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1 The cotangent bundle of the two-sphere

Identify the cotangent bundle of the 2-sphere with the manifold

T ∗S2 :=
{
ξ + iη ∈ C3 | |ξ| = 1, ⟨ξ, η⟩ = 0

}
. (1.1)

The canonical symplectic form on T ∗S2 is the restriction of the standard
symplectic form ω0 =

∑3
i=1 dξi ∧ dηi on C3 to T ∗S2.

Lemma 1.1 (Dehn Twist). Define the map τ : T ∗S2 → T ∗S2 by

τ(ξ, η) := (ξ′, η′)

for (ξ, η) ∈ T ∗S2, where |η′| = |η|, ξ′ := −ξ in the case η = 0, and

ξ′ + i
η′

|η′|
:= − exp

(
− 2πi|η|√

1 + 4|η|2

)(
ξ + i

η

|η|

)
(1.2)

in the case η ̸= 0. Then τ is a symplectomorphism (called the Dehn twist).

Proof. Equation (1.2) can be written in the form

ξ′ = − cos

(
2π|η|√
1 + 4|η|2

)
ξ − sin

(
2π|η|√
1 + 4|η|2

)
η

|η|
,

η′ = sin

(
2π|η|√
1 + 4|η|2

)
|η|ξ − cos

(
2π|η|√
1 + 4|η|2

)
η.

(1.3)
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This shows that τ is a diffeomorphism. Now abbreviate

f :=
π

2
√

1 + 4|η|2
, θ :=

2π|η|√
1 + 4|η|2

, df = −2π
∑3

i=1 ηidηi
(1 + 4|η|2)3/2

= −|η|dθ.

Then η′i = |η| sin(θ)ξi − cos(θ)ηi and ξ
′
i = − cos(θ)ξi − |η|−1 sin(θ)ηi. Thus

dξ′i = − cos(θ)dξi + sin(θ)

∑
j(ηiηjdηj − η2jdηi)

|η|3
+ ξi sin(θ)dθ −

ηi cos(θ)

|η|
dθ.

Using
∑

i ξ
2
i − 1 =

∑
i ξiηi = 0 and

∑
i ξidξi =

∑
i

(
ξidηi + ηidξi

)
= 0 we find∑

i

η′idξ
′
i = sin2(θ)

∑
i,j(ξiηiηjdηj − η2j ξidηi)

|η|2
+ |η| sin2(θ)dθ

+ cos2(θ)
∑
i

ηidξi + |η| cos2(θ)dθ

= cos2(θ)
∑
i

ηidξi − sin2(θ)
∑
i

ξidηi + |η|dθ

=
∑
i

ηidξi − df

Thus the difference
∑

i η
′
idξ

′
i −
∑

i ηidξi is exact and so τ : T ∗S2 → T ∗S2 is a
symplectomorphism. This proves Lemma 1.1.

Lemma 1.2. The set

X :=
{
z = x+ iy ∈ C3

∣∣ |x|2 − |y|2 = 1, ⟨x, y⟩ = 0
}
, (1.4)

is a complex submanifold of C3, the map ι : X → T ∗S2 defined by

ι(x+ iy) := |x|−1x+ i|x|y (1.5)

for x+ iy ∈ X is a symplectomorphism with the inverse

ι−1(ξ + iη) = λξ + iλ−1η, λ :=

√
1
2

(
1 +

√
1 + 4|η|2

)
, (1.6)

and the symplectomorphism ϕ := ι−1 ◦ τ ◦ ι of X is given by ϕ(x, y) = (x′, y′)
for z = x+ iy ∈ X, where x′ = −x, y′ = 0 in the case y = 0 and

x′

|x|
+ i

y′

|y|
= − exp

(
− 2πi|x||y|
|x|2 + |y|2

)(
x

|x|
+ i

y

|y|

)
(1.7)

in the case y ̸= 0.
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Proof. We prove that the map ι : X → T ∗S2 in (1.5) is a diffeomorphism
with the inverse given by (1.6). Let x+ iy ∈ X with y ̸= 0 and let

ξ + iη := ι(x+ iy) ∈ C3

be given by (1.5) so that ξ = |x|−1x and η = |x|y. Then

|ξ| = 1, ⟨ξ, η⟩ = ⟨x, y⟩ = 0

and so ξ + iη ∈ T ∗S2. Moreover, |η| = |x||y| and hence

1 + 4|η|2 = 1 + 4|x|2|y|2

= 1 + 4|y|2 + 4|y|4

= (1 + 2|y|2)2

= (|x2|+ |y|2)2.

