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1 Introduction

Contact geometry

Let M be a compact manifold of odd dimension 2n + 1 and £ C TM be a
contact structure. This means that £ is an oriented field of hyperplanes and
there exists a 1-form « on M such that

& = ker «, aAda™ #£ 0.

The last condition means that the restriction of da to the kernel of « is non-
degenerate. Any such form is called a contact form for £&. Any contact form
determines a contact vector field (sometimes also called the Reeb vector field)
Y: M —TM via

(Y)da =0, (YV)a=1.

A contactomorphism is a diffeomorphism ¥ : M — M which preserves the
contact structure £&. This means that v*a = e"a for some smooth function
h : M — R. A contact isotopy is a smooth family of contactomorphisms
s : M — M such that
Yra = e a

for all s. Any such isotopy with 1y = id and hg = 0 is generated by Hamil-
tonian functions H, : M — R as follows. Each Hamiltonian function Hj
determines a Hamiltonian vector field X; = Xy, = X, g, : M — TM via

(Xs)a = —Hg, U(Xs)da =dHs — (Y)dH; - «,



and these vector fields determine 15 and hg via

d d

=¥ s:Xs S -5
(0 o1 I

hs = —u(Y)dHs.
7 uY)

A Legendrian submanifold of M is an n-dimensional integral submanifold L
of the hyperplane field &, that is a7 = 0. An n + 1-dimensional submanifold
L C M is called Lagrangeable if there exists a positive function f : L — R such
that the 1-form f~'a|z is closed This implies that L is foliated by Legendrian
leaves. This definition is somewhat too strong. There are some interesting
examples in which the function f cannot be chosen positive but vanishes on a
subset of codimension 2. We shall discuss this in section 4.

Remark Let ¢ : M — M be a contactomorphism with ¢*a = e9a. Then for

any Hamiltonian function H : M — R we have

¢*XQ,H - X(;B*a,Hoqb - Xa,engoqﬁ-

Symplectization

Associated to a contact manifold M with contact form « is the symplectiza-
tion M x R with symplectic structure

W= wy = d(’a) = e’ (da — a A db).

Here 6 denotes the coordinate on R. If ¢ : M — M is a contactomorphism with
Y*a = e o then the diffeomorphism

(p,0) = ((p), 0 — h(p))

of M x R preserves the symplectic structure w. Moreover every contact isotopy
s : M — M corresponds to a Hamiltonian isotopy on M x R determined by
the homogeneous Hamiltonian functions (p,6) +— e’ H,(p). The corresponding
Hamiltonian differential equation is of the form

P = Xs(p), é:L(Y)dHS(p).

If L € M is a Legendrian submanifold then L x R is a Lagrangian submanifold
of M x R. If L C M is a Lagrangeable submanifold of M and f~'aly is closed
then

Ly={(p,—log(f(p)))[pe L} CMxR

is also a Lagrangian submanifold of M x R. This is the motivation for the term
Lagrangeable.

Remark The relation between contact geometry and symplectic geometry has
to be handled with care. The symplectic structure w = w, = d(e’a) is not



determined by the contact structure £ but depends explicitly on the contact
form «. Given a contactomorphism ¢ : M — M it is sometimes convenient to
work with the diffeomorphism (p,8) — (¥(p),#) which does not preserve the
symplectic structure but satisfies

(¥ x id)*we = Wyra-

This will especially be the case when we discuss almost complex structures and
J-holomorphic curves.

Lagrangian intersections

The goal of this paper is to construct Floer homology groups
HF*(LOle;Oé)

for intersections of a Legendrian submanifold L, and a Lagrangeable subman-
ifold Ly. These groups are invariant under contact isotopies. They should be
thought of as the Floer homology groups HF,(M x R, (L¢)s,, L1 x R) for the
corresponding Lagrangian intersections in the symplectic manifold M x R. The
noncompactness at § — +oo is no problem due to convexity but new difficulties
arise from the black hole at # — —oo. These can be overcome if the following
hypotheses are satisfied.

(H1) There no nontrivial discs in M with boundary in Lg:
T (M, Lo) =0.

(H2) Every periodic solution v : R/TZ — M of the contact flow ¥ = Y ()
represents a nontrivial homotopy class (of loops in M).

(H3) Every solution v : [0,7] — M of the boundary value problem
Y=Y, A0)ely, AT)el

represents a nontrivial homotopy class (of paths in M with endpoints in
Ly).

The notions of Legendrian and Lagrangeable submanifold as well as contact
isotopy are independent of the choice of the contact form « and one would
expect the Floer homology groups HF, (Lo, L1; @) to be independent of « as
well. However, we were not able to prove this. In fact, the conditions (H2)
and (H3) above explicitly depend on « and the set of contact forms which
satisfy these hypotheses is not dense. This is somewhat misfurtunate but may
be related to the fact that Floer homology is an intrinsically symplectic concept
and the symplectic structure does depend on «. In applications we shall consider
pairs Lo, L; which satisfy in addition the following condition.



(H4) L, is a connected submanifold of Ly.

Under this assumtion the Floer homology groups H F.(Lg, L1; o) are isomor-
phic to the homology of L; and this implies the following intersection theorem.

Theorem A Assume (H1), (H2), (H3), (H4). Let ¢ : M — M be a Hamilto-
nian contactomorphism such that Lo and 1~ (L) intersect transversally. Then

#LoN~ (L1) > > dim Hy(L1; Zo).
k=0

In particular the intersection Lo N~ (L1) is always nonempty.

2 J-holomorphic curves

The space of paths

Fix a contact form a9 on M and let Ly C M be a Lagrangeable submanifold
with fo : Lo — (0, 00) such that f071a0|L0 is closed. We also fix a Legendrian
submanifold Ly C M. Denote by

P =P(Lo, fo, L1)
the space of paths (v,0) : [0,1] — M x R such that

_
fo(x(0))’

If Ly and L, satisfy hypothesis (H4) then there is a natural injection Ly — P :
x +— (Y, 0) defined by

Va(s) =z, ba(s) = —log(f(2))-

Denote by Py the component of P which contains the constant paths (v, 60,).

~v(0) € Ly, ef?0) = ~v(1) € Ly.

Lemma 2.1 Assume (H1) and (H4). Then (v,0) € Py if and only if there
exists an extension v : [—1,1] — M of v such that

(i) v(s) € Ly for —1 <s <0,
(i) v(=1) € L,

(iii) the path v : [=1,1] — M is homotopic to a constant path in the space of
paths in M with endpoints in Ly.

Any two such extensions vo,71 : [—1,0] — Lo are homotopic in the space of
paths B : [—1,0] — Lo with 8(0) = ~v(0) and 5(—1) € L;.



Proof: First assume (7,0) € Py. Then there exists a homotopy [—1,0] — Py :
A — (7a, 0y) such that (y0,600) = (7,0) and v_1(s) = z, 0_1(s) = —log(fo(x))
for some x € L1. The required extension is given by s — 7,(0) for —1 < s < 0.
Conversely, if the required extension exists then the homotopy (yx,8x) € Po to
the constant path is constructed from the homotopy of condition (iii). To prove
uniqueness note that if g, v1 : [-1,0] — Lo are two extensions of v : [0,1] — M
then condition (iii) gives rise to a disc u : D — M whose boundary u(9D)
consists of the paths vo and 1 together with a path in L; which connects the
base points vo(—1) and v1(—1). By (H1) the loop u(9D) is contractible in L.
O

Lemma 2.2 Assume (H1) and (H4). Then the injection L1 — Py induces an
isomorphism of fundamental groups.

