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Abstract

Let ϕ be a Drinfeld A-module of arbitrary rank and generic characteristic
over a finitely generated field K. If the endomorphism ring of ϕ over an
algebraic closure of K is equal to A, we prove that the image of the adelic
Galois representation associated to ϕ is open.
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0 Introduction

In [22] Serre proved that the image of the adelic representation associated to an
elliptic curve over a number field without potential complex multiplication is open.
The aim of this paper is to prove an analogue for Drinfeld modules of generic
characteristic.

Let Fq be a finite field with q elements and of characteristic p. Let F be a finitely
generated field of transcendence degree 1 over Fq. Let A be the ring of elements of
F which are regular outside a fixed place∞ of F . Let K be a finitely generated field
extension of F . Denote by Ksep the separable closure of K inside a fixed algebraic
closure K̄ and by GK := Gal(Ksep/K) the absolute Galois group of K. Let

ϕ : A→ K{τ}, a 7→ ϕa

be a Drinfeld A-module over K of rank r. Thus ϕ is of generic characteristic. (For
the general theory of Drinfeld modules see for example Drinfeld [6], Deligne and
Husemöller [5], Hayes [10] or Goss [9, Chapter 4].) For any nonzero ideal a of A,
the a-torsion

ϕ[a] :=
⋂
a∈a

Ker(ϕa : Ga,K −→ Ga,K)

is a finite étale subgroup scheme of Ga,K . By Lang’s theorem, its geometric points

ϕ[a](Ksep) = {x ∈ Ksep | ∀a ∈ a : ϕa(x) = 0}

form a free A/a-module of rank r. For any nonzero prime p of A, the p-adic Tate
module

Tp(ϕ) := lim←−ϕ[pn](Ksep)
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of ϕ is a free Ap-module of rank r, where Ap denotes the completion of A at p. It
carries a continuous Galois representation

ρp : GK −→ AutAp

(
Tp(ϕ)

) ∼= GLr(Ap).

Denote by Af
F be the ring of finite adeles of F , and consider the adelic representation

ρad : GK −→
∏

p 6=∞
GLr(Ap) ⊂ GLr(Af

F ).

Our main result is the following

Theorem 0.1 (Adelic openness in generic characteristic) Let ϕ be a Drin-
feld A-module of rank r over a finitely generated field K of generic characteristic.
Assume that EndK̄(ϕ) = A. Then the image of the adelic representation

ρad : GK −→ GLr(Af
F )

is open.

When ϕ cannot be defined over a finite extension of F , this has already been proven
in [4, Theorem 3] by different methods.

We also generalize the result to Drinfeld modules with arbitrary endomorphism
ring EndK̄(ϕ). To obtain a convenient result, we assume that all endomorphisms
of ϕ are defined over K. Since the endomorphisms act on the Tate module and
commute with the Galois representation, the image of GK then lies in the centralizer
CentGLr(Ap)

(
EndK̄(ϕ)

)
. By exactly the same argument as in [15], Theorem 0.1

implies the following

Theorem 0.2 Let ϕ be a Drinfeld A-module of rank r over a finitely generated field
K of generic characteristic. Assume that EndK̄(ϕ) = EndK(ϕ). Then the image of
the homomorphism

ρad : GK −→
∏
p

CentGLr(Ap)

(
EndK̄(ϕ)

)

is open.

The methods used to establish these results are modeled to a great extent on the
methods developed by Serre [20], [22], [23], [24] to prove the corresponding results
for elliptic curves and certain abelian varieties.

The article has five parts and an appendix. In Section 1 we list some known results
on Drinfeld modules. Section 2 contains some preparatory results on matrix groups
and fibers of algebraic morphisms. In Section 3 we prove that the residual represen-
tation is surjective for almost all primes p of A in the case that EndK̄(ϕ) = A and
K is a finite extension of F . In Section 4 we prove Theorem 0.1 in the case that
K is a finite extension of F . Section 5 contains a specialization result and uses it
to prove the general case of Theorem 0.1. The Appendix contains two remarks on
the article by Gardeyn [8]. We point out two gaps in that paper and show how to
close them. The above notations and assumptions will remain in force throughout
the article.

The material in this article was part of the doctoral thesis of the second author [18].
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1 Known results on Drinfeld modules

The first stated result was proved independently by Taguchi [25], [26] and Tamagawa
[27].

Theorem 1.1 (Tate conjecture for Drinfeld modules) Let ϕ1 and ϕ2 be two
Drinfeld A-modules over K. Then for all primes p of A the natural map

HomK(ϕ1, ϕ2)⊗A Ap −→ HomAp[GK ]

(
Tp(ϕ1), Tp(ϕ2)

)

is an isomorphism.

The next result was proved by the first author ([15]).

Theorem 1.2 Assume that EndK̄(ϕ) = A. Then for any finite set Λ of primes of
A the image of the homomorphism

GK −→
∏

p∈Λ

GLr(Ap)

is open.

Furthermore, the reduction modulo p of ρp is the continuous Galois representation
on the module of p-torsion

ρ̄p : GK −→ Autκp

(
ϕ[p](Ksep)

) ∼= GLr(κp)

over the residue field κp := A/p. We call it the residual representation at p. In [16]
we proved:

Theorem 1.3 (Absolute irreducibility of the residual representation)
Assume that EndK(ϕ) = A. Then the residual representation

ρ̄p : GK −→ GLr(κp)

is absolutely irreducible for almost all primes p of A.

2 Preparatory results on algebraic groups

Proposition 2.1 Let n be any natural number, let k be a field with at least 4
elements, and let H be an additive subgroup of the matrix ring Mn(k). Assume that
H is invariant under conjugation by GLn(k). Then either H is contained in the
group of scalar matrices or H contains the group of matrices of trace 0.

Proof. Let T := Gn
m denote the full diagonal torus. We identify its character group

with Zn by means of the standard basis e1, . . . , en. The torus T acts on Mn(k) by
conjugation, and its weights are ei − ej for all i 6= j with multiplicity 1 and 0 with
multiplicity n. The weight space W0 of weight 0 is the group of diagonal matrices,
and the weight space Wi,j of weight ei− ej is the group of matrices with all entries
zero except, possibly, in the position (i, j). We thus can decompose Mn(k) as

Mn(k) = W0 ⊕
⊕

i,j

Wi,j .

Since the multiplicative group k∗ has at least 3 elements, any two distinct weights
of the form ei − ej remain distinct and different from 0 upon restriction to T (k).
Therefore H can be decomposed as

H = (H ∩W0)⊕
⊕

i,j

(H ∩Wi,j) .
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EachWi,j is a k-vector space of dimension 1, and T (k) acts on it through a surjective
homomorphism T (k) ³ k∗. Thus H ∩ Wi,j is either 0 or equal to Wi,j . The
permutation matrices in GLn(k) form a subgroup isomorphic to Sn which permutes
the weights ei − ej transitively. Since H is invariant under conjugation by GLn(k),
we find that either all H ∩Wi,j = 0 or all H ∩Wi,j = Wi,j . In other words, either
H is contained in the group of diagonal matrices or H contains the sum of all Wi,j ,
which is the group of matrices with diagonal 0.

If H is contained in the group of diagonal matrices, take any element h of H and
denote its diagonal entries by h1, . . . , hn. Let i 6= j and let u ∈ GLn(k) be the
matrix with entry 1 on the diagonal and in the position (i, j) and 0 elsewhere.
Then uhu−1 has entry hi − hj in the position (i, j). But this entry has to be 0
because uhu−1 ∈ H, and hence hi = hj . This can be done for any pair (i, j), which
shows that H is contained in the group of scalar matrices.

If H contains the group of matrices with diagonal 0, we consider the trace form
Mn(k)×Mn(k)→ k, (A,B) 7→ 〈A,B〉 := tr(AB), which is a perfect pairing invariant
under GLn(k). The orthogonal complement H⊥ of H is again a GLn(k)-invariant
subgroup, and since the inclusion for orthogonal complements is reversed, it is
contained in the group of diagonal matrices. The arguments in the other case
show that H⊥ is contained in the group of scalar matrices. Taking orthogonal
complements again, we deduce that H contains the matrices of trace 0, as desired.

q.e.d.

Proposition 2.2 Let n be any natural number, let k be a finite field, and let H be
a normal subgroup of GLn(k) containing a non scalar matrix. Assume that (n, |k|)
is different from (2, 2) and (2, 3). Then we have

SLn(k) ⊂ H.
Proof. For any non-scalar element h ∈ GLn(k), there exists an element g ∈ GLn(k)
such that the commutator ghg−1h−1 is again non-scalar. Thus H contains a non-
scalar element of SLn(k). In particular, we have n ≥ 2. Let Z denote the center
of SLn(k). Under the given assumptions SLn(k)/Z is simple by [12], and SLn(k)
is perfect by [3, Corollary 4.3] or [19]. Since H ∩ SLn(k) is a normal subgroup of
SLn(k) that is not contained in Z, it follows that H ∩ SLn(k) = SLn(k). q.e.d.

