We write s = (s0, s1, . . .) for the morphism +, and p = (p0, p1, . . .)
for the morphism ·. Using the relations Φ0(x) = x0 and Φ1(x) = xp

0 + px1,
elementary calculation shows that

s0(x, y) = x0 + y0,

p0(x, y) = x0 · y0,

s1(x, y) = x1 + y1 +
1

p

(

xp
0 + yp

0 − (x0 + y0)
p
)

= x1 + y1 −

p−1
∑

i=0

1

p

(

p

i

)

xi
0y

p−i
0 ,

p1(x, y) = xp
0y1 + x1y

p
0 + px1y1.

As one can see, the formulas are quickly becoming very complicated. One
should not use them directly, but think conceptually.

For use in the next section we note:

Proposition 20.7. The morphism τ : A
1
Z
−→ WZ, x 7→ (x, 0, . . .) is multi-

plicative, i.e., it satisfies τ(xy) = τ(x) · τ(y).

Proof. It is enough to check this over Z[1
p
], i.e., after applying each Φ`. But

Φ`

(

τ(x)
)

= xp`

is obviously multiplicative.

Finally, we introduce Witt vectors of finite length n ≥ 1. For this recall
that the m-th components of x+ y and x · y and −x depend only on the first
m components of x and y. Thus the same formulas define a ring structure

on Wn,R :=
∏n−1

m=0 A
1
R for any ring R, such that the truncation map

(20.8) WR −→ Wn,R, x 7→ (x0, . . . , xn−1)

is a ring homomorphism.
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§21 Witt vectors in characteristic p

From now on let k be a perfect field of characteristic p > 0. For any scheme
X over Fp we abbreviate Xk := X ×Spec Fp

Spec k. Then there is a natural

isomorphism X
(p)
k

∼= Xk which turns the relative Frobenius of Xk into the
endomorphism σX × id of Xk, where σX denotes the absolute Frobenius of X.
Indeed, this follows from the definition of Frobenius from §14 and the fact
that the two rectangles in the following commutative diagram are cartesian:

Xk
σXk

&&

%%

FXk
= σX×id

&&N
N

N
N

N
N

X
(p)
k = Xk

id×σSpec k //

��

Xk

��

pr1 // X

��
Spec k

σSpec k // Spec k // Spec Fp

In particular we can apply this to Wk = WFp
×Spec Fp

Spec k. Thus the Frobe-
nius and Verschiebung for the additive group of Wk become endomorphisms

satisfying F ◦ V = V ◦ F = p · id. The following proposition collects some of
their properties.

Proposition 21.1. (a) F
(

(x0, x1, . . .)
)

= (xp
0, x

p
1, . . .).

(b) V
(

(x0, x1, . . .)
)

= (0, x0, x1, . . .).

(c) p · (x0, x1, . . .) = (0, xp
0, x

p
1, . . .).

(d) F (x + y) = (Fx) + (Fy).

(e) F (x · y) = (Fx) · (Fy).

(f) x · (V y) = V
(

(Fx) · y
)

.

(g) E
(

x · (V y), t
)

= E
(

(Fx) · y, tp
)

.

Remark. Part (b) is probably the reason why V is called Verschiebung.

Proof. (a), (d), and (e) are clear from the definition and functoriality of F .
(b) is equivalent to (c) by the relation p ·x = V Fx, because F : Wk → Wk is
an epimorphism. For (c) we cannot use the phantom components, because
we are in characteristic p > 0. Instead we use the Artin-Hasse exponential
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E(x, t) =
∏∞

n=0 F (xntp
n

). Recall that it defines a homomorphism and a closed
embedding WZ(p)

→ ΛZ(p)
, and hence also Wk → Λk. Therefore

E(p · x, t) = E(x, t)p =

∞
∏

n=0

F (xntp
n

)p (∗)
=

∞
∏

n=0

F (xp
ntp

n+1

)

=

∞
∏

n=1

F (xp
n−1t

pn

) = E
(

(0, xp
0, x

p
1, . . .), t

)

,

where (∗) follows from the fact that we are working over k and that F has
coefficients in Z(p). This shows (c). Next, since F is an epimorphism, it
suffices to prove (f) for y = Fz. But for this it follows from the calculation

x · (V y) = x · (V Fz) = x · (p · z) = p · (x · z)

= V F (x · z)
(e)
= V

(

(Fx) · (Fz)
)

= V
(

(Fx) · y
)

.