Proof: The map mi(L;) — 71 (Poy) induced by z — (vs,0,) is obviously
injective: If a loop
R/Z—>PQ A ('7>\,6‘)\)

is contractible then so is the loop
R/Z — L1 A= ’y)\(l).

To prove that the map is surjective we must prove the converse: If the loop
A — (1) is contractible in L; then the loop A — (v, 8)) is contractible in
Po. To see this assume without loss of generality that yx(1) = z € L; for all \.
Then use w2 (M, L) = 0 (hypothesis (H1)) to construct the required homotopy.
O

The tangent space T(,,¢)P at a path (v,60) € P consists of all vectorfields
(v(s),7(s)) € TyyM x R along (v, #) which satisfy the boundary condition

_ dfo((0))v(0)

R TTC I

’U(l) S T'y(l)Ll-

Symplectic action

Let
as = Pra=e%

be a smooth family of contact forms generated by a contact isotopy such that
go = 0 and let Hy : M — R be a smooth family of Hamiltonian fumctions.
Assume that Ly and Ly satisfy hypotheses (H1) and (H4). Then the symplectic
action functional

S=58.um:Po—R



is defined by

? ap(§(s)) o) :
50.0) = [ G s+ [ (o, (3() + Hula(5) ds
for (v, 0) € Py. Here the extension v : [-1,0] — M is chosen as in Lemma 2.1.
It follows from the uniqueness part of the lemma and hypothesis (H1) that the
action S(v, ) is independent of the choice of the extension.

Denote by Y, = ¢XYy the contact vector field determined by as and by
Xs = Xo,,n, the Hamiltonian vector field generated by H, and «,. Then the
differential of the symplectic action in the direction of a variation (v, 7) € T, 6P
is given by

05 (7, 0)(v,7) = / ! (das@,w—xs(w)+mm—xsm>) ds

_ /01 eeas(v) (9 + gs(v) — st(W)Ys(W)) ds.

Here we have used the notation g, = d/dsgs. The formula for dS shows that the
critical points of a are in one-to-one correspondence with paths v : [0,1] — M
which satisfy the boundary value problem

Ys) = Xs(v(s)),  2(0) € Lo, (1) € Lu.

(The path 6 : [0,1] — R is uniquely determined by 7.) Let ¢s = 94, 1 s denote
the contact isotopy determined by X, = X, g, via

d
ws:Xsowsu 1/10=1d
ds

Then the critical points of a correspond to paths

FY(S) = 1/}5(117), z € LoN 1/}1_1(L1)-

Moreover, the corresponding critical point (v, 6) of a is nondegenerate if and
only if Ly and ¢171(L1) intersect transversally at x. In other words the ac-
tion functional a is a Morse function if and only if Ly and wlfl(Ll) intersect
transversally.

Remark Assume that the 1-form f0_1a0|L0 is exact:
fo taolr, = dFy

for some function Fy : Ly — R. If in addition L; C Lo and L; is connected
then we may assume that Fy vanishes on L;. In this case the symplectic action
functional is given by

1
S(7,0) = Fo((0)) + / 9 (ars(3(s)) + Haly(s))) ds.



for (y,6) € Py. This formula also works when hypothesis (H4) does not hold. In
most applications, however, the 1-form f0_1a0| L, Will not be exact. If neither
this holds nor (H4) then the symplectic action functional may not be a well
defined function but may only give rise to a closed 1-form on the space of paths.
In this case the corresponding Floer homology groups will be modules over a
suitable Novikov ring as in [7]. We shall, however, not consider that case.

Almost complex structures

To discuss the gradient flow of the symplectic action we must choose a suitable
metric on the loop space and this will require an almost complex structure
on M x R. Since every symplectic vector bundle over any manifold admits a
compatible almost complex structure, there exists an almost complex structure
J on ker @ which is compatible with the symplectic structure do. We think of
this structure as an endomorphism J : TM — T M such that

JY =0, J*v =a(v)Y —v
and the bilinear form
(v,w) = da(v, Jw) + a(v)a(w)

defines a Riemannian metric on M. We shall call such a structure compatible
with «. For any such J the automorphism J: TM x R — TM x R defined by

J(w,7) = (Jv+ 7Y, —a(v))

is an almost complex structure on M xR which is compatible with the symplectic
form w = d(e’a). The corresponding Riemannian metric is the product metric
on M x R (with the above metric on M) multiplied by e®.

Remark Let v : M — M be any diffeomorphism of M and assume that J is
compatible with c. Then ¥*Y is the contact vectorfield for ¢*a and *J is an
almost complex structure compatible with ¥*«.

Now choose a family of almost complex structures Js : TM — T'M which
are compatible with «s. Any such structure induces a metric on the path space
P via

(v, 7)|l, = /0 e? (das(v, Jsv) + |as(v)]? + |7'|2) ds

for (v, 1) € T(,0)P.



Gradient flow

The gradient flow of the symplectic action with respect to the above metric on
P is given by

" _ (=T = X)) = (0 + §5(7) = dH(7)Ys (1) Ys (7)
grad s(7.0) = ( a3 = Xa(7) )

Hence a gradient flow line of the symplectic action is a smooth map (u,0) :
[0,1] x R — M x R which satisfies the first order partial differential equation

Osu — Xg(u) — as(0su — Xg(u))Ys(u) + Js(u)Oru = 0,
050 + gs(u) — dHs(u)Ys(u) = as(dru), (1)
O = —a(0su — Xs(u))

with boundary condition

_
fo(U(O,t))’

The following lemma can be proved by a direct computation which we leave to
the reader.

u(0,t) € Ly, OV = u(l,t) € L. (2)

Lemma 2.3 Let xs : M — M be a contact isotopy such that

d ,
——Xs = Xa,,K, 0 Xs; Xsas = e’ a,
ds
and define
ul(sa t) = XS_l(u(Sat))7 Gl(svt) = 0(57t)
Then u' and ' satisfy the same equation (1) with as, Ys, Js, Hs, X and g
replaced by
O‘;ZX:O‘Sv Ys/:X:YS’ J;:X:JS’
Hg = (Hs—K;)oxs, Xézxi(Xs—Xas,Ks), g; = (9s — 1(Ys)dKs) o xs-

Moreover, v and 0" satisfy the boundary conditions (2) with Lo, fo, and L
replaced by

Ly =x0" " (Lo), fo = fo ° xo, Ly =x17 " (L1).

Remarks

(i) The previous lemma shows that equation (1) can be reduced to the case
where either H;, = 0 (choose xs = ¥s) or as = g (choose xs = ¢s).
Both cases will be of interest and we shall therefore continue to discuss
the general situation.



(ii) If H; = 0, a5 = ag, and J; = Jy then the solutions of (1) are Gromov’s
pseudoholomorphic curves in M x R with respect to the above almost
complex structure J(v,7) = (Jov + 7Yy, —ao(v)). Such J-holomorphic
curves have been recently used by Hofer [6] to prove existence theorems

for periodic orbits on contact manifolds.

