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Vector bundles with a Frobenius structure

on the punctured unit disc

Urs Hartl and Richard Pink

Abstract

Let C be a complete non-archimedean-valued algebraically closed field of characteristic
p > 0 and consider the punctured unit disc Ḋ ⊂ C. Let q be a power of p and consider
the arithmetic Frobenius automorphism σḊ : x �→ xq

−1
. A σ-bundle is a vector bundle F

on Ḋ together with an isomorphism τF : σ∗
Ḋ
F ∼−→ F . The aim of this article is to develop

the basic theory of these objects and to classify them. It is shown that every σ-bundle
is isomorphic to a direct sum of indecomposable σ-bundles Fd,r which depend only on
rational numbers d/r. This result has close analogies with the classification of rational
Dieudonné modules and of vector bundles on the projective line or on an elliptic curve. It
has interesting consequences concerning the uniformizability of Anderson’s t-motives that
will be treated in a future paper.

Introduction

Let C be an algebraically closed field of characteristic p > 0 which is complete with respect to a
non-archimedean absolute value | · | and consider the punctured unit disc

Ḋ := {x ∈ C : 0 < |x| < 1}.
Let q be a power of p and consider the map

σḊ : Ḋ ∼−→ Ḋ, σḊ(x) := xq
−1
.

The pull-back of a holomorphic function f(z) =
∑

i aiz
i on Ḋ is defined as

σ∗
Ḋ
f(z) :=

∑
i

aqi z
i,

which makes σḊ an automorphism of rigid-analytic spaces relative to the arithmetic Frobenius of C.
By definition a σ-bundle (on Ḋ) consists of a vector bundle F on Ḋ together with an isomorphism
τF : σ∗

Ḋ
F ∼−→ F . The σ-bundles are the ‘vector bundles with a Frobenius structure’ from the title.

The main aim of this article is to classify all σ-bundles up to isomorphism.
The building blocks for this classification are constructed as follows. For every integer n the

σ-bundle O(n) is the structure sheaf OḊ, where τO(n) is the above isomorphism σ∗
Ḋ
OḊ

∼−→ OḊ

followed by multiplication by z−n. For more examples take a positive integer r and consider the
morphism of rigid-analytic spaces over C

[r] : Ḋ → Ḋ, x �→ xr.
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For every integer d that is relatively prime to r we set Fd,r := [r]∗O(d) together with the in-
duced isomorphism τFd,r

:= [r]∗τO(d). This defines a σ-bundle of rank r, having Fn,1 = O(n) as a
special case.

The Main Theorem 11.1 states that every σ-bundle is isomorphic to one of the form
⊕k

i=1 Fdi,ri ,
where the pairs (di, ri) are uniquely determined up to a permutation by Corollary 11.8. In particular,
every σ-bundle of rank one is isomorphic to O(n) for a unique integer n, called its degree; see
Theorem 5.4. Moreover, the Fd,r are precisely the indecomposable σ-bundles up to isomorphism,
and with a natural definition of stability they are also precisely the stable ones; see Corollary 11.6.

These results are reminiscent of two other well-known classifications. On the one hand, they
resemble the facts about rational Dieudonné modules; see Dieudonné [Die57] or Manin [Man63,
Theorem 2.1]. This has to do with the presence of a Frobenius map as a common feature in both
situations. In other aspects the results remind one of Grothendieck’s classification [Gro57] of vector
bundles on the projective line. Indeed, the σ-bundle O(1) enjoys many of the properties of ample
twisting sheaves from algebraic and analytic geometry: see §§ 3 and 4.

Furthermore, there are parallels to recent work of Kedlaya [Ked01], who proves the analogous
classification theorem for vector bundles with a Frobenius structure in mixed characteristic [Ked01,
Theorem 4.16]. An intermediate result [Ked01, Proposition 4.8] corresponds to our Theorem 4.1
and provided the inspiration for its proof. Although the rest of our work was done independently,
another intermediate result [Ked01, Proposition 4.15] is a close analogue of our Proposition 9.1. It
is interesting to note that the main technical complications of both articles arise in similar places.

The relation with geometry is explained further by the following interpretation. The group σZ
Ḋ

acts properly discontinuously on Ḋ and we can consider the quotient Ḋ/σZ
Ḋ

. Since σḊ acts non-
trivially on the field of coefficients C, this quotient does not carry a natural structure of rigid-analytic
space over C. Nevertheless, most likely it can be endowed with a suitable Grothendieck topology
so that giving a σ-bundle is equivalent to giving a vector bundle on Ḋ/σZ

Ḋ
. Our results can thus be

viewed as the classification of vector bundles on a certain ‘twisted rigid-analytic space’. Note that
the situation resembles the non-archimedean uniformization of an elliptic curve with non-integral
j-invariant.

The notion of σ-bundle was introduced by the second author to investigate the nature of uni-
formizability of Anderson’s t-motives [And86]. In brief, to any t-motive M of rank r over C one can
associate a natural σ-bundle QM of rank r, such thatM is uniformizable if and only if QM

∼= O(0)⊕r.
The Main Theorem 11.1 of this article thus tells us precisely what happens instead, when M is not
uniformizable. Its use lies in the fact that a non-existence statement is transformed into another
existence statement. Conversely, the concept of σ-bundles allows one to construct new uniformizable
t-motives out of local data, much like abelian varieties are constructed from their Hodge structure.
This may play an important role in the study of moduli spaces of t-motives. The respective details
will be explained in a future paper. For related results see also Gardeyn [Gar01, ch. 5].

1. The punctured unit disc

Throughout this article we fix a complete non-archimedean valued algebraically closed field of
characteristic p > 0. By analogy with the field of complex numbers we denote it by C. The main
example we have in mind is the completion of the algebraic closure of the field Fp((ξ)) of Laurent
series in one variable over the finite field of p elements Fp. The absolute value on C is denoted by | · |.
Inside C we consider the punctured unit disc

Ḋ := {x ∈ C : 0 < |x| < 1}.
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Vector bundles with a Frobenius structure

We view it as a rigid-analytic space over C in the usual way. (We do not require the full theory of
rigid-analytic geometry here. For an overview of what we need see Lazard [Laz62] or Fresnel and
van der Put [FP81]. A general introduction would be that of Bosch et al. [BGR84].) The ring R of
holomorphic functions on Ḋ consists of all Laurent series

∑
i aiz

i with coefficients ai ∈ C, possibly
infinite in both directions, that converge on Ḋ. The following proposition is straightforward to prove
and therefore left as an exercise.

Proposition 1.1. A Laurent series
∑

i aiz
i with ai ∈ C lies in R if and only if

lim sup
i→∞

log |ai|
i

� 0 and lim sup
i→∞

log |a−i|
i

= −∞.

We are interested in locally free coherent sheaves on Ḋ. By a common abuse of terminology we
call them vector bundles for short. It is known (see Gruson [Gru68, ch. V, Theorem 1]) that taking
global sections defines an equivalence between the category of vector bundles on Ḋ and the category
of finitely generated projective R-modules. If C is maximally complete, then every vector bundle
on Ḋ is free (see Lazard [Laz62, § 7, Theorem 2]), but otherwise there is no guarantee for that.
Nevertheless, we note the following useful fact (see Bartenwerfer [Bar81]).

Theorem 1.2. A vector bundle on Ḋ is free if and only if its highest exterior power is free.

2. σ-Bundles

Once and for all we fix a power q of p and consider the field automorphism

σ : C → C, a �→ σ(a) := aq.

The elements of C that are fixed by σ form the unique subfield Fq of q elements. Next we let σ act
on the coefficients of a Laurent series, obtaining a map

R→ R, f(z) =
∑
i

aiz
i �→ σ(f) :=

∑
i

aqi z
i,

denoted again by σ. By Proposition 1.1 this clearly defines an automorphism of R. The corresponding
automorphism of Ḋ is

σḊ : Ḋ → Ḋ, x �→ σḊ(x) := xq
−1
.

The reader should not confuse the automorphisms σ of C and R with the automorphism σḊ of Ḋ.
Actually they are related by the equation σ(f)(x) = f(σḊ(x))q for all f ∈ R and x ∈ Ḋ. In this
sense σḊ defines what must be called the arithmetic Frobenius of Ḋ.

For any vector bundle F on Ḋ with space of global sections M , the pull-back σ∗
Ḋ
F is the vector

bundle with space of global sections R⊗σ,RM .

Definition 2.1. A vector bundle F on Ḋ together with an isomorphism τF : σ∗
Ḋ
F ∼−→ F is called

a σ-bundle (on Ḋ).

Giving a σ-bundle F is equivalent to giving its space of global sections over Ḋ together with the
automorphism induced by τF . By the preceding section this data amounts to a finitely generated
projective R-module M together with a σ-linear automorphism τM : M ∼−→M , that is, an additive
automorphism satisfying τM (fm) = σ(f) · τM (m) for all f ∈ R and all m ∈ M . To be precise
τM is obtained as follows. By adjunction between σ∗

Ḋ
and (σḊ)∗ we obtain from τF the morphism

(σḊ)∗τF : F ∼−→ (σḊ)∗F , and the corresponding isomorphism of global sections is

τM = Γ(Ḋ, (σḊ)∗τF ) : M = Γ(Ḋ,F) ∼−→ Γ(Ḋ, (σḊ)∗F) = M.
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Remark 2.2. For better geometric intuition, note that the group σZ
Ḋ

acts properly discontinuously
on Ḋ, because any annulus

{x ∈ C : ρ1 � |x| � ρ2}
with 0 < ρq2 < ρ1 � ρ2 < 1 is disjoint from all its translates. However, σḊ is not an automorphism of
Ḋ as an analytic space over C, because it acts non-trivially on the field of coefficients C. Nevertheless,
we can imagine the quotient Ḋ/σZ

Ḋ
as being obtained from an annulus

{x ∈ C : ρq � |x| � ρ}
for ρ ∈ |C| with 0 < ρ < 1 by gluing its two ‘edges’ via

σḊ : {x ∈ C : |x| = ρq} ∼−→ {x ∈ C : |x| = ρ}.
Heuristically speaking, giving a σ-bundle is then equivalent to giving a vector bundle on the quotient
Ḋ/σZ

Ḋ
.

