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ETH–Zürich

7 September 2006

Abstract

We correct two mistakes in [1]. The first concerns the exponential
decay in the proof of Theorem 7.4 and the second concerns the bubbling
argument in the proof of Theorem 9.1.

1 Exponential decay

For Theorem 7.1: Replace the hypothesis ‖Bt‖L∞(Ω×Σ) + ε ‖C‖L∞(Ω×Σ) on
page 615 by the weaker assumption

sup
(s,t)∈Ω

‖Bt(s, t)‖L2(Σ) + ε sup
(s,t)∈Ω

‖C(s, t)‖L2(Σ) ≤ c0. (1)

All the estimates in the proof of Theorem 7.1 continue to hold under this as-
sumption. To see this, use the inclusionW 1,2(Σ) ↪→ L4(Σ) to obtain inequalities
of the form

‖Bt‖L4(Σ) ‖C‖L4(Σ) ≤ c
√
u0v0, ‖Bt‖2

L4(Σ) ≤ v0 + cu0,

where u0, v0 are as in the proof of Theorem 7.1.

Corollary 1.1. Let Ω ⊂ C be an open set and K ⊂ Ω be a compact subset.
Then for every constant c0 > 0, there exist constants ε0 > 0 and c > 0 such
that the following holds. If 0 < ε ≤ ε0 and Ξ = A+ Φ ds+ Ψ dt is a connection
on Ω × Σ that satisfies

∂tA− dAΨ + ∗s(∂sA− dAΦ −Xs(A)) = 0,
∂tΦ − ∂sΨ − [Φ,Ψ] + ε−2 ∗ FA = 0,

(2)

and (1) then

‖Bt‖L∞(K×Σ) + ε ‖C‖L∞(K×Σ) ≤ c
(
‖Bt‖L2(Ω×Σ) + ε ‖C‖L2(Ω×Σ)

)
.
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Proof. By Theorem 7.1 (in the above strengthened form), the connection Ξ
satisfies (7.4) in [1, page 615]. The assertion follows by taking p = ∞ and
using [1, Lemma 7.6] with p = 4.

For Lemma 7.5: On page 620 replace the inequality (7.7) by

‖α‖2
+ ‖φ‖2

+ ‖ψ‖2

≤ c
(
‖∗s∇sα− ∗sdXs(A)α − ∗sdAφ− dAψ‖2

+ ε2
∥∥∇sψ − ε−2dAα

∥∥2
+ ε2

∥∥∇s ∗s φ+ ε−2dA ∗s α
∥∥2
)
.

On page 621 replace the last two sentences in the proof of Lemma 7.5 by the
following text.

Hence it follows from Lemma 7.3 and Lemma 7.4 in [10] that there exist con-
stants ε0 > 0, ν0 ∈ N, and c > 0 such that the estimate (7.7) holds with
0 < ε ≤ ε0 and A + Φ ds replaced by Aν + Φν ds where ν ≥ ν0 (here the
estimate for α follows from Lemma 7.4 and the estimate for φ and ψ from
Lemma 7.3). With ε = εν and ν > c this contradicts our assumption. 2

Proof of Theorem 7.4: The last displayed inequality on page 622 is correct
as it stands, however its proof uses Corollary 1.1 above.

Replace the first displayed inequality on page 623 by

‖Bt‖2 + ‖C‖2 ≤ c3

(
‖∇sBt − dXs(A)Bt − dAC‖2 + ε−2 ‖dABt‖

)
.

(The mistake in [1] is the factor ε2 in front of ‖C‖2 in this inequality; it can
be removed because of the improved inequality in Lemma 7.5.) Inspection of
the formula for f ′′(t) shows that this stronger estimate is needed to prove the
inequality f ′′(t) ≥ ρ2f(t) for t ≥ 1 (use the expression after the fourth equal
sign in the formula for f ′′(t) on page 622). 2

2 An a priori estimate

The following a priori estimate is an adaptation of [2, Lemma 9.1] to the present
context. It is needed in the proof of Theorem 9.1.

