Notes on the Teichmüller space of K3

Dietmar Salamon
ETH Zürich

1 May 2018

1 The cotangent bundle of the two-sphere

Identify the cotangent bundle of the 2-sphere with the manifold

$$
\begin{equation*}
T^{*} S^{2}:=\left\{\xi+\mathbf{i} \eta \in \mathbb{C}^{3}| | \xi \mid=1,\langle\xi, \eta\rangle=0\right\} \tag{1.1}
\end{equation*}
$$

The canonical symplectic form on $T^{*} S^{2}$ is the restriction of the standard symplectic form $\omega_{0}=\sum_{i=1}^{3} d \xi_{i} \wedge d \eta_{i}$ on \mathbb{C}^{3} to $T^{*} S^{2}$.

Lemma 1.1 (Dehn Twist). Define the map $\tau: T^{*} S^{2} \rightarrow T^{*} S^{2}$ by

$$
\tau(\xi, \eta):=\left(\xi^{\prime}, \eta^{\prime}\right)
$$

for $(\xi, \eta) \in T^{*} S^{2}$, where $\left|\eta^{\prime}\right|=|\eta|, \xi^{\prime}:=-\xi$ in the case $\eta=0$, and

$$
\begin{equation*}
\xi^{\prime}+\mathbf{i} \frac{\eta^{\prime}}{\left|\eta^{\prime}\right|}:=-\exp \left(-\frac{2 \pi \mathbf{i}|\eta|}{\sqrt{1+4|\eta|^{2}}}\right)\left(\xi+\mathbf{i} \frac{\eta}{|\eta|}\right) \tag{1.2}
\end{equation*}
$$

in the case $\eta \neq 0$. Then τ is a symplectomorphism (called the Dehn twist). Proof. Equation (1.2) can be written in the form

$$
\begin{align*}
& \xi^{\prime}=-\cos \left(\frac{2 \pi|\eta|}{\sqrt{1+4|\eta|^{2}}}\right) \xi-\sin \left(\frac{2 \pi|\eta|}{\sqrt{1+4|\eta|^{2}}}\right) \frac{\eta}{|\eta|}, \\
& \eta^{\prime}=\sin \left(\frac{2 \pi|\eta|}{\sqrt{1+4|\eta|^{2}}}\right)|\eta| \xi-\cos \left(\frac{2 \pi|\eta|}{\sqrt{1+4|\eta|^{2}}}\right) \eta . \tag{1.3}
\end{align*}
$$

This shows that τ is a diffeomorphism. Now abbreviate

$$
f:=\frac{\pi}{2 \sqrt{1+4|\eta|^{2}}}, \quad \theta:=\frac{2 \pi|\eta|}{\sqrt{1+4|\eta|^{2}}}, \quad d f=-\frac{2 \pi \sum_{i=1}^{3} \eta_{i} d \eta_{i}}{\left(1+4|\eta|^{2}\right)^{3 / 2}}=-|\eta| d \theta .
$$

Then $\eta_{i}^{\prime}=|\eta| \sin (\theta) \xi_{i}-\cos (\theta) \eta_{i}$ and $\xi_{i}^{\prime}=-\cos (\theta) \xi_{i}-|\eta|^{-1} \sin (\theta) \eta_{i}$. Thus

$$
d \xi_{i}^{\prime}=-\cos (\theta) d \xi_{i}+\sin (\theta) \frac{\sum_{j}\left(\eta_{i} \eta_{j} d \eta_{j}-\eta_{j}^{2} d \eta_{i}\right)}{|\eta|^{3}}+\xi_{i} \sin (\theta) d \theta-\frac{\eta_{i} \cos (\theta)}{|\eta|} d \theta
$$

$\operatorname{Using} \sum_{i} \xi_{i}^{2}-1=\sum_{i} \xi_{i} \eta_{i}=0$ and $\sum_{i} \xi_{i} d \xi_{i}=\sum_{i}\left(\xi_{i} d \eta_{i}+\eta_{i} d \xi_{i}\right)=0$ we find

$$
\begin{aligned}
\sum_{i} \eta_{i}^{\prime} d \xi_{i}^{\prime}= & \sin ^{2}(\theta) \frac{\sum_{i, j}\left(\xi_{i} \eta_{i} \eta_{j} d \eta_{j}-\eta_{j}^{2} \xi_{i} d \eta_{i}\right)}{|\eta|^{2}}+|\eta| \sin ^{2}(\theta) d \theta \\
& +\cos ^{2}(\theta) \sum_{i} \eta_{i} d \xi_{i}+|\eta| \cos ^{2}(\theta) d \theta \\
= & \cos ^{2}(\theta) \sum_{i} \eta_{i} d \xi_{i}-\sin ^{2}(\theta) \sum_{i} \xi_{i} d \eta_{i}+|\eta| d \theta \\
= & \sum_{i} \eta_{i} d \xi_{i}-d f
\end{aligned}
$$

Thus the difference $\sum_{i} \eta_{i}^{\prime} d \xi_{i}^{\prime}-\sum_{i} \eta_{i} d \xi_{i}$ is exact and so $\tau: T^{*} S^{2} \rightarrow T^{*} S^{2}$ is a symplectomorphism. This proves Lemma 1.1.