Proposition 2.3 Let k be a finite field, let n be any natural number, and let H be
a subgroup of GLn(k) of index c. Assume that (n, |k|) is different from (2, 2) and
(2, 3) and that c! < |PGLn(k)|. Then we have

SLn(k) ⊂ H.
Proof. Abbreviate G := GLn(k). Then the action of G on the set of right cosets
{gH| g ∈ G} corresponds to a homomorphism from G to the symmetric group
Sc on c elements. Thus its kernel N is a normal subgroup of G of index at most
c! and contained in H. The assumption implies that N has non-trivial image in
PGLn(k), and thus N contains a non scalar element. By Proposition 2.2, we find
that SLn(k) ⊂ N ⊂ H, as desired. q.e.d.

Proposition 2.4 Let X be an irreducible algebraic variety over a field L, let G be
an irreducible algebraic group over L, and let f : X −→ G be a dominant morphism.
Set d := dim(G) and e := dim(X). Then for all n ≥ d the fibers of the morphism

fn : Xn −→ G, (x1, . . . , xn) 7→ f(x1) · . . . · f(xn)

have dimension at most ne− d.
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Proof. Since f is dominant, there exists an open dense subset U of X such that
all fibers of f |U have dimension e − d. We first consider the restriction of fn to
Xi−1×U ×Xn−i for any 1 ≤ i ≤ n. We can write this restriction as the composite
of morphisms

Xi−1 × U ×Xn−i α−→ Xi−1 ×G×Xn−i β−→ Xi−1 ×G×Xn−i γ−→ G

where

α(x1, . . . , xn) = (x1, . . . , xi−1, f(xi), xi+1, . . . , xn),
β(x1, . . . , xi−1, g, xi+1, . . . , xn) =

(x1, . . . , xi−1, f(x1) . . . f(xi−1)gf(xi+1) . . . f(xn), xi+1, . . . , xn),
γ(x1, . . . , xi−1, g, xi+1, . . . , xn) = g.

Here α has fiber dimension e − d, the morphism β is an isomorphism, and γ
has fiber dimension (n − 1)e. Thus all fibers of fn|Xi×U×Xn−i−1 have dimension
≤ e−d+(n−1)e = ne−d. Varying i, we find that all fibers of fn|Xnr(XrU)n have
dimension ≤ ne − d. On the other hand, all fibers of fn|(XrU)n have dimension
≤ dim

(
(X r U)n

) ≤ n(e − 1). Since n ≥ d, this is also ≤ ne − d, and the result
follows. q.e.d.

Proposition 2.5 Let X and Y be schemes of finite type over SpecZ, and let f :
X −→ Y be a morphism of finite type. Then there exists a constant c, depending
only on X, Y and f , such that for any finite field k and any y ∈ Y (k), we have

|f−1(y)(k)| ≤ c|k|dim(f−1(y)).

Proof. We use noetherian induction on Y , the case Y = ∅ being vacuous. Other-
wise, since X and Y have only finitely many irreducible components, we can assume
that both are irreducible. After replacing them by open charts we may also assume
that they are affine. For points y /∈ f(X), there is nothing to prove; hence after
replacing Y by the Zariski closure of f(X) we can assume that f is dominant. Set
d := dim(X) and e := dim(Y ). Then after replacing X and Y by open subschemes
we may assume that all fibers of f have dimension d− e.
Let η denote the generic point of Y . By Noether normalization, there exists a finite
surjective morphism f−1(η) → Ad−e × η, say of degree n. This morphism extends
to a morphism f−1(V )→ Ad−e×V for an open neighborhood V of η in Y , which is
still finite of degree n if V is sufficiently small. Then for all y ∈ V (k), we find that

|f−1(y)(k)| ≤ n · |Ad−e(k)| = n|k|d−e,

and the proposition follows. q.e.d.

3 Surjectivity of the residual representation

Throughout this section, we assume that K is a finite extension of F and that
EndK̄(ϕ) = A. For any prime p of A, we let Γp denote the image of the residual
representation

ρ̄p : GK −→ GLr(κp).

We prove the following result.

Proposition 3.1 In the above situation, we have Γp = GLr(κp) for almost all
primes p of A.
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Sketch of the proof. The main ingredients are the absolute irreducibility of
the residual representation and the image of inertia at places above p. By standard
methods we can identify the image of the tame inertia group with the multiplicative
group of some finite extension kn of κp. This image is the group of κp-valued points
of a certain connected algebraic group, called the torus of inertia. The algebraic
subgroup of GLr,κp that is generated by Γp and the tori of inertia at all places
above p constitutes an algebraic group enveloping Γp in a natural way. It plays a
role analogous to that of the Zariski closure of the image of Galois in the whole
p-adic representation over Fp (compare [15]). The main intermediate step is to
establish that this subgroup is equal to GLr,κp . The rest is algebraic group theory.

Reduction steps. It is enough to prove Proposition 3.1 for any open subgroup
of GK . This allows us to replace K by any finite extension. In particular we may
assume that

(a) ϕ has semistable reduction everywhere.

Next, recall that at any place∞′ of K above∞, the Drinfeld module is uniformized
by a lattice on which the decomposition group D∞′ acts through a finite quotient.
Similarly, for any place Q of K where ϕ has bad reduction, the Tate uniformiza-
tion involves a lattice on which the decomposition group DQ acts through a finite
quotient. Thus, after replacing K by a finite extension, we may assume that

(b) for any place ∞′ above ∞, the decomposition group D∞′ acts trivially on the
associated lattice, and

(c) for any place Q of bad reduction, the decomposition group DQ acts trivially
on the associated lattice.

We can also disregard any finite set of primes p. Thus by Theorem 1.3 we can
restrict ourselves to primes p for which

(d) the residual representation at p is absolutely irreducible.

Furthermore, we can assume that

(e) all places P of K above p are unramified over p,

(f) ϕ has good reduction at all places above p, and

(g) qp := |κp| ≥ 4.

Torus of inertia. Consider any place P of K above p and a place P̄ of K̄ above
P, with the respective residue fields kP ⊂ kP̄. Then the inertia group IP sits in an
exact sequence

1 −→ IpP −→ IP −→ ItP −→ 1

where IpP and ItP denote the wild inertia group and tame inertia group, respectively.
Fix a section ItP −→ IP. By (f) above, the Drinfeld module ϕ has good reduction
at P. The connected-étale decomposition of the finite flat group scheme ϕ[p] over
the discrete valuation ring OKP

yields an exact sequence

0 −→ ϕ[p]0(Ksep) −→ ϕ[p](Ksep) −→ ϕ[p]et(Ksep) −→ 0,

where IP acts trivially on ϕ[p]et(Ksep). Denote by hP the height of the reduced
Drinfeld module, and set n := q

hP
p . Let kn denote the subfield of kP̄ with n

elements. By [16, Proposition 2.7] and (e) above we have up to conjugation

(3.2) ρ̄p(IP) =
(
k∗n ρ̄p(I

p
P)

0 1

)
⊂ Γp,
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and

(3.3) ρ̄p(ItP) =
(
k∗n 0
0 1

)
⊂ Γp,

written in block matrices of size hP, r − hP. Since k∗n 6= {1}, the centralizer of
ρ̄p(ItP) in GLr,κp is (

TP 0
0 GL(r−hP),κp

)

for a torus TP over κp with TP(κp) = k∗n. The torus TP is the Weil restriction
Reskn

κp
Gm,kn

and thus of dimension hP. Its Γp-conjugacy class in GLr,κp is inde-
pendent of P̄.

Algebraic group envelope of Γp. Let H◦
p denote the connected algebraic sub-

group of GLr,κp generated by all Γp-conjugates of TP for all P | p (see [11, Proposi-
tion 7.5]). By construction it is normalized by the finite group Γp; hence H◦

p and Γp

together generate an algebraic subgroup Hp of GLr,κp with identity component H◦
p .

Eventually we want to show that H◦
p = Hp = GLr,κp . To begin with, we note that

Hp acts absolutely irreducibly on κr
p because Γp does so. Fix a place p̄ of F̄ above

p with residue field κp̄. Then Hp,κp̄ acts irreducibly on κr
p̄.

Lemma 3.4 There exist a natural number sp and a decomposition

κr
p̄ = W1 ⊕ . . .⊕Wsp

into irreducible H◦
p,κp̄

-subrepresentations which are conjugate under Hp,κp̄ .

Proof. Abbreviate V := κr
p̄, and let W be a nontrivial H◦

p,κp̄
-invariant subspace

of V of minimal dimension. Since H◦
p,κp̄

is normalized by Γp, the subspace γW is
also H◦

p,κp̄
-invariant for all γ ∈ Γp. The subspace

∑
γ∈Γp

γW is Γp-invariant and
therefore, by the irreducibility of V , equal to V . Since each γW is irreducible over
H◦

p,κp̄
, a suitable subcollection will do. q.e.d.

