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1 Introduction

Contact geometry

Let M be a compact manifold of odd dimension 2n + 1 and ξ ⊂ TM be a
contact structure. This means that ξ is an oriented field of hyperplanes and
there exists a 1-form α on M such that

ξ = ker α, α ∧ dα∧n 6= 0.

The last condition means that the restriction of dα to the kernel of α is non-
degenerate. Any such form is called a contact form for ξ. Any contact form
determines a contact vector field (sometimes also called the Reeb vector field)
Y : M → TM via

ι(Y )dα = 0, ι(Y )α = 1.

A contactomorphism is a diffeomorphism ψ : M → M which preserves the
contact structure ξ. This means that ψ∗α = ehα for some smooth function
h : M →

�
. A contact isotopy is a smooth family of contactomorphisms

ψs : M → M such that
ψ∗
sα = ehsα

for all s. Any such isotopy with ψ0 = id and h0 = 0 is generated by Hamil-
tonian functions Hs : M →

�
as follows. Each Hamiltonian function Hs

determines a Hamiltonian vector field Xs = XHs = Xα,Hs : M → TM via

ι(Xs)α = −Hs, ι(Xs)dα = dHs − ι(Y )dHs · α,
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and these vector fields determine ψs and hs via

d

ds
ψs = Xs ◦ ψs,

d

ds
hs = −ι(Y )dHs.

A Legendrian submanifold of M is an n-dimensional integral submanifold L
of the hyperplane field ξ, that is α|TL = 0. An n + 1-dimensional submanifold
L ⊂M is called Lagrangeable if there exists a positive function f : L→

�
such

that the 1-form f−1α|L is closed This implies that L is foliated by Legendrian
leaves. This definition is somewhat too strong. There are some interesting
examples in which the function f cannot be chosen positive but vanishes on a
subset of codimension 2. We shall discuss this in section 4.

Remark Let φ : M → M be a contactomorphism with φ∗α = egα. Then for
any Hamiltonian function H : M →

�
we have

φ∗Xα,H = Xφ∗α,H◦φ = Xα,e−gH◦φ.

Symplectization

Associated to a contact manifold M with contact form α is the symplectiza-
tion M ×

�
with symplectic structure

ω = ωα = d(eθα) = eθ(dα− α ∧ dθ).

Here θ denotes the coordinate on
�

. If ψ : M →M is a contactomorphism with
ψ∗α = ehα then the diffeomorphism

(p, θ) 7→ (ψ(p), θ − h(p))

of M ×
�

preserves the symplectic structure ω. Moreover every contact isotopy
ψs : M → M corresponds to a Hamiltonian isotopy on M ×

�
determined by

the homogeneous Hamiltonian functions (p, θ) 7→ eθHs(p). The corresponding
Hamiltonian differential equation is of the form

ṗ = Xs(p), θ̇ = ι(Y )dHs(p).

If L ⊂M is a Legendrian submanifold then L×
�

is a Lagrangian submanifold
of M ×

�
. If L ⊂M is a Lagrangeable submanifold of M and f−1α|L is closed

then
Lf = {(p,− log(f(p))) | p ∈ L} ⊂M ×

�

is also a Lagrangian submanifold of M ×
�

. This is the motivation for the term
Lagrangeable.

Remark The relation between contact geometry and symplectic geometry has
to be handled with care. The symplectic structure ω = ωα = d(eθα) is not
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determined by the contact structure ξ but depends explicitly on the contact
form α. Given a contactomorphism ψ : M → M it is sometimes convenient to
work with the diffeomorphism (p, θ) 7→ (ψ(p), θ) which does not preserve the
symplectic structure but satisfies

(ψ × id)∗ωα = ωψ∗α.

This will especially be the case when we discuss almost complex structures and
J-holomorphic curves.

Lagrangian intersections

The goal of this paper is to construct Floer homology groups

HF∗(L0, L1;α)

for intersections of a Legendrian submanifold L1 and a Lagrangeable subman-
ifold L0. These groups are invariant under contact isotopies. They should be
thought of as the Floer homology groups HF∗(M ×

�
, (L0)f0 , L1 ×

�
) for the

corresponding Lagrangian intersections in the symplectic manifold M ×
�

. The
noncompactness at θ → +∞ is no problem due to convexity but new difficulties
arise from the black hole at θ → −∞. These can be overcome if the following
hypotheses are satisfied.

(H1) There no nontrivial discs in M with boundary in L0:

π2(M,L0) = 0.

(H2) Every periodic solution γ :
�
/T � → M of the contact flow γ̇ = Y (γ)

represents a nontrivial homotopy class (of loops in M).

(H3) Every solution γ : [0, T ] →M of the boundary value problem

γ̇ = Y (γ), γ(0) ∈ L1, γ(T ) ∈ L1

represents a nontrivial homotopy class (of paths in M with endpoints in
L1).

The notions of Legendrian and Lagrangeable submanifold as well as contact
isotopy are independent of the choice of the contact form α and one would
expect the Floer homology groups HF∗(L0, L1;α) to be independent of α as
well. However, we were not able to prove this. In fact, the conditions (H2)
and (H3) above explicitly depend on α and the set of contact forms which
satisfy these hypotheses is not dense. This is somewhat misfurtunate but may
be related to the fact that Floer homology is an intrinsically symplectic concept
and the symplectic structure does depend on α. In applications we shall consider
pairs L0, L1 which satisfy in addition the following condition.
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(H4) L1 is a connected submanifold of L0.

Under this assumtion the Floer homology groups HF∗(L0, L1;α) are isomor-
phic to the homology of L1 and this implies the following intersection theorem.

Theorem A Assume (H1), (H2), (H3), (H4). Let ψ : M → M be a Hamilto-
nian contactomorphism such that L0 and ψ−1(L1) intersect transversally. Then

#L0 ∩ ψ
−1(L1) ≥

n∑

k=0

dimHk(L1; � 2).

In particular the intersection L0 ∩ ψ−1(L1) is always nonempty.

2 J-holomorphic curves

The space of paths

Fix a contact form α0 on M and let L0 ⊂ M be a Lagrangeable submanifold
with f0 : L0 → (0,∞) such that f0

−1α0|L0 is closed. We also fix a Legendrian
submanifold L1 ⊂M . Denote by

P = P(L0, f0, L1)

the space of paths (γ, θ) : [0, 1] →M ×
�

such that

γ(0) ∈ L0, eθ(0) =
1

f0(γ(0))
, γ(1) ∈ L1.

If L0 and L1 satisfy hypothesis (H4) then there is a natural injection L1 ↪→ P :
x 7→ (γx, θx) defined by

γx(s) = x, θx(s) = − log(f(x)).

Denote by P0 the component of P which contains the constant paths (γx, θx).

Lemma 2.1 Assume (H1) and (H4). Then (γ, θ) ∈ P0 if and only if there
exists an extension γ : [−1, 1] →M of γ such that

(i) γ(s) ∈ L0 for −1 ≤ s ≤ 0,

(ii) γ(−1) ∈ L1,

(iii) the path γ : [−1, 1] → M is homotopic to a constant path in the space of
paths in M with endpoints in L1.

Any two such extensions γ0, γ1 : [−1, 0] → L0 are homotopic in the space of
paths β : [−1, 0] → L0 with β(0) = γ(0) and β(−1) ∈ L1.
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Proof: First assume (γ, θ) ∈ P0. Then there exists a homotopy [−1, 0] → P0 :
λ 7→ (γλ, θλ) such that (γ0, θ0) = (γ, θ) and γ−1(s) ≡ x, θ−1(s) ≡ − log(f0(x))
for some x ∈ L1. The required extension is given by s 7→ γs(0) for −1 ≤ s ≤ 0.
Conversely, if the required extension exists then the homotopy (γλ, θλ) ∈ P0 to
the constant path is constructed from the homotopy of condition (iii). To prove
uniqueness note that if γ0, γ1 : [−1, 0] → L0 are two extensions of γ : [0, 1] →M
then condition (iii) gives rise to a disc u : D → M whose boundary u(∂D)
consists of the paths γ0 and γ1 together with a path in L1 which connects the
base points γ0(−1) and γ1(−1). By (H1) the loop u(∂D) is contractible in L0.
2

Lemma 2.2 Assume (H1) and (H4). Then the injection L1 ↪→ P0 induces an
isomorphism of fundamental groups.