(iii) If a5 depends on s then so does the symplectic form ws = d(e’ay). Thus
the above equation seems more general than the corresponding equation
in the usual Floer homology theory for Lagrangian intersections. This,
however, is due to notational convenience. The diffeomorphism ¢3! x id
of M x R transforms wy into wp. (Compare Lemma 2.3 with x5 = ¢s.)

Energy
The energy of a solution (u, #) of (1) and (2) is given by

co 1

B(u,0) = //69 (cn @ete Ju (D) + o) + (01017 ds

—oo 0

oo 1

/ /(% 0)*d (o + e"Hds) .

—oo 0

Here d is the differential with respect to all variables (p,6,s) € M x R x R and
(u,0) is to be understood as the map (s,t) — (u(s,t),0(s,t),s). It turns out
that if the energy is finite and Lo and ¥, *(L;) intersect transversally then the
limits

t_lgnoo u(s,t) = s (zF), e Lonyy (L) (3)

exist (see Proposition 2.5 below). In this case the energy is given by

7 a0(Gru(0,1))
B0 =~ [ “Foin

Hence the energy depends only on the homotopy class of paths in Ly from z~
to T determined by u(0,¢). If the hypotheses (H1) and (H4) are satisfied then
the energy is uniformly bounded and is given by

E(u,0) = S(¥s(z7)) — S(ihs(a™)) (4)

whenever (u(-,t),0(-,t)) € Py for all t.

Now a Floer complex can be defined as usual by counting the connecting
orbits when the relative Morse index is 1. Under the hypotheses (H1), (H2), (H3)
there are no obstructions to compactness and the usual theory carries through.
The crucial point is the following compactness theorem for the solutions of (1)
and (2) with bounded energy. The proof will be given in section 5.



Theorem 2.4 Assume that M, «g, Lo, and Ly satisfy the hypotheses (HI1),
(H2), and (H3). Then for every ¢ > 0 the space

MC = MC(LOaLl;avHv J7 fo)

of all smooth solutions (u,0) of the boundary value problem (1) and (2) which
satisfy the energy bound
E(u,0) <c

is compact (with respect to the topology of uniform convergence with all deriva-
tives on compact sets).

If we knew a-priori that all the solutions of (1) and (2) would take values in
a compact subset of M x R (that is |0(s, t)| < C for some universal constant C)
then the above theorem would follow directly from the usual compactness theory
for Gromov’s pseudoholomorphic curves (cf. [5] or [8]). To see this consider
without loss of generality the case a; = «p. Hypothesis (H1) guarantees that
there are no Jy-holomorphic discs with boundary on the extended manifold
(Lo)y,, there are obviously no such discs with boundary in L; x R, and since
the symplectic form w = d(e’ayp) is exact there are no Jy-holomorphic spheres.
Hence there could be no bubbling (for Jy-holomorphic curves with values in a
compact set) and Theorem 2.4 would follow. Now in the case oy = g and
H, = 0 The function 6 is harmonic and its normal derivative vanishes on s = 1.
Hence it follows from the maximum principle that at least in this case 6 is
bounded above by a universal constant (—log(infr, fo)). In contrast it is not
at all obvious that the functions 6 for (u, ) € M€ are uniformly bounded from
below. Such a bound will only exist if the hypotheses (H2) and (H3) are satisfied
as well. The proof requires an analysis of J-holomorphic planes and halfplanes.
In the case of planes this was recently carried out by Hofer (cf. [6]) and we shall
explain his results and their generalizations to half planes in section 5.

Heuristically the argument is as follows: If there is a sequence (u,,0,) € M*°
and a sequence of points z,, = s, +it, such that ¢, = 6, (z,) — —oo the following
happens. Assume without loss of generality that s, — s* and denote a = aj-,
J =Js,Y =Y. If 2, stays clear of either boundary at s = 0 and s = 1 we
may replace 0, by 6, = 0, — ¢, to obtain another sequence of .J-holomorphic
curves (uy,0,) which stay away from —oo but whose energy diverges to oo.
However, after suitable rescaling we obtain in the limit a J-holomorphic plane

(u,0) :C— M xR
which has finite contact energy
Eo(u) = /u*(da) =T>0 (5)
and satisfies

lim 6(z) = oc. (6)

|z| =00

10



Now for any such J-holomorphic plane the curves v, (t) = u(re?™*/T) converge
to a T-periodic solution (t) of ¥ = Y () as r tends to infinity. This periodic
solution is necessarily contractible and by hypothesis (H2) no such solution
exists. A similar argument in the case s* = 1 (roughly speaking) shows that
there would be a J-holomorphic half-plane

(u,0) :H— M xR, u(s,0) € Ly

which also satisfies (5) and (6). In this case the curves v,.(t) = u(re™/T) will
converge to a solution of ¥ = Y (y) with v(0) € Ly and v(T) € L; and this
is excluded by hypothesis (H3). Finally, in the case s* = 0 we would obtain
a nonconstant J-holomorphic discs with boundary in (Lg)y, and such discs do
not exist by hypothesis (H1). It follows from these arguments that 6, remains
bounded for any sequence (uy,d,) € M¢ and this will imply Theorem 2.4. The
details are quite subtle and are based on the work of Hofer in [6]. They will be
carried out in section 5.

We close this section with a corollary of Theorem 2.4 which guarantees the
existence of the limits (3).

Proposition 2.5 Assume that M, «g, Lo, and Ly satisfy the hypotheses (H1),
(H2), and (H3). Assume further that Lo and vy~ Ly intersect transversally and
that (u,0) is a solution of (1) and (2) with finite energy E(u,8) < co. Then the
limits (3) exist.

Proof: Given any sequence t, — oo apply Theorem 2.4 to u, (s,t) = u(s,t+t,)
and 6,(s,t) = 0(s,t 4+ t,). It follows that a subsequence converges, uniformly
with all derivatives on compact sets, to a J-holomorphic curve (u*, 8*) with zero
energy. Any such function must be of the form

u*(s,t) = Ps(a™), azt e Lony (L)

Now any sequence u(s,t,) with ¢, — +oo must converge to the same limit
s(zT). Otherwise there would exist a sequence ¢, — oo such that

d(u(0,t.), Lo Ny~ (L1)) > 6 >0

for all v. But this would lead to a contradiction as above. O

To prove the previous proposition it suffices to assume that the intersection
points of Ly and ¢171(L1) are isolated. In the transverse case it can in fact be
proved that u(s,t) converges exponentially to 1, (xT) for t — o0 and du(s,t)
converges to zero exponentially. This follows by standard arguments in Floer
homology (cf. [2]) and we shall omit the proof.

11



3 Floer homology

Let M, Lo, fo, L1, as, Js, and Hg be as above and assume that the hypothe-
ses (H1-4) are satisfied. The Floer homology groups

HF*(LOaLl;O[Sa JsvHsa fO)

can roughly be described as the middle dimensional homology groups of the
path space Py = Po(Lo, fo, L1). They are obtained from the gradient flow of
the symplectic action

Sa.H:Po— R

as in Floer’s original work on Lagrangian intersections in compact symplectic
manifolds [1], [2], [3]. They can roughly be described as an infinite dimensional
version of the Morse complex as described by Witten [12]. We summarize the
main points of Floer’s construction.