The tensor product F ⊗ G of two σ-bundles is defined in the obvious way as the tensor product
of the underlying vector bundles together with the isomorphism τF⊗G := τF ⊗ τG . The σ-bundle O
together with τO := σ is a unit object for the tensor product. Symmetric and alternating powers of
σ-bundles are defined in the obvious way.

Similarly, the inner hom Hom(F ,G) of two σ-bundles is defined as the inner hom of the under-
lying vector bundles together with its own natural τ deduced from τF and τG. In particular, the
dual of a σ-bundle is defined as F∨ := Hom(F ,O). Clearly we have Hom(F ,G) ∼= F∨ ⊗ G and
other compatibilities.

Next, a global section of F is a global section of the underlying vector bundle that is invariant
under τF . The set of all global sections of F is denoted as H0(F). It is a module over the ring
H0(O) = {f ∈ R : σ(f) = f}, which we denote by F .

Proposition 2.3. F = Fq((z)).

Proof. By definition H0(O) consists of all Laurent series f(z) =
∑

i aiz
i ∈ R with aqi = ai, that is,

with ai ∈ Fq. Note that this implies that |ai| = 1 whenever ai �= 0. Thus, by Proposition 1.1 the
series converges on Ḋ if and only if its principal part is finite, that is, if f(z) ∈ Fq((z)).

A homomorphism ϕ : F → G of σ-bundles is a homomorphism of the underlying vector bundles
which satisfies τG ◦ σ∗

Ḋ
ϕ = ϕ ◦ τF . The set of all homomorphisms F → G is denoted Hom(F ,G),

and with these we obtain an F -linear category of σ-bundles. If we included arbitrary coherent
sheaves instead of just locally free ones, the category would be abelian. Note that we have a natural
isomorphism Hom(F ,G) ∼= H0(Hom(F ,G)).

Next observe that H0(F) is the kernel of the F -linear map id−τF on the space of global sections
of F over Ḋ. We define the first cohomology group H1(F) to be the cokernel of this map. The higher
cohomology groups H i(F) for i � 2 are set to zero. In other words, if M is the R-module associated
to F , then the different H i(F) are the homology groups of the complex

· · · −→ 0 −→M
id−τM−−−−→M −→ 0 −→ · · · .

By the snake lemma every short exact sequence of σ-bundles yields an obvious long exact cohomology
sequence. Finally, we set Ext(F ,G) := H1(Hom(F ,G)), and the higher Ext groups are set to zero.

Proposition 2.4. The group Ext(F ,G) classifies classes of extensions of σ-bundles

0 → G → E → F → 0

up to isomorphisms of short exact sequences that are the identity on G and F .
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Vector bundles with a Frobenius structure

Proof. This follows by the usual arguments in homological algebra; cf. MacLane [Mac75, ch. III].
We want to make this explicit. Let F and G correspond to the R-modules M and N with their
respective τM and τN . Then Hom(F ,G) corresponds to the R-module H := HomR(M,N) with
τH(h) := τN ◦h◦ τ−1

M . For any element h ∈ H we set Eh := N ⊕M with the σ-linear automorphism

τEh
:=
(
τN h ◦ τM
0 τM

)
.

The obvious inclusion and projection maps yield a short exact sequence 0 → N → Eh → M → 0
and therefore an extension of σ-bundles

0 → G → Eh → F → 0.

Now, since any short exact sequence of projective R-modules splits, every extension of F by G is
isomorphic to one of this form. On the other hand, the extensions associated to h, h′ ∈ H are
isomorphic if and only if(

id k
0 id

)
·
(
τN h ◦ τM
0 τM

)
·
(

id k
0 id

)−1

=
(
τN h′ ◦ τM
0 τM

)
for some k ∈ H. This equation amounts to

h ◦ τM + k ◦ τM − τN ◦ k = h′ ◦ τM
⇐⇒ h′ − h = k − τN ◦ k ◦ τ−1

M = (id − τH)(k).

Thus the extensions of F by G are classified by the cokernel of the homomorphism id−τH : H → H,
as desired.

3. Twisting sheaves

For every integer n we let O(n) denote the following σ-bundle of rank one: the underlying coherent
sheaf is simply the structure sheaf OḊ of Ḋ, and τO(n) is the isomorphism σ∗

Ḋ
OḊ

∼−→ OḊ furnished
by σ followed by multiplication by z−n. The corresponding R-module is simply R itself together
with the σ-linear automorphism f(z) �→ z−n · σ(f)(z). We will see that O(1) enjoys many of the
properties of ample twisting sheaves from algebraic and analytic geometry.

The tensor product of a σ-bundle with O(n) is abbreviated by F(n) := F ⊗ O(n) and called
a twist of F . Clearly we have F(n)(m) ∼= F(n + m) and F(n)∨ ∼= F∨(−n) and various other
compatibilities.

Proposition 3.1. H0(O(n)) is an F -vector space of dimension
0 if n < 0,
1 if n = 0,
∞ if n > 0.

Proof. By definition H0(O(n)) consists of all Laurent series f(z) =
∑

i aiz
i ∈ R with∑

aqi z
i−n = z−n ·

∑
aqi z

i = z−n · σ(f)(z) = f(z) =
∑

aiz
i.

This equation amounts to ai+nj = aq
−j

i for all i and j. Suppose first that n < 0. Then by Proposi-
tion 1.1 we need for any i that

log |ai+nj |
|i+ nj| =

q−j

|i+ nj| · log |ai|
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tends to −∞ as j → ∞. Since the first factor tends to zero, this can be only if ai = 0 for all i,
that is, if f(z) vanishes identically. This finishes the case n < 0. The case n = 0 is contained in
Proposition 2.3.

Suppose now that n > 0. Then there is no convergence problem for j → ∞, because by Proposi-
tion 1.1 it suffices that the lim sup is less than or equal to zero. For j → −∞ the factor q−j/|i+nj|
tends to infinity, so by Proposition 1.1 we have convergence if and only if log |ai| < 0. All in all we
find that the functions in H0(O(n)) correspond to the tuples (a1, . . . , an) in C satisfying |ai| < 1
for all i. It remains to show that the dimension of this space over F = Fq((z)) is infinite. Since F
is a finite extension of Fq((zn)), it suffices to prove the same over this subfield. Now(∑

j

bjz
nj

)
·
(∑

i

aiz
i

)
=
∑
k

(∑
j

bjak−nj
)
zk =

∑
k

(∑
j

bja
qj

k

)
zk;

hence g(z) =
∑
bjz

nj ∈ Fq((zn)) maps each coefficient ai to
∑

j bja
qj

i . Thus we must prove that
mC := {a ∈ C : |a| < 1} has infinite dimension as vector space over Fq((zn)) via the action(∑

bjz
nj
)
a :=

∑
j bja

qj
. For this, note that

log
∣∣∣∣∑ bja

qj

∣∣∣∣ = sup{log |bj | + qj log |a| : j ∈ Z
}

= sup{qj log |a| : j ∈ Z with bj �= 0}
= inf{qj : j ∈ Z with bj �= 0} · log |a|
∈ qZ · log |a|.

Thus in any non-trivial finite linear combination of elements aν ∈ mC, whose log |aν | are pairwise
inequivalent multiplicatively modulo qZ, no two non-zero summands have the same norm, and so
the total sum is non-zero. Since C is algebraically closed, its value group is Q-divisible. We can
therefore find infinitely many elements in mC whose logarithmic norms are pairwise inequivalent
modulo qZ. Thus the dimension in question is infinite, as desired.

Combining the isomorphism Hom(O(n),O(n′)) ∼= H0(O(n′−n)) with Proposition 3.1 we obtain
the following.

Proposition 3.2. Hom(O(n),O(n′)) is an F -vector space of dimension
0 if n > n′,
1 if n = n′,
∞ if n < n′.

In particular, O(n) and O(n′) are isomorphic if and only if n = n′.

Next we determine the size of H1.

Proposition 3.3. H1(O(n)) is an F -vector space of dimension{
∞ if n < 0,
0 if n � 0.

Proof. By definition H1(O(n)) is the cokernel of the homomorphism

R→ R,
∑
i

aiz
i �→

∑
i

aiz
i −
∑
i

aqi z
i−n =

∑
i

(ai − aqi+n)z
i.
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So for n � 0 we must show that this homomorphism is surjective. Consider a Laurent series
∑
biz

i ∈
R and the resulting equations ai − aqi+n = bi. Assume first that n = 0; then these are independent
Artin–Schreier equations. Moreover, any solution ai ∈ C satisfies |ai| = |bi|1/q if |bi| � 1, and for
|bi| < 1 there exists a solution satisfying |ai| = |bi|, namely ai =

∑
j�0 b

qj

i . In both cases we have
|ai| � |bi|, so the convergence of

∑
i aiz

i follows from the convergence of
∑
biz

i; hence the former
series lies in R. This proves the surjectivity in the case n = 0.

For n > 0 the equation ai − aqi+n = bi by induction yields the formulas

ai+jn = aq
−j

i − bq
−j

i − bq
1−j

i+n − · · · − bq
−1

i+(j−1)n (3.4)

and

ai−jn = bi−jn + bqi−(j−1)n + · · · + bq
j−1

i−n + aq
j

i (3.5)

for all j > 0 and all i. Since limi→−∞ bi = 0 by Proposition 1.1, we may select i � −n in any residue
class modulo n such that |bi′ | < 1 for all i′ � i. We set ai := 0 and define the ai±jn according to the
above formulas, and we will show that the resulting series

∑
j ajz

j lies in R. First, formula (3.5)
shows that

log |ai−jn|
|i− jn| � sup

{
qj−k · log |bi−kn|

|i− jn| : 1 � k � j

}
.