(1.8)

This shows that

λ =

√
1
2

(
1 +

√
1 + 4|η|2

)
=
√

1
2

(
1 + |x|2 + |y|2

)
= |x|

in (1.5). Thus the map ι : X → T ∗S2 is bijective and its inverse is given
by (1.6). Moreover, both ι and ι−1 are smooth and so ι is a diffeomorphism.
That ι is a symplectomorphism follows from the identity∑

i

ηidξi =
∑
i

|x|yid
xi
|x|

=
∑
i

yidxi.

Here the last equation holds because
∑

i yixi = 0 on X.
Now let ϕ : X → C3 be the map defined by (1.7). Let x+ iy ∈ X and

let x′ + iy′ := ϕ(x+ iy) ∈ C3. We prove first that

|x′| = |x|, |y′| = |y|, x′ + iy′ ∈ X.

In the case y = 0 this follows directly from the definition. Thus assume y ̸= 0.
Since the vectors |x|−1x and |y|−1y in R3 are orthonormal it follows from (1.7)
that the vectors |x|−1x′ and |y|−1y′ are also orthonormal. This implies

⟨x′, y′⟩ = 0, |x′| = |x|, |y′| = |y|,

hence |x′|2 − |y′|2 = 1, and so x′ + iy′ ∈ X.
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We prove that ι ◦ ϕ = τ ◦ ι. Let x+ iy ∈ X with y ̸= 0 and define

x′ + iy′ := ϕ(x+ iy), ξ + iη := ι(x+ iy), ξ′ + iη′ := ι(x′ + iy′).

Then ξ = |x|−1x and η = |x|y and so it follows from (1.8) that

α := exp

(
− 2πi|η|√

1 + 4|η|2

)
= exp

(
− 2πi|x||y|
|x|2 + |y|2

)
.

Since ξ′ + iη′ = ι(x′ + iy′) and (x′ + iy′) = ϕ(x+ iy), this implies

|η′| = |x′||y′| = |x||y| = |η| (1.9)

and

ξ′ + i
η′

|η′|
=

x′

|x′|
+ i

y′

|y′|
= −α

(
x

|x|
+ i

y

|y|

)
= −α

(
ξ + i

η

|η|

)
. (1.10)

Here the second equality follows from (1.7). It follows from equations (1.9)
and (1.10) and the definition of τ in (1.2) that ξ′ + iη′ = τ(ξ + iη). Thus

ι ◦ ϕ(x+ iy) = ξ′ + iη′ = τ(ξ + iη) = τ ◦ ι(x+ iy)

for all x+ iy ∈ X with y ̸= 0. So ι ◦ ϕ = τ ◦ ι and this proves Lemma 1.2.

Remark 1.3. The manifold X in Lemma 1.2 is the regular fiber X = π−1(1)
of the Lefschetz fibration π : C3 → C given by

π(z) := z21 + z22 + z23

for z = (z1, z2, z3) ∈ C3. The Dehn twist ϕ : X → X in (1.7) is the mono-
dromy around the unit circle in this Lefschetz fibration. More precisely, the
parallel transport diffeomorphisms ϕt : π

−1(1) → π−1(e2πit) are given by

ϕt(x+ iy) = eπit(u(t) + iv(t))

u(t)

|x|
+ i

v(t)

|y|
= exp

(
− 2πit|x||y|
|x|2 + |y|2

)(
x

|x|
+ i

y

|y|

)
(1.11)

for t ∈ R and x+ iy ∈ X with y ̸= 0. This can be seen by noting that the
function w(t) := e−πitz(t) satisfies the equation ẇ = πi(−w + λw), where the
coefficient λ := |z(t)|−2 is independent of t. For t = 1 one obtains the dif-
feomorphism ϕ = ϕ1 : X → X in Lemma 1.2. We emphasize that ϕ is a
symplectomorphism but is not holomorphic.
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A third model for the cotangent bundle of the 2-sphere is the total space
of the second tensor power of the tautological line bundle over CP1 or, equiva-
lently, the resolution of the singularity x2 + y2 + z2 = 0 in C3. Define

