
Determining Representations
from Invariant Dimensions

This paper is motivated by the following “Tannakian” question: to what extent is a
(complex) Lie group, G, and a finite dimensional representation, (ρ, V ) of G, determined
by the dimensions of the various invariant spaces WG, where the W are obtained from
V by linear linear algebra? That is, given dim(Sym2(V )G), dim((Λ3V )G), etc., can one
determine (G, V )? This problem arises, for instance, in the cohomological study of expo-
nential sums. Given a finite extension Eλ of Q`, the field of `-adic numbers, a base scheme
X in characteristic p 6= `, and a representation σ : πalg

1 (X, x0) → GL(n, Eλ), we take G
to be the group of complex points of the algebraic group which gives the Zariski closure
of σ(π1(X)), and (ρ, V = Cn) the complexification of (σ,En

λ ). By [Weil II], the invariant
dimensions are determined. If σ is pure of weight zero, then G is actually semi-simple.

We make some simplifying assumptions. If G → GL(V ) has kernel H, the most we
can hope for is information about G/H. Hence, we assume V faithful. We also assume
that G is connected and semi-simple except where the contrary is explicitly stated. Our
main results are the following:

Theorem 1. For any faithful finite dimensional represntation V of a connected semi-
simple Lie group G, Lie(G) is uniquely determined by dimension data.

Theorem 2. If V is irreducible, (G, V ) is uniquely determined up to abstract isomorphism
by dimension data.

Theorem 3. In the general connected semi-simple case, (G, V ) is not determined up to
isomorphism by dimension data.

There are several possible notions of dimension data. For instance, we might mean
the data associating the dimension of WG to each represntation GL(V ) → GL(W ). Or
we might mean the data associating

dim
(
HomSn

(
U, V ⊗n

)G)
to every n ∈ N and every representation U of the symmetric group Sn (which acts on
V ⊗n by permuting factors.) The latter formulation has the advantage that it makes sense
even if we don’t know dim(V ). We will see that dim(V ) can actually be deduced from{

dim
(
(V ⊗n)G

)}
n
, so by a standard Young tableau argument, the data of the first kind

can be deduced from the data of the second kind. When we speak of dimension data, we
intend either of these two equivalent notions.

§1. Sato-Tate Measure
let G be a connected complex reductive Lie group and ρ : G → GL(V ) a faithful

representation. Let K be a maximal compact subgroup of G and T a maximal torus of K.
We choose a basis of V so that

ρ(T ) ⊆ ρ(K) ⊂ ρ(G)
∩ ∩ ∩

(1)n ⊂ U(n) ⊂ GL(C) = GL(V ).
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Let X\ denote the space of conjugacy classes in X. Then we have the commutative diagram

K
ρ−→ U(n)

pK ↓ ↓ pU

K\ ρ\

−→ U(n)\

πT ↑ ↑ πU

T
ρT−→ U(1)n

,

where K\ ∼= T/W , U(n)\ ∼= U(1)n/Sn, and the maps πt, πU are the quotient maps. Let
dk denote Haar measure on K. Given a representation σ : GL(V ) → GL(W ),

dim(WG) = dim(WK) =
∫

K

tr(σρ(x))dk =
∫

U(n)

tr(σ)ρ∗dk.

By the Peter-Weyl theorem, the values of these integrals determine ρ∗dk and hence

pU∗ρ∗dk = ρ\
∗pK∗dk.

(If we restrict to tensor power representations W = V ⊗k, by the Weierstrass approximation
theorem tr∗ρ∗dk is determined, so d = sup(supp(tr∗ρ∗dk) is determined as well; see the
introductory remarks on dimension data.) As supp(pK∗dk) = K\ = T/W ,

Y = supp(π∗Uρ\
∗pK∗dk) = π−1

U (ρ\(T/W )) =
⋃

σ∈Sn

ρT (T )σ.

Now ρT (T ) is irreducible, so it is one of the irreducible components of Y . These components
differ only by renumbering the coordinates of U(1)n. We choose one such component and
assume it is ρT (T ). As ρ is faithful, we can identify T with ρT (T ).

What we would like to know is the Sato-Tate measure pK∗dk. From this we could
immediately deduce

π∗T pK∗dk =

(∏
α∈Φ

(1− α(t))

)
dt = FΦ(t)dt,

by the Weyl integration formula. Here Φ denotes the roots of G, the non-zero characters
in the restriction to T of the adjoint representation of K. By unique factorization of
polynomials, this would give us Φ. Unfortunately, ρ\ is not always injective, even on the
complement of a set of measure zero. The set of weights of V may have symmetries outside
the Weyl group W , in which case ρ\ is generically many-one. This reflects the fact that
symmetries are preserved by the operations of linear algebra, and that consequently, our
dimension data bears only on a subcategory of Rep(K). This is the central difficulty in
proving theorems 1 and 2, and it makes possible the counter-examples of theorem 3.

What we do know is the measure

1
|W |

π∗UπU∗ρT∗FΦ(t)dt =
1
|W |

π∗Uρ\
∗πT∗FΦ(t)dt = π∗Uρ\

∗pK∗dk.
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Restricting to T = ρT (T ), we obtain

∑
σ∈StabSnT

σ∗FP hi(t)dt. (1)

We would like to understand which of the elements of Sn, acting on U(1)n, fix T . A
subtorus is determined by the characters which vanish on it, so we want to know which
elements of Sn fix ker(X(U(1)n) → X(T )) ⊂ Zn. If χ1, . . . , χn are the characters on T
obtained by projection onto the U(1) factors, then σ lies in StabSn

T if and only if

∑
i

aiχi = 0 ⇐⇒
∑

i

aiχσ(i) = 0.