We fix a decomposition of κr
p̄ as in Lemma 3.4. Then the algebraic subgroup of

GLr,κp̄ which normalizes each summand is isomorphic to GLsp

tp,κp̄
, where tp is the

common dimension of the Wi. The algebraic subgroup of GLr,κp̄ which maps each
summand to some, possibly other, summand is isomorphic to GLsp

tp,κp̄
oSsp .

Lemma 3.5 We have
Hp,κp̄ ⊂ GLsp

tp,κp̄
oSsp .

Proof. By Lemma 3.4 we have H◦
p,κp̄
⊂ GLsp

tp,κp̄
. Take any place P above p. By

the construction of TP there exists a basis of κr
p̄ with respect to which

TP,κp̄ =




∗
. . .

∗
1

. . .
1




∼= GhP
m,κp̄ ,

where the upper left block consists of diagonal hP × hP-matrices. Consider the
cocharacter

µ1 : Gm,κp̄ −→ TP,κp̄ , t 7→




t
1

. . .
1


 ,
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which on κr
p̄ has weight 1 with multiplicity 1 and weight 0 with multiplicity r − 1.

Without loss of generality we can assume that µ1 has its nontrivial weight on W1

and weight zero on all other Wi. Since TP,κp̄ ⊂ H◦
p,κp̄

, it follows that, as an H◦
p,κp̄

-
representation, the space W1 is not isomorphic to Wi for any i 6= 1. By conjugation,
we deduce that any two of the Wi are non-isomorphic H◦

p,κp̄
-representations. This

shows that the decomposition in Lemma 3.4 is in fact the isotypical decomposition
of κr

p̄ under H◦
p,κp̄

. It is thus normalized by Hp,κp̄ , and the result follows. q.e.d.

Using Lemma 3.5, we define αp as the composite of the following homomorphisms

GK −→ Hp,κp̄ ⊂ GLsp

tp,κp̄
oSsp ³ Ssp .

Lemma 3.6 The homomorphism αp is unramified at all places of K lying above p.

Proof. Consider any place P of K above p. By (3.3) we have ρ̄p(ItP) = TP(κp)
⊂ H◦

p (κp); hence αp(ItP) = 1. This implies that αp(IP) is a quotient of the group
of coinvariants of ρ̄p(I

p
P) under ρ̄p(ItP). The description (3.2) shows that ρ̄p(I

p
P)

is a kn-vector space on which ρ̄p(ItP) acts through multiplication by k∗n. Since
k∗n 6= {1}, that group of coinvariants is zero. This implies that αp(IP) = 1, and so
αp is unramified at P. q.e.d.

Lemma 3.7 For almost all primes p of A the homomorphism αp is unramified at
all places of K where ϕ has bad reduction.

Proof. Since there are only finitely many places Q ofK where ϕ has bad reduction,
it suffices to prove the lemma for one of them. By (a) above, the Drinfeld module
ϕ has semistable reduction at Q. Let (ψ,ΛQ) be its Tate uniformization Q. Then
ψ is a Drinfeld A-module over KQ of some rank r′ < r with good reduction at Q,
and ΛQ is, via ψ, an A-lattice in Ksep

Q of rank r − r′. For any prime p of A with
p - Q, we have an exact sequence

0 −→ ψ[p](Ksep) −→ ϕ[p](Ksep) −→ ΛQ/pΛQ −→ 0

of representations of the decomposition group DQ. By good reduction the inertia
group IQ acts trivially on the first term, and by (c) it acts trivially on the third
term. Therefore its image under ρ̄p lies in a subgroup of the form

(
1 ∗
0 1

)
∼= Hom

(
ΛQ/pΛQ, ψ[p](Ksep)

)
.

On the other hand, since sp ≤ r, every element of Ssp has order dividing r!. In
particular, we have αp(Frobr!

Q) = 1. Therefore the restriction of αp to IQ factors
through the group of coinvariants

Hom
(
ΛQ/pΛQ, ψ[p](Ksep)

)
Frobr!

Q

.

It suffices to prove that this group is zero for almost all p. Since Frobr!
Q acts trivially

on ΛQ/pΛQ by (c), it suffices to prove that the group of coinvariants ψ[p](Ksep)Frobr!
Q

vanishes.

Denote by fQ the characteristic polynomial of Frobr!
Q on the Tate module of ψ at p,

which has coefficients in A and is independent of p. By purity, every eigenvalue of
FrobQ has valuation < 0 at ∞. Thus 1 is not an eigenvalue of Frobr!

Q, and so fQ(1)
is a nonzero element of A. For all p - fQ(1) no eigenvalue of Frobr!

Q is congruent to
1 modulo a place lying above p; hence for these p we have ψ[p](Ksep)Frobr!

Q
= 0, as

desired. q.e.d.

8



Lemma 3.8 For almost all primes p of A the homomorphism αp is unramified
everywhere and totally split at all places above ∞.
Proof. For all places Q - p∞ where ϕ has good reduction, the inertia group at
Q acts trivially on ϕ[p](Ksep). Therefore the homomorphism αp is unramified at
these places. By Lemma 3.6 it is unramified at all places Q | p. For places Q - ∞
where ϕ has bad reduction, the assertion is Lemma 3.7. Finally, for places above
∞, the assertion follows from (b) above. q.e.d.

Lemma 3.9 For almost all primes p of A we have sp = 1.

Proof. Let p be any prime as in Lemma 3.8, and let K(p) the field fixed by the
kernel of αp. By Lemma 3.8 it is unramified overK.Moreover, its degree [K(p)/K] ≤
sp! ≤ r! is bounded independently of p. By Goss [9, Theorem 8.23.5], a function field
analogue of the Hermite-Minkowski Theorem about unramified extensions, there are
only finitely many possibilities for K(p). Therefore their compositum K ′ is a finite
extension of K such that αp|GK′ : GK′ −→ Ssp is trivial for almost all p. For these
p we find that

ρ̄p(GK′) ⊂ GLsp

tp,κp̄
.

If sp > 1, this shows that ϕ[p](Ksep) is not absolutely irreducible as a representation
of GK′ . By Theorem 1.3, applied to ϕ considered as a Drinfeld A-module over K ′,
this can only happen for finitely many p. Therefore sp = 1 for almost all p. q.e.d.

Proposition 3.10 For almost all primes p of A we have

H◦
p = Hp = GLr,κp .

Proof. Lemmas 3.4 and 3.9 imply that H◦
p,κp̄

acts irreducibly on κr
p̄ for almost

all p. Moreover, as explained in the proof of Lemma 3.5, it possesses a cocharacter
of weight 1 with multiplicity 1 and weight 0 with multiplicity r− 1. By [15, Propo-
sition A.3], these properties imply that H◦

p,κp̄
= GLr,κp̄ . Therefore both inclusions

H◦
p,κp
⊂ Hp,κp ⊂ GLr,κp are equalities. q.e.d.

Returning to the finite group Γp.

Lemma 3.11 There exist a scheme Z of finite type over Spec(Z) and a closed
subscheme T ⊂ GLr ×Z over Z, such that for almost all primes p of A, any place
P | p of K, and any element γ ∈ Γp, there exists a point z ∈ Z(κp) such that
Tz = γTPγ

−1.

Proof. Define

Z := GLr ×(Ar)r−1, and
T := {(t, g, v1, . . . , vr−1)| tg = gt and ∀i : tvi = vi} ⊂ GLr ×Z.

Then Z is a scheme of finite type over Spec(Z), and T is a closed subscheme of
GLr ×Z. Let p satisfy (e), (f) and (g), and take any P | p and γ ∈ Γp. Let t be a
generator of TP(κp) = k∗n, and let w1, . . . , wr−1 ∈ κr

p be generators of the space of
invariants of TP. Then

CentGLr,κp
(t) =

(
TP 0
0 ∗

)

and

StabGLr,κp
(w1) ∩ . . . ∩ StabGLr,κp

(wr−1) =
(
TP 0
∗ 1

)
,

and their intersection is TP. Conjugating by γ we deduce that the fiber Tz of T
above z = (γtγ−1, γw1, . . . , γwr−1) is γTPγ

−1. q.e.d.

9



Lemma 3.12 There exists a constant c depending only on r such that for almost
all primes p of A

[GLr(κp) : Γp] ≤ c.
Proof. Consider any prime p as in Proposition 3.10. Then GLr,κp is generated
by the connected algebraic subgroups γTPγ

−1 for all P | p and γ ∈ Γp. By [11,
Proposition 7.5] it follows that the morphism

fp : Xp :=
m×

i=1

γiTPi
γ−1

i −→ GLr,κp , (t1, . . . , tm) 7→ t1 · · · tm

is dominant for a suitable choice of m and Pi | p and γi ∈ Γp. In fact, since
dim(GLr,κp) = r2, we can achieve this with m = r2; in particular, we can assume
that m is independent of p. Next, by Proposition 2.4 the fibers of

Xr2

p −→ GLr,κp , (x1, . . . , xr2) 7→ fp(x1) · · · fp(xr2)

have dimension at most dim(Xr2

p )−dim(GLr,κp). We replace Xp by Xr2

p and m by
mr2, which is still independent of p. Then with ep := dim(Xp) all fibers of fp have
dimension at most ep − r2.
Let Z and T ⊂ GLr ×Z be as in Lemma 3.11. Then for every 1 ≤ i ≤ m we can
choose a point zi ∈ Z(κp) such that Tzi = γiTPiγ

−1
i . Denote the two projections

by ε : T → GLr and π : T → Z and consider the morphism

f : T m −→ GLr ×Zm, (t1, . . . , tm) 7→ (
ε(t1) · . . . · ε(tm), π(t1), . . . , π(tm)

)
.

