Corrigendum:
 Self-dual instantons and holomorphic curves

Stamatis Dostoglou
University of Missouri-Columbia

Dietmar A. Salamon
ETH-Zürich

7 September 2006

Abstract

We correct two mistakes in [1]. The first concerns the exponential decay in the proof of Theorem 7.4 and the second concerns the bubbling argument in the proof of Theorem 9.1.

1 Exponential decay

For Theorem 7.1: Replace the hypothesis $\left\|B_{t}\right\|_{L^{\infty}(\Omega \times \Sigma)}+\varepsilon\|C\|_{L^{\infty}(\Omega \times \Sigma)}$ on page 615 by the weaker assumption

$$
\begin{equation*}
\sup _{(s, t) \in \Omega}\left\|B_{t}(s, t)\right\|_{L^{2}(\Sigma)}+\varepsilon \sup _{(s, t) \in \Omega}\|C(s, t)\|_{L^{2}(\Sigma)} \leq c_{0} . \tag{1}
\end{equation*}
$$

All the estimates in the proof of Theorem 7.1 continue to hold under this assumption. To see this, use the inclusion $W^{1,2}(\Sigma) \hookrightarrow L^{4}(\Sigma)$ to obtain inequalities of the form

$$
\left\|B_{t}\right\|_{L^{4}(\Sigma)}\|C\|_{L^{4}(\Sigma)} \leq c \sqrt{u_{0} v_{0}}, \quad\left\|B_{t}\right\|_{L^{4}(\Sigma)}^{2} \leq v_{0}+c u_{0}
$$

where u_{0}, v_{0} are as in the proof of Theorem 7.1.
Corollary 1.1. Let $\Omega \subset \mathbb{C}$ be an open set and $K \subset \Omega$ be a compact subset. Then for every constant $c_{0}>0$, there exist constants $\varepsilon_{0}>0$ and $c>0$ such that the following holds. If $0<\varepsilon \leq \varepsilon_{0}$ and $\Xi=A+\Phi d s+\Psi d t$ is a connection on $\Omega \times \Sigma$ that satisfies

$$
\begin{align*}
\partial_{t} A-\mathrm{d}_{A} \Psi+*_{s}\left(\partial_{s} A-\mathrm{d}_{A} \Phi-X_{s}(A)\right) & =0, \tag{2}\\
\partial_{t} \Phi-\partial_{s} \Psi-[\Phi, \Psi]+\varepsilon^{-2} * F_{A} & =0,
\end{align*}
$$

and (1) then

$$
\left\|B_{t}\right\|_{L^{\infty}(K \times \Sigma)}+\varepsilon\|C\|_{L^{\infty}(K \times \Sigma)} \leq c\left(\left\|B_{t}\right\|_{L^{2}(\Omega \times \Sigma)}+\varepsilon\|C\|_{L^{2}(\Omega \times \Sigma)}\right) .
$$

Proof. By Theorem 7.1 (in the above strengthened form), the connection Ξ satisfies (7.4) in [1, page 615]. The assertion follows by taking $p=\infty$ and using [1, Lemma 7.6] with $p=4$.

For Lemma 7.5: On page 620 replace the inequality (7.7) by

$$
\begin{aligned}
& \|\alpha\|^{2}+\|\phi\|^{2}+\|\psi\|^{2} \\
& \leq c\left(\left\|*_{s} \nabla_{s} \alpha-*_{s} \mathrm{~d} X_{s}(A) \alpha-*_{s} \mathrm{~d}_{A} \phi-\mathrm{d}_{A} \psi\right\|^{2}\right. \\
& \left.+\varepsilon^{2}\left\|\nabla_{s} \psi-\varepsilon^{-2} \mathrm{~d}_{A} \alpha\right\|^{2}+\varepsilon^{2}\left\|\nabla_{s} *_{s} \phi+\varepsilon^{-2} \mathrm{~d}_{A} *_{s} \alpha\right\|^{2}\right) .
\end{aligned}
$$

On page 621 replace the last two sentences in the proof of Lemma 7.5 by the following text.

Hence it follows from Lemma 7.3 and Lemma 7.4 in [10] that there exist constants $\varepsilon_{0}>0, \nu_{0} \in \mathbb{N}$, and $c>0$ such that the estimate (7.7) holds with $0<\varepsilon \leq \varepsilon_{0}$ and $A+\Phi \mathrm{d} s$ replaced by $A_{\nu}+\Phi_{\nu} \mathrm{d} s$ where $\nu \geq \nu_{0}$ (here the estimate for α follows from Lemma 7.4 and the estimate for ϕ and ψ from Lemma 7.3). With $\varepsilon=\varepsilon_{\nu}$ and $\nu>c$ this contradicts our assumption.
Proof of Theorem 7.4: The last displayed inequality on page 622 is correct as it stands, however its proof uses Corollary 1.1 above.