In other words, the necessary and sufficient condition on σ is that, viewing χi as elements
of X(T )⊗Q, there exists g ∈ GL(X(T )⊗Q such that g(χi) = χσ(i). The condition that
σ act trivially on T is that g = 1. Therefore, if N is the order of the subgroup of §n which
acts trivially on T , equation (1) becomes

N
∑
γ∈Γ)

γ∗FP hi(t)dt, (2)

where ρT is viewed as an element of the group ring Z[X(T ) ⊗ Q], and Γ is the set of
automorphisms of X(T )⊗Q which preserves it. Thus dimension data determines ρT , i.e.
the set of weights of ρ with multiplicity, and the averaged Weyl product

mG =
1

N |Γ| |W |
∑
γ∈Γ

σ(FP hi) ∈ Q[X(T )].

(Note that this expression is normalized so that the [0] coefficient is 1.) On the other
hand, if (ρ′, V ′) is any representation of K such that Γ′ ⊃ Γ, then dim(V ′K) equals the [0]
coefficient in

1
|W |

FP hiρ′T

, or equivalently, by symmetry, the [0] coefficient in mGρ′T . Therefore, (mG, ρT ) determines
the dimension data.

Proposition.. If G is a connected torus and (ρ, V ) a faithful representation, dimension
data determines (ρ, V ) uniquely.

Proof. As T = G, ρT = ρ We have seen that dimension data determines ρT .
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§2. A Root Argument
Let g be a complex semi-simple Lie algebra with Cartan subalgebra t. Let X be

the Q-vector space spanned by the roots of (g, t). We can view a finite dimensional
representation V of g as a finite set S of elements s ∈ X taken with multiplicity m(s). We
define an inner product on X∗ by setting

(x∗1, x
∗
2) =

∑
s∈S

m(s)x∗1(s)x
∗
2(s).

We denote the dual inner product on X, 〈 , 〉. As long as V is faithful, S spans X and ( , ),
and hence 〈 , 〉is positive definite. As S is Weyl-invariant, so is 〈 , 〉. Thus 〈 , 〉restricts to
a non-zero multiple of the Killing form on every simple factor of X.

The main theorem in this section is the following:

Theorem 1’.. Let X be a Q-vector space with a positive definite inner product 〈 , 〉. Let
Φ be a reduced root system in X with Weyl group W . Let ZΦ ⊂ X denote the root lattice,
and

ΛΦ =
{

λ ∈ X

∣∣∣∣ 2〈λ, α〉
〈α, α〉

∈ Z ∀α ∈ Φ
}

the weight lattice. If Λ is a lattice such that ZΦ ⊆ Λ ⊆ ΛΦ, and Γ is a group of isometries
of X such that W ⊆ Γ ⊆ Aut(Λ), then Φ is determined as an abstract root system by the
1-dimensional subspace QF ⊂ Q[X], where

F =
∑
γ∈Γ

γ(FΦ), FΦ =
∏
α∈Φ

(1− [α]).

We observe that letting Φ be the root system of g and X = QΦ endowed with the
inner product described above, Theorem 1’ implies Theorem 1. The rest of this section is
devoted to a proof of Theorem 1’. Root systems below will not necessarily be reduced.

Definition.. A short root in a root system Φ is any root which is short in its irreducible
component of Φ. We denote the set of short roots Φ◦.

Lemma 1. The set Φ◦ is a root system.
Proof. Every reflection σ ∈ W (Φ) fixes all but one component, Ψ of Φ. If α /∈ Ψ,
σ(α) = α. If α ∈ Ψ, ‖σ(α)‖2 = ‖α‖2, so σ(α) is short in Ψ and hence in Φ.

Lemma 2. if Φ is root system, Λ a lattice such that ZΦ ⊆ Λ ⊆ ΛΦ, and Γ is a group
of isometries such that W (Φ) ⊆ Γ ⊆ Aut(Λ), then ΓΦ is a (not necessarily reduced) root
system.
Proof. As Γ is contained in a compact (orthogonal) group and fixes a lattice, it is finite.
Hence ΓΦ is finite. As Φ is a root system, it does not contin zero and it is closed under
multiplication by −1. These properties are obviously inherited by ΓΦ. If γα ∈ ΓΦ, the
reflection in γα⊥ is

Sγα = γSαγ−1.
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As Γ ⊇ W (Φ), γ and Sα belong to Γ, so Sγα ∈ Γ fixes ΓΦ. Finally, if γ1α1, γ2α2 ∈ ΓΦ,
then

2〈γ1α1, γ2α2〉
‖γ1α1‖2

=
2〈α1, γ

−1
1 γ2α2〉

‖α1‖2
∈ Z,

since γ−1
1 γ2α2 ∈ ΓΦ ⊂ Λ ⊆ ΛΦ.

Lemma 3. To prove Theorem 1’, it suffices to prove it in the case that X is irreducible
as Γ-module.