Proof: The map π1(L1) → π1(P0) induced by x 7→ (γx, θx) is obviously
injective: If a loop

�
/ � → P0 : λ 7→ (γλ, θλ)

is contractible then so is the loop

�
/ � → L1 : λ 7→ γλ(1).

To prove that the map is surjective we must prove the converse: If the loop
λ 7→ γλ(1) is contractible in L1 then the loop λ 7→ (γλ, θλ) is contractible in
P0. To see this assume without loss of generality that γλ(1) = x ∈ L1 for all λ.
Then use π2(M,L0) = 0 (hypothesis (H1)) to construct the required homotopy.
2

The tangent space T(γ,θ)P at a path (γ, θ) ∈ P consists of all vectorfields
(v(s), τ(s)) ∈ Tγ(s)M ×

�
along (γ, θ) which satisfy the boundary condition

v(0) ∈ Tγ(0)L0, τ(0) = −
df0(γ(0))v(0)

f0(γ(0))
, v(1) ∈ Tγ(1)L1.

Symplectic action

Let
αs = φ∗sα = egsα0

be a smooth family of contact forms generated by a contact isotopy such that
g0 = 0 and let Hs : M →

�
be a smooth family of Hamiltonian fumctions.

Assume that L0 and L1 satisfy hypotheses (H1) and (H4). Then the symplectic
action functional

S = Sα,H : P0 →
�
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is defined by

S(γ, θ) =

∫ 0

−1

α0(γ̇(s))

f0(γ(s))
ds+

∫ 1

0

eθ(s) (αs(γ̇(s)) +Hs(γ(s))) ds

for (γ, θ) ∈ P0. Here the extension γ : [−1, 0] → M is chosen as in Lemma 2.1.
It follows from the uniqueness part of the lemma and hypothesis (H1) that the
action S(γ, θ) is independent of the choice of the extension.

Denote by Ys = φ∗sY0 the contact vector field determined by αs and by
Xs = Xαs,Hs the Hamiltonian vector field generated by Hs and αs. Then the
differential of the symplectic action in the direction of a variation (v, τ) ∈ T(γ,θ)P
is given by

dS(γ, θ)(v, τ) =

∫ 1

0

eθ
(
dαs(v, γ̇ −Xs(γ)) + ταs(γ̇ −Xs(γ))

)
ds

−

∫ 1

0

eθαs(v)
(
θ̇ + ġs(γ) − dHs(γ)Ys(γ)

)
ds.

Here we have used the notation ġs = d/dsgs. The formula for dS shows that the
critical points of a are in one-to-one correspondence with paths γ : [0, 1] → M
which satisfy the boundary value problem

γ̇(s) = Xs(γ(s)), γ(0) ∈ L0, γ(1) ∈ L1.

(The path θ : [0, 1] →
�

is uniquely determined by γ.) Let ψs = ψα,H,s denote
the contact isotopy determined by Xs = Xαs,Hs via

d

ds
ψs = Xs ◦ ψs, ψ0 = id.

Then the critical points of a correspond to paths

γ(s) = ψs(x), x ∈ L0 ∩ ψ1
−1(L1).

Moreover, the corresponding critical point (γ, θ) of a is nondegenerate if and
only if L0 and ψ1

−1(L1) intersect transversally at x. In other words the ac-
tion functional a is a Morse function if and only if L0 and ψ1

−1(L1) intersect
transversally.

Remark Assume that the 1-form f0
−1α0|L0 is exact:

f0
−1α0|L0 = dF0

for some function F0 : L0 →
�

. If in addition L1 ⊂ L0 and L1 is connected
then we may assume that F0 vanishes on L1. In this case the symplectic action
functional is given by

S(γ, θ) = F0(γ(0)) +

∫ 1

0

eθ(s) (αs(γ̇(s)) +Hs(γ(s))) ds.
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for (γ, θ) ∈ P0. This formula also works when hypothesis (H4) does not hold. In
most applications, however, the 1-form f0

−1α0|L0 will not be exact. If neither
this holds nor (H4) then the symplectic action functional may not be a well
defined function but may only give rise to a closed 1-form on the space of paths.
In this case the corresponding Floer homology groups will be modules over a
suitable Novikov ring as in [7]. We shall, however, not consider that case.

Almost complex structures

To discuss the gradient flow of the symplectic action we must choose a suitable
metric on the loop space and this will require an almost complex structure
on M ×

�
. Since every symplectic vector bundle over any manifold admits a

compatible almost complex structure, there exists an almost complex structure
J on kerα which is compatible with the symplectic structure dα. We think of
this structure as an endomorphism J : TM → TM such that

JY = 0, J2v = α(v)Y − v

and the bilinear form

〈v, w〉 = dα(v, Jw) + α(v)α(w)

defines a Riemannian metric on M . We shall call such a structure compatible
with α. For any such J the automorphism J̃ : TM ×

�
→ TM ×

�
defined by

J̃(v, τ) = (Jv + τY,−α(v))

is an almost complex structure onM×
�

which is compatible with the symplectic
form ω = d(eθα). The corresponding Riemannian metric is the product metric
on M ×

�
(with the above metric on M) multiplied by eθ.

Remark Let ψ : M → M be any diffeomorphism of M and assume that J is
compatible with α. Then ψ∗Y is the contact vectorfield for ψ∗α and ψ∗J is an
almost complex structure compatible with ψ∗α.

Now choose a family of almost complex structures Js : TM → TM which
are compatible with αs. Any such structure induces a metric on the path space
P via

‖(v, τ)‖J =

∫ 1

0

eθ
(
dαs(v, Jsv) + |αs(v)|

2 + |τ |2
)
ds

for (v, τ) ∈ T(γ,θ)P .
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Gradient flow

The gradient flow of the symplectic action with respect to the above metric on
P is given by

gradS(γ, θ) =

(
−Js(γ̇ −Xs(γ)) − (θ̇ + ġs(γ) − dHs(γ)Ys(γ))Ys(γ)

αs(γ̇ −Xs(γ))

)
.

Hence a gradient flow line of the symplectic action is a smooth map (u, θ) :
[0, 1] ×

�
→M ×

�
which satisfies the first order partial differential equation

∂su−Xs(u) − αs(∂su−Xs(u))Ys(u) + Js(u)∂tu = 0,
∂sθ + ġs(u) − dHs(u)Ys(u) = αs(∂tu),

∂tθ = −αs(∂su−Xs(u))
(1)

with boundary condition

u(0, t) ∈ L0, eθ(0,t) =
1

f0(u(0, t))
, u(1, t) ∈ L1. (2)

The following lemma can be proved by a direct computation which we leave to
the reader.

Lemma 2.3 Let χs : M →M be a contact isotopy such that

d

ds
χs = Xαs,Ks ◦ χs, χ∗

sαs = eg
′
sα,

and define
u′(s, t) = χs

−1(u(s, t)), θ′(s, t) = θ(s, t).

Then u′ and θ′ satisfy the same equation (1) with αs, Ys, Js, Hs, Xs and ġs
replaced by

α′
s = χ∗

sαs, Y ′
s = χ∗

sYs, J ′
s = χ∗

sJs,

H ′
s = (Hs−Ks)◦χs, X ′

s = χ∗
s(Xs−Xαs,Ks), ġ′s = (ġs − ι(Ys)dKs)◦χs.

Moreover, u′ and θ′ satisfy the boundary conditions (2) with L0, f0, and L1

replaced by

L′
0 = χ0

−1(L0), f ′
0 = f0 ◦ χ0, L′

1 = χ1
−1(L1).

Remarks

(i) The previous lemma shows that equation (1) can be reduced to the case
where either Hs ≡ 0 (choose χs = ψs) or αs ≡ α0 (choose χs = φs).
Both cases will be of interest and we shall therefore continue to discuss
the general situation.
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(ii) If Hs ≡ 0, αs ≡ α0, and Js ≡ J0 then the solutions of (1) are Gromov’s
pseudoholomorphic curves in M ×

�
with respect to the above almost

complex structure J̃(v, τ) = (J0v + τY0,−α0(v)). Such J-holomorphic
curves have been recently used by Hofer [6] to prove existence theorems
for periodic orbits on contact manifolds.

(iii) If αs depends on s then so does the symplectic form ωs = d(eθαs). Thus
the above equation seems more general than the corresponding equation
in the usual Floer homology theory for Lagrangian intersections. This,
however, is due to notational convenience. The diffeomorphism φ−1

s × id
of M ×

�
transforms ωs into ω0. (Compare Lemma 2.3 with χs = φs.)