Lemma 1.2. The set

$$
\begin{equation*}
X:=\left\{z=x+\left.\mathbf{i} y \in \mathbb{C}^{3}| | x\right|^{2}-|y|^{2}=1,\langle x, y\rangle=0\right\} \tag{1.4}
\end{equation*}
$$

is a complex submanifold of \mathbb{C}^{3}, the map $\iota: X \rightarrow T^{*} S^{2}$ defined by

$$
\begin{equation*}
\iota(x+\mathbf{i} y):=|x|^{-1} x+\mathbf{i}|x| y \tag{1.5}
\end{equation*}
$$

for $x+\mathbf{i} y \in X$ is a symplectomorphism with the inverse

$$
\begin{equation*}
\iota^{-1}(\xi+\mathbf{i} \eta)=\lambda \xi+\mathbf{i} \lambda^{-1} \eta, \quad \lambda:=\sqrt{\frac{1}{2}\left(1+\sqrt{1+4|\eta|^{2}}\right)} \tag{1.6}
\end{equation*}
$$

and the symplectomorphism $\phi:=\iota^{-1} \circ \tau \circ \iota$ of X is given by $\phi(x, y)=\left(x^{\prime}, y^{\prime}\right)$ for $z=x+\mathbf{i} y \in X$, where $x^{\prime}=-x, y^{\prime}=0$ in the case $y=0$ and

$$
\begin{equation*}
\frac{x^{\prime}}{|x|}+\mathbf{i} \frac{y^{\prime}}{|y|}=-\exp \left(-\frac{2 \pi \mathbf{i}|x||y|}{|x|^{2}+|y|^{2}}\right)\left(\frac{x}{|x|}+\mathbf{i} \frac{y}{|y|}\right) \tag{1.7}
\end{equation*}
$$

in the case $y \neq 0$.

Proof. We prove that the map $\iota: X \rightarrow T^{*} S^{2}$ in 1.5 is a diffeomorphism with the inverse given by (1.6). Let $x+\mathbf{i} y \in X$ with $y \neq 0$ and let

$$
\xi+\mathbf{i} \eta:=\iota(x+\mathbf{i} y) \in \mathbb{C}^{3}
$$

be given by (1.5) so that $\xi=|x|^{-1} x$ and $\eta=|x| y$. Then

$$
|\xi|=1, \quad\langle\xi, \eta\rangle=\langle x, y\rangle=0
$$

and so $\xi+\mathbf{i} \eta \in T^{*} S^{2}$. Moreover, $|\eta|=|x||y|$ and hence

$$
\begin{align*}
1+4|\eta|^{2} & =1+4|x|^{2}|y|^{2} \\
& =1+4|y|^{2}+4|y|^{4} \\
& =\left(1+2|y|^{2}\right)^{2} \tag{1.8}\\
& =\left(\left|x^{2}\right|+|y|^{2}\right)^{2} .
\end{align*}
$$

This shows that

$$
\lambda=\sqrt{\frac{1}{2}\left(1+\sqrt{1+4|\eta|^{2}}\right)}=\sqrt{\frac{1}{2}\left(1+|x|^{2}+|y|^{2}\right)}=|x|
$$

in (1.5). Thus the map $\iota: X \rightarrow T^{*} S^{2}$ is bijective and its inverse is given by (1.6). Moreover, both ι and ι^{-1} are smooth and so ι is a diffeomorphism. That ι is a symplectomorphism follows from the identity

$$
\sum_{i} \eta_{i} d \xi_{i}=\sum_{i}|x| y_{i} d \frac{x_{i}}{|x|}=\sum_{i} y_{i} d x_{i} .
$$

Here the last equation holds because $\sum_{i} y_{i} x_{i}=0$ on X.
Now let $\phi: X \rightarrow \mathbb{C}^{3}$ be the map defined by (1.7). Let $x+\mathbf{i} y \in X$ and let $x^{\prime}+\mathbf{i} y^{\prime}:=\phi(x+\mathbf{i} y) \in \mathbb{C}^{3}$. We prove first that

$$
\left|x^{\prime}\right|=|x|, \quad\left|y^{\prime}\right|=|y|, \quad x^{\prime}+\mathbf{i} y^{\prime} \in X
$$

In the case $y=0$ this follows directly from the definition. Thus assume $y \neq 0$. Since the vectors $|x|^{-1} x$ and $|y|^{-1} y$ in \mathbb{R}^{3} are orthonormal it follows from (1.7) that the vectors $|x|^{-1} x^{\prime}$ and $|y|^{-1} y^{\prime}$ are also orthonormal. This implies

$$
\left\langle x^{\prime}, y^{\prime}\right\rangle=0, \quad\left|x^{\prime}\right|=|x|, \quad\left|y^{\prime}\right|=|y|
$$

hence $\left|x^{\prime}\right|^{2}-\left|y^{\prime}\right|^{2}=1$, and so $x^{\prime}+\mathbf{i} y^{\prime} \in X$.