Proof. Let Xi be a Γ-submodule of X, Λi the projection of Λ on Xi, and Γi = im(Γ →
GL(Xi)). As Γ ⊇ W (Φ), irreducible Γ-modules are (orthogonal) direct sums of irreducible
W (Φ)-modules. The irreducible W (Φ)-modules are spans of the irrudible components of
the root system Φ, so each Xi = QΦi for some subroot systems Φi, with Φ =

∑
i Φi.

Obviously ΓiΛi = Λi, and ΛΦ =
⊕

λΦi
implies Φi ⊆ Λi ⊆ ΛΦi

. We project Q[X] onto
Q[Xi] by mapping [x] 7→ 0 ∀x ∈ X\Xi. the image of γ(FΦ) is

|W (Φ)|
|W (Φi)|γ(FΦi)|

γ(FΦi),

so the image of F is

Fi =
W (Φ)
W (Φi)

∑
γ∈Γ

γ(FΦi).

All of these are determined by Γ and F . The Lie algebra of Φ is just the direct sum of the
Lie algebras of the Φi, so to determine the former, it suffices to determine the latter.

Henceforth, X will always be assumed Γ-irreducible. This does not, of course, imply
that Φ is irreducible as a root system.

Proposition.. Under the hypotheses of Theorem 1’, F determines (ΓΦ)◦.

Proof. As

FΦ =

[ ∏
α∈Φ+

([
−α

2

]
−
[α
2

])][ ∏
α∈Φ+

([α
2

]
−
[
−α

2

])]

=

[∑
w∈W

sgn(w)[−wδ]

][∑
w∈W

sgn(w)[wδ]

]

=
∑

w′∈W

w′

(∑
w∈W

sgn(w)[δ − wδ]

)
,

we have

F =
∑
γ∈Γ

γ(FΦ) = |W |
∑
γ∈Γ

γ

(∑
w∈W

sgn(w)[δ − wδ]

)
.

Now,
‖δ − wδ‖2 = 2‖δ‖2 − 2〈δ, wδ〉 = 〈2δ, δ − wδ〉,
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and
δ − wδ =

1
2

∑
α∈Φ+

α− 1
2

∑
α∈Φ+

wα =
∑

α∈Φ+∩wΦ−

,

so
‖δ − wδ‖2 =

∑
Φ+∩wΦ−

2〈δ, α〉.

If α =
∑

riαi, where the αi are simple roots,

2〈δ, α〉 =
∑

i

ri‖αi‖2.

Thus, if w 6= 1,
‖δ − wδ‖2 ≥ minα∈Φ‖α‖2,

with equality if and only if W = Sα, and α is a short simple root. As all occurrences of
terms of length minα∈Φ‖α‖2 in FΦ (and therefore in F ) have sign sgn(Sα) = −1, there can
be no cancellation. Therefore the terms of minimal non-zero length in F are precisely the
[Γα], where γ ∈ Γ, and α is a root of minimal length in Φ. All short roots in ΓΦ are of
this form since Γα spans X.

Lemma 4. Given a root system Ψ = Ψ◦ and a group Γ such that W (Ψ) ⊆ Γ, there exists
a unique root system Ψ∗ ⊇ Ψ such that every root system Ω with Ω◦ = Ψ and W (Ω) ⊆ Γ
is contained in Ψ∗.
Proof. Consider the set S of root systems Ω in X with Ω◦ = Ψ and W (Ψ) ⊆ Γ. Since
Ψ is an element, S is non-empty. We know (for instance by classification) that the short
roots always generate the whole root lattice, and this, together with the fact that no root
can be more than twice as long as the short roots, means that Ω is contained in a fixed
finite set. Thus S is finite, and it suffices to prove that for any Ω1,Ω2 ∈ S there exists a
root system Ω3 ∈ S containing both. We let W12 denote the subgroup of Γ generated by
W (Ω1) and W (Ω2). We set Ω3 = W12(Ω1 ∪ Ω2). Given γ ∈ W12, α ∈ Ω1 ∪ Ω2,

Sγα = γ§αγ−1 ∈ W12.

The root lattices generated by Ψ, Ω1, and Ω2 all coincide, and W12 preserves this lattice.
Therefore, Ω3 satisfies the integrality condition for root systems. The Weyl group of Ω3 is
generated by the reflection Sγα, so it is just W12 ⊆ Γ.

Let Ψ = ((ΓΦ)◦)∗. We have just seen that under the hypotheses of Theorem 1’, we can
construct Ψ. Moreover, Ψ ⊇ Φ, and W (Ψ) ⊆ Γ. As Γ is the unique maximal element in
the set S of root systems with Ω◦ = ΓΦ and W (Ω) ⊆ Γ, it must be stable by Γ. Therefore,
Γ ⊆ Aut(Ψ), and Ψ is isotypic. We will write it mΨ̄.

If Ψ̄ is of type Br, Cr, or Dr, it embeds canonically in Ψ̄′ = BCr, and we replace Ψ
in these cases by mBCr. Note that in the case that Ψ̄ = Dr, W (Ψ̄′) is larger than W (Ψ̄),
so we can no longer assume that Γ ⊇ W (Ψ). In the case r = 2, we cannot distinguish the
root systems B2 and C2, and we choose arbitrarily, one of the two canonical embeddings
of Ψ into mBC2. In any case, we can construct from the data of Theorem 1’ an isotypic
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root system Ψ = mΨ̄ which contains the root system Φ, and Φ̄ can be taken to be of type
A, BC, E, F , or G. Moreover, the ranks of Φ and Ψ coincide. Each factor Ψ̄ contains a
(not necessarily irreducible) factor of Φ, which must have rank equal to the rank of Ψ̄.