Energy

The energy of a solution (u, θ) of (1) and (2) is given by

E(u, θ) =

∞∫

−∞

1∫

0

eθ
(
αs(∂tu, Js(u)∂tu) + |αs(∂tu)|

2
+ |∂tθ|

2
)
dsdt

=

∞∫

−∞

1∫

0

(u, θ)∗d
(
eθαs + eθHsds

)
.

Here d is the differential with respect to all variables (p, θ, s) ∈M ×
�
×

�
and

(u, θ) is to be understood as the map (s, t) 7→ (u(s, t), θ(s, t), s). It turns out
that if the energy is finite and L0 and ψ1

−1(L1) intersect transversally then the
limits

lim
t→±∞

u(s, t) = ψs(x
±), x± ∈ L0 ∩ ψ1

−1(L1) (3)

exist (see Proposition 2.5 below). In this case the energy is given by

E(u, θ) = −

∫ ∞

−∞

α0(∂tu(0, t))

f0(u(0, t))
dt

Hence the energy depends only on the homotopy class of paths in L0 from x−

to x+ determined by u(0, t). If the hypotheses (H1) and (H4) are satisfied then
the energy is uniformly bounded and is given by

E(u, θ) = S(ψs(x
−)) − S(ψs(x

+)) (4)

whenever (u(·, t), θ(·, t)) ∈ P0 for all t.
Now a Floer complex can be defined as usual by counting the connecting

orbits when the relative Morse index is 1. Under the hypotheses (H1), (H2), (H3)
there are no obstructions to compactness and the usual theory carries through.
The crucial point is the following compactness theorem for the solutions of (1)
and (2) with bounded energy. The proof will be given in section 5.
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Theorem 2.4 Assume that M , α0, L0, and L1 satisfy the hypotheses (H1),
(H2), and (H3). Then for every c > 0 the space

Mc = Mc(L0, L1;α,H, J, f0)

of all smooth solutions (u, θ) of the boundary value problem (1) and (2) which
satisfy the energy bound

E(u, θ) ≤ c

is compact (with respect to the topology of uniform convergence with all deriva-
tives on compact sets).

If we knew a-priori that all the solutions of (1) and (2) would take values in
a compact subset of M ×

�
(that is |θ(s, t)| ≤ C for some universal constant C)

then the above theorem would follow directly from the usual compactness theory
for Gromov’s pseudoholomorphic curves (cf. [5] or [8]). To see this consider
without loss of generality the case αs ≡ α0. Hypothesis (H1) guarantees that
there are no J0-holomorphic discs with boundary on the extended manifold
(L0)f0 , there are obviously no such discs with boundary in L1 ×

�
, and since

the symplectic form ω = d(eθα0) is exact there are no J0-holomorphic spheres.
Hence there could be no bubbling (for J0-holomorphic curves with values in a
compact set) and Theorem 2.4 would follow. Now in the case αs ≡ α0 and
Hs ≡ 0 The function θ is harmonic and its normal derivative vanishes on s = 1.
Hence it follows from the maximum principle that at least in this case θ is
bounded above by a universal constant (− log(infL0 f0)). In contrast it is not
at all obvious that the functions θ for (u, θ) ∈ Mc are uniformly bounded from
below. Such a bound will only exist if the hypotheses (H2) and (H3) are satisfied
as well. The proof requires an analysis of J-holomorphic planes and halfplanes.
In the case of planes this was recently carried out by Hofer (cf. [6]) and we shall
explain his results and their generalizations to half planes in section 5.

Heuristically the argument is as follows: If there is a sequence (uν , θν) ∈ Mc

and a sequence of points zν = sν+itν such that cν = θν(zν) → −∞ the following
happens. Assume without loss of generality that sν → s∗ and denote α = αs∗ ,
J = Js∗ , Y = Ys∗ . If zν stays clear of either boundary at s = 0 and s = 1 we
may replace θν by θ̃ν = θν − cν to obtain another sequence of J-holomorphic
curves (uν , θ̃ν) which stay away from −∞ but whose energy diverges to ∞.
However, after suitable rescaling we obtain in the limit a J-holomorphic plane

(u, θ) : � →M ×
�

which has finite contact energy

E0(u) =

∫
u∗(dα) = T > 0 (5)

and satisfies
lim

|z|→∞
θ(z) = ∞. (6)
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Now for any such J-holomorphic plane the curves γr(t) = u(re2πit/T ) converge
to a T -periodic solution γ(t) of γ̇ = Y (γ) as r tends to infinity. This periodic
solution is necessarily contractible and by hypothesis (H2) no such solution
exists. A similar argument in the case s∗ = 1 (roughly speaking) shows that
there would be a J-holomorphic half-plane

(u, θ) : � →M ×
�
, u(s, 0) ∈ L1

which also satisfies (5) and (6). In this case the curves γr(t) = u(reπit/T ) will
converge to a solution of γ̇ = Y (γ) with γ(0) ∈ L1 and γ(T ) ∈ L1 and this
is excluded by hypothesis (H3). Finally, in the case s∗ = 0 we would obtain
a nonconstant J-holomorphic discs with boundary in (L0)f0 and such discs do
not exist by hypothesis (H1). It follows from these arguments that θν remains
bounded for any sequence (uν , θν) ∈ Mc and this will imply Theorem 2.4. The
details are quite subtle and are based on the work of Hofer in [6]. They will be
carried out in section 5.

We close this section with a corollary of Theorem 2.4 which guarantees the
existence of the limits (3).

Proposition 2.5 Assume that M , α0, L0, and L1 satisfy the hypotheses (H1),
(H2), and (H3). Assume further that L0 and ψ1

−1L1 intersect transversally and
that (u, θ) is a solution of (1) and (2) with finite energy E(u, θ) <∞. Then the
limits (3) exist.

Proof: Given any sequence tν → ∞ apply Theorem 2.4 to uν(s, t) = u(s, t+tν)
and θν(s, t) = θ(s, t + tν). It follows that a subsequence converges, uniformly
with all derivatives on compact sets, to a J-holomorphic curve (u∗, θ∗) with zero
energy. Any such function must be of the form

u∗(s, t) = ψs(x
+), x+ ∈ L0 ∩ ψ1

−1(L1).

Now any sequence u(s, tν) with tν → +∞ must converge to the same limit
ψs(x

+). Otherwise there would exist a sequence t′ν → ∞ such that

d(u(0, t′ν), L0 ∩ ψ1
−1(L1)) ≥ δ > 0

for all ν. But this would lead to a contradiction as above. 2

To prove the previous proposition it suffices to assume that the intersection
points of L0 and ψ1

−1(L1) are isolated. In the transverse case it can in fact be
proved that u(s, t) converges exponentially to ψs(x

±) for t → ±∞ and ∂tu(s, t)
converges to zero exponentially. This follows by standard arguments in Floer
homology (cf. [2]) and we shall omit the proof.
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3 Floer homology

Let M , L0, f0, L1, αs, Js, and Hs be as above and assume that the hypothe-
ses (H1-4) are satisfied. The Floer homology groups

HF ∗(L0, L1;αs, Js, Hs, f0)

can roughly be described as the middle dimensional homology groups of the
path space P0 = P0(L0, f0, L1). They are obtained from the gradient flow of
the symplectic action

Sα,H : P0 →
�

as in Floer’s original work on Lagrangian intersections in compact symplectic
manifolds [1], [2], [3]. They can roughly be described as an infinite dimensional
version of the Morse complex as described by Witten [12]. We summarize the
main points of Floer’s construction.

Assume that L0 and ψ1
−1(L1) intersect transversally. Then all the critical

points of Sα,H are nondegenerate. Given two intersection points x± ∈ L0 ∩
ψ1

−1(L1) denote by

M(x−, x+) = M(x−, x+, αs, Hs, Js)

the space of all solutions (u, θ) : [0, 1] ×
�

→ M ×
�

of (1) with boundary
condition (2) and limits (3). Denote by

M0(x
−, x+) = M0(x

−, x+, αs, Hs, Js, f0)

The subspace of those (u, θ) ∈ M(x−, x+) such that the path (u(·, t), θ(·, t))
is in P0 for every t. Linearizing the differential equation (1) gives rise to an
operator

D(u,θ) : W 1,2
L ((u, θ)∗(TM ×

�
)) → L2((u, θ)∗(TM ×

�
)).