Z :=

(x, y, z, [a : b]) ∈ C3 × CP1

∣∣∣∣∣
x2 + y2 + z2 = 0,
b(x+ iy)− az = 0,
a(x− iy) + bz = 0


=

(x, y, z, [a : b]) ∈ C3 × CP1

∣∣∣∣∣
∃λ, µ ∈ C such that
x+ iy = λa, z = λb,
x− iy = µb, −z = µa

 .

(1.12)

This is a complex submanifold of C3 × CP1 and hence it inherits a nat-
ural Kähler structure from the ambient manifold (with the standard sym-
plectic form on C3 and the Fubini–Study form on CP1). However, in con-
trast to the manifolds T ∗S2 in (1.1) and X in (1.4) where the zero section
(η = 0 in (1.1) and y = 0 in (1.4)) is a Lagrangian submanifold, the zero
section x = y = z = 0 in the manifold Z in (1.12) is a holomorphic sphere
with self-intersection number −2. Stereographic projection gives rise to an
explicit diffeomorphism from Z to T ∗S2.

Lemma 1.4. For (x, y, z, [a : b]) ∈ Z define the pair

ȷ(x, y, z, [a : b]) := (ξ, η) ∈ R3 × R3

by

ξ :=
1

|a|2 + |b|2

 2Re(ab̄)
2Im(ab̄)
|b|2 − |a|2

 , η :=

 Im(x)
Im(y)
Im(z)

 . (1.13)

Then ȷ : Z → T ∗S2 is an orientation preserving diffeomorphism. Its inverse
is given by ȷ−1(ξ, η) = (x, y, z; [ξ1 + iξ2 : 1 + ξ3]) with (x, y, z) = −ξ × η + iη.

Proof. The square of the tautological line bundle over CP1 is the quotient

E :=
{
(a, b, w) ∈ C3 | (a, b) ̸= (0, 0)

}
/∼, (a, b, w) ∼ (λa, λb, λ−2w).

Denote the equivalence class of a triple (a, b, w) under the action of C∗

by [a : b;w] := {(λa, λb, λ−2w) |λ ∈ C∗}. The line bundle E is diffeomorphic
to Z via the diffeomorphism [a : b;w] 7→ (x, y, z, [a : b]) given by

x =
b2 − a2

2
iw, y = −a

2 + b2

2
w, z = −iabw. (1.14)

Note that b(x+ iy) = −a2biw = az and a(x− iy) = ab2iw = −bz.
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Now think of the complex plane as a subspace of the space of quaternions
and denote by i, j,k the standard generators of the imaginary quaternions
so that ij = −ji = k and i2 = j2 = k2 = −1. For (a, b) ∈ C2 \ {0} define the
quaternion q ∈ H by

q := q(a, b) := 1
2

(
(ā+ b̄)(1− i) + (a− b)(j+ k)

)
. (1.15)

Then a calculation shows that |q|2 = |a|2 + |b|2 and

qiq = 2Re
(
ab̄
)
i+ 2Im

(
ab̄
)
j+
(
|b|2 − |a|2

)
k,

qjq = Re
(
b2 − a2

)
i− Im

(
a2 + b2

)
j− 2Re

(
ab
)
k,

qkq = Im
(
b2 − a2

)
i+Re

(
a2 + b2

)
j− 2Im

(
ab
)
k.