Proposition.. The following list gives for each simple Ψ a complete list of reduced root
subsystems Φ of equal rank:

Ar : Ar.
BCr :

∑
Bbi +

∑
Cci +

∑
Ddi (

∑
bi +

∑
ci +

∑
di = r.)

E6 : E6,A5 + A1,3A2.
E7 : E7,D6 + A1,A5 + A2,2A3 + A1,A7,D4 + 3A1,7A1.
E8 : E8,A8,D8,A7 + A1,A5 + A2 + A1,2A4,4A2,A2 + E6,A1 + E7, D6 + 2A1,D5 +

A3,2D4,D4 + 4A1,2A3 + 2A1,8A1.
F4 : F4,B4,D`

4,B3+As
1,A

`
3+As

1,C4,Ds
4, C3+A`

1,A
s
3+A`

1,B2,B2+2A`
1,B2+2As

1,4A`
1,

2A`
1 + 2As

1,4As
1.

G2 : G2,A`
2,A

s
2,A

`
1 + as

1.

Here the superscripts ` and s denote long and short embeddings respectively. Moreover,
we adopt the convention that D3 = A3, B1 = As

1, C1 = A`
1, and D2 = A1 + A1 with its

canonical embedding in BC2.
Proof. If Ψ = Ar, and ei− ej , ej − ek ∈ Φ, then by reflection ek − ei ∈ Φ. Therefore, the
relation i ∼ j if i = j or ei − ej ∈ Φ is an equivalence relation. If the equivalence classes
have order r1, . . . , rk, then Φ =

∑
i Ari

, and

rank(Φ) =
∑

(ri − 1) = r + 1− k < r = rank(Ψ)

unless k = 1. In this case, Φ = Ψ.
If Ψ = BCr, we define i ∼ j if and only if i = j, ei − ej ∈ Φ, or ei + ej ∈ Φ. This is

an equivalence relation. Let S be an equivalence class for this relation. Then the roots

{ei, 2ei,±ei ± ej |i, j ∈ S}

form a root system ΦS which is a factor of Φ. Since rank(Φ) = r, rank(ΦS) = |S|. Changing
the signs and indices of ei if necessary, we may assume that e1− e2, . . . , e|S|−1− e|S| ∈ ΦS .
Therefore ΦS contains A|S|−1. As rank(ΦS) = |S|, some ei, 2ei or ei + ej must belong to
ΦS . In the first case ΦS = B|S|, in the second, ΦS = C|S|, and in the third, ΦS = D|S|. If
Ψ = Er, all the roots of Ψ have equal length. Thus, α, β, α + β ∈ Ψ implies

‖α‖2 = ‖β‖2 = ‖α + β‖2; 〈α, β〉 =
−‖α‖2

2
.

Therefore if α, β ∈ Φ,

−Sα(β) = β − 2〈α, β〉
‖α‖2

= α + β ∈ Φ.

Hence, root subsystems of Ψ correspond to Lie subalgebras. The entries listed above are
taken directly from [D], Table 10.
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The root system F4 has no angles of π
3 , so the only simple root subsystems it has are

B2 = C2 , B3, C3, B4, C4, F4, which have unique embeddings (up to conjugation), and
A1, D3, D4, which have two embedding each, one long and one short. Suppose Φ cannot
be realized as a subsystem of B4 ⊂ F4. This means that Φ contains two short roots α and
β such that α 6= ±β and α and β are non-orthogonal. In other words Φ has a factor of
C3, C4, D3, or D4. We see that C⊥

3 , Ds⊥

3 , and D`⊥

3 contain long, long, and short vectors
in Φ, respectively. Thus,

Φ ∈ {F4, C4, D
s
4, D

`
4, C3 + A`

1, D
s
3 + A`

1, D
`
3 + as

1}.

Suppose, on the other hand that Φ ⊆ B4. We know that B4 ⊂ BC4, so Φ is a subset
of BC4 without any roots of longest length. (Note that BC4 has roots of three different
lengths, so Φ may still contain “long” roots. We have already enumerated the subsystems
of BC4. The ones that lie in B4 are

{B4, D
`
4, B3 + As

1, D
e
3ll + as

1, 2B2, B2 + D2, 2D2, B2 + 2As
1, D2 + 2As

1, 4As
1}.

In this context, D2 = 2A`
1. This confirms the list given above.

The case Ψ = G2 is trivial.
Given a pair of root systems Ψ1,Ψ2, we write

FΨ1,Ψ2 =
∑

γ∈Aut(Ψ2)

γ(FΨ1).

Writing our original root system Φ =
∑m

i=1 Φi, where Φi ⊆ Ψ̄, the vector space

Q
∑

γ∈Aut(Ψ)

γ(F ) = QFΦ,Ψ = Q
∑

σ∈Sm

σ

(
m⊗

i=1

(
FΦi,Ψ̄

))

can be computed from the data of Theorem 1’. We write X =
⊕m

i=1 X̄, where X̄ = QΨ̄,
and view FΦi,Ψ̄ as an element of the ith copy of Q[X̄] in Q[X] =

⊗m
i=1 Q[X̄]; the group

Sm acts by permuting the factors of Q[X]. If all the possible equal-rank root subsystems
Ω ⊆ Ψ̄ have linearly independent FΩ,Ψ̄, then QFΦ,Ψ determines the multiplicity with
which each factor occurs as Φi. Indeed, setting Z = Span(FΩ,Ψ̄), FΦ,Ψ is a monomial in
the polynomial algebra

Symm(Z) ⊂ Symm(Q[X̄]) ⊂ Q[X̄]⊗m = Q[X],

and monomials with different m-tuples of exponents are linearly independent.