Assume that Ly and v; (L) intersect transversally. Then all the critical
points of S, m are nondegenerate. Given two intersection points zt € LyN
Y17 (L1) denote by

Mz, 27) = M(z~, 2", as, Hy, Js)

the space of all solutions (u,6) : [0,1] x R — M x R of (1) with boundary
condition (2) and limits (3). Denote by

Mo(x77$+) = MO($77x+7asuHsu J87 fO)

The subspace of those (u,f) € M(z~,z") such that the path (u(-,t),0(-,t))
is in Py for every t. Linearizing the differential equation (1) gives rise to an
operator

Diugy : WE2((u,0)*(TM x R)) — L((u,0)*(TM x R)).

Here W, ?((u,0)*(TM x R)) denotes the Sobolev space of all vector fields
(&(s,1),7(s,1)) € Ty(s,yM x R along (&, ) which satisfy the boundary condition

_ dfO (U(O, t)){(O, t)
fo(u(0,8))

The space L?((u,0)*(TM x R)) is defined similarly and Dy, ) is a Cauchy-
Riemann operator. This operator is Fredholm whenever Ly and ¢171(L1) in-
tersect transversally. It’s index is a relative Maslov class and can be defined as
follows. Given (u,0) € M(z~,z") choose a symplectic trivialization

5(070 € Tu(O,t)L()v T(O7t) = 5(1at) € Tu(l,t)LO-

D(s,t) : R*"? = Ty —1(,5.0)M xR

12



of (u,0)*(TM x R) such that
D(s,t) ws = Zd:cj A dy;
3=0

where w, = d(ey’a;) and

lim ®(s,t) = ®* : R*™*2 - T,. M x R.

t—+oo

This gives rise to two Lagrangian paths in R?"*2 = R?"*+! x R:

Ao(t) = ®(0,8) " Tiuo.),00,6)) (L0) fo
and
Ai(t) = (1, 0) 7 (T, 1 uqreptr (L1) X R).

These paths are transverse at ¢ = +oo and therefore have a relative Maslov
index p(Ao, A1) (cf. [1] and [9]). This index is independent of the choice of the
trivialization. The Fredholm index of D, ¢) agrees with this Maslov index

indexDyy,0) = p(u, ) = (Ao, A1)

whenever u and 6 satisfy the boundary condition (2) and the limit condition (3)
(cf. [1] and [10]). Now if 2~ =z then the Maslov index is zero.

Lemma 3.1 Ifz~ = zT then p(u,0) = 0.

Proof: In this case Ag(4+00) = Ag(—o0) and Aj(+00) = A1(—00). So Ap and
A1 are loops of Lagrangian planes and the relative Maslov index agrees with the
difference of the ordinary Maslov indices of these loops

(Ao, Ar) = p(Ar) — p(Ao)

(cf. [9]). Now it follows from Lemma 2.2 That there exists a loop t — A(t) of
Lagrangian planes in R?" such that

Ap~AXRx0, A ~Ax0xR.

and hence p(Ag) = p(A1). This proves the lemma. O

The previous lemma shows that there exists a map g : Lo Ny *(Ly) — Z
such that
index Dy 9y = pu(z™) — p(a™)
whenever u and 6 satisfy (2) and (3). Now everything is as usual. A triple
(o, H,J) is called regular if Ly and ;' (L;) intersect transversally and the

13



operator D, g) is onto for every (u,6) € M(z~,z") and every pair of intersec-
tion points = € Lo Nty *(Ly1). By the Sard-Smale theorem the set

REG =REG (Lo, L1)

of regular triples is dense in the set of all triples. The argument is as in [2]
or [11]. Now for every triple (o, H, J) € REG the space Mo(x~,z7") is a finite
dimensional manifold with

dim Mo(z™,2%) = p(z™) — p(a™).

If w(xz~) — pu(z™) = 1 then, by Theorem 2.4, the quotient space M(z~,z")/R
consists of finitely many orbits and the numbers

na(x”,27) = #M(z~,2"7)/R (mod 2)
determine the Floer chain complex as follows. The chain groups are defined by

CF, = CFy(Lo, L1, H) = > Zaa).
ze€LoNyy~ (L)
u(x)=k
and the boundary operator 0 : C'Fy, — CF}_1 is given by

dz)= D malz,y)()

w(y)=k—1

for z € LoNty ~*(L1) with p(z) = k. As in Floer’s original proof one uses gluing
techniques to prove that 9 o @ = 0 (cf. [3] and [11]). The Floer homology
groups are now defined as the homology of this chain complex:

HF*(Lo, Ly; o, Js, Hy) := H.(CF, ).
They are invariant under Hamiltonian isotopy.

Theorem 3.2 Assume (H1), (H2), (H3), (H4).

(i) For any two triples (o, J,H), (o', J', H') € REG there is a natural isomor-
phism
HF,(Lo, L1;as, Js, Hy) — HF. (Lo, L1; o, J., H.).

8§78

(ii) For any triple (o, J, H) € REG and any Hamiltonian isotopy xs generated
by vector fields X, k. there exists a natural isomorphism

HF*(L07 Lla A, JS; HS)
- HF*(Xoil(LO)a Xlil(L1)§X:O‘&X:JSa (Hs - KS) © XS)-
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(iii) For any triple (o, J, H) € REG there exists a natural isomorphism
HF*(LOa L17 Qg, JS; HS) - H*(Lla ZQ)

The proof of this theorem is as usual in Floer homology and we refer to [3],
[4] and [11] for more details in a slightly different context. In particular state-
ment (ii) follows directly from Lemma 2.3. An immediate consequence of Theo-
rem 3.2 is the following extension of the Arnold conjecture to contact manifolds.

Theorem 3.3 Assume (H1), (H2), (H3), (H4). Let ) : M — M be a Hamilto-

nian contactomorphism such that Lo and 1»~*(Ly) intersect transversally. Then
#Lo N~ (L1) = > dim Hy(Ly; Zo).
k=0

In particular the intersection Lo N1~ (L1) is always nonempty.

4 Examples

5 Compactness

Let M be a compact contact manifold with contact form « and corresponding
contact vector field Y determined by «(Y)da = 0 and «(Y)a = 1. Let J :
TM — TM be an almost complex structure which is compatible with a. A J-
holomorphic curve in M x R (strictly speaking a J-holomorphic curve, but we
shall omit the tilde) on  C C is a pair of functions u: Q@ — M and 6 : Q@ — R
which satisfy

Osu — a(Osu)Y (u) + J(u) ((?tu - a(@tu)Y(u)) =0,
(7)

050 = a(du), O = —a(0su).
We shall consider the case of J-holomorphic planes (2 = C), J-holomorphic half-
planes (2 = H = {s+it|t > 0}) with Legendrian boundary condition u(R) C L
where a|rr, = 0, and J-holomorphic discs (2 = D = {z € C||z| < 1}) with
Lagrangeable boundary conditions u(z) € L, e?*) = 1/ f(u(z)) for |2| = 1 where

f~alp is closed. The symplectic energy of a J-holomorphic curve is defined
by

E(u,0) = /(u,@)*d(eea)

and the contact energy by

Ey(u) = /u*da.