When (a, b) ∈ C2 is a unit vector, the coordinates of qiq define the element
of S2 that correspond to the point a/b in the Riemann sphere under the stere-
ographic projection from the south pole, and the vectors qjq and −qkq form a
positive orthonormal basis of the cotangent space of S2 at the point ξ = qiq.
Thus a complex number w = s+ it determines a tangent vector

η := 1
2
q(a, b)

(
wj
)
q(a, b)

= 1
2
q(a, b)

(
sj− tk

)
q(a, b)

= Re
(
1
2
(b2 − a2)w

)
i− Im

(
1
2
(a2 + b2)w

)
j− Re

(
abw

)
k.

This gives rise to a vector bundle isomorphism from E to T ∗S2 which cov-
ers the inverse of the stereographic projection S2 → CP1 and sends an ele-
ment [a : b;w] to the pair (ξ, η) = (ξ(a, b), η(a, b;w)) ∈ T ∗S2, defined by

ξ :=
1

|a|2 + |b|2

 2Re(ab̄)
2Im(ab̄)
|b|2 − |a|2

 , η :=

 Re
(
1
2
(b2 − a2)w

)
−Im

(
1
2
(a2 + b2)w

)
−Re

(
abw

)
 .

If (x, y, z, [a : b]) is the element of Z corresponding to the point [a : b;w] ∈ E
under the diffeomorphism in (1.14), then η(a, b;w) = (Im(x), Im(y), Im(z)).
The inverse map sends a point (ξ, η) ∈ T ∗S2 to (x, y, z, [a : b]) ∈ Z with

[a : b] = [ξ1 + iξ2 : 1 + ξ3],

x = ξ3η2 − ξ2η3 + iη1,

y = ξ1η3 − ξ3η1 + iη2,

z = ξ2η1 − ξ1η2 + iη3.

(1.16)

This proves Lemma 1.4.
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2 The Atiyah flop

The set
X :=

{
(x, y, z, t) ∈ C4 |x2 + y2 + z2 + t = 0

}
(2.1)

is a complex submanifold of C4, holomorphically diffeomorphic to C3, the
projection π : X → C given by π(x, y, z, t) := t is a Lefschetz fibration, the
fiber over t = 1 is the manifold X in (1.4), and the monodromy around the
unit circle is the Dehn twist in Lemma 1.1. Now consider the singular variety

S :=
{
(x, y, z, t) ∈ C4

∣∣∣x2 + y2 + z2 + t2 = 0
}
. (2.2)

Blow up the origin to obtain a smooth manifold

Z :=

{
(x, y, z, t, [a : b]) ∈ C4 × CP1

∣∣∣∣ b(x+ iy)− a(z + it) = 0,
a(x− iy) + b(z − it) = 0

}
. (2.3)

Lemma 2.1. The projection

Z → C : (x, y, z, t, [a : b]) 7→ π(x, y, z, t, [a : b]) := t (2.4)

is a holomorphic submersion.

Proof. If (x, y, z, t) is a nonzero vector in S, then one of the complex num-
bers x, y, z is nonzero. If x ̸= 0, then the vector (x̂, ŷ, ẑ, t̂) with

x̂ = −tt̂
x
, ŷ = ẑ = 0

is tangent to S at (x, y, z, t) and projects onto t̂ under the derivative of π.
If b ̸= 0, then the curve (x(t), y(t), z(t), t, [a : b]) ∈ U with

x(t) =
iat

b
, y(t) =

at

b
, z(t) = it

passes through (0, 0, 0, 0, [a : b]) and satisfies x(t)2 + y(t)2 + z(t)2 + t2 = 0
as well as b(x+ iy)− a(z + it) = 0 and a(x− iy) + b(z − it) = 0. If a = 1
and b = 0, then the curve (x(t), y(t), z(t), t, [1 : 0]) ∈ U with

x(t) = it, y(t) = t, z(t) = −it

satisfies the same conditions. This proves Lemma 2.1.
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The central fiber of the fibration π : Z → C in (2.3) and (2.4) is the
manifold Z0 := Z in (1.12) which is diffeomorphic to T ∗S2 by Lemma 1.4. By
Lemma 2.1 the fibration Z admits a trivialization C× Z → Z. For t ∈ C\{0}
denote the fiber of Z over t by

Zt :=
{
(x, y, z) ∈ C3

∣∣x2 + y2 + z2 + t2 = 0
}
. (2.5)

Lemma 2.2. Fix a constant ε > 0. Then there exists a collection of diffeo-
morphisms ψt : Z → Zt satisfying the following conditions.