We prove that $\iota \circ \phi=\tau \circ \iota$. Let $x+\mathbf{i} y \in X$ with $y \neq 0$ and define

$$
x^{\prime}+\mathbf{i} y^{\prime}:=\phi(x+\mathbf{i} y), \quad \xi+\mathbf{i} \eta:=\iota(x+\mathbf{i} y), \quad \xi^{\prime}+\mathbf{i} \eta^{\prime}:=\iota\left(x^{\prime}+\mathbf{i} y^{\prime}\right)
$$

Then $\xi=|x|^{-1} x$ and $\eta=|x| y$ and so it follows from (1.8) that

$$
\alpha:=\exp \left(-\frac{2 \pi \mathbf{i}|\eta|}{\sqrt{1+4|\eta|^{2}}}\right)=\exp \left(-\frac{2 \pi \mathbf{i}|x||y|}{|x|^{2}+|y|^{2}}\right) .
$$

Since $\xi^{\prime}+\mathbf{i} \eta^{\prime}=\iota\left(x^{\prime}+\mathbf{i} y^{\prime}\right)$ and $\left(x^{\prime}+\mathbf{i} y^{\prime}\right)=\phi(x+\mathbf{i} y)$, this implies

$$
\begin{equation*}
\left|\eta^{\prime}\right|=\left|x^{\prime}\right|\left|y^{\prime}\right|=|x||y|=|\eta| \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi^{\prime}+\mathbf{i} \frac{\eta^{\prime}}{\left|\eta^{\prime}\right|}=\frac{x^{\prime}}{\left|x^{\prime}\right|}+\mathbf{i} \frac{y^{\prime}}{\left|y^{\prime}\right|}=-\alpha\left(\frac{x}{|x|}+\mathbf{i} \frac{y}{|y|}\right)=-\alpha\left(\xi+\mathbf{i} \frac{\eta}{|\eta|}\right) . \tag{1.10}
\end{equation*}
$$

Here the second equality follows from (1.7). It follows from equations (1.9) and (1.10) and the definition of τ in (1.2) that $\xi^{\prime}+\mathbf{i} \eta^{\prime}=\tau(\xi+\mathbf{i} \eta)$. Thus

$$
\iota \circ \phi(x+\mathbf{i} y)=\xi^{\prime}+\mathbf{i} \eta^{\prime}=\tau(\xi+\mathbf{i} \eta)=\tau \circ \iota(x+\mathbf{i} y)
$$

for all $x+\mathbf{i} y \in X$ with $y \neq 0$. So $\iota \circ \phi=\tau \circ \iota$ and this proves Lemma 1.2.
Remark 1.3. The manifold X in Lemma 1.2 is the regular fiber $X=\pi^{-1}(1)$ of the Lefschetz fibration $\pi: \mathbb{C}^{3} \rightarrow \mathbb{C}$ given by

$$
\pi(z):=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}
$$

for $z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}$. The Dehn twist $\phi: X \rightarrow X$ in 1.7) is the monodromy around the unit circle in this Lefschetz fibration. More precisely, the parallel transport diffeomorphisms $\phi_{t}: \pi^{-1}(1) \rightarrow \pi^{-1}\left(e^{2 \pi \mathrm{i} t}\right)$ are given by

$$
\begin{align*}
\phi_{t}(x+\mathbf{i} y) & =e^{\pi \mathbf{i} t}(u(t)+\mathbf{i} v(t)) \\
\frac{u(t)}{|x|}+\mathbf{i} \frac{v(t)}{|y|} & =\exp \left(-\frac{2 \pi \mathbf{i} t|x||y|}{|x|^{2}+|y|^{2}}\right)\left(\frac{x}{|x|}+\mathbf{i} \frac{y}{|y|}\right) \tag{1.11}
\end{align*}
$$

for $t \in \mathbb{R}$ and $x+\mathbf{i} y \in X$ with $y \neq 0$. This can be seen by noting that the function $w(t):=e^{-\pi \mathbf{i} t} z(t)$ satisfies the equation $\dot{w}=\pi \mathbf{i}(-w+\lambda \bar{w})$, where the coefficient $\lambda:=|z(t)|^{-2}$ is independent of t. For $t=1$ one obtains the diffeomorphism $\phi=\phi_{1}: X \rightarrow X$ in Lemma 1.2 . We emphasize that ϕ is a symplectomorphism but is not holomorphic.

A third model for the cotangent bundle of the 2 -sphere is the total space of the second tensor power of the tautological line bundle over $\mathbb{C P}^{1}$ or, equivalently, the resolution of the singularity $x^{2}+y^{2}+z^{2}=0$ in \mathbb{C}^{3}. Define

$$
\begin{align*}
Z & :=\left\{\begin{array}{l|l}
(x, y, z,[a: b]) \in \mathbb{C}^{3} \times \mathbb{C P}^{1} & \begin{array}{l}
x^{2}+y^{2}+z^{2}=0, \\
b(x+\mathbf{i} y)-a z=0, \\
a(x-\mathbf{i} y)+b z=0
\end{array}
\end{array}\right\} \tag{1.12}\\
& =\left\{\begin{array}{l|l}
(x, y, z,[a: b]) \in \mathbb{C}^{3} \times \mathbb{C P}^{1} & \begin{array}{l}
\exists \lambda, \mu \in \mathbb{C} \text { such that } \\
x+\mathbf{i} y=\lambda a, z=\lambda b, \\
x-\mathbf{i} y=\mu b,-z=\mu a
\end{array}
\end{array}\right\} .
\end{align*}
$$