15



Remark 5.1 If v: R — M is any solution of 4 = Y'(v) then the functions
u(s, t) = (t), O(s,t) =s

determine a J-holomorphic plane. This plane has infinite symplectic energy but
the contact energy is zero. If 7y is periodic with period 7" then this formula deter-
mines a J-holomorphic cylinder. Similarly, if v(0) € L1 we get a J-holomorphic
half-plane (u,6): H— M x R and u(R) C L;. If « satisfies the boundary con-
ditions v(0) € Ly and «(T) € Ly we get a J-holomorphic strip with boundary
values in Lj.

Remark 5.2 Given any positive smooth function ¢ : R — R with positive
derivative ¢’(f) > 0 define the ¢-energy of a J-holomorphic curve (u,8) : Q —
M x R on an open set Q C C by

Ey(u,0) = /Q(u, 0)*d(¢pa).
A simple calculation using (7) shows that

E¢(u, 9)

[ (60 00 - @)y @ + 86) (Ja(@.0f + fa(@r]*))
Q
| (o020 +50) 70

Q

= PO u*
o
ol
_ 0)=—
/asz ov

Here A denotes the standard Laplacian and 0/0v the outward normal derivative
on 99Q. The symplectic energy corresponds to ¢(f) = ¢’ and the contact energy

to ¢(0) = 1.
J-holomorphic planes

Denote by
]:

the space of all smooth functions ¢ : R — R such that 1/2 < ¢(f) < 1 and
0<¢'(f) <1forall 8. Given ¢ € F denote the shifted function by

@0c(0) = ¢(0 + ¢).
In [6] Hofer proved essentially the following result.

Theorem 5.3 Let M be a compact contact manifold with contact form «. Let
J be compatible almost complex structure and assume that (u,6) : C - M x R
is a smooth solution of (7). Then the following statements are equivalent.

16



1) w is nonconstant and su Eys (u,0) < oo for some nonconstant ¢ € F.
PceRE¢\ U,

(ii) u is nonconstant and sup 4e r Eg(u,0) < oo.

(iii) lim),| o0 0(2) = 00 and 0 < Ep(u) < 0o.

If these conditions are satisfied then every sequence r, — oo has a subsequence
(still denoted by r,) such that the limit

~v(t) = lim u(rl,e2”t/T)

V—00

exists (in the C*-topology) and defines a periodic solution of the differential
equation

T=Y()
with period T = Ey(u).

Remark 5.4 The proof of the previous theorem shows that if (iii) holds then

lim ﬁo(ezﬂsﬂt)) = Ey(u)

5— 00 S
and hence 0(z) diverges to oo like (27) "1 Eg(u)log |2|.

We reproduce here Hofer’s proof of this theorem and then give an extension
along similar lines to J-holomorphic half planes. The proof of Theorem 5.3
is based on four lemmata. The first is an observation about complete metric
spaces due to Hofer.

Lemma 5.5 Let M be a complete metric space and f: M — R be continuous.
Given x € M and € > 0 there exist § € (0,¢) and & € Be(x) such that

sup [f| <2[f(E),  Olf(E] = self(2)].
Bs(8)

Lemma 5.6 Let ¢ € F be nonconstant and 6 : C — R be a harmonic function
such that

sup eg.(6) < oo, eq(0) = /C¢’(9)|V9|2.

ce
Then 0 is constant.
Proof: First note that for any biholomorphic function f: C — C
eg(0 0 f) = ey(0).

Secondly, if 8 is nonconstant and satisfies a linear growth condition of the form
|0(2)] < ¢(1+4z|) then there exists a biholomorphic function f(z) = az+ b such

17



that 6o f(z) = Rez. Hence in this case ey(0) = ey(6 o f) = co. This proves the
lemma in the case of linear growth.
If 6 does not satisfy a linear growth condition then there exists a sequence
2, such that
R, = |V0(z,)| — .

By Lemma 5.5 we may assume without loss of generality that for some sequence
e, — 0 we have
sup |V6| <2R,, e R, — oo.
B, (ZU)

It follows that the sequence 6, (2) = 6(z, + z/R,) — 0(z,) satisfies

9”(0) =0, |V9U(O)| =1, Sup |V9,,| <2, €¢(9,,) = e¢9(z,/)(9)'
BEVRV(O)

Hence there exists a subsequence (still denoted by 6,) which converges, uni-
formly with all derivatives on compact sets, to a harmonic function 8 such that

<2, eq(0) < oo.

’V@(O)’ =1, itgl}é’Vé(z)

By the first part of the proof the function 6 must be constant in contradiction
to [V6O(0)| = 1. This proves the lemma. O

Lemma 5.7 Let (u,0) : C— M x R be a solution of (7) such that

suﬁE¢C (u,0) < o0, Eo(u) =0
ce

for some nonconstant function ¢ € F. Then u is constant.
Proof: If Ey(u) = 0 then the equation

AO = Osa(0ru) — Ora(Osu)
= da(dsu, dru)
= |05t — a(dsu)Y ()|

shows that § : C — R is harmonic. By Remark 5.2

supeg. (0) = SHRE¢C (u,0) < o0
ce ce

and, by Lemma 5.6, 6 is constant. By (7) it follows that a(dsu) = 0 and
a(dyu) = 0. Hence u is constant. O
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Lemma 5.8 Let (u,0) : C/iTZ — M x R be a solution of (7) such that

sup Ey_(u,0) < oo
sup g (u,0)

for some nonconstant function ¢ € F. Then

sup |du(z)] < oo.
z€%| (2)|

Proof: Suppose otherwise that there exists a sequence z, € C such that
R, = |du(z,)| — oc.

By Lemma 5.5 we may assume without loss of generality that for some sequence
€, — 0 we have
sup |du| < 2R,, e, R, — oo.
Be, (2v)
It follows that the sequences u,(z) = u(z, + z/R,) and 0, (2) = 0(z, + z/R,) —
0(z,) satisfy (7) and

|du, (0)] =1, sup |du,| <2, sup |VO,| <2,
Be, r, (0) B, r, (0)

and
sup Ey. (uy,0,) =sup Ey_(u,0).
CEE ¢C( ) ﬁ ¢ ( )

ce

Hence, by the usual elliptic bootstrapping argument for J-holomorphic curves
in compact symplectic manifolds, there exists a subsequence (still denoted by
u, and 0,) which converges, uniformly with all derivatives on compact sets, to
a J-holomorphic curve (@, ) : C — M x R such that

|da(0)] = 1, suﬁE% (i,0) < oo,  Eo(a)=0.
ce
By Lemma 5.7 such a function @ cannot exist. This contradiction proves the

lemma. O

Proof of Theorem 5.3: We prove that (iii) implies (ii). The function w is
obviously nonconstant since 6 is nonconstant. Moreover we shall prove that if
0(z) converges to infinity as |z| — oo then

sup E,(u,0) = Eo(u). (8)
PpEF

To see this fix ¢ € F and € > 0 and choose a sufficiently large regular value
¢ > 0 of 6 such that

/C\Qc(u, o)d(pa) <e,  Q.={z€C|0(z) <c}.
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Then (z) = c = supg_0 for every z € 92 and hence,

00
—_— > .
% (z) >0, z € 00
This implies
Ey(u,0) —e < / (u,0)"d(¢c)
Q.
00
‘/89c ( )81/
[
Q. v
= / uw*do
Q.

This proves (8). Thus we have proved that (iii) implies (ii). Obviously (ii)
implies (i).