Replace the first displayed inequality on page 623 by

$$
\left\|B_{t}\right\|^{2}+\|C\|^{2} \leq c_{3}\left(\left\|\nabla_{s} B_{t}-\mathrm{d} X_{s}(A) B_{t}-\mathrm{d}_{A} C\right\|^{2}+\varepsilon^{-2}\left\|\mathrm{~d}_{A} B_{t}\right\|\right)
$$

(The mistake in [1] is the factor ε^{2} in front of $\|C\|^{2}$ in this inequality; it can be removed because of the improved inequality in Lemma 7.5.) Inspection of the formula for $f^{\prime \prime}(t)$ shows that this stronger estimate is needed to prove the inequality $f^{\prime \prime}(t) \geq \rho^{2} f(t)$ for $t \geq 1$ (use the expression after the fourth equal sign in the formula for $f^{\prime \prime}(t)$ on page 622).

2 An a priori estimate

The following a priori estimate is an adaptation of [2, Lemma 9.1] to the present context. It is needed in the proof of Theorem 9.1.
Lemma 2.1. There is a constant $\delta_{0}>0$ with the following significance. Let $\Omega \subset \mathbb{R}^{2}$ be an open set and $K \subset \Omega$ be a compact subset. Then, for every $c_{0}>0$ and every $p \geq 2$, there are positive constants ε_{0} and c such that the following holds. If $0<\varepsilon \leq \varepsilon_{0}$ and the maps $A: \Omega \rightarrow \mathcal{A}(P)$ and $\Phi, \Psi: \Omega \rightarrow \Omega^{0}\left(\Sigma, \mathfrak{g}_{P}\right)$ satisfy (2) and

$$
\begin{equation*}
\left\|\partial_{t} A-\mathrm{d}_{A} \Psi\right\|_{L^{\infty}(\Omega \times \Sigma)} \leq c_{0}, \quad\left\|F_{A}\right\|_{L^{\infty}(\Omega \times \Sigma)} \leq \delta_{0} \tag{3}
\end{equation*}
$$

then

$$
\begin{gather*}
\int_{K}\left(\left\|F_{A}\right\|_{L^{2}(\Sigma)}^{p}+\varepsilon^{p}\left\|\nabla_{s} F_{A}\right\|_{L^{2}(\Sigma)}^{p}+\varepsilon^{p}\left\|\nabla_{t} F_{A}\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c \varepsilon^{2 p} \tag{4}\\
\sup _{K}\left(\left\|F_{A}\right\|_{L^{2}(\Sigma)}+\varepsilon\left\|\nabla_{s} F_{A}\right\|_{L^{2}(\Sigma)}+\varepsilon\left\|\nabla_{t} F_{A}\right\|_{L^{2}(\Sigma)}\right) \leq c \varepsilon^{2-2 / p} . \tag{5}
\end{gather*}
$$

Proof. As in [1, Lemma 7.6] one can show that there exist constants $\delta_{0}>0$ and $c_{1}>0$ such that every $A \in \mathcal{A}(P)$ with $\left\|F_{A}\right\|_{L^{\infty}(\Sigma)} \leq \delta_{0}$ satisfies the inequalities

$$
\begin{gathered}
\|\phi\| \leq c_{1}\left\|\mathrm{~d}_{A} \phi\right\| \\
\left\|\mathrm{d}_{A}\left(*_{s} \mathrm{~d} X_{s}(A) \alpha+\dot{*}_{s} \alpha\right)\right\| \leq c_{1}\left(\|\alpha\|+\left\|\mathrm{d}_{A} \alpha\right\|+\left\|\mathrm{d}_{A} *_{s} \alpha\right\|\right)
\end{gathered}
$$

for $s \in \mathbb{R}, \phi \in \Omega^{0}\left(\Sigma ; \mathfrak{g}_{P}\right)$, and $\alpha \in \Omega^{1}\left(\Sigma ; \mathfrak{g}_{P}\right)$. Here and in the following all norms are L^{2}-norms on Σ.

