Lecture 9

December 16, 2004 Notes by Richard Pink (§16 was also presented on that day, but moved to its proper place in the text.)

§22 Finite Witt group schemes

From now on we abbreviate $W := W_k$, restoring the index $_k$ only when the dependence on the field k is discussed. Also, we will no longer underline points in W or in quotients thereof.

For any integer $n \ge 1$ we let $W_n \cong W/V^n W$ denote the additive group scheme of Witt vectors of length n over k. Truncation induces natural epimorphisms $r: W_{n+1} \twoheadrightarrow W_n$, and Verschiebung induces natural monomorphisms $v: W_n \hookrightarrow W_{n+1}$, such that rv = vr = V. For any $n, n' \ge 1$ they induce a short exact sequence

$$0 \longrightarrow W_{n'} \xrightarrow{v^n} W_{n+n'} \xrightarrow{r^{n'}} W_n \longrightarrow 0.$$

(The exactness can be deduced from the fact that $r^{n'}$ possesses the scheme theoretic splitting $x \mapsto (x, 0, \ldots, 0)$, although we have not proved in this course that the category of all affine commutative group schemes is abelian.) Together with the natural isomorphism $W_1 \cong \mathbb{G}_a$, these exact sequences describe W_n as a successive extension of n copies of \mathbb{G}_a .

For any integers $n, m \geq 1$ we let W_n^m denote the kernel of F^m on W_n . As above, truncation induces natural epimorphisms $r: W_{n+1}^m \to W_n^m$, and Verschiebung induces natural monomorphisms $v: W_n^m \hookrightarrow W_{n+1}^m$, such that rv = vr = V. Similarly, the inclusion induces natural monomorphisms $i: W_n^m \hookrightarrow W_n^{m+1}$, and Frobenius induces natural epimorphisms $f: W_n^{m+1} \to W_n^m$, such that if = fi = F. For any $n, n', m, m' \geq 1$ they induce short exact sequences

$$0 \longrightarrow W_{n'}^m \xrightarrow{v^n} W_{n+n'}^m \xrightarrow{r^{n'}} W_n^m \longrightarrow 0,$$

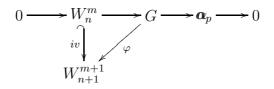
$$0 \longrightarrow W_n^m \xrightarrow{i^{m'}} W_n^{m+m'} \xrightarrow{f^m} W_n^{m'} \longrightarrow 0.$$

Together with the natural isomorphism $W_1^1 \cong \alpha_p$, these exact sequences describe W_n^m as a successive extension of nm copies of α_p . For later use note the following fact:

Lemma 22.1. Let G be a finite commutative group scheme with $F_G^m = 0$ and $V_G^n = 0$. Then any homomorphism $\varphi: G \to W_{n'}^{m'}$ with $m' \ge m$ and $n' \ge n$ factors uniquely through the embedding $i^{m'-m}v^{n'-n}: W_n^m \hookrightarrow W_{n'}^{m'}$. *Proof.* By the functoriality of Frobenius from Proposition 14.1, the assumption implies that $F_{W_{n'}^{m'}}^m \circ \varphi = \varphi^{(p^m)} \circ F_G^m = 0$. Thus φ factors through the kernel of F^m on $W_{n'}^{m'}$, which is the image of $i^{m'-m} : W_{n'}^m \hookrightarrow W_{n'}^{m'}$. The analogous argument with V_G^n in place of F_G^m shows the rest.

We will show that all commutative finite group schemes of local-local type can be constructed from the *Witt group schemes* W_n^m . The main step towards this is the following result on extensions:

Proposition 22.2. For any short exact sequence $0 \to W_n^m \to G \to \alpha_p \to 0$ there exists a homomorphism φ making the following diagram commute:



Note. In more highbrow language this means that the homomorphism induced by iv on the Yoneda Ext groups $\operatorname{Ext}^1(\boldsymbol{\alpha}_p, W_n^m) \to \operatorname{Ext}^1(\boldsymbol{\alpha}_p, W_{n+1}^{m+1})$ is zero. I prefer to stay as down to earth as possible in this course.

Lemma 22.3. Proposition 22.2 holds in the case n = m = 1.