Fix an N > 0. The convergence condition in Proposition 1.1 then guarantees that log |bi−kn| �
−N · |i − kn| for, say, all k > k0. The terms for 1 � k � k0 in the above supremum are bounded
above by −ε · qj/|i − jn| for some fixed ε > 0, and this value tends to −∞ as j → ∞. The terms
for k0 < k � j are bounded above by

−N · qj

|i− jn| ·
|i− kn|
qk

.

Since k �→ qk/|i − kn| is a monotone increasing function for k > 0, this value is bounded above
by −N . It follows that log |ai−jn|/|i− jn| � −N for all j  0. As N was arbitrary, this shows that

lim sup
j→∞

log |ai−jn|
|i− jn| = −∞,

proving one half of the conditions in Proposition 1.1. For the other half, formula (3.4) shows that

log |ai+jn|
|i+ jn| � sup

{
qk−j · log |bi+kn|

|i+ jn| : 0 � k < j

}
.

Fix an ε > 0. The convergence condition in Proposition 1.1 then guarantees that log |bi+kn| �
ε · |i + kn| for, say, all k � k0. The terms for 0 � k < k0 in the maximum are bounded above by
C/(qj |i+jn|) for some fixed C > 0, and this value tends to zero as j → ∞. The terms for k0 � k < j
are bounded above by

ε · q
k|i+ kn|
qj|i+ jn| � ε.

It follows that log |ai+jn|/|i + jn| � ε for all j  0. As ε > 0 was arbitrary, this shows that

lim sup
j→∞

log |ai+jn|
|i+ jn| � 0,

proving the other half of the conditions in Proposition 1.1. Thus
∑

j ajz
j lies in R, proving the

surjectivity in the case n > 0.
It remains to show that dimF H

1(O(−n)) = ∞ for all n > 0. For this we use the following fact.
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Lemma 3.6. For any n > 0 there exists a short exact sequence of σ-bundles

0 −→ O(−n) −→ O(0)⊕2 −→ O(n) −→ 0.

Proof. Fix two points a, b ∈ Ḋ that are inequivalent under σZ
Ḋ

. By Proposition 5.1 below (whose
proof does not depend on Lemma 3.6), there exist non-zero functions fa, fb ∈ H0(O(1)) which
possess a zero of exact order one at aq

i
, respectively at bq

i
, for all i ∈ Z and no other zeroes.

Thus the vector bundle underlying O(n) is generated everywhere by the two global sections fna and
fnb ∈ H0(O(n)). The homomorphism of σ-bundles (fna , fnb ) : O(0)⊕2 → O(n) is therefore surjective,
and its kernel F is a σ-bundle of rank one. The formula O(0) ∼= ∧2(O(0)⊕2) ∼= F ⊗ O(n) now
implies that F ∼= O(−n), as desired.

To finish the proof of Proposition 3.3 we consider the long exact cohomology sequence associated
to the short exact sequence from Lemma 3.6. We obtain an exact sequence

F 2 = H0(O(0)⊕2) −→ H0(O(n)) −→ H1(O(−n)).

As the dimension of H0(O(n)) is infinite by Proposition 3.1, the same follows for H1(O(−n)), as
desired.

Combining the isomorphism Ext(O(n),O(n′)) ∼= H1(O(n′ − n)) with Proposition 3.3 yields the
following.

Proposition 3.7. Ext(O(n),O(n′)) is an F -vector space of dimension{
∞ if n > n′,
0 if n � n′.

4. Upper and lower bounds

In this section we prove the following results.

Theorem 4.1. For any σ-bundle F of rank r there exists an integer n0 such that F contains a
σ-subbundle isomorphic to O(−n)⊕r for every n � n0.

Theorem 4.2. For every σ-bundle F of rank r there exists an integer n0 such that F can be
embedded as a σ-subbundle into O(n)⊕r for every n � n0.

Proof of Theorem 4.2. Theorem 4.2 follows by applying Theorem 4.1 to the dual σ-bundle F∨.
Indeed, there exists an n0 ∈ Z such that for every n � n0 there is a σ-subbundle O(−n)⊕r ⊂ F∨,
and therefore F ⊂ (O(−n)⊕r)∨ ∼= O(n)⊕r.

Before proving Theorem 4.1 we note also the following consequence. Its proof is left to the
interested reader, because in any case it results from the classification Theorem 11.1 together with
Propositions 8.4 and 8.7, in whose proofs it is not used.

Theorem 4.3.

a) For any σ-bundle F there exists an integer n0 such that F(n) is generated by global sections
for every n � n0.

b) For any σ-bundle F there exists an integer n0 such that H1(F(n)) vanishes for every n � n0.

Remark. One standard way of proving such a result in algebraic or analytic geometry is to first show
that all higher cohomology groups H i(F) are finitely generated and then to make them vanish by
explicit construction after a sufficiently high twist. In our case we cannot follow this path, because
H1(F) may be infinite dimensional over F by Proposition 3.3.
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Proof of Theorem 4.1. We fix a radius ρ ∈ |C| with 0 < ρ < 1 and consider the following annuli in
Ḋ and their affinoid C-algebras:

A := {x ∈ C : |x| = ρ}, Rρ := OḊ(A),

A+ := {x ∈ C : ρ � |x| � ρ1/q}, Rρ+ := OḊ(A+),
A− := {x ∈ C : ρq � |x| � ρ}, Rρ− := OḊ(A−),

A± := {x ∈ C : ρq � |x| � ρ1/q}, Rρ± := OḊ(A±).

Any vector bundle on a closed annulus is free. We may therefore choose an isomorphism ϕ : F|A±
∼−→

O⊕r
A± . Then there is a matrix T ∈ GLr(Rρ−) such that ϕ◦τF = (T ·σ)◦ϕ as a map F(A+) → F(A−).

We denote by | · |ρ the supremum norm on Rρ. For every (r × r)-matrix W = (wµν) ∈ Mr(Rρ)
we set |W |ρ := sup{|wµν |ρ : all µ, ν}. Now let C := sup{|T |ρ, |σ−1(T−1)|ρ}, which is greater than or
equal to one. Fix a constant ε ∈ |C| with 0 < ε < 1. Since 0 < ρ < 1, we may fix n0 ∈ N such that
(ε/C)q+1 � ρ(q−1)n0 . We claim that Theorem 4.1 holds with this choice of n0. To show this consider
any n � n0 and choose a constant d ∈ C with |d| = ρ−nε/C. Then the monomial λ := dzn ∈ R
satisfies |λ|ρC = |d|ρnC = ε and

|σ(λ−1)|ρC = |d|−qρ−nC =
Cq+1

εq
ρ(q−1)n � ε.

We are going to describe an iteration process which produces the desired σ-subbundle. The
idea for this is based on a p-adic argument of Kedlaya [Ked01, Prop. 4.8]. For every Laurent series
w =

∑
i∈Z aiz

i ∈ Rρ we define

g(w) :=
∑

i with |ai|>1

aiz
i ∈ Rρ− and h(w) :=

∑
i with |ai|�1

aiz
i ∈ Rρ+.

Obviously we have w = g(w)+h(w). The use of this decomposition lies in the fact that σ has better
approximation properties on h(w), while its inverse σ−1 has better approximation properties on
g(w). By applying g and h to the entries of matrices we extend them to maps g : Mr(Rρ) →Mr(Rρ−)
and h : Mr(Rρ) →Mr(Rρ+). Consider the map

f : Mr(Rρ) →Mr(Rρ+), f(W ) := λ−1h(W ) − σ−1(T−1g(W )).

This is well defined, because σ−1(Rρ−) = Rρ+. Now we define sequences (Wl) in Mr(Rρ) and (Vl)
in Mr(Rρ+) by

V0 := λ−1Idr + σ−1(T−1),
Wl := Tσ(Vl) − λVl,

Vl+1 := Vl + f(Wl),

for all l � 0. We claim that Wl → 0 in the supremum norm | · |ρ and that Vl converges in Mr(Rρ).
First we need some estimates.

Lemma 4.4. For every W ∈Mr(Rρ) we have

a) |λσ−1(T−1g(W ))|ρ � ε|g(W )|ρ,
b) |σ(λ−1)Tσ(h(W ))|ρ � ε|h(W )|ρ,
c) |f(W )|ρ � |λ|−1

ρ |W |ρ, and

d) |Tσ(f(W )) − λf(W ) +W |ρ � ε|W |ρ.
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Proof. For w =
∑

i aiz
i ∈ Rρ we observe that |w|ρ = sup{|ai|ρi : i ∈ Z}, and so

|σ−1(g(w))|ρ = sup{|ai|1/qρi : i ∈ Z with |ai| > 1}
� sup{|ai|ρi : i ∈ Z with |ai| > 1}
= |g(w)|ρ

and

|σ(h(w))|ρ = sup{|ai|qρi : i ∈ Z with |ai| � 1}
� sup{|ai|ρi : i ∈ Z with |ai| � 1}
= |h(w)|ρ.

Thus we find

|λσ−1(T−1g(W ))|ρ � |λ|ρC|σ−1(g(W ))|ρ � ε|g(W )|ρ
and

|σ(λ−1)Tσ(h(W ))|ρ � |σ(λ−1)|ρC|σ(h(W ))|ρ � ε|h(W )|ρ,
proving items a and b. Furthermore,

|f(W )|ρ = |λ−1h(W ) − σ−1(T−1g(W ))|ρ
� sup{|λ−1h(W )|ρ, |λ−1|ρ|λσ−1(T−1g(W ))|ρ}
� |λ|−1

ρ sup{|h(W )|ρ, ε|g(W )|ρ}
� |λ|−1

ρ |W |ρ
shows item c and

|Tσ(f(W )) − λf(W ) +W |ρ
= |σ(λ−1)Tσ(h(W )) − g(W ) − h(W ) + λσ−1(T−1g(W )) +W |ρ
= |σ(λ−1)Tσ(h(W )) + λσ−1(T−1g(W ))|ρ
� sup{|σ(λ−1)Tσ(h(W ))|ρ, |λσ−1(T−1g(W ))|ρ}
� ε sup{|h(W )|ρ, |g(W )|ρ}
= ε|W |ρ

shows item d.