(I) The map

C× Z → Z : (t, (x, y, z, [a; b])) 7→ (x′, y′, z′, t, [a′ : b′]) (2.6)

defined by (x′, y′, z′, [a′ : b′]) := (x, y, z, [a : b]) for t = 0 and by

(x′, y′, z′) := ψt(x, y, z, [a : b]),

[a′ : b′] :=

{
[x′ + iy′ : z′ + it], if |x′ + iy′|2 + |z′ + it|2 ̸= 0,
[−z′ + it : x′ − iy′], if |−z′ + it|2 + |x′ − iy′|2 ̸= 0,

(2.7)

for t ̸= 0 is a diffeomorphism.

(II) Let (x, y, z, [a; b]) ∈ Z such that |x|2+ |y|2+ |z|2 ≥ ε and let t ∈ C \ {0}.
Define r := |t|, choose θ ∈ R such that t = reiθ, and define

λ :=

√√
(|x|2 + |y|2 + |z|2)2 + r4 + r2

|x|2 + |y|2 + |z|2
> 1. (2.8)

Then (x′, y′, z′) = ψt(x, y, z, [a : b]) is given by

(x′, y′, z′) =
λ+ λ−1

2
(x, y, z) + e2iθ

λ− λ−1

2
(x̄, ȳ, z̄). (2.9)

Proof. The map (2.9) is obtained by parallel transport in the fibration Z in
Lemma 2.1 along the paths r 7→ reiθ on the complement of the set

C :=
{
(x, y, z, t, [a : b]) ∈ Z

∣∣ |x|2 + |y|2 + |z|2 = |t|2
}
.

Here the fiber Zt is identified with the fiber Xt2 of the fibration X in (2.1)
in the canonical way, the set C corresponds to the zero sections of the fibers
under the identifications with T ∗S2, and parallel transport is understood
with respect to the symplectic connection on X determined by the standard
symplectic form on C3. The proof of Lemma 2.2 then follows by choosing
a suitable symplectic connection form on Z which agrees with the standard
symplectic form on C3 (with the coordinates (x, y, z)) outside of a sufficiently
small neighborhood of the sphere C := {(0, 0, 0, 0)} × CP1 ⊂ Z.

8



Lemma 2.3. For t ∈ C\{0} let ψt : Z → Zt be the trivialization of Lemma 2.2,
let It be the standard complex structure on Zt, and define

Jt := ψ∗
t It ∈ Jint(Z).

Let J be the standard complex structure on Z and let τ : Z → Z be a
Dehn twist, localized near the (−2)-sphere C = {(0, 0, 0)} × CP1 ⊂ Z, under
the identification of Z with T ∗S2 in Lemma 1.4. Then there exists a smooth
family of diffeomorphisms C \ {0} → Diff0(Z) : t 7→ ϕt with uniform compact
support such that, for every t ∈ C \ {0}, the diffeomorphism ϕt : Z → Z is
smoothly isotopic to the identity with uniform compact support and

ϕ∗
tJt = τ ∗J−t.

Proof. For t ∈ C \ {0} we have Zt = Z−t and denote by ιt : Zt → Z−t the
identity map, so ιt(x, y, z) = (x, y, z) ∈ Z−t for (x, y, z) ∈ Zt. We empha-
size that the map (x, y, z, t) 7→ (x, y, z,−t) is a holomorphic diffeomorphism
of S \ {0} and so induces a holomorphic diffeomorphism of Z \ C, however,
it does not extend to Z. It follows from equation (2.9) in Lemma 2.2 that

ι−t ◦ ψ−t = ψt on
{
(x, y, z, [a : b]) ∈ Z

∣∣ |x|2 + |y|2 + |z|2 ≥ ε
}
.