Finally, (g) results from

E
(

x · (V y), t
) (f)

= E
(

V
(

(Fx) · y
)

, t
) def. of E

= E
(

(Fx) · y, tp
)

.

Theorem 21.2. W(k) is a complete discrete valuation ring with uniformizer
p and residue field k.

Proof. Since k is perfect, we have pn W(k) = V n
(

W(k)
)

for all n ≥ 1.
By iterating Proposition 21.1 (b) this is also the kernel of the truncation
homomorphism W (k) → Wn(k) from (20.8). Thus W (k)/pnW (k) ∼= Wn(k)
and W (k)/pW (k) ∼= W1(k) ∼= k. Using this, by induction on n one shows
that Wn(k) is a W (k)-module of length n. Since clearly W (k) ∼= lim

←− n
Wn(k),

the theorem follows.

Theorem 21.3 (Witt). Let R be a complete noetherian local ring with
residue field k.

(a) There exists a unique ring homomorphism u : W(k) −→ R such that
the following diagram commutes:

W(k)
u //

""EE
EE

EE
R

����
��

�

k.

(b) If R is a complete discrete valuation ring with uniformizer p, then u is
an isomorphism.
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Proof. Recall that by Proposition 18.1 there are unique multiplicative sec-
tions

W(k) R

k.
τ

bbEEEEEE i

@@�����

Since u is also multiplicative, it must therefore satisfy the equation i = u ◦ τ.
By Proposition 20.7 we have τ(x) = (x, 0, . . .). In view of Proposition 21.1
(c) this implies that any element x = (x0, x1, . . .) ∈ W(k) has the power
series expansion

x = τ(x0) + p · τ(x
1/p
1 ) + p2 · τ(x

1/p2

2 ) + . . . .

So the ring homomorphism u must be given by

u(x) = i(x0) + p · i(x
1/p
1 ) + p2 · i(x

1/p2

2 ) + . . . .

In particular u is unique, but we must verify that this formula does define
a ring homomorphism. For this, let m be the maximal ideal of R, which
contains p, and calculate:

u(x) ≡ i(x0) + p · i(x
1/p
1 ) + . . . + pn · i(x1/pn

n ) mod m
n+1,

= i(xp−n

0 )pn

+ p · i(xp−n

1 )pn−1

+ . . . + pn · i(xp−n

n )

= Φn

(

i(xp−n

0 ), . . . , i(xp−n

n )
)

.

It is enough to show that this defines a ring homomorphism W (k) → R/mn+1

for any n, because R is complete noetherian and hence R = lim
←−

R/mn+1. Since
Frobenius defines a ring automorphism of W (k), this is equivalent to showing
that Φn

(

i(x0), . . . , i(xn)
)

defines a ring homomorphism W (k) → R/mn+1.
But Φn : W(R) → R is a ring homomorphism by the construction of Witt
vectors. Moreover, we have Φn(x0, . . . , xn) ∈ m

n+1 if all xi ∈ m, by the
definition of Φn. Thus the composite homomorphism in the diagram

W(R)
Φn //

����

R

����
W(k) //___ R/mn+1

vanishes on the kernel of the left vertical map; hence it factors through a ring
homomorphism along the lower edge. The lower arrow is then given explicitly
by Φn

(

i(x0), . . . , i(xn)
)

mod m
n+1 for any section i, in particular for the

canonical one. Therefore this defines a ring homomorphism, proving (a).
(b) follows from the fact that any homomorphism of complete discrete

valuation rings with the same uniformizer and the same residue field is an
isomorphism.
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