Continuing with the proof of Theorem 4.1, we see that Lemma 4.4 item d implies

|Wl+1|ρ = |Tσ(Vl+1) − λVl+1|ρ
= |Tσ(Vl) + Tσ(f(Wl)) − λVl − λf(Wl)|ρ
= |Tσ(f(Wl)) − λf(Wl) +Wl|ρ
� ε|Wl|ρ.

Therefore, Wl converges to zero in the supremum norm | · |ρ, and so by Lemma 4.4 item c the same
holds for Vl+1 − Vl = f(Wl). Thus the sequence (Vl) converges to a matrix V ∈ Mr(Rρ). Using
Lemma 4.4 item c again we also deduce that

|Vl+1 − Vl|ρ = |f(Wl)|ρ
� |λ|−1

ρ |Wl|ρ
� |λ|−1

ρ |W0|ρ
= |λ|−1

ρ |σ(λ−1)T + Idr − Idr − λσ−1(T−1)|ρ
698



Vector bundles with a Frobenius structure

� |λ|−1
ρ sup{|σ(λ−1)T |ρ, |λσ−1(T−1)|ρ}

� |λ|−1
ρ sup{|σ(λ−1)|ρC, |λ|ρC}

= ε|λ|−1
ρ

for all l � 0. Since, on the other hand,

|V0 − λ−1Idr|ρ = |σ−1(T−1)|ρ � C = ε|λ|−1
ρ ,

we deduce that

|V − λ−1Idr|ρ � sup{ε|λ|−1
ρ , |V0 − λ−1Idr|ρ} = ε|λ|−1

ρ < |λ|−1
ρ

and therefore V ∈ GLr(Rρ). Next consider the equation

TσVl = λV +Wl + λ(Vl − V )

in Mr(Rρ) for l → ∞. The second and the third terms on the right-hand side converge to zero in
the norm | · |ρ; and hence also coefficientwise. The left-hand side lies in Mr(Rρ−) and converges to
Tσ(V ) in the supremum norm on the annulus {x ∈ C : |x| = ρq}, and thus again coefficientwise.
Thus in the limit we obtain the Laurent series identity Tσ(V ) = λV . This identity implies that
V = λ−1Tσ(V ) converges on the annulus {x ∈ C : |x| = ρq} as well as on A; and so we see that
actually V ∈Mr(Rρ−).

Finally, choose e ∈ C such that eq−1 = d. Then

Tσ(e−1V ) = e−qλV = e−q dznV = zn · e−1V.

Thus U0 := ϕ−1(e−1V ) is an r-tuple of sections in F(A−) which over A generates F and satisfies
τFU0 = znU0. If we define Uk := (z−nτF )k(U0) ∈ F(σk

Ḋ
A−) for all k ∈ Z, the Uk glue to give a

linearly independent r-tuple U of global sections in F(Ḋ) that satisfies τFU = znU . Thus U defines
the desired injection O(−n)⊕r ↪→ F .

5. σ-Bundles of rank one

To classify σ-bundles of rank one we will need to construct functions with prescribed divisors.

Proposition 5.1. For any a ∈ Ḋ there exists a non-zero function fa ∈ H0(O(1)) which possesses
a zero of exact order one at aq

i
for all i ∈ Z and no other zeroes.

Proof. Set

ga :=
∏
i�0

(
1 − aq

i

z

)
.

As aq
i

converges to zero at exponential speed, this infinite product converges to a function in R
which has a zero of exact order one at aq

i
for all i � 0 and no other zeroes. By construction we also

have

σ(ga)(z) =
(
1 − a

z

)−1 · ga(z). (5.2)

On the other hand, we will construct a function ha(z) =
∑

i�0 biz
i ∈ R with non-zero constant

coefficient and which satisfies

σ(ha)(z) = (z − a) · ha(z). (5.3)

This equation amounts to the equations bq0 = −ab0 and bqi = bi−1 − abi for all i > 0. These
equations can be solved inductively for all i, by letting b0 be any (q−1)th root of −a and solving an
Artin–Schreier equation for every remaining coefficient, using the fact that C is algebraically closed.
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By induction on i one easily proves |bi| = |a|q−i/(q−1). In particular, the coefficients are bounded,
and so ha indeed defines a holomorphic function on Ḋ, which is also holomorphic at zero. Now
consider the divisor ∆ := div(ha) −

∑
i<0(a

qi
) on Ḋ. Equation (5.3) implies

σ∗
Ḋ

∆ − ∆ = div
(
σ(ha)
ha

)
−
∑
i<0

(aq
i+1

) +
∑
i<0

(aq
i
) = (a) − (a) = 0.

Thus if supp(∆) contains a point c ∈ Ḋ, it contains cq
i

for every i ∈ Z. But this is impossible,
because ha is holomorphic and non-zero at 0 and so 0 is not an accumulation point of supp(∆).
Therefore, ∆ = 0 and ha has a zero of exact order one at aq

i
for all i < 0 and no other zeroes.

Combining all this information, the function fa := ga ·ha ∈ R now has a zero of exact order one at
aq

i
for all i ∈ Z and no other zeroes, and by Equations (5.2) and (5.3) it satisfies σ(fa)(z) = z ·fa(z),

that is, it is an element of H0(O(1)).

Theorem 5.4. Every σ-bundle of rank one is isomorphic to O(n) for a unique integer n.

Proof. The uniqueness of n is contained in Proposition 3.2. For the existence let us fix a σ-bundle
F of rank one. By Theorem 4.2 we can identify F with a σ-subbundle of O(m) for some integer m.
Then F(−m) ⊂ O is the ideal sheaf of a σ-invariant divisor ∆ on Ḋ. Since the support of any
divisor on Ḋ contains only finitely many points of any closed annulus {x ∈ C : ρq � |x| � ρ},
the set supp(∆)/σZ

Ḋ
is finite. Let ai ∈ Ḋ be representatives with multiplicities 
i for 1 � i � k.

Letting fai be the associated functions from Proposition 5.1, we find that ∆ is also the divisor of the
function f :=

∏k
i=1 f

�i
ai

. Therefore, multiplication by f induces an isomorphism of the underlying
vector bundles O ∼−→ F(−m) ⊂ O. Since f is a section in H0(O(
)) for 
 :=

∑k
i=1 
i, this defines an

isomorphism of σ-bundles O(0) ∼−→ F(−m+ 
) ⊂ O(
). Therefore, F ∼= O(m− 
), as desired.

Corollary 5.5. The vector bundle underlying any σ-bundle is free.

Proof. Let F be a σ-bundle of rank r. Then by Theorem 5.4 and the definition of O(n) the line
bundle underlying

∧r F is free. From Theorem 1.2 it now follows that the vector bundle underlying
F is free.

6. Semi-stability

The rank of a σ-bundle F is the rank of the underlying vector bundle and is denoted rankF . By
Theorem 5.4 the highest exterior power

∧rankF F is isomorphic to O(d) for a unique integer d. This
integer is called the degree of F and denoted degF .

Proposition 6.1. The degree is additive in short exact sequences.

Proof. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence of σ-bundles, of respective ranks r′,
r and r′′. Then there is a natural isomorphism

∧r F ∼= ∧r′ F ′⊗∧r′′ F ′′, and hence an isomorphism

O(degF) ∼= O(degF ′) ⊗O(degF ′′) ∼= O(degF ′ + degF ′′).

The additivity thus results from the uniqueness in Theorem 5.4.

Proposition 6.2. Let F be a σ-bundle and G ⊂ F a σ-subbundle with rankG = rankF . Then
deg G � degF , and equality holds if and only if G = F .

Proof. Let r := rankF . Then O(deg G) ∼= ∧r G ⊂ ∧r F ∼= O(degF) is a non-zero σ-subbundle.
By Proposition 3.2 it follows that deg G � degF . If the degrees are equal, the determinant of the
inclusion morphism G ⊂ F is an isomorphism; hence the inclusion itself is an isomorphism.
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Next, if rankF > 0, the weight of F is defined as

µ(F) :=
degF
rankF .

A non-zero σ-bundle F is said to be semi-stable if µ(G) � µ(F) for all non-zero σ-subbundles G
of F . It is said to be stable if µ(G) < µ(F) for all non-zero proper σ-subbundles G of F . These
notions make sense because of the following fact.

Proposition 6.3.

a) The weights of all non-zero σ-subbundles of any non-zero σ-bundle are bounded above. More-
over, there exists a non-zero σ-subbundle of maximal weight, and any such σ-subbundle is
semi-stable.

b) O(n)⊕r is semi-stable of weight n.

Proof. First we prove item b. Consider a non-zero σ-subbundle G ⊂ O(n)⊕r of rank s. Then we
have

O(deg G) ∼=
s∧
G ⊂

s∧
(O(n)⊕r) ∼= O(sn)⊕(r

s).

At least one of the coefficients therefore yields a non-zero homomorphism of σ-bundles O(deg G) →
O(sn). From Proposition 3.2 it thus follows that deg G � sn, and hence µ(G) � n, as desired.

To prove item a we may assume by Theorem 4.2 that F ⊂ O(n)⊕r for some r and n. Then
every σ-subbundle of F is also a σ-subbundle of O(n)⊕r and therefore of weight less than or equal
to n. Next the weights of all non-zero σ-subbundles are rational numbers with denominator less
than or equal to r. Thus they form a discrete subset of R which is non-empty and bounded above;
hence it contains a maximum. By construction, any non-zero σ-subbundle of maximal weight is
semi-stable.