Thus the diffeomorphism

τt := ψ−1
t ◦ ι−t ◦ ψ−t : Z → Z

is equal to the identity on the subset |x|2 + |y|2 + |z|2 ≥ ε. By Lemma 1.2
and Remark 1.3 it is a Dehn twist, localized near the (−2)-sphere C ⊂ Z.
Moreover, for all t ∈ C \ {0}, we have τt ◦ τ−t = id and

τ ∗t Jt = ψ∗
−tι

∗
−t(ψ

−1
t )∗Jt = ψ∗

−tι
∗
−tIt = ψ∗

−tI−t = J−t.

Now fix an element t0 ∈ C \ {0} and take

τ := τt0 , ϕt := τt ◦ τ

for t ∈ C \ {0}. Then, for every t ∈ C \ {0}, we have ϕ∗
tJt = τ ∗τ ∗t Jt = τ ∗J−t

and ϕt is smoothly isotopic to the identity. An explicit isotopy with uniform
compact support is given by ϕs,t := τγt(s) ◦ τt0 , where γt : [0, 1] → C \ {0} is
a smooth curve satisfying γt(0) = −t0 and γt(1) = t. If τ is any other Dehn
twist about C, choose a smooth isotopy [0, 1] → Diff(Z) : s 7→ ψs with uni-
form compact support joining ψ0 = τt0 to ψ1 = τ and take ϕs,t := τγt(s) ◦ ψs.
This proves Lemma 2.3.
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3 Teichmüller space of K3

For an oriented smooth manifold M of even dimension denote by J (M)
the space of almost complex structures that are compatible with the orien-
tation, by Jint,0(M) ⊂ J (M) the subspace of integrable almost complex
structures with vanishing real first Chern class, and by Diff0(M) the group
of diffeomorphisms of M that are isotopic to the identity.

Lemma 3.1. Let M be a K3 surface, i.e. a closed oriented simply connected
smooth four-manifold with Jint,0(M) ̸= ∅. Then the Teichmüller space

T0(M) := Jint,0(M)/Diff0(M)

is not Hausdorff.

Proof. Let J ∈ Jint,0(M) be a complex structure that admits an embedded
holomorphic sphere C ⊂M with self-intersection number −2. An explicit
example (taken from [1]) is the manifold

M :=

{
[z0 : z1 : z2 : z3] ∈ CP3

∣∣∣∣∣
∑3

i=1 z
2
i (z

2
i − z20) = 0,

|z1|2 + |z2|2 + |z3|2 ̸= 0

}
∪ U

/
∼,

U :=

(w1, w2, w3, [a : b]) ∈ C3 × CP1

∣∣∣∣∣
(w1, w2, w3) ∈ W,
b(w1 + iw2)− aw3 = 0,
a(w1 − iw2) + bw3 = 0

 ,

where W is the set of all vectors w = (ζ1
√
1− ζ21 , ζ1

√
1− ζ21 , ζ1

√
1− ζ21 )

in C3 with ζi ∈ C and
∑3

i=1|ζi|2 < 1/2, and the equivalence relation is given
by [z0 : z1 : z2 : z3] ∼= (w1, w2, w3) iff 0 < |z1|2 + |z2|2 + |z3|2 < |z0|2/2 and

wi =
zi
z0

√
1−

(
zi
z0

)2

for i = 1, 2, 3.

In any such example a neighborhood U of C is holomorphically diffeomor-
phic to a neighborhood of the curve C ⊂ Z in Lemma 2.3 by a theorem
of Grauert. Let τ : M → M denote the Dehn twist about C induced
by such a diffeomorphism. Then, by Lemma 2.3, there exists a smooth
family of complex structures C → Jint,0(M) : t 7→ Jt and a smooth family
of diffeomorphisms C \ {0} → Diff0(M) : t 7→ ϕt such that ϕ∗

tJt = τ ∗J−t for
all t ∈ C \ {0}. Thus limt→0 Jt = J and limt→0 ϕ

∗
tJt = limt→0 τ

∗J−t = τ ∗J .
Since the homology class A := [C] ∈ H2(M ;Z) is effective for J and the
class −A is effective for τ ∗J , the complex structures J and τ ∗J do not repre-
sent the same equivalence class in T0(M). This proves Lemma 3.1.
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