This is a complex submanifold of $\mathbb{C}^{3} \times \mathbb{C P}^{1}$ and hence it inherits a natural Kähler structure from the ambient manifold (with the standard symplectic form on \mathbb{C}^{3} and the Fubini-Study form on $\left.\mathbb{C P}^{1}\right)$. However, in contrast to the manifolds $T^{*} S^{2}$ in (1.1) and X in (1.4) where the zero section ($\eta=0$ in 1.1) and $y=0$ in (1.4) is a Lagrangian submanifold, the zero section $x=y=z=0$ in the manifold Z in (1.12) is a holomorphic sphere with self-intersection number -2 . Stereographic projection gives rise to an explicit diffeomorphism from Z to $T^{*} S^{2}$.
Lemma 1.4. For $(x, y, z,[a: b]) \in Z$ define the pair

$$
\jmath(x, y, z,[a: b]):=(\xi, \eta) \in \mathbb{R}^{3} \times \mathbb{R}^{3}
$$

by

$$
\xi:=\frac{1}{|a|^{2}+|b|^{2}}\left(\begin{array}{c}
2 \operatorname{Re}(a \bar{b}) \tag{1.13}\\
2 \operatorname{Im}(a \bar{b}) \\
|b|^{2}-|a|^{2}
\end{array}\right), \quad \eta:=\left(\begin{array}{c}
\operatorname{Im}(x) \\
\operatorname{Im}(y) \\
\operatorname{Im}(z)
\end{array}\right)
$$

Then $\jmath: Z \rightarrow T^{*} S^{2}$ is an orientation preserving diffeomorphism. Its inverse is given by $\jmath^{-1}(\xi, \eta)=\left(x, y, z ;\left[\xi_{1}+\mathbf{i} \xi_{2}: 1+\xi_{3}\right]\right)$ with $(x, y, z)=-\xi \times \eta+\mathbf{i} \eta$. Proof. The square of the tautological line bundle over $\mathbb{C} P^{1}$ is the quotient

$$
E:=\left\{(a, b, w) \in \mathbb{C}^{3} \mid(a, b) \neq(0,0)\right\} / \sim, \quad(a, b, w) \sim\left(\lambda a, \lambda b, \lambda^{-2} w\right)
$$

Denote the equivalence class of a triple (a, b, w) under the action of \mathbb{C}^{*} by $[a: b ; w]:=\left\{\left(\lambda a, \lambda b, \lambda^{-2} w\right) \mid \lambda \in \mathbb{C}^{*}\right\}$. The line bundle E is diffeomorphic to Z via the diffeomorphism $[a: b ; w] \mapsto(x, y, z,[a: b])$ given by

$$
\begin{equation*}
x=\frac{b^{2}-a^{2}}{2} \mathbf{i} w, \quad y=-\frac{a^{2}+b^{2}}{2} w, \quad z=-\mathbf{i} a b w \tag{1.14}
\end{equation*}
$$

Note that $b(x+\mathbf{i} y)=-a^{2} b \mathbf{i} w=a z$ and $a(x-\mathbf{i} y)=a b^{2} \mathbf{i} w=-b z$.

Now think of the complex plane as a subspace of the space of quaternions and denote by $\mathbf{i}, \mathbf{j}, \mathbf{k}$ the standard generators of the imaginary quaternions so that $\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}$ and $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1$. For $(a, b) \in \mathbb{C}^{2} \backslash\{0\}$ define the quaternion $q \in \mathbb{H}$ by

$$
\begin{equation*}
q:=q(a, b):=\frac{1}{2}((\bar{a}+\bar{b})(1-\mathbf{i})+(a-b)(\mathbf{j}+\mathbf{k})) . \tag{1.15}
\end{equation*}
$$

Then a calculation shows that $|q|^{2}=|a|^{2}+|b|^{2}$ and

$$
\begin{aligned}
q \mathbf{i} \bar{q} & =2 \operatorname{Re}(a \bar{b}) \mathbf{i}+2 \operatorname{Im}(a \bar{b}) \mathbf{j}+\left(|b|^{2}-|a|^{2}\right) \mathbf{k}, \\
q \mathbf{j} \bar{q} & =\operatorname{Re}\left(b^{2}-a^{2}\right) \mathbf{i}-\operatorname{Im}\left(a^{2}+b^{2}\right) \mathbf{j}-2 \operatorname{Re}(a b) \mathbf{k}, \\
q \mathbf{k} \bar{q} & =\operatorname{Im}\left(b^{2}-a^{2}\right) \mathbf{i}+\operatorname{Re}\left(a^{2}+b^{2}\right) \mathbf{j}-2 \operatorname{Im}(a b) \mathbf{k} .
\end{aligned}
$$