Here W 1,2
L ((u, θ)∗(TM ×

�
)) denotes the Sobolev space of all vector fields

(ξ(s, t), τ(s, t)) ∈ Tu(s,t)M×
�

along (ξ, θ) which satisfy the boundary condition

ξ(0, t) ∈ Tu(0,t)L0, τ(0, t) = −
df0(u(0, t))ξ(0, t)

f0(u(0, t))
, ξ(1, t) ∈ Tu(1,t)L0.

The space L2((u, θ)∗(TM ×
�

)) is defined similarly and D(u,θ) is a Cauchy-

Riemann operator. This operator is Fredholm whenever L0 and ψ1
−1(L1) in-

tersect transversally. It’s index is a relative Maslov class and can be defined as
follows. Given (u, θ) ∈ M(x−, x+) choose a symplectic trivialization

Φ(s, t) :
� 2n+2 → Tψs−1(u(s,t))M ×

�

12



of (u, θ)∗(TM ×
�

) such that

Φ(s, t)∗ωs =

n∑

j=0

dxj ∧ dyj

where ωs = d(eθψ∗
sαs) and

lim
t→±∞

Φ(s, t) = Φ± :
� 2n+2 → Tx±M ×

�
.

This gives rise to two Lagrangian paths in
� 2n+2 =

� 2n+1 ×
�

:

Λ0(t) = Φ(0, t)−1T(u(0,t),θ(0,t))(L0)f0

and
Λ1(t) = Φ(1, t)−1

(
Tψ1

−1(u(1,t))ψ1
−1(L1) ×

� )
.

These paths are transverse at t = ±∞ and therefore have a relative Maslov
index µ(Λ0,Λ1) (cf. [1] and [9]). This index is independent of the choice of the
trivialization. The Fredholm index of D(u,θ) agrees with this Maslov index

indexD(u,θ) = µ(u, θ) = µ(Λ0,Λ1)

whenever u and θ satisfy the boundary condition (2) and the limit condition (3)
(cf. [1] and [10]). Now if x− = x+ then the Maslov index is zero.

Lemma 3.1 If x− = x+ then µ(u, θ) = 0.

Proof: In this case Λ0(+∞) = Λ0(−∞) and Λ1(+∞) = Λ1(−∞). So Λ0 and
Λ1 are loops of Lagrangian planes and the relative Maslov index agrees with the
difference of the ordinary Maslov indices of these loops

µ(Λ0,Λ1) = µ(Λ1) − µ(Λ0)

(cf. [9]). Now it follows from Lemma 2.2 That there exists a loop t 7→ Λ(t) of
Lagrangian planes in

� 2n such that

Λ0 ∼ Λ ×
�
× 0, Λ1 ∼ Λ × 0 ×

�
.

and hence µ(Λ0) = µ(Λ1). This proves the lemma. 2

The previous lemma shows that there exists a map µ : L0 ∩ ψ1
−1(L1) → �

such that
indexD(u,θ) = µ(x−) − µ(x+)

whenever u and θ satisfy (2) and (3). Now everything is as usual. A triple
(α,H, J) is called regular if L0 and ψ1

−1(L1) intersect transversally and the

13



operator D(u,θ) is onto for every (u, θ) ∈ M(x−, x+) and every pair of intersec-

tion points x± ∈ L0 ∩ ψ1
−1(L1). By the Sard-Smale theorem the set

REG = REG(L0, L1)

of regular triples is dense in the set of all triples. The argument is as in [2]
or [11]. Now for every triple (α,H, J) ∈ REG the space M0(x

−, x+) is a finite
dimensional manifold with

dimM0(x
−, x+) = µ(x−) − µ(x+).

If µ(x−) − µ(x+) = 1 then, by Theorem 2.4, the quotient space M(x−, x+)/
�

consists of finitely many orbits and the numbers

n2(x
−, x+) = #M(x−, x+)/

�
(mod 2)

determine the Floer chain complex as follows. The chain groups are defined by

CFk = CFk(L0, L1, H) =
∑

x∈L0∩ψ1
−1(L1)

µ(x)=k

� 2〈x〉.

and the boundary operator ∂ : CFk → CFk−1 is given by

∂〈x〉 =
∑

µ(y)=k−1

n2(x, y)〈y〉

for x ∈ L0∩ψ1
−1(L1) with µ(x) = k. As in Floer’s original proof one uses gluing

techniques to prove that ∂ ◦ ∂ = 0 (cf. [3] and [11]). The Floer homology
groups are now defined as the homology of this chain complex:

HF ∗(L0, L1;αs, Js, Hs) := H∗(CF, ∂).

They are invariant under Hamiltonian isotopy.

Theorem 3.2 Assume (H1), (H2), (H3), (H4).

(i) For any two triples (α, J,H), (α′, J ′, H ′) ∈ REG there is a natural isomor-
phism

HF∗(L0, L1;αs, Js, Hs) → HF∗(L0, L1;α
′
s, J

′
s, H

′
s).

(ii) For any triple (α, J,H) ∈ REG and any Hamiltonian isotopy χs generated
by vector fields Xαs,Ks there exists a natural isomorphism

HF∗(L0, L1;αs, Js, Hs)

→ HF∗(χ0
−1(L0), χ1

−1(L1);χ
∗
sαs, χ

∗
sJs, (Hs −Ks) ◦ χs).

14



(iii) For any triple (α, J,H) ∈ REG there exists a natural isomorphism

HF∗(L0, L1;αs, Js, Hs) → H∗(L1; � 2).

The proof of this theorem is as usual in Floer homology and we refer to [3],
[4] and [11] for more details in a slightly different context. In particular state-
ment (ii) follows directly from Lemma 2.3. An immediate consequence of Theo-
rem 3.2 is the following extension of the Arnold conjecture to contact manifolds.

Theorem 3.3 Assume (H1), (H2), (H3), (H4). Let ψ : M →M be a Hamilto-
nian contactomorphism such that L0 and ψ−1(L1) intersect transversally. Then

#L0 ∩ ψ
−1(L1) ≥

n∑

k=0

dimHk(L1; � 2).

In particular the intersection L0 ∩ ψ−1(L1) is always nonempty.

4 Examples

5 Compactness

Let M be a compact contact manifold with contact form α and corresponding
contact vector field Y determined by ι(Y )dα = 0 and ι(Y )α = 1. Let J :
TM → TM be an almost complex structure which is compatible with α. A J-
holomorphic curve in M ×

�
(strictly speaking a J̃-holomorphic curve, but we

shall omit the tilde) on Ω ⊂ � is a pair of functions u : Ω → M and θ : Ω →
�

which satisfy

∂su− α(∂su)Y (u) + J(u)

(
∂tu− α(∂tu)Y (u)

)
= 0,

∂sθ = α(∂tu), ∂tθ = −α(∂su).

(7)

We shall consider the case of J-holomorphic planes (Ω = � ), J-holomorphic half-
planes (Ω = � = {s+ it | t ≥ 0}) with Legendrian boundary condition u(

�
) ⊂ L

where α|TL = 0, and J-holomorphic discs (Ω = D = {z ∈ � | |z| ≤ 1}) with
Lagrangeable boundary conditions u(z) ∈ L, eθ(z) = 1/f(u(z)) for |z| = 1 where
f−1α|L is closed. The symplectic energy of a J-holomorphic curve is defined
by

E(u, θ) =

∫
(u, θ)∗d(eθα)

and the contact energy by

E0(u) =

∫
u∗dα.

15



Remark 5.1 If γ :
�
→M is any solution of γ̇ = Y (γ) then the functions

u(s, t) = γ(t), θ(s, t) = s

determine a J-holomorphic plane. This plane has infinite symplectic energy but
the contact energy is zero. If γ is periodic with period T then this formula deter-
mines a J-holomorphic cylinder. Similarly, if γ(0) ∈ L1 we get a J-holomorphic
half-plane (u, θ) : � → M ×

�
and u(

�
) ⊂ L1. If γ satisfies the boundary con-

ditions γ(0) ∈ L1 and γ(T ) ∈ L1 we get a J-holomorphic strip with boundary
values in L1.

Remark 5.2 Given any positive smooth function φ :
�

→
�

with positive
derivative φ′(θ) > 0 define the φ-energy of a J-holomorphic curve (u, θ) : Ω →
M ×

�
on an open set Ω ⊂ � by

Eφ(u, θ) =

∫

Ω

(u, θ)∗d(φα).