Using Proposition 6.3 one can easily show that every σ-bundle possesses a unique Harder–
Narasimhan filtration (compare with Harder and Narasimhan [HN75, § 1.3]). Indeed, for non-zero
F let µ ∈ Q be the largest possible weight of a non-zero σ-subbundle; then the first non-zero step
of this filtration is the unique largest σ-subbundle of weight µ. The remaining filtration steps are
obtained by induction, repeating the procedure with the quotient. See also Corollary 11.7 below.

7. Finite maps

For any positive integer n let us now consider the morphism [n] : Ḋ → Ḋ, x �→ xn which on the
underlying ring is defined as

[n]∗ : R→ R, f(z) =
∑
i

aiz
i �→

∑
i

aiz
ni.

Note that this map is given by substituting zn for z and is therefore a homomorphism of C-algebras,
while σ was given by its action on the coefficients. This map induces the following two operations.
The pull-back [n]∗F of a σ-bundle F is the pull-back of the associated vector bundle together with
the induced isomorphism

σ∗
Ḋ

[n]∗F = [n]∗σ∗
Ḋ
F [n]∗τF−→ [n]∗F .

On R-modules this operation maps M to R ⊗[n],R M with the σ-linear automorphism τ[n]∗M :=
σ ⊗ τM . The push-forward [n]∗F is the push-forward of the associated vector bundle together with
the induced isomorphism

σ∗
Ḋ

[n]∗F = [n]∗σ∗ḊF
[n]∗τF−→ [n]∗F .
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On R-modules this operation maps M to itself, viewed as a new R-module via [n] : R → R, and
with τ[n]∗M := τM . Clearly both operations define functors from the category of σ-bundles to itself,
and [n]∗ is a right adjoint of [n]∗.

Proposition 7.1.

a) [n]∗O(m) ∼= O(nm).

b) deg[n]∗F = n · degF .

c) rank[n]∗F = rankF .

d) µ([n]∗F) = n · µ(F).

Proof. Assertions a and c follow directly from the definitions of [n]∗ and O(m). Assertion b follows
from a and the fact that [n]∗ commutes with exterior powers. Finally, assertions b and c together
imply assertion d.

Proposition 7.2. Hom([n]∗F , [n]∗G) ∼= F ⊗[n],F Hom(F ,G).

Proof. This follows directly from the definitions and the isomorphism R⊗[n],RM ∼= F ⊗[n],FM .

Proposition 7.3. F ∼= G if and only if [n]∗F ∼= [n]∗G.

Proof. The ‘only if’ part follows from the fact that [n]∗ is a functor. For the ‘if’ part suppose that
there exists an isomorphism ϕ : [n]∗F ∼−→ [n]∗G. Then Proposition 7.1 shows that r := rankF =
rankG and degF = deg G. By Proposition 7.2 we can select a finite-dimensional F -subspace
V ⊂ Hom(F ,G) such that ϕ ∈ F ⊗[n],F V . Now by Proposition 6.2 any injective homomor-
phism ψ ∈ V is an isomorphism. Thus ψ ∈ V is an isomorphism if and only if its determinant
detψ ∈ Hom(

∧r F ,∧r G) ∼= F is non-zero. This determinant is given by a homogeneous polynomial
map V → F , which after base change via F ⊗[n],F (·) induces the corresponding determinant map
for homomorphisms [n]∗F → [n]∗G. The fact that ϕ is an isomorphism means that detϕ �= 0, and
so the map det : V → F is not identically zero. Therefore, there exists ψ ∈ V with detψ �= 0, and
this ψ is the desired isomorphism F → G.

Proposition 7.4. [n]∗[n]∗F ∼= F⊕n.

Proof. [n]∗[n]∗M is obtained from M by adjoining z1/n, with the obvious module structure over R.
Thus

[n]∗[n]∗M ∼=
n⊕
i=1

zi/n ⊗M ∼= M⊕n,

as desired.

Proposition 7.5. [n]∗[n]∗O(m) ∼= O(m)⊕n.

Proof. (For the generalization to arbitrary σ-bundles see Corollary 11.5.) By definition O(m) cor-
responds to the R-module R together with the map τ = z−m · σ. The operation [n]∗[n]∗ amounts
to tensoring over the subring Rn := [n](R) with a new copy of R. Thus the module corresponding
to [n]∗[n]∗O(m) is isomorphic to R[w]/(wn − zn) together with τ = w−m · σ. Since z is invert-
ible in R, we may rewrite this in terms of the new variable u := w/z as R[u]/(un − 1) together
with τ = u−mz−m · σ. Thus Hom(O(m), [n]∗[n]∗O(m)) corresponds to the module R[u]/(un − 1)
together with τ = u−m · σ. This is the base change via R⊗C of the finite-dimensional C-vector
space C[u]/(un−1) together with the σ-linear automorphism τ = u−m ·σ. By Artin–Schreier theory
(see Katz [Gro72, exp. XXII, Proposition 1.1]), or by an easy explicit calculation, this vector space
possesses a τ -invariant basis. This basis induces the desired isomorphism.
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Proposition 7.6. [n]∗O(m) is semi-stable of rank n, degree m, and weight m/n.

Proof. Propositions 6.3 (item b) and 7.5 show that [n]∗[n]∗O(m) is semi-stable of rank n and
weight m. Consider a non-zero σ-subbundle G ⊂ [n]∗O(m). Then [n]∗G is a non-zero σ-subbundle of
[n]∗[n]∗O(m), so by the latter’s semi-stability its weight satisfies µ([n]∗G) � m = µ([n]∗[n]∗O(m)).
Proposition 7.1 item d now shows that µ(G) � m/n = µ([n]∗O(m)), as desired.

8. Building blocks

For any pair of relatively prime integers d, r with r > 0, and only for those, we now set Fd,r :=
[r]∗O(d). By Proposition 7.6 this is a σ-bundle of rank r and weight d/r. The assumption on d
and r thus implies that the rank is precisely the denominator of the weight. Of course we have
Fn,1 ∼= O(n) for every integer n. In the general case consider the (r × r)-matrix

Ad,r :=


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
z−d 0 · · · · · · 0

 . (8.1)

Then the vector bundle underlying Fd,r can be identified with O⊕r such that τFd,r
is the isomorphism

σ : σ∗
Ḋ
O⊕r ∼−→ O⊕r followed by multiplication by Ad,r. The corresponding R-module is then R⊕r

together with the σ-linear automorphism

Ad,r · σ : R⊕r −→ R⊕r, m �→ Ad,r · σ(m),

where σ acts on m componentwise.

Proposition 8.2. Fd,r is stable.

Proof. By Proposition 7.6 it is semi-stable. To show that it is stable, consider a non-zero σ-subbundle
G ⊂ Fd,r with µ(G) = µ(Fd,r) = d/r. Since d and r are relatively prime, the denominator rankG
of µ(G) must be divisible by r. Thus G is a σ-subbundle of equal rank r and degree d. With
Proposition 6.2 we conclude that G = Fd,r, as desired.

Proposition 8.3.

a) Fd,r ⊗Fd′,r′ ∼= F⊕rr′/r′′
d′′,r′′ , where d/r + d′/r′ = d′′/r′′ with each fraction in lowest terms.

b) Fd,r(n) ∼= Fd+rn,r.
c) F∨

d,r
∼= F−d,r.

d) Hom(Fd,r,Fd′,r′) ∼= F⊕rr′/r′′
d′′,r′′ , where d′/r′ − d/r = d′′/r′′ with each fraction in lowest terms.

Proof. To prove assertion a we note that by Proposition 7.3 it suffices to prove the isomorphy after
applying [rr′]∗. Using Propositions 7.5 and 7.1 (item a) the left-hand side then becomes

[rr′]∗(Fd,r ⊗Fd′,r′) ∼= [r′]∗[r]∗Fd,r ⊗ [r]∗[r′]∗Fd′,r′
∼= [r′]∗O(d)⊕r ⊗ [r]∗O(d′)⊕r

′

∼= O(r′d)⊕r ⊗O(rd′)⊕r
′

∼= O(r′d+ rd′)⊕rr
′
.
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Similarly, since r′′|rr′ the right-hand side becomes

[rr′]∗F⊕rr′/r′′
d′′,r′′

∼= [rr′/r′′]∗O(d′′)⊕rr
′

∼= O(rr′d′′/r′′)⊕rr
′

= O(r′d+ rd′)⊕rr
′
,

as desired. Assertion b is the special case of assertion a with (d′, r′) = (n, 1). Assertion c can be
seen easily from the explicit description of Fd,r above. Finally, assertion d results from assertions a
and c.

Proposition 8.4. H0(Fd,r) is an F -vector space of dimension
0 if d/r < 0,
1 if d/r = 0 and hence r = 1,
∞ if d/r > 0.

Proof. This follows from Proposition 3.1 together with the fact that H0(Fd,r) = H0([r]∗O(d)) ∼=
H0(O(d)) with the new F -vector space structure via [r] : F → F ,

∑
aiz

i �→∑
aiz

ri.

Proposition 8.5. Hom(Fd,r,Fd′,r′) is an F -vector space of dimension
0 if d/r > d′/r′,
r2 if d/r = d′/r′,
∞ if d/r < d′/r′.

In particular, Fd,r and Fd′,r′ are isomorphic if and only if (d, r) = (d′, r′).

Proof. This results from Propositions 8.3 (item d) and 8.4 by taking H0.

For the sake of completeness we determine the endomorphism ring precisely.

Proposition 8.6. End(Fd,r) := Hom(Fd,r,Fd,r) is a central division algebra over F of dimension
r2 and invariant −d/rmod Z.

Proof. The σ-bundle Fd,r can be described by the R-module R⊕r together with the automorphism
τ = Ad,r · σ, where Ad,r is the matrix (8.1). Thus End(Fd,r) corresponds to the ring of matrices
B = (bi,j) ∈ Mr(R) satisfying BAd,r = Ad,rσ(B). One easily checks that on the coefficients this
means that

bi,r = σr(bi,r) for all i,
and

bi,j =

{
σr−j(bi+r−j,r) for i � j,
z−dσr−j(bi−j,r) for i > j.