Lemma 2.1. There is a constant δ0 > 0 with the following significance. Let
Ω ⊂ R2 be an open set and K ⊂ Ω be a compact subset. Then, for every c0 > 0
and every p ≥ 2, there are positive constants ε0 and c such that the following
holds. If 0 < ε ≤ ε0 and the maps A : Ω → A(P ) and Φ,Ψ : Ω → Ω0(Σ, gP )
satisfy (2) and

‖∂tA− dAΨ‖L∞(Ω×Σ) ≤ c0, ‖FA‖L∞(Ω×Σ) ≤ δ0, (3)

then ∫

K

(
‖FA‖p

L2(Σ) + εp ‖∇sFA‖p
L2(Σ) + εp ‖∇tFA‖p

L2(Σ)

)
≤ cε2p, (4)

sup
K

(
‖FA‖L2(Σ) + ε ‖∇sFA‖L2(Σ) + ε ‖∇tFA‖L2(Σ)

)
≤ cε2−2/p. (5)
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Proof. As in [1, Lemma 7.6] one can show that there exist constants δ0 > 0 and
c1 > 0 such that every A ∈ A(P ) with ‖FA‖L∞(Σ) ≤ δ0 satisfies the inequalities

‖φ‖ ≤ c1 ‖dAφ‖ ,

‖dA (∗sdXs(A)α + ∗̇sα)‖ ≤ c1 (‖α‖ + ‖dAα‖ + ‖dA ∗s α‖)
for s ∈ R, φ ∈ Ω0(Σ; gP ), and α ∈ Ω1(Σ; gP ). Here and in the following all
norms are L2-norms on Σ.

Now let A, Φ, Ψ satisy the hypotheses of the lemma and define

Bs := ∂sA− dAΦ, Bt := ∂tA− dAΨ, C := ∂tΦ − ∂sΨ − [Φ,Ψ]. (6)

Then the proof of [1, Theorem 7.1] shows that

ε2 (∇s∇sC + ∇t∇tC) = d∗s

A dAC − 2 ∗ [Bt ∧ Bt] + ∗[∗sXs(A) ∧ Bt]

− ∗ dA (∗sdXs(A)Bt + ∗̇sBt) .

Hence, with ∆ := ∂2/∂s2 + ∂2/∂t2 the standard Laplacian, we have

∆ ‖C‖2
= 2 ‖∇sC‖2

+ 2 ‖∇tC‖2
+ 2〈∇s∇sC + ∇t∇tC,C〉

= 2ε−4 ‖dA ∗s Bt‖2
+ 2ε−4 ‖dABt‖2

+ 2ε−2 ‖dAC‖2

− 4ε−2〈C, ∗[Bt ∧Bt]〉 + 2ε−2〈C, ∗[∗sXs(A) ∧ Bt]〉
− 2ε−2〈C, ∗dA (∗sdXs(A)Bt + ∗̇sBt)〉

≥ δ

ε2
‖C‖2 − c

ε2
‖C‖ .

The last inequality holds for ε ≤ ε0, with ε0 sufficiently small, and suitable
positive constants δ and c, depending only on δ0, c0, and c1 (as well as the

metrics on Σ and the vector fields Xs). Since 2∆ ‖C‖p ≥ p ‖C‖p−2
∆ ‖C‖2

for
p ≥ 2, this implies

‖C‖p ≤ c

δ
‖C‖p−1

+
2ε2

pδ
∆ ‖C‖p

.

Using the inequality ab ≤ ap/p + bq/q with 1/p + 1/q = 1, a := c/δ and

b := ‖C‖p−1
we obtain bq = ‖C‖p

, and hence

‖C‖p ≤ cp

δp
+

2ε2

δ
∆ ‖C‖p

. (7)

By [2, Lemma 9.2], this implies that

∫

BR(z)

‖C‖p ≤ π(R+ r)2cp

δp
+

8ε2

r2δ

∫

BR+r(z)

‖C‖p
.

for every z ∈ C and every pair of positive real numbers R and r such that
BR+r(z) ⊂ Ω. Now observe that ε2 ‖C‖ = ‖FA‖ ≤ δ0Vol(Σ) and use the last
inequality repeatedly, with R replaced by R + r, R + 2r, . . . , R + (p − 1)r, to
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obtain the estimate
∫

BR(z)
‖C‖p ≤ cp for every z ∈ C such that BR+pr(z) ⊂ Ω.

Now choose R and r such that BR+pr(z) ⊂ Ω for every z ∈ K. Cover K by
finitely many balls of radius R to obtain

∫

K

‖FA‖p
= ε2p

∫

K

‖C‖p ≤ cK,pε
2p. (8)

It follows from (7) that the function z 7→ ‖C(z)‖p
+ cp |z − z0|2 /8δp−1ε2 is

subharmonic in Ω for every z0 ∈ C. Hence, by the mean value inequality
and (8), we have

sup
K

‖FA‖ = ε2 sup
K

‖C‖ ≤ cK,pε
2−2/p (9)

for a suitable constant cK,p. It follows from (8) and (9) that every connection
Ξ = A + Φ ds + Ψ dt on Ω × P that satisfies (2) and (3) also satisfies (1) in
every compact subset of Ω and hence, by Corollary 1.1, satisfies the hypotheses
of [1, Theorem 7.1]. Hence it follows from [1, Theorem 7.1] with p = ∞ that,
for every open set U with cl(U) ⊂ Ω, there is a constant cU such that every
conection Ξ on Ω × P that satisfies (2) and (3) also satisfies the estimates