A simple calculation using (7) shows that

Eφ(u, θ) =

∫

Ω

(
φ(θ) |∂su− α(∂su)Y (u)|2 + φ′(θ)

(
|α(∂su)|

2
+ |α(∂tu)|

2
))

=

∫

Ω

(
φ(θ)∆θ + φ′(θ) |∇θ|2

)

=

∫

∂Ω

φ(θ)u∗α

=

∫

∂Ω

φ(θ)
∂θ

∂ν

Here ∆ denotes the standard Laplacian and ∂/∂ν the outward normal derivative
on ∂Ω. The symplectic energy corresponds to φ(θ) = eθ and the contact energy
to φ(θ) = 1.

J-holomorphic planes

Denote by
F

the space of all smooth functions φ :
�

→
�

such that 1/2 ≤ φ(θ) ≤ 1 and
0 ≤ φ′(θ) ≤ 1 for all θ. Given φ ∈ F denote the shifted function by

φc(θ) = φ(θ + c).

In [6] Hofer proved essentially the following result.

Theorem 5.3 Let M be a compact contact manifold with contact form α. Let
J be compatible almost complex structure and assume that (u, θ) : � → M ×

�

is a smooth solution of (7). Then the following statements are equivalent.

16



(i) u is nonconstant and supc∈ � Eφc(u, θ) <∞ for some nonconstant φ ∈ F .

(ii) u is nonconstant and supφ∈F Eφ(u, θ) <∞.

(iii) lim|z|→∞ θ(z) = ∞ and 0 < E0(u) <∞.

If these conditions are satisfied then every sequence rν → ∞ has a subsequence
(still denoted by rν) such that the limit

γ(t) = lim
ν→∞

u(rνe
2πit/T )

exists (in the C∞-topology) and defines a periodic solution of the differential
equation

γ̇ = Y (γ)

with period T = E0(u).

Remark 5.4 The proof of the previous theorem shows that if (iii) holds then

lim
s→∞

∂

∂s
θ(e2π(s+it)) = E0(u)

and hence θ(z) diverges to ∞ like (2π)−1E0(u) log |z|.

We reproduce here Hofer’s proof of this theorem and then give an extension
along similar lines to J-holomorphic half planes. The proof of Theorem 5.3
is based on four lemmata. The first is an observation about complete metric
spaces due to Hofer.

Lemma 5.5 Let M be a complete metric space and f : M →
�

be continuous.
Given x ∈M and ε > 0 there exist δ ∈ (0, ε) and ξ ∈ Bε(x) such that

sup
Bδ(ξ)

|f | ≤ 2|f(ξ)|, δ|f(ξ)| ≥ 1
2ε|f(x)|.

Lemma 5.6 Let φ ∈ F be nonconstant and θ : � →
�

be a harmonic function
such that

sup
c∈ �

eφc(θ) <∞, eφ(θ) =

∫
� φ′(θ)|∇θ|2.

Then θ is constant.

Proof: First note that for any biholomorphic function f : � → �

eφ(θ ◦ f) = eφ(θ).

Secondly, if θ is nonconstant and satisfies a linear growth condition of the form
|θ(z)| ≤ c(1+ |z|) then there exists a biholomorphic function f(z) = az+ b such
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that θ ◦ f(z) = Re z. Hence in this case eφ(θ) = eφ(θ ◦ f) = ∞. This proves the
lemma in the case of linear growth.

If θ does not satisfy a linear growth condition then there exists a sequence
zν such that

Rν = |∇θ(zν)| → ∞.

By Lemma 5.5 we may assume without loss of generality that for some sequence
εν → 0 we have

sup
Bεν (zν)

|∇θ| ≤ 2Rν , ενRν → ∞.

It follows that the sequence θν(z) = θ(zν + z/Rν) − θ(zν) satisfies

θν(0) = 0, |∇θν(0)| = 1, sup
BενRν (0)

|∇θν | ≤ 2, eφ(θν) = eφθ(zν )
(θ).

Hence there exists a subsequence (still denoted by θν) which converges, uni-
formly with all derivatives on compact sets, to a harmonic function θ̃ such that

∣∣∣∇θ̃(0)
∣∣∣ = 1, sup

z∈
�
∣∣∣∇θ̃(z)

∣∣∣ ≤ 2, eφ(θ̃) <∞.

By the first part of the proof the function θ̃ must be constant in contradiction
to |∇θ̃(0)| = 1. This proves the lemma. 2

Lemma 5.7 Let (u, θ) : � →M ×
�

be a solution of (7) such that

sup
c∈ �

Eφc(u, θ) <∞, E0(u) = 0

for some nonconstant function φ ∈ F . Then u is constant.

Proof: If E0(u) = 0 then the equation

∆θ = ∂sα(∂tu) − ∂tα(∂su)

= dα(∂su, ∂tu)

= |∂su− α(∂su)Y (u)|2

shows that θ : � →
�

is harmonic. By Remark 5.2

sup
c∈ �

eφc(θ) = sup
c∈ �

Eφc(u, θ) <∞

and, by Lemma 5.6, θ is constant. By (7) it follows that α(∂su) ≡ 0 and
α(∂tu) ≡ 0. Hence u is constant. 2
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Lemma 5.8 Let (u, θ) : � /iT � →M ×
�

be a solution of (7) such that

sup
c∈ �

Eφc(u, θ) <∞

for some nonconstant function φ ∈ F . Then

sup
z∈

� |du(z)| <∞.

Proof: Suppose otherwise that there exists a sequence zν ∈ � such that

Rν = |du(zν)| → ∞.

By Lemma 5.5 we may assume without loss of generality that for some sequence
εν → 0 we have

sup
Bεν (zν)

|du| ≤ 2Rν , ενRν → ∞.

It follows that the sequences uν(z) = u(zν + z/Rν) and θν(z) = θ(zν + z/Rν)−
θ(zν) satisfy (7) and

|duν(0)| = 1, sup
BενRν (0)

|duν | ≤ 2, sup
BενRν (0)

|∇θν | ≤ 2 ‖α‖L∞ ,

and
sup
c∈ �

Eφc(uν , θν) = sup
c∈ �

Eφc(u, θ).

Hence, by the usual elliptic bootstrapping argument for J-holomorphic curves
in compact symplectic manifolds, there exists a subsequence (still denoted by
uν and θν) which converges, uniformly with all derivatives on compact sets, to
a J-holomorphic curve (ũ, θ̃) : � →M ×

�
such that

|dũ(0)| = 1, sup
c∈ �

Eφc(ũ, θ̃) <∞, E0(ũ) = 0.

By Lemma 5.7 such a function ũ cannot exist. This contradiction proves the
lemma. 2

Proof of Theorem 5.3: We prove that (iii) implies (ii). The function u is
obviously nonconstant since θ is nonconstant. Moreover we shall prove that if
θ(z) converges to infinity as |z| → ∞ then

sup
φ∈F

Eφ(u, θ) = E0(u). (8)

To see this fix φ ∈ F and ε > 0 and choose a sufficiently large regular value
c > 0 of θ such that

∫
�
\Ωc

(u, φ)∗d(φα) ≤ ε, Ωc = {z ∈ � | θ(z) ≤ c} .
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Then θ(z) = c = supΩc θ for every z ∈ ∂Ωc and hence,

∂θ

∂ν
(z) ≥ 0, z ∈ ∂Ωc.

This implies

Eφ(u, θ) − ε ≤

∫

Ωc

(u, θ)∗d(φα)

=

∫

∂Ωc

φ(θ)
∂θ

∂ν

≤

∫

∂Ωc

∂θ

∂ν

=

∫

Ωc

u∗dα

≤ E0(u).

This proves (8). Thus we have proved that (iii) implies (ii). Obviously (ii)
implies (i).

Now assume (i). Then obviously E0(u) ≤ 2Eφ(u, θ) <∞ and, by Lemma 5.7
E0(u) > 0. We shall prove that every sequence rν → ∞ has a subsequence (still
denoted by rν) such that

lim
ν→∞

u(rνe
2πit/T ) = γ(t)

where T = E0(u), the limit is in the C∞-topology, and γ(t) = γ(t + T ) is a
periodic solution of γ̇ = Y (γ).

To construct the subsequence define

ũ(s, t) = u(e2π(s+it)/T ), θ̃(s, t) = θ(e2π(s+it)/T ).

Then
sup
c∈ �

Eφc(ũ, θ̃) = sup
c∈ �

Eφc(u, θ) <∞

and hence, by Lemma 5.8,
sup
z∈

� |dũ(z)| <∞.