The first equation means that bi,r ∈ Fqr((z)); hence the map (bi,j)ri,j=1 �→ (bi,r)ri=1 induces an
isomorphism of additive groups End(Fd,r) ∼−→ Fqr((z))⊕r . The second equation means that the
product on End(Fd,r) corresponds to

(bi,r)ri=1 · (ci,r)ri=1 =
( r∑
j=i

cj,rσ
r−j(br+i−j,r) + z−d

i−1∑
j=1

cj,rσ
r−j(bi−j,r)

)r
i=1

.

These equations describe the cyclic central simple F -algebra of degree r associated to the element
z−d according to Reiner [Rei75, § 30]. By definition it has invariant −d/rmod Z; see [Rei75, p. 266].
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Proposition 8.7. H1(Fd,r) is an F -vector space of dimension{
∞ if d/r < 0,
0 if d/r � 0.

Proof. This follows from Proposition 3.3 as in the proof of Proposition 8.4.

Proposition 8.8. Ext(Fd,r,Fd′,r′) is an F -vector space of dimension{
∞ if d/r > d′/r′,
0 if d/r � d′/r′.

Proof. This results from Propositions 8.3 (item d) and 8.7 by taking H1.

9. Global sections

As a preliminary step for the classification of σ-bundles in § 11 we prove the following.

Proposition 9.1. For every extension 0 → O(−1) → F → F1,r → 0 of σ-bundles we have
H0(F) �= 0.

First we derive a corollary from this.

Corollary 9.2. For every extension 0 → O(−n) → F → O(n) → 0 of σ-bundles we have
H0(F) �= 0.

Proof of Corollary 9.2. For n � 0 this follows from Proposition 3.1, and for n = 1 from Propo-
sition 9.1. So let n > 1. We proceed by induction on n. Choose any non-zero homomorphism
O(n− 1) → O(n+ 1) using Proposition 3.2 and consider the commutative diagram

0 −→ O(−n+ 1) −→ F(1) −→ O(n+ 1) −→ 0

|| ⋃
�

⋃
0 −→ O(−n+ 1) −→ F̃ −→ O(n− 1) −→ 0

where the second row is constructed via pull-back from the first row. The induction hypothesis
implies that H0(F̃) �= 0; hence Hom(O(−1),F) = H0(F(1)) �= 0. So there exists a subbundle
O(−1) ∼= F ′ ⊂ F . If F ′ is not saturated, its saturation has degree greater than or equal to zero by
Proposition 6.2 and thus possesses non-trivial global sections by Proposition 3.1; hence H0(F) �= 0,
as desired. If F ′ is saturated, Proposition 6.1 shows that deg(F/F ′) = 1; hence F fits into an exact
sequence

0 −→ O(−1) −→ F −→ O(1) −→ 0,

and again Proposition 9.1 shows that H0(F) �= 0.

Proof of Proposition 9.1. The σ-bundle F can be given by the free R-moduleM = R⊕(r+1) together
with

τM =
(
z b
0 A

)
· σ,
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where A = A1,r is the matrix (8.1) and b = (bt)rt=1 ∈ Rr is a row vector. We must find an element
u ∈ R and a column vector v = (vt)rt=1 ∈ Rr, not both zero, such that(

u
v

)
=
(
z b
0 A

)
· σ
(
u
v

)
=
(
zσ(u) + bσ(v)

Aσ(v)

)
.

If v were zero, then u would be a non-zero section of O(−1), contradicting Proposition 3.1. Thus
v �= 0. The equation v = Aσ(v) amounts to vt = σr−t(vr) for all 1 � t < r and vr = z−1σr(vr).
As in the proof of Proposition 3.1 we see that the non-zero solutions of these equations are given
precisely by

vt =
∑
i∈Z

z−iwq
ir−t

for some w ∈ C with 0 < |w| < 1. For any such choice of w we have f := bσ(v) ∈ R, and u ∈ R
must satisfy u = zσ(u) + f . By induction on m this is equivalent to

u = zmσm(u) +
m−1∑
j=0

zjσj(f)

for all m � 1. Writing f =
∑

i fiz
i and u =

∑
i uiz

i this means that

ui = uq
m

i−m +
m−1∑
j=0

f q
j

i−j

for all i ∈ Z. By Proposition 1.1 we may take the limit as m→ ∞, and so the unique choice for ui
is given by the convergent series

ui =
∑
j�0

f q
j

i−j.

The only remaining problem is to find w ∈ C with 0 < |w| < 1 such that u ∈ R. This problem is
difficult to solve for the following reason. Since degF = 0, the classification Theorem 11.1 which
we are going to prove implies that for typical b we have F ∼= O(0)⊕(r+1). Thus the F -vector space
H0(F) will tend to have finite dimension, whereas {w ∈ C : |w| < 1} is infinite-dimensional. Finding
a non-zero element in that finite-dimensional subspace is somewhat tricky. We study the two sides
of the convergence problem separately.

Lemma 9.3. The part of u with negative powers of z always converges on Ḋ.

Proof. The fact that f ∈ R implies that (1/i) log |f−i| → −∞ for i → ∞ by Proposition 1.1. If
N ∈ N is chosen such that log |f−i| � 0 for all i � N , we deduce for i � N that

log |u−i|
i

� sup
{
qj log |f−i−j|

i
: j � 0

}
� sup

{
log |f−i−j|
i+ j

: j � 0
}

→ −∞ for i→ ∞.

By Proposition 1.1 this proves the claim.

Lemma 9.4. The part of u with positive powers of z converges on Ḋ if and only if

lim sup
i→∞

log |ui|
qi

� 0.
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Proof. The respective condition in Proposition 1.1 requires that

lim sup
i→∞

log |ui|
i

� 0.

Both conditions depend only on the terms with log |ui| > 0 and, since qi � i for all i, the condition
in the lemma is clearly necessary. To show that it is also sufficient note that for all i and k � 1 we
have ui = uq

−k

i+k −
∑k

j=1 f
q−j

i+j . Therefore,

log |ui|
qi

� sup
{

log |ui+k|
qi+k

,
log |fi+j|
qi+j

: 1 � j � k

}
.

Fixing i and letting k → ∞, the condition in the lemma implies that

log |ui|
qi

� sup
{

0,
log |fi+j|
qi+j

: j � 1
}
.

Therefore,

lim sup
i→∞

log |ui|
i

� lim sup
i→∞

(
sup

{
0,

log |fi+j|
iqj

: j � 1
})

� lim sup
i→∞

(
sup

{
0,

log |fi+j|
i+ j

: j � 1
})

= sup
{

0, lim sup
k→∞

log |fk|
k

}
.

Since f ∈ R, this is less than or equal to zero by Proposition 1.1, as desired.

Now we expand ui explicitly in terms of w. From

f = bσ(v) =
r∑
t=1

btσ(vt)

=
r∑
t=1

(∑
j∈Z

bt,jz
j

)
·
(∑
i∈Z

z−iwq
ir−t+1

)

=
∑
i,j∈Z

r∑
t=1

bt,jw
qir−t+1

zj−i

we obtain

fk =
∑
j∈Z

r∑
t=1

bt,jw
q(j−k)r−t+1

.

Therefore,

uq
−i

i =
∑
j�0

f q
j−i

i−j =
∑
k�i

f q
−k

k =
∑
k�i

∑
j∈Z

r∑
t=1

bq
−k

t,j w
q(j−k)r−k−t+1

.

We abbreviate n := r + 1 and mrj−t+1 := bt,j . Then m :=
∑

�m�z
� ∈ R and

uq
−i

i =
∑
k�i

∑
�∈Z

mq−k

� wq
�−nk

.

So by the preceding lemmas Proposition 9.1 is reduced to the following assertion, whose proof
occupies the next section.
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Proposition 9.5. For every n � 2 and every m =
∑

�m�z
� ∈ R there exists w ∈ C with 0 < |w| < 1

such that

lim sup
i→∞

log
∣∣∣∣∑
k�i

∑
�∈Z

mq−k

� wq
�−nk

∣∣∣∣ � 0.

10. The fundamental estimate

In this section we prove Proposition 9.5.

10.1 The convergence of the double series in Proposition 9.5 was shown implicitly in the preceding
section. Note that the terms with |m�| � 1 do not affect the desired inequality. Thus after removing
them we may assume that the principal part of m is finite. Moreover, the lim sup does not change
if m is replaced by znrσr(m) for any r  0. Therefore, we may assume that

m =
∑
�>0

m�z
�.

10.2 Since now m converges in a neighborhood of 0 and vanishes at 0, there exists a constant
c > 0 such that log |m�| � c
 for all 
. Since x � qx for all x ∈ R, this implies that for all 
 we have

log |m�| � cnq�/n.

10.3 We will choose w with log |w| � −cn. This has the effect that

log |mq−k

� wq
�−nk | = q−k log |m�| + q�−nk log |w|

� q−kq�/ncn+ q�−nk(−cn)

= cn(q(�−nk)/n − q�−nk),

which is less than or equal to zero if 
− nk � 0. So only the terms with 
 < nk contribute to our
condition.

10.4 To deal with the remaining terms we set j := nk − 
 and write

Fi(z) :=
∑
k�i

∑
0<�<nk

mq−k

� zq
�−nk

=
∑

0<k�i

∑
0<j<nk

mq−k

nk−jz
q−j

=
∑

0<j<ni

Fi,jz
q−j

with

Fi,j :=
∑

j/n<k�i
mq−k

nk−j ∈ C.

We need to find w with lim supi→∞ log |Fi(w)| � 0. We begin with some estimates.

10.5 For all 0 < j < ni we set

ϕi,j := log |Fi,j |,
and for all j > 0 we set

ϕj := lim sup
i→∞

ϕi,j.
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A direct calculation shows that Fi+�,j+n� = F q
−�

i,j for all 
. Therefore,

ϕi+�,j+n� = q−�ϕi,j

and hence
ϕj+n� = q−�ϕj .