Proof. As a preparation let U denote the kernel of the epimorphism rf: $W_2^2 \rightarrow W_1^1 = \boldsymbol{\alpha}_p$. Then r and f induce epimorphisms

$$r': U \twoheadrightarrow \ker(f: W_1^2 \twoheadrightarrow W_1^1) \cong W_1^1 = \boldsymbol{\alpha}_p,$$

$$f': U \twoheadrightarrow \ker(r: W_2^1 \twoheadrightarrow W_1^1) \cong W_1^1 = \boldsymbol{\alpha}_p,$$

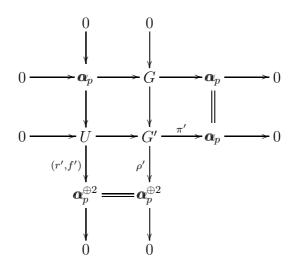
which together yield a short exact sequence

$$0 \longrightarrow \boldsymbol{a}_p = W_1^1 \xrightarrow{iv} U \xrightarrow{(r',f')} \boldsymbol{a}_p^{\oplus 2} \longrightarrow 0.$$

Since F = V = 0 on α_p , one easily shows that F_U and V_U are induced from

$$k^{\oplus 2} \cong \operatorname{Hom}(\boldsymbol{a}_p^{\oplus 2}, \boldsymbol{a}_p) \hookrightarrow \operatorname{Hom}(U, U).$$

In fact, going through the construction one finds that F_U and V_U correspond to the elements (0, 1) and (1, 0) of $k^{\oplus 2}$, respectively. Essentially the proof will show that U represents the universal extension of α_p with α_p . For any short exact sequence $0 \to \alpha_p \to G \xrightarrow{\pi} \alpha_p \to 0$ we define a group scheme G' such that the upper left square in the following commutative diagram with exact rows and columns is a pushout:



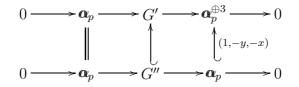
By looking at the induced short exact sequence

$$0 \longrightarrow \mathbf{a}_p \longrightarrow G' \xrightarrow{(\pi',\rho')} \mathbf{a}_p^{\oplus 3} \longrightarrow 0$$

one shows as above that $F_{G'}$ and $V_{G'}$ are induced from

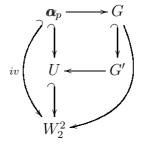
$$k^{\oplus 3} \cong \operatorname{Hom}(\mathbf{a}_p^{\oplus 3}, \mathbf{a}_p) \hookrightarrow \operatorname{Hom}(G', G').$$

In fact, comparison with the result for U shows that $F_{G'}$ and $V_{G'}$ correspond to triples (x, 0, 1) and (y, 1, 0), respectively, for certain elements $x, y \in k$. Define a subgroup scheme $G'' \subset G'$ as the pullback in the following commutative diagram with exact rows:



Then by construction one finds that $F_{G''} = 0$ and $V_{G''} = 0$. (In fact, G'' is just the right Baer linear combination of the extension G with the two basic extensions W_2^1 and W_1^2 which enjoys this property.) Thus Proposition 16.2 implies that $G'' \cong \boldsymbol{\alpha}_p^{\oplus 2}$ is split. This splitting yields an embedding $\iota : \boldsymbol{\alpha}_p \hookrightarrow G'$ satisfying $\pi' \iota = \text{id}$, which in turn splits the extension $0 \to U \to G' \to \boldsymbol{\alpha}_p \to 0$.

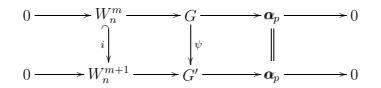
Finally, the resulting homomorphism $G' \to U$ yields a composite arrow making the following diagram commute:



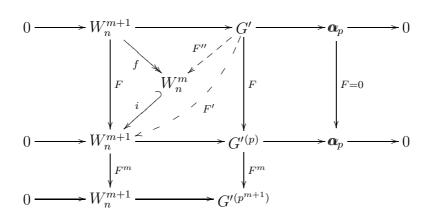
as asserted by Proposition 22.2.

- **Lemma 22.4.** (a) Fix $n \ge 1$. If Proposition 22.2 holds for this n and m = 1, then it holds for this n and all $m \ge 1$.
 - (b) Fix $m \ge 1$. If Proposition 22.2 holds for this m and n = 1, then it holds for this m and all $n \ge 1$.