Now choose sν → ∞ such that rν = e2πsν/T and define

uν(s, t) = ũ(s+ sν , t), θν(s, t) = θ̃(s+ sν , t) − θ̃(sν , 0).

Then supν ‖duν‖L∞ < ∞ and it follows from the usual elliptic bootstrapping
arguments for J-holomorphic curves (cf. [8]) that there exists a subsequence
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(still denoted by uν and θν) which converges, uniformly with all derivatives on
compact sets, to a J-holomorphic curve (u∗, θ∗) : � /iT � →M ×

�
satisfying

E0(u
∗) = 0,

∫ T

0

α(∂tu
∗(0, t)) dt = E0(u) > 0.

It follows that ∆θ∗ = 0 and hence there exists a unique function τ : � →
�

such that θ∗ + iτ : � → � is holomorphic and τ(0) = 0. By (7) this implies

α(∂su
∗) = −∂tθ

∗ = ∂sτ, α(∂tu
∗) = ∂sθ

∗ = ∂tτ.

Since E0(u
∗) = 0 it follows that

u∗(s, t) = γ(τ(s, t))

where γ :
�
→M is the unique solution of

γ̇(τ) = Y (γ(τ)), γ(0) = u∗(0).

Now recall that du∗ is uniformly bounded and hence so is ∇θ∗. This implies
that the holomorphic function θ∗+iτ : � → � satisfies a linear growth condition
and hence there exist complex numbers a and b such that

θ∗(z) + iτ(z) = az + b.

Since θ∗(z + iT ) = θ∗(z) we have a ∈
�

and since θ∗(0) = τ(0) = 0 we have
b = 0. It follows that

θ∗(s, t) = as, u∗(s, t) = γ(at)

for some real number a ∈
�

. Now the formula

T = E0(u) =

∫ T

0

α(∂tu
∗(0, t)) dt =

∫ T

0

α(aY (γ(at))) dt = aT

shows that a = 1.
As a byproduct of this proof we obtain that every sequence rν → ∞ has a

subsequence (still denoted by rν) such that

lim
ν→∞

∂

∂s

∣∣∣∣
s=0

θ(rνe
2π(s+it)/T ) = 1.

This implies the formula of Remark 5.4 and hence lim|z|→∞ θ(z) = ∞. In
particular we have proved that (i) implies (iii). This completes the proof of
Theorem 5.3. 2
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J-holomorphic half planes

Theorem 5.9 Let M be a compact contact manifold with contact form α and
L ⊂ M be a compact Legendrian submanifold. Let J be compatible almost
complex structure and assume that (u, θ) : � → M ×

�
is a smooth solution

of (7) such that u(
�

) ⊂ L. Then the following statements are equivalent.

(i) u is nonconstant and supc∈ � Eφc(u, θ) <∞ for some nonconstant φ ∈ F .

(ii) u is nonconstant and supφ∈F Eφ(u, θ) <∞.

(iii) lim|z|→∞ θ(z) = ∞ and 0 < E0(u) <∞.

If these conditions are satisfied then every sequence rν → ∞ has a subsequence
(still denoted by rν) such that the limit

γ(t) = lim
ν→∞

u(rνe
πit/T )

exists (in the C∞-topology) and defines a solution of the boundary value problem

γ̇ = Y (γ), γ(0) ∈ L, γ(T ) ∈ L

with T = E0(u).

Remark 5.10 The proof of the previous theorem shows that if (iii) holds then

lim
s→∞

∂

∂s
θ(eπ(s+it)) = E0(u)

and hence θ(z) diverges to ∞ like π−1E0(u) log |z|.

The proof of Theorem 5.9 is completely analogous to that of Theorem 5.3.
It relies on the following three lemmata.

Lemma 5.11 Let θ : � →
�

be a solution of the Neumann boundary value
problem

∆θ = 0, ∂tθ(s, 0) = 0.

If there exists a nonconstant function φ ∈ F such that

sup
c∈ �

eφc(θ) <∞, eφ(θ) =

∫
� φ

′(θ)|∇θ|2,

then θ is constant.

Proof: The proof is analogous to that of Lemma 5.6. First, for any biholo-
morphic function f : � → �

eφ(θ ◦ f) = eφ(θ).
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Secondly, if θ is nonconstant and satisfies a linear growth condition of the form
|θ(z)| ≤ c(1 + |z|) then there exists a biholomorphic function f(z) = (az +
b)/(cz+ d) such that θ ◦ f(z) = Re z. Hence in this case eφ(θ) = eφ(θ ◦ f) = ∞.
This proves the lemma in the case of linear growth.

If θ does not satisfy a linear growth condition then, as before, there exist
sequences zν ∈ � and εν → 0 such that

sup
Bεν (zν)∩

� |∇θ| ≤ 2Rν , ενRν → ∞, Rν = |∇θ(zν)|.

If RνIm zν → ∞ we may assume without loss of generality that εν < Im zν
and argue as in the proof of Lemma 5.6. Otherwise we may assume that the
sequence Rν Im zν converges (to t∗ for some T ∗ > 0) and consider the sequence
θν(z) = θ(Re zν + z/Rν) − θ(Re zν). It satisfies

|∇θν(iRν Im zν)| = 1, sup
BενRν (iRν Im zν)∩

� |∇θν | ≤ 2,

and
θν(iRνIm zν) = 0, eφ(θν) = eφθ(Re zν)

(θ).

Hence there exists a subsequence (still denoted by θν) which converges, uni-
formly with all derivatives on compact sets, to a harmonic function θ̃ : � →

�

such that ∂tθ̃(s, 0) = 0 and
∣∣∣∇θ̃(it∗)

∣∣∣ = 1, sup
z∈

�

∣∣∣∇θ̃(z)
∣∣∣ ≤ 2, eφ(θ̃) <∞.

By the first part of the proof the function θ̃ must be constant in contradiction
to |∇θ̃(it∗)| = 1. This proves the lemma. 2

Lemma 5.12 Let (u, θ) : � →M ×
�

be a solution of (7) such that u(s, 0) ∈ L
and

sup
c∈ �

Eφc(u, θ) <∞, E0(u) = 0

for some nonconstant function φ ∈ F . Then u is constant.

Proof: Firstly, since E0(u) = 0, the argument in the proof of Lemma 5.7 shows
that θ : � →

�
is harmonic. Secondly, since u(s, 0) ∈ L and α|TL = 0 we have

∂tθ(s, 0) = −α(∂su(s, 0)) = 0.

Thirdly, by Remark 5.2,

sup
c∈ �

eφc(θ) = sup
c∈ �

Eφc(u, θ) <∞.

Hence it follows from Lemma 5.11 that θ is constant. Since E0(u) = 0 this
implies that u is constant. 2
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Lemma 5.13 Let (u, θ) :
�

+ i[0, T ] → M ×
�

be a solution of (7) such that

u(
�

+ i{0, T}) ⊂ L

and
sup
c∈ �

Eφc(u, θ) <∞

for some nonconstant function φ ∈ F . Then

sup
z∈ � +i[0,T ]

|du(z)| <∞.

Proof: If the conclusion does not hold choose a sequence zν = sν + itν such
that Rν = |duν(sν , tν)| → ∞ and distinguish the cases (i) Rνtν bounded, (ii)
Rν(T − tν) bounded, (iii) both sequences converge to infinity. In the latter
case argue as in the proof of Lemma 5.8. In the first two cases use a similar
argument and obtain a contradiction from Lemma 5.12 (Compare the proof of
Lemma 5.11). The details are left to the reader. 2

Proof of Theorem 5.9: The proof is analogous to that of Theorem 5.3 and
we shall only explain the main points. To prove that (iii) implies (ii) choose a
regular value c ∈

�
of θ as before and consider the domain

Ωc = {z ∈ � | θ(z) ≤ c} .

Then the boundary of Ω has two parts

∂Ωc = Γ0 ∪ Γ1, Γ0 = Ωc ∩
�
, Γ1 = {z ∈ ∂Ω | Im z > 0},

and we have ∂θ/∂ν = 0 on Γ0 and θ = c on Γ1. As before we obtain
∫

Ωc

(u, θ)∗d(φα) =

∫

Γ1

φ(θ)
∂θ

∂ν

≤

∫

Γ1

∂θ

∂ν

=

∫

Ωc

u∗dα

≤ E0(u).