ε ‖∇sBt‖L∞(U×Σ) + ε ‖∇tBt‖L∞(U×Σ) ≤ cU ,

ε ‖C‖L∞(U×Σ) + ε2 ‖∇sC‖L∞(U×Σ) + ε2 ‖∇tC‖L∞(U×Σ) ≤ cU , (10)

‖C‖L2(U×Σ) + ε ‖∇sC‖L2(U×Σ) + ε ‖∇tC‖L2(U×Σ) ≤ cU .

Note that the last inequality is equivalent to (4) for p = 2.
Now consider the function u : U → R defined by

u(s, t)2 :=
1

2

(
‖C(s, t)‖2

+ ε2 ‖∇sC(s, t)‖2
+ ε2 ‖∇tC(s, t)‖2

)

Again all norms are L2-norms on Σ. In the following we shall assume, for
simplicity, that the Hodge ∗-operator ∗s = ∗ is independent of s and that
Xs = 0 for all s. Then, as in the proof of [1, Theorem 7.1], we have

∆u2 = ε−2 ‖dAC‖2
+ ‖∇sC‖2

+ ‖∇tC‖2
+ ‖dA∇sC‖2

+ ‖dA∇tC‖2

+ ε2 ‖∇s∇sC‖2
+ ε2 ‖∇t∇tC‖2

+ 2ε2 ‖∇s∇tC‖2

− 2ε2〈C, [∇sC,∇tC]〉 − 2ε−2〈C, ∗[Bt ∧ Bt]〉
− 4〈∇sC, ∗[Bt ∧ ∇sBt]〉 − 4〈∇tC, ∗[Bt ∧ ∇tBt]〉
+ 〈dA∇sC, [Bs, C]〉 + 〈dA∇tC, [Bt, C]〉
− 〈∇sC, ∗[Bs ∧ ∗dAC]〉 − 〈∇tC, ∗[Bt ∧ ∗dAC]〉.

For ε sufficiently small it follows that

∆u2 ≥ δ

ε2
u2 − c

ε2
u

with suitable positive constants δ and c. To see this examine the last eight
terms in the formula for ∆u2 and use (10). Now it follows as in (7) that

up ≤ c

δ
up−1 +

2ε2

pδ
∆up
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for p ≥ 2. By (9) and (10), we have u ≤ c′/ε for some constant c′. Hence we
can argue as above to show that, for every compact subset K ⊂ U , there is a
constant cK,p > 0 such that

∫
K
up ≤ cK,p and supK up ≤ cK,pε

−2. This proves
the lemma.

3 Bubbling analysis

The assertion on page 634 that the limit connection Ξ0 represents a noncon-

stant holomorphic sphere S2 → M(P ) does not seem to follow from the ar-
gument in [1]. A modified bubbling argument does result in a nonconstant
holomorphic sphere but only proves a weaker estimate, i.e. we must weaken the
assertion of Theorem 9.1 and the assumption of Theorem 8.1. Then Theorem 9.2
remains valid.

For Theorem 8.1: The assertion of Theorem 8.1 in [1, page 623] continues to
hold if the hypothesis (8.1) is replaced by the weaker inequality

ε−1 ‖FA‖L∞ + ‖∂tA− dAΨ‖L∞ ≤ c0 (11)

To see this, replace the last inequality on page 625 by ‖Cν‖Lp ≤ cε
2/p−1
ν or,

equivalently,
‖FAν

‖Lp ≤ cε1+2/p
ν .

For p = 2 this follows from the first inequality in Step 2 on page 625, for p = ∞
it holds by assumption, and for 2 ≤ p ≤ ∞ it follows by interpolation. Now

replace the constant ε2ν by ε
1+2/p
ν in the following places.

• In the inequality (8.4) on page 626.

• Replace the inequality ‖A′ −A‖Lp ≤ c2ε
2 by ‖A′ −A‖Lp ≤ c2ε

1+2/p in
the middle of page 626.

• In the first two inequalities after (8.9), in the first inequality after (8.10),
and in the first inequality in the proof of Step 5 (page 628).

• In the first inequality on page 629 and in the last inequality before (8.11).

The next lemma is a local version of Theorem 8.1; it is needed in the proof
of Theorem 9.1. Let Ων ⊂ C be an exhausting sequence of open sets and sν ,
εν > 0, δν > 0 be seqences of real numbers such that sν → s0, εν → 0, δν → 0.
Abbreviate ∗νs := ∗sν+δνs and Xνs := δνXsν+δνs.