When $(a, b) \in \mathbb{C}^{2}$ is a unit vector, the coordinates of $q \mathbf{i} \bar{q}$ define the element of S^{2} that correspond to the point a / b in the Riemann sphere under the stereographic projection from the south pole, and the vectors $q \mathbf{j} \bar{q}$ and $-q \mathbf{k} \bar{q}$ form a positive orthonormal basis of the cotangent space of S^{2} at the point $\xi=q \mathbf{i} \bar{q}$. Thus a complex number $w=s+\mathbf{i} t$ determines a tangent vector

$$
\begin{aligned}
\eta & :=\frac{1}{2} q(a, b)(w \mathbf{j}) \overline{q(a, b)} \\
& =\frac{1}{2} q(a, b)(s \mathbf{j}-t \mathbf{k}) \overline{q(a, b)} \\
& =\operatorname{Re}\left(\frac{1}{2}\left(b^{2}-a^{2}\right) w\right) \mathbf{i}-\operatorname{Im}\left(\frac{1}{2}\left(a^{2}+b^{2}\right) w\right) \mathbf{j}-\operatorname{Re}(a b w) \mathbf{k} .
\end{aligned}
$$

This gives rise to a vector bundle isomorphism from E to $T^{*} S^{2}$ which covers the inverse of the stereographic projection $S^{2} \rightarrow \mathbb{C P}{ }^{1}$ and sends an element $[a: b ; w]$ to the pair $(\xi, \eta)=(\xi(a, b), \eta(a, b ; w)) \in T^{*} S^{2}$, defined by

$$
\xi:=\frac{1}{|a|^{2}+|b|^{2}}\left(\begin{array}{c}
2 \operatorname{Re}(a \bar{b}) \\
2 \operatorname{Im}(a \bar{b}) \\
|b|^{2}-|a|^{2}
\end{array}\right), \quad \eta:=\left(\begin{array}{c}
\operatorname{Re}\left(\frac{1}{2}\left(b^{2}-a^{2}\right) w\right) \\
-\operatorname{Im}\left(\frac{1}{2}\left(a^{2}+b^{2}\right) w\right) \\
-\operatorname{Re}(a b w)
\end{array}\right) .
$$

If $(x, y, z,[a: b])$ is the element of Z corresponding to the point $[a: b ; w] \in E$ under the diffeomorphism in (1.14), then $\eta(a, b ; w)=(\operatorname{Im}(x), \operatorname{Im}(y), \operatorname{Im}(z))$. The inverse map sends a point $(\xi, \eta) \in T^{*} S^{2}$ to $(x, y, z,[a: b]) \in Z$ with

$$
\begin{align*}
{[a: b] } & =\left[\xi_{1}+\mathbf{i} \xi_{2}: 1+\xi_{3}\right], \\
x & =\xi_{3} \eta_{2}-\xi_{2} \eta_{3}+\mathbf{i} \eta_{1}, \tag{1.16}\\
y & =\xi_{1} \eta_{3}-\xi_{3} \eta_{1}+\mathbf{i} \eta_{2}, \\
z & =\xi_{2} \eta_{1}-\xi_{1} \eta_{2}+\mathbf{i} \eta_{3} .
\end{align*}
$$

This proves Lemma 1.4 .

2 The Atiyah flop

The set

$$
\begin{equation*}
\mathcal{X}:=\left\{(x, y, z, t) \in \mathbb{C}^{4} \mid x^{2}+y^{2}+z^{2}+t=0\right\} \tag{2.1}
\end{equation*}
$$

is a complex submanifold of \mathbb{C}^{4}, holomorphically diffeomorphic to \mathbb{C}^{3}, the projection $\pi: \mathcal{X} \rightarrow \mathbb{C}$ given by $\pi(x, y, z, t):=t$ is a Lefschetz fibration, the fiber over $t=1$ is the manifold X in (1.4), and the monodromy around the unit circle is the Dehn twist in Lemma 1.1. Now consider the singular variety

$$
\begin{equation*}
\mathcal{S}:=\left\{(x, y, z, t) \in \mathbb{C}^{4} \mid x^{2}+y^{2}+z^{2}+t^{2}=0\right\} \tag{2.2}
\end{equation*}
$$

Blow up the origin to obtain a smooth manifold

$$
\mathcal{Z}:=\left\{\begin{array}{l|l}
(x, y, z, t,[a: b]) \in \mathbb{C}^{4} \times \mathbb{C P}^{1} & \begin{array}{l}
b(x+\mathbf{i} y)-a(z+\mathbf{i} t)=0 \\
a(x-\mathbf{i} y)+b(z-\mathbf{i} t)=0
\end{array} \tag{2.3}
\end{array}\right\}
$$