Since c can be chosen arbitrarily large this implies (8) as before.
Now assume (i). Then as before it follows from Lemma 5.12 that T =

E0(u) > 0. Define

ũ(s, t) = u(eπ(s+it)/T ), θ̃(s, t) = θ(eπ(s+it)/T ).

for s ∈
�

and 0 ≤ t ≤ T . Then

sup
c∈ �

Eφc(ũ, θ̃) = sup
c∈ �

Eφc(u, θ) <∞
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and hence, by Lemma 5.13,

sup
z∈ � +i[0,T ]

|dũ(z)| <∞.

Now choose sν → ∞ such that rν = e2πsν/T and define

uν(s, t) = ũ(s+ sν , t), θν(s, t) = θ̃(s+ sν , t) − θ̃(sν , 0).

Then supν ‖duν‖L∞ < ∞ and it follows from the usual elliptic bootstrap-
ping arguments for J-holomorphic curves with Lagrangian boundary conditions
(cf. [8]) that there exists a subsequence (still denoted by uν and θν) which con-
verges, uniformly with all derivatives on compact sets, to a J-holomorphic curve
(u∗, θ∗) :

�
+ i[0, T ] →M ×

�
satisfying

E0(u
∗) = 0, u∗(

�
+ i{0, T}) ⊂ L,

∫ T

0

α(∂tu
∗(0, t)) dt = E0(u) > 0.

It follows that ∆θ∗ = 0 and hence there exists a unique function τ :
�

+i[0, T ] →
�

such that θ∗ + iτ is holomorphic and τ(0) = 0. As before it follows (7) and
E0(u

∗) = 0 that
u∗(s, t) = γ(τ(s, t))

where γ :
�
→M is the unique solution of

γ̇(τ) = Y (γ(τ)), γ(0) = u∗(0).

Again as before, ∇θ∗ is uniformly bounded and hence the holomorphic function
θ∗ + iτ :

�
+ i[0, T ] → � satisfies a linear growth condition. Since θ∗ satisfies

Neumann boundary conditions at t = 0 and t = T and θ∗(0) = τ(0) = 0 there
exists a real number a ∈

�
such that θ∗(z) + iτ(z) = az. Hence

θ∗(s, t) = as, u∗(s, t) = γ(at)

and the formula

T = E0(u) =

∫ T

0

α(∂tu
∗(0, t)) dt =

∫ T

0

α(aY (γ(at))) dt = aT

shows that a = 1. Moreover, the boundary conditions for u imply that γ(0) ∈ L
and γ(T ) ∈ L.

As before we obtain as a byproduct of this proof the formula of Remark 5.10
and hence lim|z|→∞ θ(z) = ∞. This shows that (i) implies (iii) and completes
the proof of Theorem 5.9. 2
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J-holomorphic discs

In this section we shall prove a removable singularity theorem for J-holomorphic
discs in M ×

�
with boundary on a L̃ where L ⊂M is a compact Lagrangeable

submanifold. Here we assume as before that f : L →
�

is a positive smooth
function such that f−1α|L is closed. We also fix an almost complex structure J
on M which is compatible with α.

Theorem 5.14 Let (u, θ) : � →M ×
�

be a smooth solution of (7) such that

u(s, 0) ∈ L, eθ(s,0) =
1

f(u(s, 0))

for s 6= 0 and
E(u, θ) <∞.

Then (u, θ) extends to a smooth J-holomorphic disc � ∪ {∞} → M ×
�
. (This

means that the map z 7→ (u(−1/z), θ(−1/z)) extends to a J-holomorphic half-
plane at z = 0.)

Lemma 5.15 Let θ : � →
�

be a harmonic function such that

sup
s∈ �

|θ(s, 0)| <∞, e(θ) =

∫
� e

θ|∇θ|2 <∞.

Then θ is bounded and, in fact,

inf� θ ≤ θ(z) ≤ sup
�
θ

for all z ∈ � .

Proof: The function θ̃ :
�
× [0, 1] →

�
defined by

θ̃(s, t) = θ(eπ(s+it))

is harmonic, bounded on
�
× {0, 1}, and satisfies

∫ ∞

−∞

∫ 1

0

eθ̃
∣∣∣∇θ̃

∣∣∣
2

dsdt <∞.

Hence there exists a sequence sν → ∞ such that
∫ 1

0

eθ̃(sν ,t)
∣∣∣∂tθ̃(sν , t)

∣∣∣
2

= εν
2 → 0.

Since ∂te
θ̃/2 = 1

2e
θ̃/2∂tθ̃ this implies

∣∣∣eθ̃(sν ,t)/2 − eθ̃(sν ,0)/2
∣∣∣
2

≤

∫ 1

0

∣∣∣∂teθ̃(sν ,t)/2
∣∣∣
2

ds

= 1
4

∫ 1

0

eθ̃(sν ,t)
∣∣∣∂tθ̃(sν , t)

∣∣∣
2

ds

≤ 1
4εν

2
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and hence

lim sup
ν→∞

sup
t
θ̃(sν , t) ≤ sup

�
θ, lim inf

ν→∞
inf
t
θ̃(sν , t) ≥ inf� θ.

A similar estimate holds for a suitable sequence s′ν → −∞. By the maximum
principle for harmonic functions θ̃ is bounded. 2

Lemma 5.16 Let (u, θ) : � →M ×
�

be a J-holomorphic half plane such that
u(

�
) ⊂ L, eθ(s,0) = 1/f(u(s, 0)) and

E(u, θ) <∞, E0(u) = 0.

Then u is constant.

Proof: By Lemma 5.15 θ is bounded. Hence it follows from the usual remov-
able singularity theorem for J-holomorphic discs in compact symplectic mani-
folds that (u, θ) extends to a J-holomorphic disc � ∪ {∞} → M ×

�
(see for

example [8]). Hence

γ(t) = γ(t+ 1) = u

(
sin 2πt

1 + cos 2πt

)
∈ L

defines a loop in L such that

γ̇ = α(γ̇)Y (γ).

Here we have used the fact that E0(u) = 0 and hence each partial derivative of
u is parallel to Y (u). The identity

∫ 1

0

α(γ̇(t)) dt = E0(u) = 0

shows that γ is contractible in L via

γλ(t) = φ
λ
∫
t

0
α(γ̇(s)) ds

(γ(0)), 0 ≤ λ ≤ 1.

Here φt : M → M denotes the flow of the contact vector field Y and γλ([0, 1]) ⊂
γ([0, 1]) ⊂ L. Now the symplectic energy of (u, θ) is given by

E(u, θ) =

∫ 1

0

α(γ̇(t))

f(γ(t))
dt.

Since γ is contractible in L and f−1α|L is closed it follows that E(u, θ) = 0 and
hence u is constant. 2
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Lemma 5.17 If u and θ satisfy the assumptions of Theorem 5.14 then

Eφ(u, θ) ≤ ec1E(u, θ), c1 = − log

(
sup
L
f

)
,

for every φ ∈ F .

Proof: By assumption θ(s, 0) ≥ −c1 for every s ∈
�

. Now choose ε > 0 such
that −c1 − ε is a regular value of θ and denote

Ωε = {z ∈ � | θ(z) ≤ −c1 − ε} .

An argument as in the proof of Lemma 5.15 shows that Ωε consistes of (possibly
infinitely many) bounded components and, moreover, ∂Ωε ∩

�
= ∅. By Stokes’

theorem
∫

Ωε

(u, θ)∗d(φα) =

∫

∂Ωε

φ(θ)
∂θ

∂ν

≤ ec1+ε
∫

∂Ωε

eθ
∂θ

∂ν

= ec1+ε
∫

Ωε

(u, θ)∗d(eθα)

and
∫

�
\Ωε

(u, θ)∗d(φα) ≤

∫
�
\Ωε

(∆θ + |∇θ|2)

≤ ec1+ε
∫

�
\Ωε

eθ(∆θ + |∇θ|2)

= ec1+ε
∫

�
\Ωε

(u, θ)∗d(eθα)

Since ε > 0 can be chosen arbitrarily small the statement follows. 2

Proof of Theorem 5.14: Consider the J-holomorphic strip (ũ, θ̃) :
�

×
[0, 1] →M ×

�
defined by

ũ(s, t) = u(eπ(s+it)), θ̃ = θ(eπ(s+it)).