Lemma 3.1. Let Ξν = Aν + Φν ds + Ψν dt be a sequence of solutions of the
equation (2), with (∗s, Xs) replaced by (∗νs, Xνs), on Ων × P such that

sup
ν

(
ε−1

ν ‖FAν
‖L2(Ων×Σ) + ‖∂tAν − dAν

Ψν‖L2(Ων×Σ)

)
<∞, (12)

sup
ν

(
ε−1

ν ‖FAν
‖L∞(Ων×Σ) + ‖∂tAν − dAν

Ψν‖L∞(Ων×Σ)

)
<∞.

5



Then there is a subsequence, still denoted by Ξν , a sequence of gauge transfor-
mations gν : Ων → G(P ), and a connection Ξ0 = A0 + Φ0 ds+ Ψ0 dt on C × P
such that

∂tA0 − dA0
Ψ0 + ∗s0

(∂sA0 − dA0
Φ0) = 0, FA0

= 0,

lim
ν→∞

(
‖g∗νAν −A0‖L∞(K×Σ) + sup

(s,t)∈K

∥∥g−1
ν Bνtgν −B0t

∥∥
L2(Σ)

)
= 0

for every compact set K ⊂ C; here Bνt := ∂tAν −dAν
Ψν , B0t := ∂tA0 −dA0

Ψ0.

Proof. For every compact set K ⊂ C there is a constant νK > 0 such that, for
every (s, t) ∈ K and every ν ≥ νK , there is a unique section ην(s, t) ∈ Ω0(Σ, gP )
such that

FA′

ν
= 0, A′

ν := Aν + ∗νsdAν
ην ,

and
‖dAν

ην‖L∞(Σ) ≤ c1 ‖FAν
‖L∞(Σ) ≤ c2εν (13)

(see Lemma 8.2 in [1]). Choose Φ′
ν(s, t),Ψ′

ν(s, t) ∈ Ω0(Σ, gP ) such that

dA′

ν
∗νs

(
∂sA

′
ν − dA′

ν
Φ′

ν −Xνs(A
′
ν)
)

= dA′

ν
∗νs

(
∂tA

′
ν − dA′

ν
Ψ′

ν

)
= 0.

Note that the sequence Ξ′
ν = A′

ν + Φ′
ν ds + Ψ′

ν dt depends only on ν and not
on the compact set K in question. One proves exactly as in [1, pages 626–627]
that the sequence Ξ′

ν satisfies the estimates

‖Ξ′
ν − Ξν‖1,p,ε;K ≤ cK,pε

1+2/p
ν , (14)

‖B′
νt‖L∞(K×Σ) ≤ cK , (15)

‖B′
νt + ∗νs (B′

νs −Xνs(A
′
ν))‖Lp(K×Σ) ≤ cK,pε

1+2/p
ν , (16)

for every compact set K ⊂ C and every p ≥ 2, with suitable positive constants
cK and cK,p. In addition we wish to prove the estimate

sup
K

‖B′
νt −Bνt‖L2(Σ) ≤ cK

√
εν . (17)

To see this we use the identities

B′
t −Bt = dA′(Ψ′ − Ψ) + ∗sdA∇tη + ∗s[Bt, η],

dA ∗s dA(Ψ′ − Ψ) = dA ∗s Bt − [dABt, η] − [FA,∇tη]

−[(A′ −A) ∧ ([dA∇tη + [Bt, η])] (18)

dA ∗s dA∇tη = −dABt − [dA∇tη ∧ dAη] − [[Bt, η] ∧ dAη]

−2[Bt ∧ ∗sdAη] − [dA ∗s Bt, η]

(see (8.5), (8.7), and (8.8) in [1]). Here we have dropped the subscript ν. Since

dABt = ∇tFA, dA ∗s Bt = dABs = ∇sFA
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we obtain from Lemma 2.1 with p = 2 that, for every compact set K ⊂ C, there
is a constant c′K > 0 such that

sup
K

(
‖dABt‖L2(Σ) + ‖dA ∗s Bt‖L2(Σ)

)
≤ c′K

√
ε.

Hence it follows from (13) and the last equation in (18) that

sup
K

‖dA∇tη‖L2(Σ) ≤ c′′K
√
ε.

Using this estimate and the second equation in (18) we obtain

sup
K

‖dA(Ψ′ − Ψ)‖L2(Σ) ≤ c′′′K

√
ε.