10.6 Also, the estimate § 10.2 implies

ϕi,j � sup{q−k log |mnk−j| : j/n < k � i} � q−j/ncn

and hence
ϕj � q−j/ncn.

10.7 Next we estimate the difference Fi′ − Fi. Take 0 < j < ni � ni′. Then by § 10.2 we have

log |Fi′,j − Fi,j| � sup{q−k log |mnk−j| : i < k � i′}
� sup{q−kc(nk − j) : i < k � i′}
� cn sup{q−kk : i < k � i′}.

The function x �→ q−xx has derivative q−x(1 − x log q); hence, it is monotone decreasing for x �
2 > 1/ log q. Thus we deduce that for i′ � i � 2 we have

log |Fi′,j − Fi,j | � cniq−i.

10.8 Now we distinguish two cases. Suppose first that ϕj � 0 for all j. Then the estimate in
§ 10.7 implies for all i � 2 and all 0 < j < ni � ni′ that

ϕi,j = log |Fi′,j + (Fi,j − Fi′,j)|
� sup{ϕi′,j, cniq−i}
� cniq−i

by taking i′  0. So for all i � 2 and all w ∈ C with |w| < 1 we deduce that

log |Fi(w)| < sup{ϕi,j : 0 < j < ni} � cniq−i.

This goes to zero as i→ ∞. Therefore, every w as above with log |w| � −cn satisfies the condition
in Proposition 9.5. (One can show that in this case the extension in Proposition 9.1 splits, and the
only other possibility is that F ∼= O(0)⊕(r+1); cf. Theorem 11.1.)

10.9 In the rest of the proof we assume that there exists j > 0 with ϕj > 0. From § 10.5 we
see that this must then be so for some 0 < j � n. Using § 10.7 and the fact that cniq−i becomes
arbitrarily small as i → ∞ we deduce that ϕi,j = ϕj for all sufficiently large i > j/n. Let i0 � 2
be such that ϕi,j = ϕj for all i � i0 and for all 0 < j � n with ϕj > 0. Applying § 10.5 and the
transformation (i, j) → (i+ 
, j + n
) implies

∀j > 0, ∀i � i0 +
j

n
: ϕj > 0 =⇒ ϕi,j = ϕj .

10.10 Observe now that every Fi(z) is a fractional q-polynomial, meaning that the exponents of
z are of the form qj for j ∈ Z. We cannot simply go to the limit of the Fi. Instead, we will construct
a sequence wi of zeroes of the respective Fi which converges to the desired w as i → ∞. The first
step is to find zeroes of a single Fi of the right absolute value. This depends on the slopes of the
Newton polygon of Fi.
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10.11 By the theory of Newton polygons Fi possesses a zero of absolute value α if and only if
the function j �→ |Fi,j |αq−j

attains its maximum at two different points j1 < j2. Thus it possesses
a zero of logarithmic absolute value −ρ < 0 if and only if the function j �→ ϕi,j − q−jρ attains its
maximum at two different points. In view of § 10.9 we first determine the maximum of the function
j �→ ϕj − q−jρ.

Lemma 10.12. There exist ρ � cn and j2 > j1 > 0 such that ϕj − q−jρ attains its maximum among
all j > 0 at both j = j1 and j = j2 and that maximum is positive.

Proof. First we determine the maximum within the residue class modn of a given j0 with ϕj0 > 0.
This maximum is achieved at j > n if and only if for all k > −j/n we have

ϕj − q−jρ � ϕj+nk − q−j−nkρ = q−kϕj − q−nkq−jρ,

the last equality coming from § 10.5. This means that for all k > −j/n we have

(1 − q−k)ϕj � (1 − q−nk)q−jρ,

or equivalently for all integers k > 0 and 0 < k′ < j/n we have

1 − q−nk

1 − q−k
� ϕj
q−jρ

� qnk
′ − 1

qk′ − 1
.

It is enough to have this for k = k′ = 1, that is, to have

q1−n · q
n − 1
q − 1

=
1 − q−n

1 − q−1
� ϕj
q−jρ

� qn − 1
q − 1

.

Now within the given residue class we have j = j0 + n
, and so by § 10.5

ϕj
q−jρ

=
q−�ϕj0
q−j0−n�ρ

= q(n−1)� · ϕj0
q−j0ρ

.

Since n � 2, for any ρ  cn we deduce that within the residue class j0 modn the maximum is
achieved either at precisely one point j > n or at precisely two points j + n, j > n. Furthermore,
the value of that maximum is

ϕj − q−jρ � q−jρ
(

1 − q−n

1 − q−1
− 1
)

= q−jρ
q−1 − q−n

1 − q−1
> 0.

So combining everything we conclude that for every ρ  cn the function j �→ ϕj − q−jρ attains a
positive maximum for at least one and at most finitely many points j > 0. As soon as that maximum
is attained at more than one point, we are done. So consider ρ cn for which a positive maximum
is attained at some j > 0. Then the above formulas show that for qn−1ρ in place of ρ the maximum
is attained at j + n instead of j. Thus as ρ increases to qn−1ρ, it must reach a point where the
maximum is attained at two places. This proves the lemma.

Lemma 10.13. Let ρ be as in Lemma 10.12. Then there exists i1 � 2 such that for all i � i1 the
function Fi has a zero wi ∈ C with log |wi| = −ρ.
Proof. Let j2 > j1 > 0 be as in Lemma 10.12. We must determine i1 � 2 such that for all i � i1
we have j2 < in and the function j �→ ϕi,j − q−jρ attains its maximum at j1 and j2. For this we
first require that i1 � i0 + j2/n. Then by § 10.9 we have ϕi,j = ϕj for j = j1, j2 and all i � i1. It
remains to show that

ϕi,j − q−jρ � ϕj1 − q−j1ρ
for all i � i1 and all 0 < j < in. Here the right-hand side is positive by Lemma 10.12. By § 10.6 the
left-hand side is always less than or equal to q−j/ncn; hence the inequality holds whenever j  0,
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independent of i. Fix one of the finitely many remaining j. If ϕj > 0, we require that i1 � i0 + j/n.
Then by § 10.9 and Lemma 10.12 for all i � i1 we have

ϕi,j − q−jρ = ϕj − q−jρ � ϕj1 − q−j1ρ,

as desired. If ϕj � 0, by the definition of ϕj for all i 0 we have

ϕi,j − q−jρ � 0 < ϕi,j1 − q−j1ρ.

In this case we adjust i1 so that this holds for all i � i1. Altogether we have found finitely many
lower bounds on i1 which imply the desired assertion.

Lemma 10.14. Consider a non-zero fractional q-polynomial G(z) =
∑

j Gjz
qj

, indexed by finitely
many j ∈ Z. For every λ ∈ R consider the ball

Bλ := {ζ ∈ C : log |ζ| � λ}
and set

ψ(λ) := sup{log |Gj | + qjλ : all j}.
Then

G(Bλ) = Bψ(λ).

Proof. For ζ ∈ C with log |ζ| � λ we have

log |G(ζ)| � sup{log |Gjζqj | : all j} � ψ(λ),

proving the inclusion ‘⊂’. To prove ‘⊃’ consider ξ ∈ C with log |ξ| � ψ(λ). We must show that the
equation G(z) = ξ has a solution ζ with log |ζ| � λ. But by the theory of the Newton polygon the
smallest zero ζ of G(z) − ξ satisfies

log |ξ| = sup{log |Gjζqj | : all j} = ψ(log |ζ|).
As ψ is a strictly monotone increasing function, the inequality ψ(log |ζ|) � ψ(λ) now implies log |ζ| �
λ, as desired.

Lemma 10.15. Let ρ and i1 be as in Lemma 10.13. Then there exist i2 � i1 and c′ > 0 with the
following property. Consider i � i2 and a zero wi of Fi with log |wi| = −ρ. Then there exists a zero
wi+1 of Fi+1 with

log |wi+1 − wi| � −c′q(n−1)i/2.

Proof. Write wi+1 = wi + ∆wi. Since Fi+1(z) is additive, we have

Fi+1(wi+1) = Fi+1(wi) + Fi+1(∆wi) = (Fi+1 − Fi)(wi) + Fi+1(∆wi).

So we must solve the equation

Fi+1(∆wi) = −(Fi+1 − Fi)(wi).

We estimate the right-hand side using §§ 10.6 and 10.7:

log |(Fi+1 − Fi)(wi)| � sup
{

log |Fi+1,j − Fi,j| − q−jρ : 0 < j < ni
log |Fi+1,j | − q−jρ : ni � j < n(i+ 1)

}
� sup

{
cniq−i − q−jρ : 0 < j < ni

cnq−j/n − q−jρ : ni � j < n(i+ 1)

}
� cniq−i.
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Set

λ := min{qj(cniq−i − ϕi+1,j) : 0 < j < n(i+ 1)}.
Then

sup{ϕi+1,j + q−jλ : 0 < j < n(i+ 1)} = cniq−i,

so by Lemma 10.14 we can find ∆wi solving the above equation with log |∆wi| � λ. To obtain an
explicit bound fix 0 < j0 � n with ϕj0 > 0. Consider any 0 � k � i− i0 and set j := j0 + nk. Then
§§ 10.5 and 10.9 imply

ϕi+1,j = q−kϕi+1−k,j0 = q−kϕj0.

Therefore,

log |∆wi| � λ � qj0+nk(cniq−i − q−kϕj0) = −q(n−1)kqj0(ϕj0 − cniqk−i).

Now choose k := �i/2�, the least integer greater than or equal to i/2, which is permitted if i � 2i0.
Then

ϕj0 − cniqk−i � ϕj0 − cniq−(i−1)/2.

There exists i2 � sup{i1, 2i0} such that this is greater than or equal to ϕj0/2 > 0 for all i � i2.
Under this condition it follows that

log |∆wi| � −q(n−1)kqj0ϕj0/2 � −q(n−1)i/2qj0ϕj0/2,

so the lemma holds with c′ := qj0ϕj0/2.