By construction it induces the morphism fp in the fiber above the point (z1, . . . , zm)
∈ Zm(κp). Recall that qp = |κp|. Since f is independent of p, Proposition 2.5 yields
a constant c1 independent of p such that for all g ∈ GLr(κp) we have

|f−1
p (g)(κp)| ≤ c1qdim(f−1

p (g))
p ≤ c1qep−r2

p .

On the other hand, we have |TPi(κp)| = q
hPi
p − 1, and hence

|Xp(κp)| =
m∏

i=1

(q
hPi
p − 1) ≥

m∏

i=1

1
2 q

hPi
p

= 2−mq
P

hPi
p = 2−mq

ep
p .

Since fp

(
Xp(κp)

) ⊂ Γp, we deduce that

|Γp| ≥ |fp

(
Xp(κp)

)| ≥ |Xp(κp)|
c1q

ep−r2

p

≥ 2−mq
ep
p

c1q
ep−r2

p

=
qr2

p

2mc1
.

Finally, it follows that

[GLr(κp) : Γp] =
∏r−1

i=0 (qr
p − qi

p)
|Γp| ≤ 2mc1

∏r−1
i=0 (qr

p − qi
p)

qr2
p

≤ 2mc1.

Thus the lemma holds with c := 2mc1. q.e.d.

Proof of Proposition 3.1. Let c be the constant in Lemma 3.12. Then we
have [GLr(κp) : Γp] ≤ c. As |κp| > 3 and |PGLr(κp)| > c! for almost all p,
Proposition 2.3 implies that SLr(κp) ⊂ Γp for almost all p. Since TP(κp) ⊂ Γp and
det : TP(κp) ∼= k∗n −→ κ∗p is the norm map, which is surjective, the determinant
map det : Γp −→ κ∗p is surjective. Therefore Γp = GLr(κp) for almost all primes p
of A, as desired. q.e.d.
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4 Adelic openness in the case [K/F ] <∞
Throughout this section we assume that K is a finite extension of F and that
EndK̄(ϕ) = A. For the most part we still consider the representation ρp at a single
prime p of A. As before we abbreviate qp := |κp|.
Congruence filtration. Let π be a uniformizer of A at p. The congruence filtra-
tion of GLr(Ap) is defined by

G0
p := GLr(Ap), and

Gi
p := 1 + πi Mr(Ap) for all i ≥ 1.

Its successive subquotients possess natural isomorphisms

v0 : G
[0]
p := G0

p/G
1
p

∼−→ GLr(κp), and

vi : G
[i]
p := Gi

p/G
i+1
p

∼−→ Mr(κp), [1 + πiy] 7→ [y] for i ≥ 1.

For any subgroup H of GLr(Ap), we define Hi := H ∩ Gi
p and H [i] := Hi/Hi+1.

Via vi we identify the latter with a subgroup of GLr(κp) or Mr(κp), respectively.

Proposition 4.1 Let H be a closed subgroup of GLr(Ap). Assume that qp ≥ 4,
that det(H) = GL1(Ap), that H [0] = GLr(κp), and that H [1] contains a non scalar
matrix. Then we have

H = GLr(Ap).

Proof. First, consider the conjugation action

H [0] ×H [1] −→ H [1], ([g], [h]) 7→ [ghg−1].

Under v0 and v1 it corresponds to the conjugation action

GLr(κp)×Mr(κp) −→ Mr(κp), (g,X) 7→ gXg−1.

Since H [0] = GLr(κp), it follows that H [1] ⊂ Mr(κp) is closed under conjugation
by GLr(κp). Since it also contains a non-scalar matrix, by Proposition 2.1 it there-
fore contains the subgroup slr(κp) of all matrices of trace 0. Consider the commu-
tative diagram with exact rows

0 // H1/H2

det

²²

// H/H2

det

²²

// GLr(κp)

det

²²

// 0

0 // (1 + πAp/(π)2)∗ // (Ap/p
2)∗ // κ∗p // 0.

The right vertical map is surjective with kernel SLr(κp). By assumption, the middle
vertical map is surjective as well. By the snake lemma, we thus obtain a surjective
homomorphism from SLr(κp) onto the cokernel of the left vertical map. This coker-
nel is an abelian p-group, but since |κp| ≥ 4, the group SLr(κp) has no nontrivial
abelian p-group as a quotient. Therefore the left vertical map is surjective. This
means that the composite trace map H [1] ↪→ Mr(κp)

tr−→ κp is surjective. Together
it follows that H [1] = Mr(κp).

Next consider the commutator subgroup H ′ of H. Since det(H) = GL1(Ap), the
proposition follows once we have shown that H ′ = SLr(Ap). This in turn is equiv-
alent to H ′[i] = SLr(Ap)[i] for all i ≥ 0.
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For i = 0 this results from H ′[0] = (H [0])′ = GLr(κp)′ = SLr(κp). For i = 1 consider
the map

H [0] ×H [1] −→ H ′[1], ([g], [h]) 7→ [ghg−1h−1]

induced by commutator map H ×H → H ′. Under v0 and v1, it corresponds to the
map

GLr(κp)×Mr(κp) −→ slr(κp), (g,X) 7→ gXg−1 −X.
It is an elementary fact that the image of this latter map generates slr(κp) as
an additive group. Since H [0] = GLr(κp) and H [1] = Mr(κp), it follows that
H ′[1] = slr(κp). Assume now that H ′[i] = slr(κp) for some i ≥ 1. In this case
consider the map

H [1] ×H ′[i] −→ H ′[i+1], ([g], [h]) 7→ [ghg−1h−1]

induced by the commutator mapH×H ′ → H ′. Under v1, vi, and vi+1 it corresponds
to the Lie bracket

[ , ] : Mr(κp)× slr(κp) −→ slr(κp), (X,Y ) 7→ XY − Y X.
By [14, Proposition 1.2] the image of this latter map generates slr(κp) as an additive
group. Since H [1] = Mr(κp) and H ′[i] = slr(κp), it follows that H ′[i+1] = slr(κp),
as desired. q.e.d.

Wild ramification. Consider a prime p of A and a place P of K above p. Assume
that P is unramified over p and that ϕ has good reduction at P of height hP.
The image of the inertia group on the p-torsion ϕ[p](Ksep) was described in (3.2).
Similarly, the connected-étale decomposition of the finite flat group scheme ϕ[p2]
over the discrete valuation ring OKP

yields an exact sequence

0 −→ ϕ[p2]0(Ksep) −→ ϕ[p2](Ksep) −→ ϕ[p2]et(Ksep) −→ 0,

where the inertia group IP acts trivially on ϕ[p2]et(Ksep). Thus up to conjugation
the image of IP in GLr(A/p2) lies in the subgroup

( ∗ ∗
0 1

)
⊂ GLr(A/p2)

of block matrices of size hP, r − hP. Choose a lift κp ↪→ A/p2; it induces a lift
k∗n ↪→ GLhP

(A/p2). Then (3.2) implies that up to conjugation the image of the
tame inertia group ItP is the subgroup

J :=
(
k∗n 0
0 1

)
⊂ GLr(A/p2).

Let P ⊂ GLr(A/p2) denote the image of the wild inertia group IpP. In view of (3.2)
it is contained in the subgroup

N :=
{(

a b
0 1

)
∈ GLr(A/p2)

∣∣∣∣ a ≡ 1mod p

}
.

Consider the subgroups

L1 :=
( ∗ 0

0 0

)
, L2 :=

(
0 ∗
0 0

)
, L1 ⊕ L2

∼=
( ∗ ∗

0 0

)
⊂ Mr(κp).

Then the image of P under the homomorphism

π : N −→ L1,

(
a b
0 1

)
7→

(
(a− 1)/π 0

0 0

)
mod p

describes the action on ϕ[p2]0(Ksep).
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Lemma 4.2 The group π(P ) has order at least qhP
p .