Lemma 5. For Ψ̄ ∈ {Ar, Er, F4, G2}, the different FΩ,Ψ0 are linearly independent.
Proof. The case Ψ̄ = An is trivial. For E, F , and G, we enumerate the values of ‖λ‖2,
where λ is the longest vector appearing in FΩ,Ψ̄.
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Ψ̄ Ω ‖λ‖2

E6 E6 312
E6 A5 + A1 72
E6 3A2 24

E7 E7 789
E7 D6 + A1 222
E7 A7 168
E7 A5 + A2 78
E7 D4 + 3A1 62
E7 2A3 + A1 42
E7 7A1 14

E8 E8 2480
E8 E7 + A1 800
E8 D8 560
E8 E6 + A2 320
E8 A8 240
E8 D6 + 2A1 224
E8 A7 + A1 170
E8 D5 + A3 140
E8 2D4 112
E8 A5 + A2 + A1 80
E8 2A4 80
E8 D4 + 4A1 64
E8 2A3 + 2A1 44
E8 4A2 32
E8 8A1 16

F4 F4 156
F4 C4 120
F4 B4 84
F4 C3 + A`

1 58
F4 D`

4 56
F4 B3 + As

1 36
F4 Ds

4 28
F4 D`

3 + As
1 21

F4 2B2 20
F4 B2 + 2A`

1 14
F4 Ds

3 + A`
1 12

F4 B2 + 2As
1 12

F4 4A`
1 8

F4 2A`
1 + 2As

1 6
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F4 4As
1 4

G2 G2 28
G2 A`

2 12
G2 As

2 4
G2 A`

1 + As
1 4

By considering the non-zero term with longest maximal vector, we deduce the theorem
for E6 and E7 immediately from this table. Let mΨ̄(Ω, `) be the sum of the coefficents of
all the terms with ‖ ‖2 = ` in FΩ,Φ̄. Let

MΨ̄(Ω1,Ω2, `1, `2) =
mΨ̄(Ω1, `1)mΨ̄(Ω2, `1)
mΨ̄(Ω1, `2)mΨ̄(Ω2, `2)

.

One checks that
ME8(A5 + A2 + A1, 2A4, 80, 76) 6= 1,

MF4(D
s
3 + A`

1, B2 + 2As
2, 12, 10) 6= 1,

and
MG2(A

s
2, A

s
1 + A`

1, 4, 3) 6= 1,

which takes care of the remaining cases.
As we shall see in §4, the sets {FΦi,BCn

} are not generally linearly independent for
large n. We have, however, the following:

Lemma 6. If Ψ = BCn, Φ =
∑

biBi +
∑

ciCi +
∑

diDi, λ = a1e1 + . . . + anen ∈ ZΨ,
and fΦ,Ψ(λ) denotes the ratio of the [λ] coefficent in FΦ,Ψ to the [0] coefficient, then

fΦ,Ψ(ke1) =

{
1
2n

∑
i≥ k

2 +1 di − 1
n

∑
i≥ k

2
ci if k > 0 even,

−1
2n

∑
i> k

2
bi if k > 0 odd.

Proof. We know that

FΦ,Ψ ∈ Q
∑

γ∈Aut(Ψ)

γ

(∑
w∈W

sgn(w)[δ − wδ]

)
.

The orbit of ke1 under Aut(Ψ) is ±kei. The coefficent of [0] in
∑

w∈W sgn(w)[w − δw] is
1, so fΦ,Ψ(ke1) is the average over the {±kei} coefficients in

∑
w∈W sgn(w)[δ − wδ]. The

only way that δ−wδ can lie in Zei is if Φ+∩wΦ− is {ei}, {2ei}, or {ei + ej , ei− ej} (cases
B, C, and D respectively). In case Bk, w is a simple reflection and

w − wδ ∈ {ei, 3ei, . . . , (2k − 1)ei},

each value occurring once. In case Ck, w is again a simple reflection, and

w − δw ∈ {2ei, 4ei, . . . , 2kei}.
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In case Dk, sgn(w) = 1, and

δ − wδ ∈ {2ei, 4ei, . . . , (2k − 2)ei}.

The lemma follows immediately.

Lemma 7. If Ψ = BCn, the element FΦ,Ψ determines Φ.
Proof. There is a unique element w ∈ W = W (Φ) such that wδ = −δ. Therefore, [2δ]
appears with sign sgn(w) in

∑
w∈W sgn(w)[δ − wδ]; it is, moreover, the unique element

of maximal length occurring with non-zero coefficient in fΦ,Ψ. Therefore, the elements of
maximal length in FΦ,Ψ constitute the orbit Aut(Ψ)(2δ). Choose a representative from
this orbit with non-negative coordinates (a1, a2, . . . , an). The number ni of i with ai = k
is

ni =


∑

i≥ k
2

ci +
∑

i> k
2

di k > 0 even,∑
i> k

2
bi k > 0 odd,∑

i di k = 0.