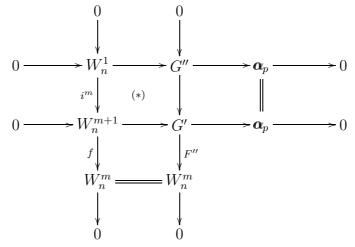
Proof. For any short exact sequence $0 \to W_n^m \to G \to \alpha_p \to 0$, define G' such that the left square in the following commutative diagram with exact rows is a pushout:



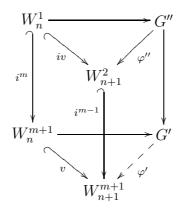
As F = 0 on α_p , and $F^m = 0$ on W_n^m , one easily shows that $F^{m+1} = 0$ on G. Thus F^{m+1} vanishes on $W_n^{m+1} \oplus G$, and since G' can be constructed as a quotient thereof, also on G'. Consider the following commutative diagram with exact rows, where the dashed arrows are not yet defined:



The dashed arrow F' is obtained from the fact that the upper right square commutes and that F = 0 on α_p . Looking at the lower left part of the diagram, the fact that $F^m \circ F = F^{m+1} = 0$ on G' implies that F' factors through the kernel of F^m on W_n^{m+1} . But this kernel is just the image of W_n^m under *i*, which yields the dashed arrow F'' making everything commute. Since the oblique arrow *f* is an epimorphism, the same holds a fortiori for F''. Setting $G'' := \ker F''$ we obtain a commutative diagram with exact rows and columns



Here by diagram chasing we find that the square marked (*) is a pushout. By assumption we may apply Proposition 22.2 to G'', obtaining a homomorphism φ'' making the upper triangle of the following Toblerone diagram commute:

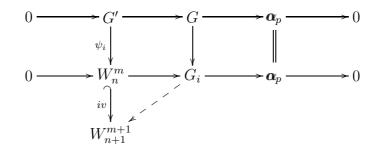


Since (*) is a pushout, this commutative diagram can be completed by the dashed homomorphism φ' at the lower right. Altogether, the composite homomorphism $\varphi := \varphi' \psi : G \to G' \to W_{n+1}^{m+1}$ has the desired properties, proving (a). The proof of (b) is entirely analogous, with V in place of F. \Box

Proof of Proposition 22.2. By Lemma 22.3 the proposition holds in the case n = m = 1. By Lemma 22.4 (a) the proposition follows whenever n = 1, and from this it follows in general by Lemma 22.4 (b).

Proposition 22.5. Every commutative finite group scheme of local-local type can be embedded into $(W_n^m)^{\oplus r}$ for some n, m, and r.

Proof. To prove this by induction on |G|, we may consider a short exact sequence $0 \to G' \to G \to \mathbf{a}_p \to 0$ and assume that there exists an embedding $\psi = (\psi_1, \ldots, \psi_r) : G' \hookrightarrow (W_n^m)^{\oplus r}$. For $1 \leq i \leq r$ define G_i such that the upper left square in the following commutative diagram with exact rows is a pushout:



The dashed arrows, which exist by Proposition 22.2, determine an extension of the composite embedding $iv\psi$: $G' \hookrightarrow (W_{n+1}^{m+1})^{\oplus r}$ to a homomorphism $G \to (W_{n+1}^{m+1})^{\oplus r}$. The direct sum of this with the composite homomorphism $G \twoheadrightarrow \boldsymbol{\alpha}_p = W_1^1 \hookrightarrow W_{n+1}^{m+1}$ is an embedding $G \hookrightarrow (W_{n+1}^{m+1})^{\oplus r+1}$.

Proposition 22.6. Every commutative finite group scheme G with $F_G^m = 0$ and $V_G^n = 0$ possesses a copresentation (i.e., an exact sequence) for some r, s

$$0 \longrightarrow G \longrightarrow (W_n^m)^{\oplus r} \longrightarrow (W_n^m)^{\oplus s} \,.$$

Proof. By Proposition 22.5 there exists an embedding $G \hookrightarrow (W_{n'}^{m'})^{\oplus r}$ for some n', m', and r. After composing it in each factor with the embedding $iv: W_{n'}^{m'} \hookrightarrow W_{n'+1}^{m'+1}$, if necessary, we may assume that $n' \ge n$ and $m' \ge m$. Then Lemma 22.1 implies that the embedding factors through a homomorphism $G \to (W_n^m)^{\oplus r}$, which is again an embedding. Let H denote its cokernel. Since $F^m = 0$ and $V^n = 0$ on W_n^m , the same is true on $(W_n^m)^{\oplus r}$ and hence on H. Repeating the first part of the proof with H in place of G, we therefore find an embedding $H \hookrightarrow (W_n^m)^{\oplus s}$ for some s. The proposition follows. \Box