Proof. (Compare Gardeyn [8, Proposition 4.5]) We will show this by determining
the valuation at P of torsion points in ϕ[p2]0(Ksep). Let a ∈ A be any function
with a simple zero at p. Then (a) = pa for an ideal a of A which is prime to p. This
implies that ϕ[a] = ϕ[p]⊕ ϕ[a], where ϕ[a] is étale, and therefore

ϕ[a]0 = ϕ[p]0

as group schemes over Spec OKP
. Write ϕa =

∑
i ϕa,iτ

i with ϕa,i ∈ OKP
. Let vP

denote the normalized valuation of KP. Then

vP(ϕa,0) = vP

(
ι(a)

)
= 1,

because ordp(a) = 1 and P|p is unramified. Moreover, since ϕ has good reduction
at P, there exists a unique integer i0 > 0 such that

vP(ϕa,i) ≥ 1 for 0 < i < i0,

vP(ϕa,i0) = 0 and
vP(ϕa,i) ≥ 0 for i > i0.

Thus
qi0 = |ϕ[a]◦| = |ϕ[p]◦| = q

hP
p ,

and so the Newton polygon of the polynomial ϕa(x) =
∑
ϕa,ix

qi

has the vertices
(1, 1) and (qhP

p , 0) and possibly (u, 0) for some other (irrelevant) value u ≥ qhP
p . It

follows that every non-zero element s ∈ ϕ[p]0(Ksep) has the valuation

vP(s) = α := 1/(qhP
p − 1).

Fix any such s. Repeating the above arguments, we find that

ϕ[a2]◦ = ϕ[p2]◦

and that the zeroes of valuation > 0 of the polynomial ϕa(x)− s are precisely the
elements s′ ∈ ϕ[p2]0(Ksep) with as′ = s. The Newton polygon of this polynomial
has the vertices (0, α) and (qhP

p , 0) and (u, 0); hence any such s′ has the valuation

vP(s′) = α/q
hP
p .

We deduce that the wild ramification index of the field extension KP(s′)/KP is
equal to qhP

p . As this index divides the order of π(P ), the lemma follows. q.e.d.

Lemma 4.3 If qp ≥ 3, then any additive subgroup H ⊂ L1⊕L2 that is normalized
by J is the direct sum of its subgroups H ∩ L1 and H ∩ L2.

Proof. It suffices to prove that L1 and L2 possess no non-trivial isomorphic
subquotients as representations of J over Fp. For this recall that J ∼= k∗n for a
field extension kn of κp of degree hP. We let it act by multiplication on kn and
endow k∨n := Homκp(kn, κp) with the contragredient representation. Then there are
natural J-equivariant isomorphisms L1

∼= kn⊗κp k
∨
n and L2

∼= k
r−hP
n . Let k̄n denote

an algebraic closure of kn. Then the representation L2 ⊗Fp k̄n over k̄n consists of
the irreducible characters

k∗n −→ k̄∗n, u 7→ upm
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for all integers m ≥ 0. On the other hand we can identify kn⊗κp k
∨
n with khP

n such
that the action of u ∈ k∗n on the i-th summand is given by multiplication by uqi

p−1.
Thus the representation L1 ⊗Fp

k̄n over k̄n consists of the irreducible characters

k∗n −→ k̄∗n, u 7→ u(qi
p−1)pj

for all integers i, j ≥ 0. We must show that no two such characters of the respective
kinds are equal. They are equal if and only if u(qi

p−1)pj

= upm

for all u ∈ k∗n. Since
k∗n is cyclic of order qhP

p − 1, this is equivalent to

(qi
p − 1)pj ≡ pm mod (qhP

p − 1).

As qp − 1 divides both qi
p − 1 and q

hP
p − 1, this congruence relation implies that

qp− 1 divides pm. But qp is a power of p, and thus qp− 1 is relatively prime to pm;
hence this is possible only if qp − 1 = 1. But that was excluded by the assumption
qp ≥ 3; hence the characters cannot be equal. q.e.d.

Proposition 4.4 In the above situation, if qp ≥ 3, the subgroup

{g ∈ P | g ≡ 1mod p}

has order at least qhP
p .

Proof. Consider the homomorphism

π′ : N −→ L1 ⊕ L2,

(
a b
0 1

)
7→

(
(a− 1)/π b

0 0

)
mod p,

which is clearly equivariant under J . Thus we can apply Lemma 4.3 to the subgroup
π′(P ) ⊂ L1⊕L2. Since the composite of π′ with the projection pr1 : L1⊕L2 → L1

is the homomorphism π above, we deduce that

π(P ) = pr1
(
π′(P )

) 4.3= pr1
(
π′(P ) ∩ L1

)

= π
(
P ∩ π′−1(L1)

)
= π

({g ∈ P | g ≡ 1 mod p}).

Thus the lower bound from Lemma 4.2 implies the result. q.e.d.

Subgroup generated by inertia.

Proposition 4.5 In the above situation, for almost all primes p of A and any
(single) place P of K above p, the images under ρp of all GK-conjugates of the
inertia group IP generate GLr(Ap).

Proof. We may assume that P is unramified over p, that ϕ has good reduction at
P, and that qp ≥ 4. By Proposition 3.1 we may also assume that the residual repre-
sentation ρ̄p : GK → GLr(κp) is surjective. Let H ⊂ GLr(Ap) denote the subgroup
in question. We will show that the stated conditions imply that H = GLr(Ap).

We use the notations from the beginning of this section. The first condition in
Proposition 4.1 holds by assumption. For the second recall that the determinant of
ρp coincides with the Galois representation on the Tate module of a Drinfeld module
ψ of rank 1 over K (see Anderson [2]). As ϕ has good reduction at P, the Tate
module of ϕ at any prime not below P is unramified at P; hence the same holds
for the Tate module of ψ. By the criterion of Néron-Ogg-Shafarevich (see Goss [9,
Theorem 4.10.5]) it follows that ψ has good reduction at P. Since moreover P is
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unramified over p, it follows that the representation IP → GL1(Ap) associated to
ψ is surjective (see Hayes [10, Proposition 9.1] or Gardeyn [8, Theorem 4.1]). Thus
det(H) = GL1(Ap), proving the second condition in Proposition 4.1. In particular
this shows the desired assertion in the case r = 1. For the rest of the proof we
therefore assume that r ≥ 2.

For the third condition consider the subgroup H [0] ⊂ GLr(κp). By (3.3) it contains
the subgroup

ρ̄p(ItP) =
(
k∗n 0
0 1

)

written in block matrices of size hP, r−hP, where kn is an extension of κp of degree
hP. If hP > 1, any generator of this subgroup is non-scalar. If hP = 1, we have
|k∗n| = |κ∗p| ≥ 4; hence this subgroup contains a non-trivial element. Since r ≥ 2,
this element is again non-scalar. Thus in both cases it follows that H [0] contains a
non-scalar element.

By construction H is a normal subgroup of ρp(GK). As the residual representation
is surjective by assumption, it follows that H [0] is a normal subgroup of GLr(κp).
Since qp ≥ 4, Proposition 2.2 implies that SLr(κp) ⊂ H [0]. Since the determinant
induces on ρ̄p(ItP) the norm map k∗n → κ∗p, which is surjective, the determinant map
H [0] → κ∗p is surjective. Together it follows that H [0] = GLr(κp), proving the third
condition in Proposition 4.1.

Next Proposition 4.4 implies that H [1] contains a subgroup of the group of block
matrices of the form ( ∗ ∗

0 0

)
⊂ Mr(κp)

of order at least qhP
p . If hP > 1, it thus contains a non-scalar element, and if

hP < r, every non-trivial element is non-scalar. Thus H [1] contains a non-scalar
matrix, proving the fourth and last condition in Proposition 4.1. Altogether it now
follows that H = GLr(Ap), as desired. q.e.d.

Adelic representation. We can now prove the following special case of Theorem
0.1.

Theorem 4.6 If K is a finite extension of F and EndK̄(ϕ) = A, the image of the
adelic representation

ρad : GK −→
∏
p

GLr(Ap)

is open.

Proof. Let Γ denote this image. Fix a finite set Λ of primes p of A, such that
Proposition 4.5 holds for all p 6∈ Λ and that ϕ has good reduction at all places
P above p 6∈ Λ. For any such P|p, the inertia group IP acts trivially on the Tate
modules Tp′(ϕ) for all p′ 6= p. Thus its image under ρad is contained in the subgroup

GLr(Ap)×
∏

p′ 6=p

{1}.

The same follows for the subgroup ∆P generated by all Γ-conjugates of ρad(IP).
But Proposition 4.5 implies that the projection to the factor at p induces a surjective
homomorphism ∆P → GLr(Ap). Therefore

∆P = GLr(Ap)×
∏

p′ 6=p

{1}.
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By varying p and P we deduce that
∏

p/∈Λ

GLr(Ap) ⊂ Γ.

Therefore Γ is the inverse image of its image under the projection

πΛ :
∏
p

GLr(Ap) −→
∏

p∈Λ

GLr(Ap).

But πΛ(Γ) is an open subgroup by Theorem 1.2; hence Γ is an open subgroup, as
desired. q.e.d.

5 The general case

Throughout this section, we assume that EndK̄(ϕ) = A, but now the transcendence
degree of K is arbitrary. We prove the general case of Theorem 0.1 by reducing
it to the case of a finite extension of F , using a specialization argument similar to
[15]. We begin with some group theory.