10.16 Now we construct the desired sequence of zeroes wi of Fi with log |wi| = −ρ by induction.
Let i2 and c′ be as in Lemma 10.15 and choose i3 � i2 such that c′q(n−1)i3/2 > ρ. Let wi3 be any
zero of Fi3 with log |wi3 | = −ρ, using Lemma 10.13. If wi has been constructed for i � i3, we choose
wi+1 as in Lemma 10.15. The inequalities

log |wi+1 − wi| � −c′q(n−1)i/2 � −c′q(n−1)i3/2 < −ρ
then imply that log |wi+1| = −ρ. We may therefore repeat the construction indefinitely. Since
−c′q(n−1)i/2 → −∞ as i→ ∞, the sequence wi converges to an element w ∈ C with log |w| = −ρ �
cn.

Lemma 10.17. lim supi→∞ log |Fi(w)| � 0.

Proof. Note that Fi(w) = Fi(w − wi), and that Lemma 10.15 implies

|w − wi| � −c′q(n−1)i/2.

Thus, using § 10.6, we can estimate

log |Fi(w)| � sup{ϕi,j + q−j log |w − wi| : 0 < j < ni}
� sup{q−j/ncn− q−j+(n−1)i/2c′ : 0 < j < ni}.

The term q−j/ncn − q−j+(n−1)i/2c′ is less than or equal to zero if and only if

c′

cn
� qj−j/n−(n−1)i/2 = q(n−1)(j−ni/2)/n,

that is, if j � ni/2 + c′′ for a constant c′′. For the remaining j this term is less than

q−j/ncn � q−i/2−c
′′/ncn,
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which goes to zero as i→ ∞. Therefore,

lim sup
i→∞

log |Fi(w)| � lim sup
i→∞

(sup{0, q−i/2−c′′/ncn}) = 0,

as desired. This proves Lemma 10.17 and thereby finishes the proof of Propositions 9.5 and 9.1.

11. Classification
After all these preparations we can now prove the main result of this article.

Theorem 11.1. Every σ-bundle is isomorphic to one of the form
⊕k

i=1 Fdi,ri where the di and ri
are integers with ri > 0 and gcd(di, ri) = 1.

Proof. We prove the following assertions by induction on r.

Ar) For any σ-bundle F of rank r and degree zero we have H0(F) �= 0.
Br) Any σ-bundle of rank � r is isomorphic to a direct sum

⊕
i Fdi,ri .

Cr) For any non-zero σ-bundle F of rank � r and degree � 0 we have H0(F) �= 0.

For r = 1 these assertions hold by Theorem 5.4 and Proposition 3.1. So let r � 2.

Lemma 11.2. Assertions Br−1 and Cr−1 imply Ar.

Proof. Let F be a σ-bundle of rank r and degree zero. By Theorem 4.1 there exists a σ-subbundle
O(m) ∼= F ′ ⊂ F . The possible m for this are bounded above by Proposition 6.3 item a. Thus we
may choose m maximal. Proposition 6.2 then implies that F ′ is saturated, and so we obtain an
exact sequence of σ-bundles

0 −→ O(m) −→ F −→ F ′′ −→ 0.
By assertion Br−1 we have F ′′ ∼= ⊕

iFdi,ri . Note that 0 = degF = m + degF ′′ = m +
∑

i di by
Propositions 6.1 and 7.6.

If r = 2 we are done by Theorem 5.4 and Corollary 9.2, so we assume r � 3. If m � 0 we
are done by Proposition 3.1, so we assume m � −1. Then we may select i such that di � 1. By
Proposition 8.5 there exists an embedding O(0) ↪→ Fdi,ri ↪→ F ′′. Consider the commutative diagram

0 −→ O(m) −→ F −→ F ′′ −→ 0
|| ⋃

�
⋃

0 −→ O(m) −→ G −→ O(0) −→ 0

obtained via pull-back. By assertion Br−1 the σ-bundle G is isomorphic to O(m1) ⊕ O(m2) or to
Fm′,2 for suitable m1, m2, or m′. In the first case we have m = degG = m1 +m2 by Proposition 6.1.
From the maximality of m we deduce that m � sup{m1,m2} � m/2 and thus m � 0, contradicting
the assumption m � −1. Therefore, G ∼= Fm′,2 for some odd m′. By Propositions 6.1 and 7.6 we then
have m = degG = m′; in particular, m is odd. By Proposition 8.5 there then exists a σ-subbundle
O((m − 1)/2) ↪→ G ⊂ F ; hence the maximality of m implies m � (m − 1)/2 and so m � −1.
Therefore, m = −1.

Now if F ′′ consists of just one summand Fd1,r1, we have d1 = 1 and the desired assertion is
the content of Proposition 9.1. Otherwise select i such that di � 1 and consider the commutative
diagram

0 −→ O(−1) −→ F −→ F ′′ −→ 0
|| ⋃

�
⋃

0 −→ O(−1) −→ G̃ −→ Fdi,ri −→ 0

obtained via pull-back. By the additivity of degrees we have deg G̃ � 0; henceH0(G̃) �= 0 by assertion
Cr−1. Therefore, H0(F) �= 0, as desired.
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Lemma 11.3. Assertions Br−1 and Ar imply Br.

Proof. Let F be a σ-bundle of rank r and degree d. Then G := ([r]∗F)(−d) has rank r and degree
zero, so by assertion Ar we have Hom(O(d), [r]∗F) ∼= H0(G) �= 0. Choose a σ-subbundle O(d) ↪→
[r]∗F and consider the induced homomorphism [r]∗O(d) ↪→ [r]∗[r]∗F ∼= F⊕r, using Proposition 7.4.
Some component of it must be non-zero; hence there exists a non-zero homomorphism ϕ : [r]∗O(d)
→ F . We distinguish two cases.

If ϕ is injective, its image is a σ-subbundle of F of the same rank and the same degree, which
by Proposition 6.2 must be equal to F . Setting t := gcd(d, r) this implies that

F ∼= [r]∗O(d) ∼= [r/t]∗([t]∗[t]∗O(d/t)) ∼= F⊕t
d/t,r/t

using Proposition 7.4, as desired.
If ϕ is not injective, let F ′ be the saturation of Im(ϕ) in F and r′ < r be the common rank

of Im(ϕ) and F ′. By assertion Br−1 we may write F ′ ∼= ⊕
iFdi,ri . Since [r]∗O(d) is semi-stable

of weight d/r by Proposition 7.6, its quotient Im(ϕ) has weight � d/r. Thus by Proposition 6.2
we have µ(F ′) � d/r, and so we may fix an i with di/ri � d/r. Consider the exact sequence of
σ-bundles

0 −→ Fdi,ri −→ F −→ F/Fdi,ri −→ 0.
By assertion Br−1 we may write F/Fdi,ri

∼= ⊕
j Fd′j ,r′j . By the additivity of degrees we have

µ(F/Fdi,ri) � d/r; hence there is a j with d′j/r
′
j � d/r � di/ri. Now Proposition 8.8 implies

that the extension of Fd′j ,r′j by Fdi,ri splits; hence F ∼= Fd′j ,r′j ⊕ G for some σ-bundle G of rank
r − r′j < r. Applying assertion Br−1 to G yields Br, as desired.

Lemma 11.4. Assertion Br implies Cr.

Proof. For F ∼= ⊕iFdi,ri we have degF =
∑

i di by Propositions 6.1 and 7.6. Thus if F �= 0 and
degF � 0, at least one of the di must be greater than or equal to zero. Therefore, Proposition 8.4
implies H0(F) �= 0, as desired.

The three lemmas above complete the proof of Theorem 11.1.

Theorem 11.1 now permits us to generalize Proposition 7.5.

Corollary 11.5. [n]∗[n]∗F ∼= F⊕n for any σ-bundle F and any positive integer n.

Proof. By Theorem 11.1 it suffices to prove this for F = Fd,r. In this case Proposition 7.5 implies

[r]∗([n]∗[n]∗Fd,r) ∼= [rn]∗[rn]∗O(d) ∼= O(d)⊕rn ∼= [r]∗[r]∗O(d)⊕n ∼= [r]∗F⊕n
d,r .

From this the corollary follows by Proposition 7.3.

Corollary 11.6.

a) The semi-stable σ-bundles are, up to isomorphism, exactly the direct sums F⊕t
d,r.

b) The stable σ-bundles are, up to isomorphism, exactly the Fd,r.

Proof. Let F be a semi-stable σ-bundle of weight d/r with gcd(d, r) = 1. Then F ∼= ⊕iFdi,ri by
Theorem 11.1, and di/ri � d/r by semi-stability. This is possible only if all (di, ri) = (d, r); hence
F ∼= F⊕t

d,r. If F is stable, there can be only one summand; hence F ∼= Fd,r. Conversely Fd,r is stable
by Proposition 8.2, and

F⊕t
d,r

∼= [r]∗([t]∗[t]∗O(d)) ∼= [rt]∗O(td)
is semi-stable by Proposition 7.6.
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Corollary 11.7. Let F =
⊕

i Fdi,ri . Then the Harder–Narasimhan filtration of F is given by the
descending chain of σ-subbundles

F (µ) :=
⊕

i:di/ri�µ
Fdi,ri .

Corollary 11.8. The pairs (di, ri) in Theorem 11.1 are uniquely determined up to a permutation.

Remark 11.9. To every σ-bundle we can therefore associate its Harder–Narasimhan polygon
(cf. Shatz [Sha77]) in the coordinate plane, which begins at the origin and is composed of a line
segment of horizontal width ri and slope di/ri for every pair (di, ri), arranged in ascending order of
slopes. By construction all break points and end points of this polygon have integral coordinates, and
clearly all such upper convex finite polygons occur for some σ-bundle. Conversely, Theorem 11.1
states that the isomorphy class of a σ-bundle is uniquely determined by its Harder–Narasimhan
polygon.
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