Now assume (i). Then obviously Fy(u) < 2E4(u,8) < oo and, by Lemma 5.7
Ey(u) > 0. We shall prove that every sequence r, — oo has a subsequence (still
denoted by r,) such that

lim u(r,e?™ Ty = ~(t)

V—00

where T' = Ey(u), the limit is in the C*°-topology, and ~(t) = v(t + T) is a
periodic solution of 4 = Y (y).
To construct the subsequence define

(s, t) = u(eQﬂ'(SJrit)/T), é(s,t) _ 9(627r(s+it)/T)'

Then R
sup Ey_(u,0) = sup Fy, (u,0) < oo
ceﬁ s.(80) celf){ . (t:6)

and hence, by Lemma 5.8,
su;()j|dﬂ(z)| < o0.
ze

Now choose s, — oo such that r, = ¢2™/T and define
uy(s,t) = u(s + s,, 1), 0,(s,t) = 0(s + s,,t) — 0(s,,0).

Then sup,, ||du, ||~ < oo and it follows from the usual elliptic bootstrapping
arguments for J-holomorphic curves (cf. [8]) that there exists a subsequence
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(still denoted by w, and 6,) which converges, uniformly with all derivatives on
compact sets, to a J-holomorphic curve (u*,0*) : C/iTZ — M x R satisfying

T
Eo(u*) =0, /0 a(dpu*(0,1)) dt = Eo(u) > 0.

It follows that Af* = 0 and hence there exists a unique function 7 : C — R
such that 8* +i7 : C — C is holomorphic and 7(0) = 0. By (7) this implies

a(0su™) = —00" = Oy, a(Opu™) = 050" = 0.
Since Eo(u*) = 0 it follows that
u*(s,t) = y(7(s,1))
where v : R — M is the unique solution of
V) =Y((r),  7(0) =u(0).

Now recall that du* is uniformly bounded and hence so is V#*. This implies
that the holomorphic function 8*+i7 : C — C satisfies a linear growth condition
and hence there exist complex numbers a and b such that

0*(z) +i7(z) = az +b.

Since 6*(z +iT") = 6*(z) we have a € R and since 6*(0) = 7(0) = 0 we have
b= 0. It follows that

0% (s,t) = as, u*(s,t) = y(at)
for some real number a € R. Now the formula
T T
T = Eo(u) = / a(Ou*(0,1)) dt = / a(aY (vy(at))) dt = aT
0 0
shows that a = 1.
As a byproduct of this proof we obtain that every sequence r, — oo has a

subsequence (still denoted by r,) such that

9(7”1,627T(S+it)/T) —=1.
s=0

lim —

v—oo (S

This implies the formula of Remark 5.4 and hence lim|,_ 0(z) = oo. In
particular we have proved that (i) implies (iii). This completes the proof of
Theorem 5.3. m|
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J-holomorphic half planes

Theorem 5.9 Let M be a compact contact manifold with contact form « and
L C M be a compact Legendrian submanifold. Let J be compatible almost
complex structure and assume that (u,0) : H — M X R is a smooth solution
of (7) such that w(R) C L. Then the following statements are equivalent.

1) w is nonconstant and su Eys (u,0) < oo for some nonconstant ¢ € F.
PceRE¢\ U,

(ii) u is nonconstant and sup 4e r Eg(u,0) < co.

(iii) lim),| o0 0(2) = 00 and 0 < Ep(u) < co.

If these conditions are satisfied then every sequence v, — oo has a subsequence
(still denoted by 1, ) such that the limit

A(t) = lim u(r,e™/T)

exists (in the C*°-topology) and defines a solution of the boundary value problem
Y=Y(0), 0L  AT)el
with T = Eg(u).

Remark 5.10 The proof of the previous theorem shows that if (iii) holds then

lim 29(6”(5“’5)) = Eo(u)

s—o00 0§
and hence 0(z) diverges to oo like 71 Eg(u)log |2|.

The proof of Theorem 5.9 is completely analogous to that of Theorem 5.3.
It relies on the following three lemmata.

Lemma 5.11 Let § : H — R be a solution of the Neumann boundary value
problem

AO=0,  0,0(s,0) =0.

If there exists a nonconstant function ¢ € F such that

sup eg(6) < oo, eg(8) = /H¢/(9)|ve|2=

ce

then 0 is constant.

Proof: The proof is analogous to that of Lemma 5.6. First, for any biholo-
morphic function f: H — H

ep(0o f) =es(0).
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Secondly, if 8 is nonconstant and satisfies a linear growth condition of the form
|0(2)] < e(1 + |z|) then there exists a biholomorphic function f(z) = (az +
b)/(cz+ d) such that 8o f(z) = Rez. Hence in this case ey(0) = e4(§ o f) = oo.
This proves the lemma in the case of linear growth.

If 6 does not satisfy a linear growth condition then, as before, there exist
sequences z, € H and ¢, — 0 such that

sup |VO| <2R,, e R, — 0, R, = |VO(z,)].
Be, (z,)nH

If R,Imz, — oo we may assume without loss of generality that ¢, < Imz,
and argue as in the proof of Lemma 5.6. Otherwise we may assume that the
sequence R,Im z, converges (to t* for some T* > 0) and consider the sequence
0,(z) =0(Rez, +2/R,) — 0(Rez,). It satisfies

|[VO,(iR,Imz,)| =1, sup Vo, | <2,

B.,r, (iR,Im z,)nH

and
0,(iR,Imz,) =0, es(0,) = e%(RezV)(O).

Hence there exists a subsequence (still denoted by 6,) which converges, uni-
formly with all derivatives on compact sets, to a harmonic function 6 : H — R
such that 9,6(s,0) = 0 and

‘Vé(it*) <2, eq(8) < o0.

=1, su ‘Vé z
ZGE[ ( )

By the first part of the proof the function 6 must be constant in contradiction
to [VO(it*)| = 1. This proves the lemma. O

Lemma 5.12 Let (u,0) : H — M xR be a solution of (7) such that u(s,0) € L
and

SUEE¢C (u,0) < oo, Eo(u) =0

ce

for some nonconstant function ¢ € F. Then u is constant.

Proof: Firstly, since Fy(u) = 0, the argument in the proof of Lemma 5.7 shows
that 6 : H — R is harmonic. Secondly, since u(s,0) € L and «a|rz, = 0 we have

00(s,0) = —a(0su(s,0)) = 0.
Thirdly, by Remark 5.2,

sup ey, (0) = suﬁE% (u,0) < oco.

ce ce

Hence it follows from Lemma 5.11 that 6 is constant. Since Eg(u) = 0 this
implies that u is constant. O
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Lemma 5.13 Let (u,0) : R+4[0,T] — M x R be a solution of (7) such that
u(R+4{0,T})C L

and
iZEE“"C (u,0) < o0

for some nonconstant function ¢ € F. Then

sup  |du(z)| < .
zeRi[0,7)

Proof: If the conclusion does not hold choose a sequence z, = s, + it, such
that R, = |du,(sy,t,)| — oo and distinguish the cases (i) R,¢, bounded, (ii)
R,(T —t,) bounded, (iii) both sequences converge to infinity. In the latter
case argue as in the proof of Lemma 5.8. In the first two cases use a similar
argument and obtain a contradiction from Lemma 5.12 (Compare the proof of
Lemma 5.11). The details are left to the reader. O