Let p be any prime of A, and let π be a uniformizer at p. For any n ≥ 1 we define

Gn
p := 1 + πn Mr(Ap), and

Gn′
p := Gn

p ∩ SLr(Ap).

For any two integers n ≥ ` ≥ 1 we have a natural group isomorphism

(5.1) logn,` : Gn
p/G

n+`
p

∼−→ Mr(pn/pn+`), [1 +X] 7→ [X].

As explained in [13], this can be considered as a logarithm map truncated after the
first order term. In the same way, the inverse isomorphism is an exponential map
truncated after the first order term. We denote it by expn,`.

Lemma 5.2 For any natural numbers n,m ≥ ` ≥ 1, the following properties hold.

(i) The commutator Gn
p ×Gn

p −→ Gn
p , (g, h) 7→ ghg−1h−1 induces a bimultiplica-

tive map

{ , }− : Gn
p/G

n+`
p × Gm

p /G
m+`
p −→ Gn+m

p /Gn+m+`
p ,

([g], [h]) 7→ [ghg−1h−1].

(ii) The Lie bracket Mr(pnAp)×Mr(pnAp) −→ Mr(pnAp) induces a bilinear map

[ , ]− : Mr(pn/pn+`)×Mr(pm/pm+`) −→ Mr(pn+m/pn+m+`),
([X], [Y ]) 7→ [XY − Y X].

(iii) We have
logn+m,l

({[g], [h]}−)
= [logn,l([g]), logm,l([h])]

−.

Proof. Consider elements g = 1 +X ∈ Gn
p , and h = 1 + Y ∈ Gm

p . Their inverses
are given by the geometric series

g−1 = 1−X +X2 −+ . . . , and
h−1 = 1− Y + Y 2 −+ . . . .
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Therefore

ghg−1 = gg−1 + gY g−1 = (1 + Y ) + (XY − Y X) + T (X,Y ),

where T is a power series of degree ≥ 2 in X and degree ≥ 1 in Y . This implies
that

ghg−1h−1 = (1 + Y )(1 + Y )−1 + (XY − Y X)(1 + Y )−1 + T (X,Y )(1 + Y )−1

= 1 + (XY − Y X) + T ′(X,Y ) + T (X,Y )(1 + Y )−1,

where T ′ is a power series of degree ≥ 2 in Y and degree at least ≥ 1 in X. Since
n, m ≥ `, both T ′(X,Y ) and T (X,Y ) vanish modulo pn+m+`; hence

ghg−1h−1 ≡ 1 + (XY − Y X) mod pn+m+`.

Everything follows from this. q.e.d.

Next consider a closed subgroup H of GLr(Ap), and set

Hn := H ∩Gn
p , and

Hn′ := H ∩Gn′
p .

Lemma 5.3 Consider any natural numbers n,m ≥ ` ≥ 1. Assume that Hn/Hn+` =
Gn

p/G
n+`
p and that Gm′

p /Gm+`′
p ⊂ Hm/Hm+`. Then we have

Hn+m′/Hn+m+`′ = Gn+m′
p /Gn+m+`′

p .

Proof. By Lemma 5.2, we have the following commutative diagram

Gn
p/G

n+`
p ×Gm′

p /Gm+`′
p

logn,` × logm,`

²²

{ , }− // Gn+m′
p /Gn+m+`′

p

Mr(pn/pn+`)×Mr(pm/pm+`)
[ , ]− // slr(pn+m/pn+m+`).

expn+m,`

OO

By (5.1) the vertical arrows are isomorphisms. By [14, Proposition 1.2], the set of
commutators [Mr, slr] generates the group slr. Thus the subset

expn+m,`

(
[logn,`(G

n
p/G

n+`
p ), logm,`(G

m′
p /Gm+`′

p )]
)

generates the group Gn+m′
p /Gn+m+`′

p . By assumption this subset is

{
Hn/Hn+`,Hm/Hm+`

}−
,

and therefore contained in Hn+m′/Hn+m+`′. The lemma follows. q.e.d.

Proposition 5.4 Assume that there exists a natural number n ≥ 1 such that
Hn/H2n = Gn

p/G
2n
p . Then we have

Gn′
p ⊂ Hn.

Proof. We must show that Gn′
p = Hn′. Since H is a closed subgroup of GLr(Ap), it

is enough to show that Hin′/H(i+1)n′ = Gin′
p /G

(i+1)n′
p for all i ≥ 1. The assumption

implies this already for i = 1. If it holds for some i ≥ 1, the assumption and Lemma
5.3 show that it also holds for i+ 1. By induction the assertion follows for all i, as
desired. q.e.d.
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Specialization with prescribed absolute endomorphism ring. Now we choose
an integral scheme X of finite type over Fp with function field K such that ϕ extends
to a family of Drinfeld A-modules of rank r over X. For any point x ∈ X, we get a
Drinfeld A-module ϕx of rank r over the residue field kx at x. Its characteristic is
the image λx of x under the morphism X → Spec(A). For any prime p 6= λx of A,
the specialization map induces an isomorphism

(5.5) Tp(ϕ) ∼−→ Tp(ϕx).

Proposition 5.6 In the above situation, if EndK̄(ϕ) = A, there exists a point
x ∈ X such that kx is a finite extension of F and

Endk̄x
(ϕx) = A.

Proof. Denote by Γ̃p the image of GK in the representation on Tp(ϕ). By Theorem
1.2 it is an open subgroup of GLr(Ap); hence there exists an integer n ≥ 1 such
that Gn

p ⊂ Γ̃p. Let K ′ be the finite Galois extension of K such that Gal(K ′/K) =
Γ̃p/G

2n
p , and let π : X ′ → X be the normalization of X in K ′. By [15, Lemma 1.6],

there exists a point x ∈ X such that kx is a finite extension of F and π−1(x) ⊂ X ′

is irreducible.

Denote by ∆p the image of Gkx in the representation on Tp(ϕx). This is a closed
subgroup of GLr(Ap). Since p 6= λx, the specialization isomorphism (5.5) turns ∆p

into a subgroup of Γ̃p. The irreducibility of π−1(x) means that Gal(kπ−1(x)/kx) ∼=
Gal(K ′/K). We find that ∆pG

2n
p = Γ̃p, and thus ∆n

pG
2n
p = Gn

p . In other words we
have

∆n
p/∆

2n
p = Gn

p/G
2n
p .

By Proposition 5.4 this implies that Gn
p
′ ⊂ ∆n

p
′. In particular ∆p contains an open

subgroup of SLr(Ap). By Goss [9, Theorem 7.7.1], the image of ∆p under the
determinant is an open subgroup of GL1(Ap). Together this implies that ∆p is an
open subgroup of GLr(Ap).

Finally, all endomorphisms of ϕx are defined over some finite separable extension k′x
of kx. This extension corresponds to an open subgroup of ∆p, which by the above
is again open in GLr(Ap). By the easy direction of the Tate conjecture, it follows
that Endk̄x

(ϕx) = Endk′x(ϕx) = A, as desired. q.e.d.

Proof of Theorem 0.1. If K is a finite extension of F , the result is Theorem
4.6. In the general case choose x as in Proposition 5.6. Then Theorem 4.6 for the
Drinfeld module ϕx shows that the image of the adelic representation associated
to ϕx is open in GLr(Af

F ). By the specialization isomorphism (5.5) this image is a
subgroup of the image of the adelic representation associated to ϕ. Thus the latter
is open in GLr(Af

F ) as well. q.e.d.

A Appendix: Two remarks on Gardeyn [8]

In [8] Gardeyn generalized Theorem 1.2 to simple τ -modules of dimension 1. In this
appendix we show how to close two gaps in his proof.

Specialization. The first gap is in the proof of [8, Proposition 2.4] at the bot-
tom of page 318, where he addresses a specialization problem analogous to that in
Proposition 5.6. He considers an integral scheme of finite type X with function
field K and a family of τ -modules M over X whose generic fiber M has abso-
lute endomorphism ring EndK̄(M) = A. He finds a point x of X whose residue
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field kx is a finite extension of F , such that the commutant of the image of Galois
associated to the reduction M x is the same as for M . He then deduces that the
absolute endomorphism ring Endk̄x

(M x) is equal to A, although this follows only
for the endomorphism ring Endkx(M x) over kx. This gap can be closed by exactly
the same group theoretical argument as in the proof of Proposition 5.6 above.

Action of inertia on torsion points. The second gap is in the proof of [8,
Proposition 4.5]. There, Gardeyn studies the action of the inertia group IP on the
Tate module of a one-dimensional formal τ -module over K. A typical example for
this is the submodule of the Tate module of a Drinfeld module Tp(ϕ) on which the
tame inertia group acts non-trivially. On page 327, line 6, Gardeyn considers the
field L̃◦i . But this field exists only if Gal(L∞/L̃i) is normalized by the group J . If
it were normalized for all i, we could deduce that L̃i = Li for all i, which is not
true in general. Several other problems within the proof of that proposition arise.
We therefore give a reasonably complete independent proof of the proposition. It
will be instructive to work in a slightly more general setting that includes the case
of Lubin-Tate formal groups in mixed characteristic (see Abrashkin [1] or Fontaine
[7]).