We must prove that dũ is bounded. Then θ̃ is bounded as well and hence the
result follows from the usual removable singularity theorem for J-holomorphic
discs in compact symplectic manifolds (cf. [8]). Assume, by contradiction, that
there exists a sequence zν = sν + itν with sν → ∞ such that

Rν = |dũ(zν)| → ∞.
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By Lemma 5.5 we may assume without loss of generality that

sup
Bεν (zν)∩ � ×[0,1]

|dũ| ≤ 2Rν , ενRν → ∞.

If tνRν → ∞ and (1− tν)Rν → ∞ we may assume that εν ≤ min{tν , 1− tν} and
argue as in the proof of Theorem 5.3 to obtain a nonconstant J-holomorphic
plane (u∗, θ∗) : � →M ×

�
such that

sup
φ∈F

Eφ(u
∗, θ∗) <∞, E0(u

∗) = 0.

By Lemma 5.7 such planes do not exist. This contradiction shows that either of
the sequences tνRν or (1− tν)Rν is bounded. In the former case we may assume
without loss of generality that tνRν converges to t∗ ≥ 0. Consider the sequence

uν(s, t) = ũ(sν + s/Rν , t/Rν), θν(s, t) = θ̃(sν + s/Rν , t/Rν).

This sequence satisfies

|duν(0, tνRν)| = 1,

sup
BενRν (0,tνRν)

|duν | ≤ 2,

E(uν , θν ;BενRν (0, tνRν)) ≤ E(u, θ).

Hence a subsequence (still denoted by (uν , θν)) converges, uniformly with all
derivatives on compact sets, to a J-holomorphic half plane (u∗, θ∗) : � → M×

�

such that u∗(
�

) ⊂ L, eθ
∗(s,0) = 1/f(u∗(s, 0)) for s ∈

�
and

|du∗(0, t∗)| = 1, E(u∗, θ∗) <∞, E0(u
∗) = 0.

By Lemma 5.16 such a half plane does not exist. A similar argument leads to
a contradiction when the sequence (1 − tν)Rν is bounded and this proves the
theorem. 2

Proof of Theorem 2.4

We shall now return to the gradient flow of the symplectic action a : P →
�

discussed in section 2. For every function φ ∈ F and every solution (u, θ) of (1)
and (2) define the φ-energy of (u, θ) by

Eφ(u, θ) =

∞∫

−∞

1∫

0

φ(θ)αs(∂tu, Js(u)∂tu) + φ′(θ)
(
|αs(∂tu)|

2 + |∂tθ|
2
)
dsdt

=

∞∫

−∞

1∫

0

(u, θ)∗d (φαs + φHsds) .

The next lemma is the analogue of Lemma 5.17.
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Lemma 5.18 If (u, θ) is a solution of (1) and (2) with finite energy then

Eφ(u, θ) ≤ ec1E(u, θ), c1 = − log

(
sup
L0

f0

)
,

for every φ ∈ F .

Proof: The proof is similar to that of Lemma 5.17. By (2) we have θ(0, t) ≥ −c1
for every t ∈

�
. As before, denote

Ωε = {(s, t) ∈ [0, 1]×
�
| θ(s, t) ≤ −c1 − ε}

where ε > 0 and −c1 − ε is a regular value of θ. Since E(u, θ) < ∞ it follows
from an argument as in the proof of Lemma 5.15 that Ωε consistes of (possibly
infinitely many) bounded components. Moreover, ∂Ωε ∩ 0 ×

�
= ∅ and hence

∂Ωε consists of two parts ∂Ωε = Γ0 ∪ Γ1 where

Γ0 = {(s, t) ∈ ∂Ω : 0 < s < 1} , Γ1 = {(s, t) ∈ ∂Ω : s = 1} .

Now on Γ1 we have αs(∂tu) = 0 and hence

∫

Γ1

(u, θ)∗(φαs + φHsds) = 0.

This continues to hold with φ(θ) replaced by eθ. Hence

Eφ(u, θ; Ωε) =

∫

Ωε

(u, θ)∗d(φαs + φHsds)

=

∫

∂Ωε

(u, θ)∗(φαs + φHsds)

=

∫

Γ0

(u, θ)∗(φαs + φHsds)

= φ(−c1 − ε)

∫

Γ0

u∗(αs +Hsds)

= φ(−c1 − ε)ec1+ε
∫

Γ0

(u, θ)∗(eθαs + eθHsds)

= φ(−c1 − ε)ec1+ε
∫

Ωε

(u, θ)∗d(eθαs + eθHsds)

≤ ec1+εE(u, θ; Ωε).

Moreover, as in the proof of Lemma 5.17

Eφ(u, θ; � \ Ωε) ≤ ec1+εE(u, θ; � \ Ωε).

Since ε > 0 can be chosen arbitrarily small this proves the lemma. 2
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Proof of Theorem 2.4: We shall prove that

sup
(u,θ)∈Mc

‖du‖L∞ <∞ (9)

Here the norm of the linear map du(s, t) :
� 2 → Tu(s,t)M is to be understood

with respect to the metric on M induces by αs and Js. (Of course all these
norms are equivalent.) It then follows that

sup
(u,θ)∈Mc

‖∇θ‖L∞ <∞

and hence the gradient flow lines (u, θ) ∈ Mc of a with E(u, θ) ≤ c all stay
in a compact subset of M ×

�
and have uniformly bounded derivatives. Thus

Theorem 2.4 follows from the usual elliptic bootstrapping arguments (see for
example [8]).

The proof of the L∞-estimate (9) relies on a standard bubbling argument
already employed in the proof of Lemma 5.8, Lemma 5.13, and Theorem 5.14.
Assume by contradiction that (9) fails. Then there exists a sequence (uν , θν) ∈
Mc and a sequence sν ∈ [0, 1] such that

Rν = |duν(sν , 0)| → ∞.

By Lemma 5.5 we may assume without loss of generality that there exists a
sequence εν → 0 such that

sup
Bεν (sν ,0)∩[0,1]× �

|duν | ≤ 2Rν , ενRν → ∞.

We may also assume without loss of generality that

sν → s∗.

Denote α = αs∗ , Y = Ys∗ and J = Js∗ .
There are three cases. First assume that sνRν → ∞ and (1 − sν)Rν → ∞.

Then we may assume εν < min{sν , 1 − sν} and a rescaling argument as in the
proof of Lemma 5.8 shows that there exists a nonconstant J-holomorphic plane
(u∗, θ∗) : � →M ×

�
such that

sup
φ∈F

Eφ(u
∗, θ∗) <∞.

This last inequality follows from Lemma 5.18. Hence it follows from Theorem 5.3
that there exists a periodic solution γ(t) = γ(t+T ) of γ̇ = Y (γ) which represents
a contractible loop in M . By hypothesis (H2) such a solution does not exist.
This contradiction shows that either sνRν or (1 − sν)Rν is bounded.
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If (1 − sν)Rν is bounded then a rescaling argument as in the proof of
Lemma 5.13 shows that there exists a nonconstant J-holomorphic half plane
(u∗, θ∗) : � →M ×

�
such that u∗(

�
) ⊂ L1 and

sup
φ∈F

Eφ(u
∗, θ∗) <∞.

Hence it follows from Theorem 5.9 that there exists a solution γ : [0, T ] → M
of the boundary value problem

γ̇ = Y (γ), γ(0) ∈ L1, γ(1) ∈ L1,

which is contractible in the space of paths in M with endpoints in L1. By
hypothesis (H3) such a solution does not exist. This contradiction shows that
sνRν → 0 is bounded.

If the sequence sνRν is bounded a rescaling argument as in the proof of
Theorem 5.14 shows that there exists a nonconstant J-holomorphic half plane
(u∗, θ∗) : � →M ×

�
such that

u∗(
�

) ⊂ L0, eθ
∗(s,0) =

1

f0(u∗(s, 0))
, E(u∗, θ∗) <∞.

By Theorem 5.14 this map extends to a J-holomorphic disc (u∗, θ∗) : � ∪{∞} →
M ×

�
. The energy of this disc is given by

E(u∗, θ∗) =

∫ 1

0

α0(γ̇(t))

f0(γ(t))
dt

where

γ(t) = γ(t+ 1) = u∗
(

sin 2πt

1 + cos 2πt

)
.

(Compare the proof of Lemma 5.16.) By hypothesis (H1) we have π2(M,L0) = 0
and hence the loop γ is contractible in L0. Since the form f0

−1α0|L0 is closed
it follows that E(u∗, θ∗) = 0 in contradiction to the fact that u∗ is nonconstant.
This final contradiction proves the L∞-estimate (9) and this completes the proof
of Theorem 2.4. 2
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