Proof of Theorem 5.9: The proof is analogous to that of Theorem 5.3 and
we shall only explain the main points. To prove that (iii) implies (ii) choose a
regular value ¢ € R of 0 as before and consider the domain

O, ={2z€H|0(z) <c}.
Then the boundary of  has two parts
0. =ToUTy, Ty =Q.NR, F12{2689‘1m2>0},

and we have 96/0v =0 on I'g and § = ¢ on T';. As before we obtain

[ wordea) = [ o0
Iy

Qe
9
T 81/

= / uw*do
Q.
EO (u)

Since ¢ can be chosen arbitrarily large this implies (8) as before.
Now assume (i). Then as before it follows from Lemma 5.12 that T =
Eo(u) > 0. Define

ﬁ(S,t) _ u(eﬁ(erit)/T)’ é(S,t) _ e(eﬂ'(erit)/T)'

IN

forse¢ Rand 0 <t <T. Then

sup Ey_ (@, 0) = su Ey, (u,0) < oo
Sup 6. (1, 0) CER¢>( )
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and hence, by Lemma 5.13,

sup |du(z)| < oo.
zeR+i[0,T]

Now choose s, — oo such that r, = ¢2™/T and define
uy(s,t) = u(s + s,, 1), 0,(s,t) = 0(s + s,,t) — 0(s,,0).

Then sup, ||du,|/L~ < oo and it follows from the usual elliptic bootstrap-
ping arguments for J-holomorphic curves with Lagrangian boundary conditions
(cf. [8]) that there exists a subsequence (still denoted by u, and 6,) which con-
verges, uniformly with all derivatives on compact sets, to a J-holomorphic curve
(u*,0%) : R+1i[0,T] — M x R satisfying

Eo(u*) =0, uw"(R+1i{0,T}) C L, /OT a(Oyu*(0,t)) dt = Ep(u) > 0.

It follows that A@* = 0 and hence there exists a unique function 7 : R+i[0,T] —
R such that 6* + i7 is holomorphic and 7(0) = 0. As before it follows (7) and
Ep(u*) =0 that

U*(SJ t) = '7(7—(87 t))

where v : R — M is the unique solution of

Again as before, V#* is uniformly bounded and hence the holomorphic function
0* + i : R +4[0,T] — C satisfies a linear growth condition. Since 6* satisfies
Neumann boundary conditions at ¢ = 0 and ¢t = T and 6*(0) = 7(0) = 0 there
exists a real number a € R such that 6*(z) + i7(z) = az. Hence

0% (s,t) = as, u*(s,t) = vy(at)

and the formula

T T
T = Ey(u) = /0 a(Ou*(0,1)) dt = /0 a(aY (y(at))) dt = aT

shows that a = 1. Moreover, the boundary conditions for v imply that v(0) € L
and v(T) € L.

As before we obtain as a byproduct of this proof the formula of Remark 5.10
and hence lim|,|_ 6(z) = oo. This shows that (i) implies (iii) and completes
the proof of Theorem 5.9. O

25



J-holomorphic discs

In this section we shall prove a removable singularity theorem for J-holomorphic
discs in M x R with boundary on a L where L C M is a compact Lagrangeable
submanifold. Here we assume as before that f : L. — R is a positive smooth
function such that f~1a|y is closed. We also fix an almost complex structure .J
on M which is compatible with «.

Theorem 5.14 Let (u,0) : H— M x R be a smooth solution of (7) such that

0(s,0) _ #
usn0) €L, 0= s

for s #£0 and
E(u, ) < cc.

Then (u, ) extends to a smooth J-holomorphic disc HU {oo} — M x R. (This
means that the map z — (u(—1/2),0(—1/2)) extends to a J-holomorphic half-
plane at z=10.)

Lemma 5.15 Let 6 : H— R be a harmonic function such that
sup |0(s,0)| < oo, 69:/69V6‘2<oo.
sup0(s.0) (6) = | <“1v0

Then 0 is bounded and, in fact,

i?{H <0(z) < Sl%%)@

for all z € H.

Proof: The function 6 : R x [0,1] — R defined by

O(s,t) = B(e™C+)

is harmonic, bounded on R x {0, 1}, and satisfies

o0 1 - - 2
/ / e? ‘V@‘ dsdt < oo.
—o0 J0

Hence there exists a sequence s, — oo such that

1
/ e@(s,,,t)
0

Since 81569/2 = %69/28,5& this implies

- 2
O0(sy, t)’ =e,250.

_ _ 2 1 _ 2
‘ee(su,t)/z_ee(su,mm‘ < /‘&ee(su,t)/z‘ ds
0

1
_ 0(sv,t)
= i/e("
0

1
i€v

. 2
3t9(sl,,t)’ ds

IN
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and hence

hmsupsup6‘ (su,t) < 8111%)9 11m1nf1nf6‘ (sy,t) > 11&?6‘

V—00 v—00

A similar estimate holds for a suitable sequence s}, — —oo. By the maximum
principle for harmonic functions € is bounded. a

Lemma 5.16 Let (u,0) : H— M x R be a J-holomorphic half plane such that
u(R) C L, 0 =1/ f(u(s,0)) and

E(u,8) < oo, Eop(u) =0.
Then u is constant.

Proof: By Lemma 5.15 € is bounded. Hence it follows from the usual remov-
able singularity theorem for J-holomorphic discs in compact symplectic mani-
folds that (u,#) extends to a J-holomorphic disc HU {o0} — M x R (see for
example [8]). Hence

sin 27t
)=v(t+1) = ——F— ) €L
V) =alt+1) u(1+c0527rt>

defines a loop in L such that

¥ =a(y)Y (7).

Here we have used the fact that Ey(u) = 0 and hence each partial derivative of
u is parallel to Y (u). The identity

/0 a(3()) dt = Bo(u) = 0

shows that ~ is contractible in L via

m(t) = o 2By p<a<

Here ¢' : M — M denotes the flow of the contact vector field Y and v, ([0, 1]) C
~([0,1]) € L. Now the symplectic energy of (u,8) is given by

"a(i(1)
F()

Since v is contractible in L and f~ta/|, is closed it follows that E(u, ) = 0 and
hence u is constant. O
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Lemma 5.17 If u and 0 satisfy the assumptions of Theorem 5.14 then

E¢(u30) < eCIE(uae)a C1 = —IOg (Supf> ’
L

for every ¢ € F.