Let E be a nonarchimedean local field with discrete valuation ring O and maximal
ideal p = (π). Let k = O/p denote the residue field of, say, order q and characteris-
tic p. Let L be a maximal unramified extension of E, and Lsep a maximal separable
extension of L. Let ψ be a formal Lubin-Tate group of O-modules of height s over
the ring of integers OL. For every integer n ≥ 1, the πn-torsion points ψ[πn](Lsep)
form a free module of rank s over O/pn. Thus the Tate module

T := lim←−
n

ψ[πn](Lsep)

is a free module of rank s over O together with a continuous representation

ρ : Gal(Lsep/L) −→ AutO(T ) ∼= GLs(O).

All this applies to the modules ψ[πn](Lsep) := ϕ[πn]◦(Lsep) over O = Ap for a
Drinfeld A-module over OL with good reduction of height s.

The aim is to characterize the image of ρ under the stated general conditions.
One basic ingredient is the following fact. Let v denote the valuation on Lsep for
which v(π) = 1.

Lemma A.1 For any n ≥ 1 and any primitive element t ∈ ψ[πn](Lsep) we have

v(t) =
1

qs(n−1)(qs − 1)
.

Proof. In the case of a Drinfeld module this was proved in Lemma 4.2 for n ≤ 2.
The same argument works for all n and all formal Lubin-Tate groups. q.e.d.

Choose primitive elements tn ∈ ψ[πn](Lsep) such that ψ(π)(tn+1) = tn for all n ≥ 1.
For every n ≥ 1 let Ln denote the finite extension of L generated by ψ[πn](Lsep),
and let L′n ⊂ Ln denote the subfield generated by tn.

Recall (e.g. from Serre [21, ch. IV §2–3]) that the Galois group G of any finite local
field extension possesses a natural decreasing lower numbering filtration Gµ indexed
by µ ≥ 0. Via the Herbrand function ϕ (see [21, p. 80]) this filtration is translated
into the upper number filtration Gµ such that Gµ = Gϕ(µ). We will say that the
extension or G has break α for the lower numbering filtration if Gµ $ Gα for all
µ > α, and that it has break α for the upper numbering filtration if Gµ $ Gα for
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all µ > α. Since ϕ(µ) = µ whenever µ is less than or equal to the smallest break for
the lower numbering filtration, we find that the lowest breaks for the two numberings
coincide. In particular G has the unique break α for the lower numbering filtration
if and only if it has the unique break α for the upper numbering filtration.

Lemma A.2 For every n ≥ 1, the element tn is a uniformizer of L′n. Moreover,

(a) we have L′1 = L1 and it is Galois over L of degree qs − 1, and

(b) for every n ≥ 1, the extension L′n+1/L
′
n is Galois of degree qs with unique

break qsn − 1 (for either filtration).

Proof. We work out the argument in the case of equal characteristic p, where
addition and subtraction in the formal group coincide with the usual ones. In
the mixed characteristic case they still coincide in first order approximation, which
suffices to adapt the argument.
For any non-zero element t ∈ ψ[π](Lsep) and any element σ in the wild ramification
group of L we have v(σ(t) − t) > v(t). Since σ(t) − t is again an element of
ψ[π](Lsep), Lemma A.1 shows that it must be zero. Thus the wild ramification
group acts trivially on L1. In particular the extension L′1/L is tame and hence
Galois. The number of distinct conjugates of t1 in L′1/L is therefore equal to the
ramification degree, and so by Lemma A.1 it is ≥ qs − 1. All these conjugates are
non-zero elements of the group ψ[π](Lsep) of order qs. It follows that the number
of conjugates is equal to qs − 1 and that they generate L1. This proves (a). Since
the ramification degree is qs − 1, it also follows that t1 is a uniformizer of L′1.

Fix any n ≥ 1 and assume that tn is a uniformizer of L′n. Then Lemma A.1 implies
that L′n+1/L

′
n has ramification degree ≥ qs. For any σ ∈ Gal(Lsep/L′n) we calculate

π(σ(tn+1)− tn+1) = σ(πtn+1)− πtn+1 = σ(tn)− tn = 0,

which shows that all conjugates of tn+1 over L′n lie in tn+1 + ψ[π](Lsep). It follows
that the number of conjugates is equal to qs and that L′n+1 is Galois of degree
qs over L′n and has uniformizer tn+1. Furthermore, to any non-trivial element σ
of Gal(L′n+1/L

′
n) is associated the non-zero element σ(tn+1) − tn+1 ∈ ψ[π](Lsep),

and by comparing its valuation with that of tn+1 using Lemma A.1 we find that
σ(tn+1) − tn+1 is a unit times tq

sn

n+1. Now the definition of the higher ramification
groups implies that Gal(L′n+1/L

′
n) has the unique break qsn− 1 for the lower num-

bering filtration. By induction on n the lemma follows. q.e.d.

By Lemma A.2 (a) the Galois group Gal(L1/L) has order prime to p, while H :=
ρ
(
Gal(Lsep/L1)

)
is a pro-p group. Thus we can write the image of ρ as a semidirect

product
ρ
(
Gal(Lsep/L)

)
= J nH.

The tameness implies that the group J is cyclic of order qs−1. Under the embedding
J ↪→ Autk(T/pT ) ∼= GLs(k) it is therefore identified with the multiplicative group of
a field extension ks ⊂ Endk(T/pT ) of k of degree s. It follows that OJ ⊂ EndO(T )
is an unramified extension of O of degree s, turning T into a free module of rank 1
over OJ . Using this one finds a natural decomposition of the matrix ring

(A.3) M := EndO(T ) =
⊕

i∈Z/sZ
M(i),

where M(i) ∼= OJ with the action of J by the character u 7→ uqi−1.
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Theorem A.4 In the above situation, there exists a function m : Z/sZ → Z≥1 ∪
{∞} satisfying m(0) = 1 and m(i) +m(i′) ≥ m(i+ i′) for all i, i′, such that

ρ
(
Gal(Lsep/L)

)
= J n

(
1 +

⊕

i∈Z/sZ
pm(i)M(i)

)
,

where we use the convention p∞ := (0).

The rest of the appendix is devoted to proving Theorem A.4.

Lemma A.5 For every i ∈ Z/sZ we set M(i) := M(i)/pM(i), which is a ks-vector
space of dimension 1 on which J ∼= k∗s acts through the character u 7→ uqi−1.

(a) If i 6≡ 0mod(s), then M(i) is a simple Fp[J ]-module.

(b) If i 6≡ i′mod(s), then M(i) 6∼= M(i′) as Fp[J ]-modules.

Proof. (Compare Gardeyn [8] or Fontaine [7].) The kernel of the character is the
multiplicative group of the fixed field of the automorphism ks → ks, u 7→ uqi

. For
i 6≡ 0mod(s) this is a proper subfield of ks; hence the kernel has order ≤ qs/2 − 1.
Thus the image of the character has order ≥ (qs − 1)/(qs/2 − 1) = qs/2 + 1, and so
it does not lie in a proper subfield of ks. This implies (a). It also shows that J acts
non-trivially on M(i), and hence M(i) 6∼= M(0). By symmetry it remains to prove
(b) in the case s > i > i′ > 0. Then the modules are isomorphic if and only if there
exists j such that

u(qi−1)pj

= uqi′−1

for all u ∈ k∗s . As k∗s is cyclic of order qs − 1, this amounts to the congruence

(qi − 1)pj ≡ qi′ − 1 mod (qs − 1).

Since (qi − 1)pj > qi′ − 1, it follows that (qi − 1)pj ≥ qs − 1. Therefore qipj is a
multiple of qs. A direct calculation shows that the remainder of (qi − 1)pj under
division by qs − 1 is

qs − pj + qipjq−s − 1.

Thus this number is equal to qi′ − 1, and so

qs + qipjq−s = qi′ + pj .

From this it is straightforward to deduce a contradiction. q.e.d.

For every n ≥ 1 we can view the Galois group Gal(Ln+1/Ln) as a subgroup of

Ker
(
AutO(T/pn+1T )→ AutO(T/pnT )

) ∼= 1 + πn(M/pM)

and thus of the additive group M/pM . As this identification is J-equivariant, we
obtain in fact an Fp[J ]-submodule of M/pM . The decomposition (A.3) yields a
decomposition

M := M/pM ∼=
⊕

i∈Z/sZ
M(i)

and thus a J-invariant decreasing filtration of M/pM with subquotients M(i) for
1 ≤ i ≤ s. From this we deduce a J-invariant filtration

Ln = Ln,0 ⊂ Ln,1 ⊂ . . . ⊂ Ln,s−1 ⊂ Ln,s = Ln+1

such that Gal(Ln,i/Ln,i−1) embeds into M(i) for every 1 ≤ i ≤ s.
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Lemma A.6 For every n ≥ 1 and every 1 ≤ i ≤ s− 1 the extension Ln,i/Ln,i−1 is
either trivial or Galois of degree qs with a unique break that is 6≡ 0 modulo (qs− 1).