From this formula and the Lemma 6, this lemma follows immediately.
We now assemble the proof of Theorem 1’. We have already seen that we can construct

a Ψ = Ψ̄m which contains Φ. If Ψ̄ 6= BCr, Φ is determined by dimension data. If Ψ̄ = BCk,
Ψ is canonically embedded in BCmk. We can deduce FΦ,BCmk

from FΦ,Ψ by averaging
over Aut(BCmk). The theorem now follows from Lemma 7.

§3. A Weight Argument
In this section we assume that V is irreducible and use information about the weights

of V to find the abstract isomorphism class of (G, V ). The idea is that for irreducible
representations, (G, V ) is almost determined by the GL(X∗(T )⊗Q)-orbit of ρT , without
any root data at all.

Let G be a connected semi-simple Lie group with Lie algebra g. We write g =
⊕k

i=1 gi,
where the gi are simple. The character group X(T ) satisfies

ZΦ ⊆ X(T ) ⊆ ΛΦ;

indeed the complex connected Lie groups with algebra g are indexed by the sublattices
of ΛΦ which contain the root lattice. A finite dimensional representation, V , of g comes
from a representation of G if and only if the weights of V lie in X(T ); V is faithful as a
G-representation if and only if its weights generate X(T ). If (ρ, V ) is a finite dimensional
irreducible G-module, the corresponding g-module is also irreducible; indeed, the weights
of any g-submodule lie in X(T ). The irreducible representations of g are indexed by
dominant weights, so they are of the form

⊗k
i=1 Vi, where Vi are irreducible gi-modules. If

G admits any faithful, irreducible representation V , then, it must be a product of simple Lie
groups Gi, and V must be the exterior tensor product of faithful irreducible representations
Vi of Gi.

As in §2, we endow X = X(T ) ⊗Q with a positive definite inner product 〈 , 〉under
which the automorphism group Γ = Aut(ρT ) acts by isometries. As ρ is faithful and
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irreducible, the root lattice ZΦ is generated by the differences α−β, where α and β range
over the set of weights of V . We say that a lattice Λ in an inner product space factors
as Λ1 × Λ2 if Λ = Λ1 + Λ2 and Λ1 ⊥ Λ2. A lattice is irreducible if it does not have a
non-trivial factorization. It is well-known that with respect to a positive definite inner
product, factorization into irreducible lattice is unique.

Proposition. Every simple root lattice Φ except Br, r ≥ 2, is irreducible.

Proof. By §2, Lemma 1, the set of short roots, Φ◦, forms a root system. Except when
Φ = Br, this root system is irreducible. It is known that the shortest non-zero vectors in a
simple root lattice is the set of short roots. If Λ = ZΦ = ZΦ◦ splits as Λ1×Λ2, every short
root α must lie in Λ1 ∪ Λ2, because the projections of α onto the two factors must have
length ≤ ‖α‖. But non-orthogonal pairs of roots must lie in the same orthogonal factor,
so if Φ◦ is irreducible, so is ZΦ.

As in §2, we may assume, without loss of generality, that X(T ) ⊗ Q is irreducible
as Γ-module. By the unique factorization property for lattices, we may therefore assume
that ZΦ is isotypical, i.e., that ZΦ = Λ×k, where Λ is irreducible. Moreover, Γ must act
transitively on the factors Λ, so ρT =

⊗k
i=1 ρTi

, where the ρTi
are equal. (This, does not,

unfortunately, mean that the ρi are equal. For instance, the standard (2n-dimensional)
representations of Cn and Dn are isomorphic as representations of macimal tori U(1)n.)

Lemma. The lattices ZΦ(Ai), ZΦ(Ci), ZΦ(Di), ZΦ(Ei), ZΦ(F4), and ZΦ(G2) satisfy
only the following similarity relations: ZΦ(A2) ∼ ZΦ(G2), ZΦ(A3) = ZΦ(D3) ∼ ZΦ(C3),
ZΦ(C4) ∼ ZΦ(D4) ∼ ZΦ(F4), and ZΦ(Cn) ∼ ZΦ(Dn), n ≥ 5.

Proof. We list the number of vectors of shortest non-zero length in each lattice:

Type Dimension Number

A n n(n + 1)
C ∼ D n 2n(n− 1)
E 6 72
E 7 126
E 8 240
F 4 24
G 2 6

We see immediately that the only possible similarities are the ones enumerated above.
That they do, in fact, occur, is obvious except for the fact that ZΦ(F4) is similar to
ZΦ(C4) ∼ ZΦ(D4). To see this, we can view ZΦ(F4) as the ring of Hurwitz quaternions
Z
[
i, j, k, 1+i+j+k

2

]
, and multiply on the left by 1 + i.

We can therefore, break down the problem into the following seven cases for Φ:

1)
∑

i≥1 biBi (B1 = A1)
2) aA2 + gG2

3) aA3 + cC3

4) aAn (n ≥ 4)
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5) cC4 + dD4 + fF4

6) cCn + dDn (n ≥ 5)
7) eEn

By Theorem 1, we know the Lie algebra of G, so we know exactly what the constants
a, b, c, etc., are. In fact, having come this far, it is easy to give a self-contained proof
that Lie algebra is well-determined. For example, in cases 4 and 7 it is obviously so, and
cases 2, 3, and 6 follow immediately from an examination of the length of δ (which we
know from mG.) Cases 1 and 5 are slightly more involved, but an examination of 2δ as an
element of the root lattice is sufficient.