Lemma 2.1. The projection

$$
\begin{equation*}
\mathcal{Z} \rightarrow \mathbb{C}:(x, y, z, t,[a: b]) \mapsto \pi(x, y, z, t,[a: b]):=t \tag{2.4}
\end{equation*}
$$

is a holomorphic submersion.
Proof. If (x, y, z, t) is a nonzero vector in S, then one of the complex numbers x, y, z is nonzero. If $x \neq 0$, then the vector $(\widehat{x}, \widehat{y}, \widehat{z}, \widehat{t})$ with

$$
\widehat{x}=-\frac{t \widehat{t}}{x}, \quad \widehat{y}=\widehat{z}=0
$$

is tangent to \mathcal{S} at (x, y, z, t) and projects onto \widehat{t} under the derivative of π. If $b \neq 0$, then the curve $(x(t), y(t), z(t), t,[a: b]) \in U$ with

$$
x(t)=\frac{\mathbf{i} a t}{b}, \quad y(t)=\frac{a t}{b}, \quad z(t)=\mathbf{i} t
$$

passes through ($0,0,0,0,[a: b]$) and satisfies $x(t)^{2}+y(t)^{2}+z(t)^{2}+t^{2}=0$ as well as $b(x+\mathbf{i} y)-a(z+\mathbf{i} t)=0$ and $a(x-\mathbf{i} y)+b(z-\mathbf{i} t)=0$. If $a=1$ and $b=0$, then the curve $(x(t), y(t), z(t), t,[1: 0]) \in U$ with

$$
x(t)=\mathbf{i} t, \quad y(t)=t, \quad z(t)=-\mathbf{i} t
$$

satisfies the same conditions. This proves Lemma 2.1.

The central fiber of the fibration $\pi: \mathcal{Z} \rightarrow \mathbb{C}$ in (2.3) and (2.4) is the manifold $Z_{0}:=Z$ in (1.12) which is diffeomorphic to $T^{*} S^{2}$ by Lemma 1.4. By Lemma 2.1 the fibration \mathcal{Z} admits a trivialization $\mathbb{C} \times Z \rightarrow \mathcal{Z}$. For $t \in \mathbb{C} \backslash\{0\}$ denote the fiber of \mathcal{Z} over t by

$$
\begin{equation*}
Z_{t}:=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{2}+z^{2}+t^{2}=0\right\} \tag{2.5}
\end{equation*}
$$

Lemma 2.2. Fix a constant $\varepsilon>0$. Then there exists a collection of diffeomorphisms $\psi_{t}: Z \rightarrow Z_{t}$ satisfying the following conditions.
(I) The map

$$
\begin{equation*}
\mathbb{C} \times Z \rightarrow \mathcal{Z}:(t,(x, y, z,[a ; b])) \mapsto\left(x^{\prime}, y^{\prime}, z^{\prime}, t,\left[a^{\prime}: b^{\prime}\right]\right) \tag{2.6}
\end{equation*}
$$

defined by $\left(x^{\prime}, y^{\prime}, z^{\prime},\left[a^{\prime}: b^{\prime}\right]\right):=(x, y, z,[a: b])$ for $t=0$ and $b y$

$$
\begin{align*}
\left(x^{\prime}, y^{\prime}, z^{\prime}\right) & :=\psi_{t}(x, y, z,[a: b]), \\
{\left[a^{\prime}: b^{\prime}\right] } & := \begin{cases}{\left[x^{\prime}+\mathbf{i} y^{\prime}: z^{\prime}+\mathbf{i} t\right],} & \text { if }\left|x^{\prime}+\mathbf{i} y^{\prime}\right|^{2}+\left|z^{\prime}+\mathbf{i} t\right|^{2} \neq 0, \\
{\left[-z^{\prime}+\mathbf{i} t: x^{\prime}-\mathbf{i} y^{\prime}\right],} & \text { if }\left|-z^{\prime}+\mathbf{i} t\right|^{2}+\left|x^{\prime}-\mathbf{i} y^{\prime}\right|^{2} \neq 0,\end{cases} \tag{2.7}
\end{align*}
$$

for $t \neq 0$ is a diffeomorphism.
(II) Let $(x, y, z,[a ; b]) \in Z$ such that $|x|^{2}+|y|^{2}+|z|^{2} \geq \varepsilon$ and let $t \in \mathbb{C} \backslash\{0\}$. Define $r:=|t|$, choose $\theta \in \mathbb{R}$ such that $t=r e^{\mathrm{i} \theta}$, and define

$$
\begin{equation*}
\lambda:=\sqrt{\frac{\sqrt{\left(|x|^{2}+|y|^{2}+|z|^{2}\right)^{2}+r^{4}}+r^{2}}{|x|^{2}+|y|^{2}+|z|^{2}}}>1 \tag{2.8}
\end{equation*}
$$

Then $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\psi_{t}(x, y, z,[a: b])$ is given by

$$
\begin{equation*}
\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{\lambda+\lambda^{-1}}{2}(x, y, z)+e^{2 \mathrm{i} \theta} \frac{\lambda-\lambda^{-1}}{2}(\bar{x}, \bar{y}, \bar{z}) \tag{2.9}
\end{equation*}
$$

Proof. The map (2.9) is obtained by parallel transport in the fibration \mathcal{Z} in Lemma 2.1 along the paths $r \mapsto r e^{\mathrm{i} \theta}$ on the complement of the set

$$
\mathcal{C}:=\left\{\left.(x, y, z, t,[a: b]) \in \mathcal{Z}| | x\right|^{2}+|y|^{2}+|z|^{2}=|t|^{2}\right\}
$$

Here the fiber Z_{t} is identified with the fiber $X_{t^{2}}$ of the fibration \mathcal{X} in (2.1) in the canonical way, the set \mathcal{C} corresponds to the zero sections of the fibers under the identifications with $T^{*} S^{2}$, and parallel transport is understood with respect to the symplectic connection on \mathcal{X} determined by the standard symplectic form on \mathbb{C}^{3}. The proof of Lemma 2.2 then follows by choosing a suitable symplectic connection form on \mathcal{Z} which agrees with the standard symplectic form on \mathbb{C}^{3} (with the coordinates (x, y, z)) outside of a sufficiently small neighborhood of the sphere $C:=\{(0,0,0,0)\} \times \mathbb{C P}^{1} \subset \mathcal{Z}$.