Proof: By assumption 0(s,0) > —c; for every s € R. Now choose € > 0 such
that —c; — € is a regular value of 8 and denote

Q. ={2z€eH|0(z) < —c1 —¢}.

An argument as in the proof of Lemma 5.15 shows that Q. consistes of (possibly
infinitely many) bounded components and, moreover, Q. N R = . By Stokes’

theorem
: 2
A}mmdw@ Am¢wwy

ecl +e / 69 %
0. 81/

= ecl+€/ (u, 0)*d(e’a)

€

IN

and
(wordoa) < [ (20+[V6P)
/C\QE C\a.
< éﬁi/ (A0 4 |VO?)
C\ €
= ecl"’a/ (u,0)*d(e’a)
Cia.
Since € > 0 can be chosen arbitrarily small the statement follows. ]

Proof of Theorem 5.14: Consider the J-holomorphic strip (ﬂ,é) : R x
[0,1] = M x R defined by

a(s,t) = u(e™H) g =gt

We must prove that du is bounded. Then 6 is bounded as well and hence the
result follows from the usual removable singularity theorem for J-holomorphic
discs in compact symplectic manifolds (cf. [8]). Assume, by contradiction, that
there exists a sequence z, = s,, + it, with s, — oo such that

R, =|du(z,)| — oc.
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By Lemma 5.5 we may assume without loss of generality that

su |da| < 2R, esR, — oo.
B., (z,)NRx[0,1]

Ift,R, — oo and (1—t,)R, — oo we may assume that £, < min{t,,1—1¢,} and
argue as in the proof of Theorem 5.3 to obtain a nonconstant J-holomorphic
plane (u*,0*): C — M x R such that

sup Eg(u*,0%) < oo, Ep(u”) = 0.
pEF

By Lemma 5.7 such planes do not exist. This contradiction shows that either of
the sequences t, R, or (1—1t,)R, is bounded. In the former case we may assume
without loss of generality that ¢, R, converges to t* > 0. Consider the sequence

uy(s,t) = (s, + s/Ru,t/R,),  0,(s,t) =0(s, + /Ry, t/R,).
This sequence satisfies

|du, (0,t,R,)| = 1,

sup |[du,| < 2,
BEVRV (O,t,,R,/)

E(u,,0,;Be g, (0,t,R,)) < E(u,6).

Hence a subsequence (still denoted by (u,,6,)) converges, uniformly with all
derivatives on compact sets, to a J-holomorphic half plane (v*,6*) : H — M xR
such that u*(R) C L, ¢ (9 = 1/f(u*(s,0)) for s € R and

ldu*(0,t9) =1,  E(u*,0") <oo,  Eo(u*)=0.

By Lemma 5.16 such a half plane does not exist. A similar argument leads to
a contradiction when the sequence (1 — ¢, )R, is bounded and this proves the
theorem. O

Proof of Theorem 2.4

We shall now return to the gradient flow of the symplectic action a : P — R
discussed in section 2. For every function ¢ € F and every solution (u,6) of (1)
and (2) define the ¢-energy of (u,6) by

Eys(u,0) = A(0)cvs (B, Jo(u)yut) + ¢/ (6) (|o¢s(8tu)|2 + |at9|2) dsdt

(u,0)"d (dpos + ¢H.ds) .

é\g é\g
o o _

The next lemma is the analogue of Lemma 5.17.
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Lemma 5.18 If (u,0) is a solution of (1) and (2) with finite energy then

E¢(u=9) < eCIE(uae)a c1 = —log (Sup fO) )
Lo

for every ¢ € F.

Proof: The proof is similar to that of Lemma 5.17. By (2) we have 6(0,t) > —c;
for every t € R. As before, denote

Q. ={(s,t) €[0,1] x R|0(s,t) < —¢1 — &}

where € > 0 and —cy — ¢ is a regular value of 6. Since E(u,0) < oo it follows
from an argument as in the proof of Lemma 5.15 that €. consistes of (possibly
infinitely many) bounded components. Moreover, 9Q. N0 x R = ) and hence
09 consists of two parts 9. = I'g UT'; where

Do={(s,t) € : 0<s<1}, T1={(s,t)€0Q:s=1}.
Now on T'; we have as(dyu) = 0 and hence
[ w0y, + o) = 0
Iy

This continues to hold with ¢(6) replaced by e’. Hence

MW&)ZAWWW%W%M

_ / (1, 0)" (dvs + HHds)
0.

:AWWWﬁwm)

d(—c1 — E)/F u* (s + Hsds)
= ¢(—1 —g)eclJrs/F (u,0)
d(—c1 —s)ecl+€/ (u,0)

€

*(Pay + e H,ds)

*d(e’as + € Hods)

~

€

< e E(u,0;9.).
Moreover, as in the proof of Lemma 5.17
Ey(u,0;C\ Q) < ecl+8E(u, 0;C\ Q).

Since € > 0 can be chosen arbitrarily small this proves the lemma. o
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Proof of Theorem 2.4: We shall prove that

sup dul o < 00 0
(u,0)eMe

Here the norm of the linear map du(s,t) : RZ — u(s,t)M is to be understood
with respect to the metric on M induces by as and Js. (Of course all these
norms are equivalent.) It then follows that

sup ||V o < 00
(u,0)eMe

and hence the gradient flow lines (u,8) € M° of a with E(u,0) < c all stay
in a compact subset of M x R and have uniformly bounded derivatives. Thus
Theorem 2.4 follows from the usual elliptic bootstrapping arguments (see for
example [8]).

The proof of the L>®-estimate (9) relies on a standard bubbling argument
already employed in the proof of Lemma 5.8, Lemma 5.13, and Theorem 5.14.
Assume by contradiction that (9) fails. Then there exists a sequence (u,,0,) €
M€ and a sequence s, € [0, 1] such that

R, = |duy(s,,0)] — co.

By Lemma 5.5 we may assume without loss of generality that there exists a
sequence €, — 0 such that

sup |du,| < 2R, e, R, — oo.
Be, (s,,0)n[0,1]xR

We may also assume without loss of generality that
s, — s,

Denote a = g+, Y = Y and J = Jg.
There are three cases. First assume that s, R, — oo and (1 — s,)R, — oo.
Then we may assume ¢, < min{s,,1 — s, } and a rescaling argument as in the

proof of Lemma 5.8 shows that there exists a nonconstant J-holomorphic plane
(u*,0*) : C — M x R such that

sup Eg(u™, %) < oo.
pEF

This last inequality follows from Lemma 5.18. Hence it follows from Theorem 5.3
that there exists a periodic solution v(t) = y(t+7') of ¥ = Y () which represents
a contractible loop in M. By hypothesis (H2) such a solution does not exist.
This contradiction shows that either s, R, or (1 — s, )R, is bounded.
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If (1 — s,)R, is bounded then a rescaling argument as in the proof of
Lemma 5.13 shows that there exists a nonconstant J-holomorphic half plane
(u*,0*) : H— M x R such that v*(R) C L; and

sup Eg(u*, %) < oco.
PEF

Hence it follows from Theorem 5.9 that there exists a solution v : [0,T7] — M
of the boundary value problem

¥=Y(), 0 el A)eL,

which is contractible in the space of paths in M with endpoints in L;. By
hypothesis (H3) such a solution does not exist. This contradiction shows that
s, R, — 0 is bounded.

If the sequence s, R, is bounded a rescaling argument as in the proof of
Theorem 5.14 shows that there exists a nonconstant J-holomorphic half plane
(u*,0*) : H— M x R such that

v
fo(ur(s,0))’

By Theorem 5.14 this map extends to a J-holomorphic disc (u*,6*) : HU{o0} —
M x R. The energy of this disc is given by

u*(R) C Ly, e (=0 = E(u*,0") < cc.

* 0*F) — 1 M
B0 = | wom @
where * sin 2t
Ft)=~(t+1)=u <m> .

(Compare the proof of Lemma 5.16.) By hypothesis (H1) we have w2 (M, Lg) = 0
and hence the loop v is contractible in Lg. Since the form ]‘071040|L0 is closed
it follows that F(u*,6*) = 0 in contradiction to the fact that u* is nonconstant.
This final contradiction proves the L>-estimate (9) and this completes the proof
of Theorem 2.4. O
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