In any event, we know the Lie algebra of each factor Gi , and for each factor we know
the restriction of the representation ρi to Ti. More precisely, we know ρTi

as an element of
the group algebra on the vector space spanned by the root lattice of Gi. This determines
ρTi as a representation of Lie(G), and hence as a representation ρG̃ of the simply connected
form of Lie(G). Then G is determined uniquely by the criterion that ρ be faithful on G;
it is the quotient of G̃ by the (finite) kernel of ρG̃.

§4. Counter-examples
Let Zn = Q[Zn], Wn = (Z/2Z)n×Sn. For m ≤ n, the injection

Zm ↪→ Zn : (a1, . . . , am) 7→ (a1, . . . , am, 0, . . . , 0)

extends to an injection im,n : Zm → Zn. We define φm,n : Zm → Zn:

φm,n(z) =
|Wm|
|Wn|

∑
w∈Wn

w(im,n(z)).

Evidently φm,nφk,m = φk,n for k ≤ m ≤ n. The image of φm,n lies in Yn = ZWn
n , so we

can form the direct limit under φm,n:

Y = lim
→
n

Yn.

We define maps jn : Zn → Y by composing in,p with the injection Yp ⊂ Y for any p ≥ n.
The maps φm,n are not ring homomorphisms, so a priori Y is only a vector space. It is
endowed with an algebra structure as follows: The canonical isomorphism Zm⊕Zn→̃Zm+n

gives a canonical isomorphism M : Zm⊗Zn→̃Zm+n. Given two elements of Y represented
by y ∈ Ym and y′ ∈ Yn, we define

yy′ = jm+n(M(y ⊗ y′)).

This product is independent of the choice of m and n and is commutative and associative.

Lemma. With respect to this product, Y ∼= Q[x1, x2, . . .].
Proof. Each Zn is generated by monomials [e1]a1 · · · [en]an . Therefore, Y has basis

e(a1, a2, . . . an) = j ([e1]a1 · · · [en]an) ,
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ndexed by n and integers a1 ≥ a2 ≥ · · · ≥ an > 0. We identify this element with

n∏
i=1

xai

. We verify that

e(a1, . . . , am)e(b1, . . . , bn)

=
1

|Wp||Wq||Wr|
∑

wp∈Wp

wp

 ∑
wq∈Wq

wq ([e1]a1 · · · [em]am)

( ∑
wr∈Wr

wr

(
[em+1]b1 · · · [em+n]bn

))
=

1
|Wp|

∑
wp∈Wp

wp

(
[e1]a1 · · · [em]am [em+1]b1 · · · [em+n]bn

)
= e(a1, . . . , am, b1, . . . , bn),

where p ≥ q, r, q ≥ m, r ≥ n. The lemma follows immediately.

For Φ =
∑

biBi +
∑

ciCi +
∑

diDi, Φ admits a canonical embedding in Zn, n =
rank(Φ). Therefore, we can define F (Φ) = jn(FΦ) ∈ Y , where FΦ, as usual, denotes the
Weyl product

∏
α∈Φ(1− [α]). By construction, F (Φ1 + Φ2) = F (Φ1)F (Φ2).

Lemma. There exist integers r and k and distinct root systems Φ1, . . . ,Φk of rank r such
that F (Φ1), · · · , F (Φk) are linearly dependent in Y .
Proof. We recall that

FΦ =
∑

w1∈W (Φ)

w1

 ∑
w2∈W (Φ)

sgn(w2)[δ − wδ]

 .

For root systems Bn, Cn, and Dn, δ is
(

1
2 , 3

2 , . . . , 2n−1
2

)
, (1, 2, . . . , n), and (0, 1, . . . , n− 1)

respectively, so every coordinate in every n-tuple w1δ − w1w2δ is an integer between −2n
and 2n. Therefore,

F (Φ(Bn)), F (Φ(Cn)), F (Φ(Dn)) ∈ Q[x1, . . . , x2n].

Hence,

F (Φ(Bk))
F (Φ(A1))k

,
F (Φ(Ck))
F (Φ(A1))k

,
F (Φ(Dk))
F (Φ(A1))k

∈ Q
[
x1, . . . , x2n,

1
F (Φ(A1))

]
, (1)

for 3 ≤ k ≤ n. Setting n = 8, we obtain 18 elements in a ring with 17 generators.
Therefore, the expressions in equation (1) satisfy the a polynomial equation, which can be
taken to have rational coefficients. Equivalently, the expressions

∏
i

(
F (Φ(Bi))
F (Φ(A1))i

)bi ∏
j

(
F (Φ(Cj))
F (Φ(A1))j

)cj ∏
k

(
F (Φ(Dk))
F (Φ(A1))k

)dk

14



are linearly dependent. Multiplying through by a sufficiently high power, F (Φ(A1))r, to
clear denominators, we see that expressions

F (Φ(aA1 +
∑

i

biBi +
∑

j

cjCj +
∑

k

dkDk))

are linearly dependent. Moreover, all are of the form F (Φ), for Φ a root system of rank r.