Lemma 2.3. For $t \in \mathbb{C} \backslash\{0\}$ let $\psi_{t}: Z \rightarrow Z_{t}$ be the trivialization of Lemma 2.2, let I_{t} be the standard complex structure on Z_{t}, and define

$$
J_{t}:=\psi_{t}^{*} I_{t} \in \mathscr{J}_{\mathrm{int}}(Z)
$$

Let J be the standard complex structure on Z and let $\tau: Z \rightarrow Z$ be a Dehn twist, localized near the (-2)-sphere $C=\{(0,0,0)\} \times \mathbb{C P}^{1} \subset Z$, under the identification of Z with $T^{*} S^{2}$ in Lemma 1.4. Then there exists a smooth family of diffeomorphisms $\mathbb{C} \backslash\{0\} \rightarrow \operatorname{Diff}_{0}(Z): t \mapsto \phi_{t}$ with uniform compact support such that, for every $t \in \mathbb{C} \backslash\{0\}$, the diffeomorphism $\phi_{t}: Z \rightarrow Z$ is smoothly isotopic to the identity with uniform compact support and

$$
\phi_{t}^{*} J_{t}=\tau^{*} J_{-t}
$$

Proof. For $t \in \mathbb{C} \backslash\{0\}$ we have $Z_{t}=Z_{-t}$ and denote by $\iota_{t}: Z_{t} \rightarrow Z_{-t}$ the identity map, so $\iota_{t}(x, y, z)=(x, y, z) \in Z_{-t}$ for $(x, y, z) \in Z_{t}$. We emphasize that the map $(x, y, z, t) \mapsto(x, y, z,-t)$ is a holomorphic diffeomorphism of $\mathcal{S} \backslash\{0\}$ and so induces a holomorphic diffeomorphism of $\mathcal{Z} \backslash C$, however, it does not extend to \mathcal{Z}. It follows from equation (2.9) in Lemma 2.2 that

$$
\iota_{-t} \circ \psi_{-t}=\psi_{t} \quad \text { on } \quad\left\{(x, y, z,[a: b]) \in Z\left||x|^{2}+|y|^{2}+|z|^{2} \geq \varepsilon\right\} .\right.
$$

Thus the diffeomorphism

$$
\tau_{t}:=\psi_{t}^{-1} \circ \iota_{-t} \circ \psi_{-t}: Z \rightarrow Z
$$

is equal to the identity on the subset $|x|^{2}+|y|^{2}+|z|^{2} \geq \varepsilon$. By Lemma 1.2 and Remark $\sqrt[1.3]{ }$ it is a Dehn twist, localized near the (-2)-sphere $C \subset Z$. Moreover, for all $t \in \mathbb{C} \backslash\{0\}$, we have $\tau_{t} \circ \tau_{-t}=\mathrm{id}$ and

$$
\tau_{t}^{*} J_{t}=\psi_{-t}^{*} \iota_{-t}^{*}\left(\psi_{t}^{-1}\right)^{*} J_{t}=\psi_{-t}^{*} \iota_{-t}^{*} I_{t}=\psi_{-t}^{*} I_{-t}=J_{-t}
$$

Now fix an element $t_{0} \in \mathbb{C} \backslash\{0\}$ and take

$$
\tau:=\tau_{t_{0}}, \quad \phi_{t}:=\tau_{t} \circ \tau
$$

for $t \in \mathbb{C} \backslash\{0\}$. Then, for every $t \in \mathbb{C} \backslash\{0\}$, we have $\phi_{t}^{*} J_{t}=\tau^{*} \tau_{t}^{*} J_{t}=\tau^{*} J_{-t}$ and ϕ_{t} is smoothly isotopic to the identity. An explicit isotopy with uniform compact support is given by $\phi_{s, t}:=\tau_{\gamma_{t}(s)} \circ \tau_{t_{0}}$, where $\gamma_{t}:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ is a smooth curve satisfying $\gamma_{t}(0)=-t_{0}$ and $\gamma_{t}(1)=t$. If τ is any other Dehn twist about C, choose a smooth isotopy $[0,1] \rightarrow \operatorname{Diff}(Z): s \mapsto \psi_{s}$ with uniform compact support joining $\psi_{0}=\tau_{t_{0}}$ to $\psi_{1}=\tau$ and take $\phi_{s, t}:=\tau_{\gamma_{t}(s)} \circ \psi_{s}$. This proves Lemma 2.3.