Combining the last two estimates with the first equation in (18) we obtain (17).
Now Ξ′

ν descends to a sequence

ū′ν : K → M(P )

of approximate holomorphic curves (see (16)) with uniformly bounded deriva-
tives (see (15)). We must prove that the sequence ū′

ν is bounded in W 2,p for
some p > 2. By the elliptic bootstrapping analysis for holomorphic curves
(see [3, Appendix B]), this is equivalent to a W 1,p-bound on ∂̄J (ū′ν). To obtain
such a bound we examine the following formula from [1, page 627]:

B′
t + ∗s(B

′
s −Xs(A

′)) = ∗s∗̇sdAη − [Xs(A), η] − ∗s(Xs(A
′) −Xs(A))

+ [(A′ −A),∇sη] − ∗s[(A
′ −A),∇tη] (19)

−dA′(Ψ′ − Ψ + ∇sη) − ∗sdA′(Φ′ − Φ −∇tη).

To begin with observe that, by Lemma 2.1, we have estimates of the form
∫

K

(
‖dABt‖p

L2(Σ) + ‖dA ∗s Bt‖p
L2(Σ)

)
≤ cK,pε

p.

Carrying the argument in the proof of Lemma 2.1 one step further we obtain
estimates for the second derivatives of the curvature and hence

∫

K

(
‖dA∇sBt‖p

L2(Σ) + ‖dA ∗s ∇sBt‖p
L2(Σ)

)
≤ cK,p;

similarly for ∇t. Differentiate the identities in (18) to obtain
∫

K

(
‖dA∇s∇sη‖p

L2(Σ) + ‖dA∇t∇tη‖p
L2(Σ) + ‖dA∇s∇tη‖p

L2(Σ)

)
≤ cK,p,

∫

K

(
‖dA∇s(Ψ

′ − Ψ)‖p
L2(Σ) + ‖dA∇t(Ψ

′ − Ψ)‖p
L2(Σ)

)
≤ cK,p.

Combining these estimates with (19) we obtain
∫

K

‖∇s(B
′
t + ∗s(B

′
s −Xs(A

′)))‖p
L2(Σ) ≤ cK,p,
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and similarly for ∇t. This is the required W 1,p-estimate for ∂̄J(ū′ν). It follows
that ū′ν is bounded in W 2,p and hence has a C1-convergent subsequence. The
limit of this subsequence is the required holomorphic curve in M(P ). The
assertion of the lemma now follows from (17) and the C1-convergence of ū′ν .

For Theorem 9.1: On Page 630 replace the estimate in the assertion of The-
orem 9.1 by (11) above. In the proof on page 631 replace the factor ε−2

ν in (9.1)
and (9.2) by ε−1

ν . Replace the next displayed formula by

cν = cν(wν) = ε−1
ν

∥∥FAν(wν)

∥∥
L2(Σ)

+
∥∥∂tAν(wν) − dAν(wν)Ψν(wν)

∥∥
L2(Σ)

.

On page 633 the assertion that the limits A∞(θ) and Φ∞(θ) exist can be
proved by a similar argument as in [2, Proposition 11.1]. Alternatively, one can
use the beautiful and elegant argument in [4] for a direct proof of the energy
identity.

On page 634 replace the second displayed inequality by

sup
|w|≤ρνcν

(
1

ενcν

∥∥∥F eAν(w)

∥∥∥
L2(Σ)

+
∥∥∥∂tÃν(w) − d eAν(w)Ψ̃ν(w)

∥∥∥
L2(Σ)

)
≤ 2.

We prove that the limit connection Ξ0 represents a nonconstant holomorphic
sphere. First, note that

1

ενcν

∥∥∥F eAν(0)

∥∥∥
L2(Σ)

+
∥∥∥∂tÃν(0) − d eAν(0)Ψ̃ν(0)

∥∥∥
L2(Σ)

= 1

and use Corollary 1.1 with ε replaced by ε̃ν := ενcν → 0 to deduce that the
functions ∂tÃν −d eAν

Ψ̃ν and (ενcν)−1F eAν
are uniformly bounded on every com-

pact subset of C × Σ. Second, use Lemma 3.1 to deduce that the sequence
Ξ̃ν = Ãν + Φ̃νds + Ψ̃ν dt has a C1 convergent subsequence (after gauge trans-
formation). Third, use Lemma 2.1 to deduce that (ενcν)−1‖F eAν(0)‖L2(Σ) → 0

and hence
∥∥∂tA0(0) − dA0(0)Ψ0(0)

∥∥
L2(Σ)

= lim
ν→∞

∥∥∥∂tÃν(0) − d eAν(0)Ψ̃ν(0)
∥∥∥

L2(Σ)
= 1.
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