Proof. If the extension is non-trivial, Lemma A.5 (a) implies that its Galois group
is isomorphic to M(i) and that its ramification filtration has a unique break, say α.
Let π̃ be a uniformizer of Ln,i. Then the definition of the higher ramification groups
yields a natural and hence J-equivariant embedding

M(i) ∼= Gal(Ln,i/Ln,i−1) ↪→ (π̃)α/(π̃)α+1, σ 7→ σ(π̃)
π̃ − 1 mod (π̃)α+1.

The tame ramification group J acts through a faithful character on (π̃)/(π̃)2; hence
it acts on (π̃)α/(π̃)α+1 through the α-th power of that character. Since it acts
non-trivially on M(i), we find that α cannot be a multiple of |J | = |k∗n| = qs − 1.
This finishes the proof. q.e.d.

Lemma A.7 Let F be a non-archimedean local field. Let F1 and F2 be two finite
Galois extensions of degree d over F with unique breaks α1 6= α2. Then the exten-
sions are linearly disjoint, and F1F2/F2 is Galois of degree d with a unique break
≡ α1 modulo (d− 1), and F1F2/F1 is Galois of degree d with a unique break ≡ α2

modulo (d− 1).

Proof. Since the breaks are different, the functoriality of the upper numbering
filtration (see [21, ch. IV §3 Prop. 14]) implies that the upper numbering of the com-
posite extension F1F2/F has the breaks α1 and α2 with index d each. It follows
that the extensions are linearly disjoint and that F1F2/F2 and F1F2/F1 are Galois
of degree d. By symmetry, we may without loss of generality assume that α1 > α2,
so that F2 is the fixed field of Gal(F1F2/F )α1 . Using the yoga of the Herbrand
function ϕ (see [loc. cit., §3]) one calculates that the lower numbering of the exten-
sion F1F2/F then has the breaks α2 and α1 + (qs − 1)(α1 − α2) with index d each.
It follows that F1F2/F2 has the unique break α1 + (qs − 1)(α1 − α2) ≡ α1 modulo
(d− 1) and that F1F2/F1 has the unique break α2. q.e.d.

Lemma A.8 For all n ≥ 1 we have [Ln,s/Ln,s−1]=qs.

Proof. Consider the following assertions:

A(n) : Ln,s=Ln,s−1L
′
n+1 and [Ln,s/Ln,s−1]=qs.

B(m, i, n) : The extension Lm,iL
′
n+1/Lm,iL

′
n is Galois of degree qs

with a unique break ≡ 0 modulo (qs − 1).

C(m, i, n) : The extension Lm,iL
′
n/Lm,i−1L

′
n is either trivial or Galois

of degree qs with a unique break 6≡ 0 modulo (qs − 1).

We will prove

A(n) for all n ≥ 1,

B(m, i, n) for all 1 ≤ m ≤ n and 0 ≤ i ≤ s− 1, and

C(m, i, n) for all 1 ≤ m ≤ n and 1 ≤ i ≤ s− 1.

Note first that L′n ⊂ Ln,i−1 ⊂ Ln,i; hence the assertion C(n, i, n) is precisely Lemma
A.6. In particular C(m, i, n) holds whenever n = 1. For all other assertions we use
induction on n. We fix an integer n ≥ 1 and assume A(n′) for all n′ < n and
C(m, i, n) for all m and i. We will then show A(n) and B(m, i, n) and C(m, i, n+1)
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for all m and i. This proves the lemma, because the desired assertion is contained
in A(n).

Keeping n fixed we perform another induction over m and an innermost induction
over i. We may thus fix 1 ≤ m ≤ n and 0 ≤ i ≤ s − 1 and assume B(m′, i′, n)
whenever m′ < m and B(m, i′, n) whenever i′ < i. If i = 0 and m = 1, we note that
L1,0 = L1 = L′1 ⊂ L′n ⊂ L′n+1 by Lemma A.2 (a); hence Lemma A.2 (b) implies
B(1, 0, n). If i = 0 and m > 1 we have Lm,0 = Lm−1,s = Lm−1,s−1L

′
m by A(m− 1);

since L′m ⊂ L′n ⊂ L′n+1, the assertion B(m− 1, s− 1, n) then implies B(m, 0, n). If
i > 0 we consider the field extensions

Lm,iL
′
n+1

Lm,iL
′
n Lm,i−1L

′
n+1

PPPPPPPP

Lm,i−1L
′
n.

PPPPPPPP

By B(m, i − 1, n) the right vertical extension is Galois of degree qs with a unique
break ≡ 0 modulo (qs − 1), and by C(m, i, n) the lower oblique extension is either
trivial or Galois of degree qs with a unique break 6≡ 0 modulo (qs − 1). If the lower
extension is trivial, we can trivially deduce B(m, i, n) and C(m, i, n+1). Otherwise
the two breaks are different; hence we can apply Lemma A.7 and again deduce
B(m, i, n) and C(m, i, n+ 1).

By induction on m and i, we have thus proved B(m, i, n) and C(m, i, n+ 1) for all
possible m and i except for C(n+ 1, i, n+ 1). But that case was already covered at
the beginning of the proof. Finally, consider the field extensions

Ln,s−1 = Ln,s−1L
′
n ⊂ Ln,s−1L

′
n+1 ⊂ Ln+1 = Ln,s.

By construction the total extension has a subgroup of M(0) as Galois group; hence
it has degree ≤ qs. But since the middle extension already has degree qs by
B(n, s− 1, n), it follows that the extension on the right is an equality and the
total degree is qs. This is just the assertion A(n), finishing the proof. q.e.d.

Proof of Theorem A.4. Recall that for every n ≥ 1 we have an Fp[J ]-equivariant
embedding

Gal(Ln+1/Ln) ↪→M =
⊕

i∈Z/sZ
M(i).

Lemma A.5 implies that its image decomposes accordingly and that all its sum-
mands for i 6≡ 0 mod s are trivial or equal to M(i). Moreover, Lemma A.8 implies
that the image contains the summand M(0). Together we deduce that

Gal(Ln+1/Ln) ∼−→
⊕

i∈S(n)

M(i)

for some subset S(n) ⊂ Z/sZ with 0 ∈ S(n).

Next, the Lie bracket induces a map M(i)×M(i′)→M(i+i′) for all i and i′, which
is non-zero except for i ≡ i′ ≡ 0 mod s. Using commutators as in Fontaine [7] or
Gardeyn [8] or in Proposition 4.1 above, one finds that i ∈ S(n) and i′ ∈ S(n′)
imply i+ i′ ∈ S(n+ n′). Applying this with n′ = 1 and i′ = 0 ∈ S(1) one deduces
that S(n) ⊂ S(n+ 1) for every n ≥ 1. Thus with

m(i) := inf{n ≥ 1 : i ∈ S(n)} ∈ Z≥1 ∪ {∞}
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we have m(0) = 1 and i ∈ S(n) ⇔ n ≥ m(i). The above implication then implies
that m(i) +m(i′) ≥ m(i + i′) for arbitrary i, i′. Thus the function m satisfies the
first two conditions in Theorem A.4.

These conditions imply that

U := 1 +
⊕

i∈Z/sZ
pm(i)M(i)

is a J-invariant closed subgroup of GLs(O) which possesses the same subquotients
in the congruence filtration as H. It remains to show that H = U . For any n ≥ 1
define

Gn := 1 + πn Ms(O),
G[n] := Gn/Gn+1 ∼= ⊕

i∈Z/sZM(i),

H [n] := (H ∩Gn)Gn+1/Gn+1, and
U [n] := (U ∩Gn)Gn+1/Gn+1.

By construction of the m(i) the subgroup H [n] of G[n] consists of those summands
M(i) with m(i) ≤ n. Moreover, the subgroup HGn/Gn of G1/Gn is a succes-
sive extension of n − m(i) copies of M(i) for all i with m(i) < n. In particular,
Lemma A.5 implies that HGn/Gn and G[n]/H [n] possess no non-trivial isomor-
phic subquotient as Fp[J ]-module. It also implies that H [n] = U [n]. Suppose that
HGn/Gn = UGn/Gn as subgroups of G1/Gn. Then we have an exact sequence

1 // G[n]/H [n] // HGn/(H ∩Gn)Gn+1 // HGn/Gn // 1

G[n]/U [n] UGn/Gn

and each of H and U induces a J-equivariant splitting. As the extension is central,
these splittings differ by a J-equivariant homomorphism HGn/Gn → G[n]/H [n].
But since these groups possess no non-trivial isomorphic subquotients, this ho-
momorphism must be zero. This implies that HGn+1/Gn+1 = UGn+1/Gn+1 as
subgroups of G1/Gn+1. By induction we deduce that H = U , as desired. q.e.d.
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