3 Teichmüller space of K3

For an oriented smooth manifold M of even dimension denote by $\mathscr{J}(M)$ the space of almost complex structures that are compatible with the orientation, by $\mathscr{J}_{\text {int }, 0}(M) \subset \mathscr{J}(M)$ the subspace of integrable almost complex structures with vanishing real first Chern class, and by $\mathrm{Diff}_{0}(M)$ the group of diffeomorphisms of M that are isotopic to the identity.
Lemma 3.1. Let M be a K3 surface, i.e. a closed oriented simply connected smooth four-manifold with $\mathscr{J}_{\text {int }, 0}(M) \neq \emptyset$. Then the Teichmüller space

$$
\mathscr{T}_{0}(M):=\mathscr{J}_{\mathrm{int}, 0}(M) / \operatorname{Diff}_{0}(M)
$$

is not Hausdorff.
Proof. Let $J \in \mathcal{J}_{\text {int }, 0}(M)$ be a complex structure that admits an embedded holomorphic sphere $C \subset M$ with self-intersection number -2 . An explicit example (taken from [1]) is the manifold

$$
\begin{aligned}
M & :=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C} P^{3} \left\lvert\, \begin{array}{l}
\sum_{i=1}^{3} z_{i}^{2}\left(z_{i}^{2}-z_{0}^{2}\right)=0, \\
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2} \neq 0
\end{array}\right.\right\} \cup U / \sim, \\
U & :=\left\{\begin{array}{ll}
\left(w_{1}, w_{2}, w_{3},[a: b]\right) \in \mathbb{C}^{3} \times \mathbb{C P}^{1} \left\lvert\, \begin{array}{l}
\left(w_{1}, w_{2}, w_{3}\right) \in W \\
b\left(w_{1}+\mathbf{i} w_{2}\right)-a w_{3}=0 \\
a\left(w_{1}-\mathbf{i} w_{2}\right)+b w_{3}=0
\end{array}\right.
\end{array}\right\},
\end{aligned}
$$

where W is the set of all vectors $w=\left(\zeta_{1} \sqrt{1-\zeta_{1}^{2}}, \zeta_{1} \sqrt{1-\zeta_{1}^{2}}, \zeta_{1} \sqrt{1-\zeta_{1}^{2}}\right)$ in \mathbb{C}^{3} with $\zeta_{i} \in \mathbb{C}$ and $\sum_{i=1}^{3}\left|\zeta_{i}\right|^{2}<1 / 2$, and the equivalence relation is given by $\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \cong\left(w_{1}, w_{2}, w_{3}\right)$ iff $0<\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}<\left|z_{0}\right|^{2} / 2$ and

$$
w_{i}=\frac{z_{i}}{z_{0}} \sqrt{1-\left(\frac{z_{i}}{z_{0}}\right)^{2}} \quad \text { for } i=1,2,3
$$

In any such example a neighborhood U of C is holomorphically diffeomorphic to a neighborhood of the curve $C \subset Z$ in Lemma 2.3 by a theorem of Grauert. Let $\tau: M \rightarrow M$ denote the Dehn twist about C induced by such a diffeomorphism. Then, by Lemma 2.3, there exists a smooth family of complex structures $\mathbb{C} \rightarrow \mathcal{J}_{\text {int }, 0}(M): t \mapsto J_{t}$ and a smooth family of diffeomorphisms $\mathbb{C} \backslash\{0\} \rightarrow \operatorname{Diff}_{0}(M): t \mapsto \phi_{t}$ such that $\phi_{t}^{*} J_{t}=\tau^{*} J_{-t}$ for all $t \in \mathbb{C} \backslash\{0\}$. Thus $\lim _{t \rightarrow 0} J_{t}=J$ and $\lim _{t \rightarrow 0} \phi_{t}^{*} J_{t}=\lim _{t \rightarrow 0} \tau^{*} J_{-t}=\tau^{*} J$. Since the homology class $A:=[C] \in H_{2}(M ; \mathbb{Z})$ is effective for J and the class $-A$ is effective for $\tau^{*} J$, the complex structures J and $\tau^{*} J$ do not represent the same equivalence class in $\mathscr{T}_{0}(M)$. This proves Lemma 3.1 .

References

[1] V. Gritsenko \& K. Hulek \& G.K. Sankaran, Moduli of K3 surfaces and irreducible symplectic manifolds. Handbook of Moduli, Vol I, edited by Gavril Farkas and Ian Morrison, Advanced Lectures in Mathematics 24, International Press, 2013, pp 459-526. https://arxiv.org/abs/1012.4155v2
[2] Daniel Huybrechts, Compact hyperKähler manifolds: Basic results. Invent. Math. 135 (1999), 63113. Erratum: Invent. Math. 152 (2003), 209-212. https://arxiv.org/abs/alg-geom/9705025
[3] Daniel Huybrechts, Lectures on K3 Surfaces. Cambridge Studies in Adv. Math. 158, CUP, 2016.
[4] Misha Verbitsky, Mapping class group and a global Torelli theorem for hyperkähler manifolds. Duke Mathematical Journal 162 (2013), 2929-2986. https://arxiv.org/abs/0908.4121
[5] Misha Verbitsky, Teichmüller spaces, ergodic theory and global Torelli theorem. Proceedings of ICM (2014), No. 2, 793-811. https://arxiv.org/abs/1404.3847