Given such a linear dependence between F (Φ(g1)), . . . , F (Φ(gk)), for rank r Lie al-
gebras gi, we construct two representations, V and V ′, of g =

⊕k
i=1 gi such that the

pairs (g, V ) and (g, V ′) have the same dimension data but are not abstractly isomorphic.
More precisely, we construct elements v1, . . . , vk in Zr, such that for each i, j there exists
a representation Vi,j of gi with ρT = vj . Then

V =
⊕

σ∈Ak

V1σ(1) ⊗ · · · ⊗ Vkσ(k),

and
V ′ =

⊕
σ∈Sk\Ak

V1σ(1) ⊗ · · · ⊗ Vkσ(k).

Lemma. We can choose vi and Vij as above so that the subgroup of GL(Qrk) which
preserves ⊕

σ∈Ak

V1σ(1) ⊗ · · · ⊗ Vkσ(k) ∈ Z
[
Zrk

]
is W k

r ×Ak.
Proof. Given any semi-simple Lie algebra g with weight lattice X = ΛΦ(g) and Weyl
group W , every element ρ ∈ Z[X]W corresponds to a virtual representation of g. The
condition that ρ correspond to an effective representation can be expressed by saying that
the coefficient of every vector x ∈ X must be larger than some linear combination of
the coefficients of vectors of greater length than x. In particular, if we start with some
value of x and declare that its coefficient is 1 and that no longer vector has non-zero
coefficient, we can then proceed inward, making each coefficient sufficiently large as we
go. Of course, in choosing the vi we have to satisfy effectivity conditions for many Lie
algebras simultaneously, but we can always satisfy a finite number of conditions of the
form x > Ci. If we choose v1 with longest vector (1, 2, . . . , r), v2 with longest vector
(r + 1, r + 2, . . . , 2r), and so on, we see that the orbit of v1 ⊗ . . . ⊗ vk under Wkr/W k

r

consists of linearly independent elements of Z[Zkr]. Indeed, each σ(v1⊗ . . .⊗vk) possesses
a σ([1, 2, . . . , kr]) term, which no other τ(v1 ⊗ . . . ⊗ vk) can have. We conclude that the
trace of v1 ⊗ . . .⊗ vk under Ak is invariant by W r

k×Ak and no more.
We can now prove Theorem 3. We have constructed representations V and V ′ of g.

The pairs (g, V ) and (g, V ′) cannot be isomorphic because the set of automorphisms of
the weight lattice, X, of g which take V to V ′ is

S = W r
k×Sk \W r

k×Ak;
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no automorphism of g can act on X by any element of S, because the gi are pairwise
non-isomorphic. On the other hand, if σ ∈ S,

σ(ρT ) = ρ′T ,

where ρT and ρ′T are the elements of Z[X] corresponding to V and V ′ respectively. On
the other hand,

σ(mG) = σ

 1
|W k

r ×Ak|
∑

γ∈W k
r ×Ak

γ(FΦ)

 =

σ

 1
|W k

r ×Ak|
∑

γ∈W k
r ×Ak

γ (FΦ1 ⊗ · · · ⊗ FΦk
)

 =

1
|W k

r ×Ak|
∑

γ∈W k
r ×Ak

γ (FΦ1 ⊗ · · · ⊗ FΦk
) = mG = m′

G,

since
FΦ1 ∧ · · · ∧ FΦk

= 0.

Therefore,
σ(ρT ,mG) = (ρ′T ,m′

G),

so by §1, dimension data is the same for V and V ′.

§5. Sharper Results

Proposition. Our main theorems are effective; that is, a finite amount of dimension
data suffices to determine the Lie(G) (resp. (G, V )) under the hypotheses of Theorem 1
(resp. 2).
Proof. First we determine the order w of the group of scalar matrices in ρ(G); it is the
smallest positive integer k for which dim

((
V ⊗k

)G)
> 0. Replacing V by W = V ⊗w, we

may assume G
ρ−→ GL(W ). We have the exterior square map SL(W ) → Sp(W ∧W ). It

is a classical result [W] that

dim
(((

C2n
)⊗2m

)Sp(2n)
)

=
(2m)!
2mm!

, ∀m ≤ n.

Therefore,

dim
((

(W ∧W )⊗2m
)G) ≥ dim

((
(W ∧W )⊗2m

)Sp(W∧W )
)

> mm/2,

if

m ≤ dim(W ∧W )
2

≤ dim(V )2 − dim(V )
4

. (1)
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On the other hand,

dim
((

(W ∧W )⊗2m
)G) ≤ dim

(
(W ∧W )⊗2m

)
< dim(V )2mw.

For m > dim(V )4w, then,

dim
((

(W ∧W )⊗2m
)G)

< mm/2. (2)

As soon as we reach an m for which equation (2) holds, we know that equation (1) cannot
hold, which gives us an upper bound on dim(V ). This reduces the possibilites to a finite
set, which by our previous results we know we can distinguish.

Proposition. Theorem 1 holds under the weaker hypothesis that G is semi-simple and
has a finite set of connected components.
Proof. As in §1, we let K denote the compact real form of G and consider ρ∗dk. As ρ
is faithful, some neighborhood of the identity in GL(V ) is disjoint from ρ(K \K◦), where
K◦ denotes the identity component of K. Therefore, the components of supp(ρ\

∗pK∗dk)
which pass through the identity are precisely the components of the support of

µ = ρ\
∗pK◦

∗
(dk|K◦)

Moreover, since µ is analytic (in fact polynomial), it is determined by its germ at the
identity matrix. This reduces the problem to that of (K◦, ρ|K◦), which is treated in
Theorem 1.
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