Now let A, Φ, Ψ satisy the hypotheses of the lemma and define

$$
\begin{equation*}
B_{s}:=\partial_{s} A-\mathrm{d}_{A} \Phi, \quad B_{t}:=\partial_{t} A-\mathrm{d}_{A} \Psi, \quad C:=\partial_{t} \Phi-\partial_{s} \Psi-[\Phi, \Psi] . \tag{6}
\end{equation*}
$$

Then the proof of [1, Theorem 7.1] shows that

$$
\begin{aligned}
\varepsilon^{2}\left(\nabla_{s} \nabla_{s} C+\nabla_{t} \nabla_{t} C\right)= & \mathrm{d}_{A}^{*_{s}} \mathrm{~d}_{A} C-2 *\left[B_{t} \wedge B_{t}\right]+*\left[*_{s} X_{s}(A) \wedge B_{t}\right] \\
& -* \mathrm{~d}_{A}\left(*_{s} \mathrm{~d} X_{s}(A) B_{t}+\dot{*}_{s} B_{t}\right) .
\end{aligned}
$$

Hence, with $\Delta:=\partial^{2} / \partial s^{2}+\partial^{2} / \partial t^{2}$ the standard Laplacian, we have

$$
\begin{aligned}
\Delta\|C\|^{2}= & 2\left\|\nabla_{s} C\right\|^{2}+2\left\|\nabla_{t} C\right\|^{2}+2\left\langle\nabla_{s} \nabla_{s} C+\nabla_{t} \nabla_{t} C, C\right\rangle \\
= & 2 \varepsilon^{-4}\left\|\mathrm{~d}_{A} *_{s} B_{t}\right\|^{2}+2 \varepsilon^{-4}\left\|\mathrm{~d}_{A} B_{t}\right\|^{2}+2 \varepsilon^{-2}\left\|\mathrm{~d}_{A} C\right\|^{2} \\
& -4 \varepsilon^{-2}\left\langle C, *\left[B_{t} \wedge B_{t}\right]\right\rangle+2 \varepsilon^{-2}\left\langle C, *\left[*_{s} X_{s}(A) \wedge B_{t}\right]\right\rangle \\
& -2 \varepsilon^{-2}\left\langle C, * \mathrm{~d}_{A}\left(*_{s} \mathrm{~d} X_{s}(A) B_{t}+\dot{*}_{s} B_{t}\right)\right\rangle \\
\geq & \frac{\delta}{\varepsilon^{2}}\|C\|^{2}-\frac{c}{\varepsilon^{2}}\|C\| .
\end{aligned}
$$

The last inequality holds for $\varepsilon \leq \varepsilon_{0}$, with ε_{0} sufficiently small, and suitable positive constants δ and c, depending only on δ_{0}, c_{0}, and c_{1} (as well as the metrics on Σ and the vector fields X_{s}). Since $2 \Delta\|C\|^{p} \geq p\|C\|^{p-2} \Delta\|C\|^{2}$ for $p \geq 2$, this implies

$$
\|C\|^{p} \leq \frac{c}{\delta}\|C\|^{p-1}+\frac{2 \varepsilon^{2}}{p \delta} \Delta\|C\|^{p}
$$

Using the inequality $a b \leq a^{p} / p+b^{q} / q$ with $1 / p+1 / q=1, a:=c / \delta$ and $b:=\|C\|^{p-1}$ we obtain $b^{q}=\|C\|^{p}$, and hence

$$
\begin{equation*}
\|C\|^{p} \leq \frac{c^{p}}{\delta^{p}}+\frac{2 \varepsilon^{2}}{\delta} \Delta\|C\|^{p} \tag{7}
\end{equation*}
$$

By [2, Lemma 9.2], this implies that

$$
\int_{B_{R}(z)}\|C\|^{p} \leq \frac{\pi(R+r)^{2} c^{p}}{\delta^{p}}+\frac{8 \varepsilon^{2}}{r^{2} \delta} \int_{B_{R+r}(z)}\|C\|^{p}
$$

for every $z \in \mathbb{C}$ and every pair of positive real numbers R and r such that $B_{R+r}(z) \subset \Omega$. Now observe that $\varepsilon^{2}\|C\|=\left\|F_{A}\right\| \leq \delta_{0} \operatorname{Vol}(\Sigma)$ and use the last inequality repeatedly, with R replaced by $R+r, R+2 r, \ldots, R+(p-1) r$, to
obtain the estimate $\int_{B_{R}(z)}\|C\|^{p} \leq c_{p}$ for every $z \in \mathbb{C}$ such that $B_{R+p r}(z) \subset \Omega$. Now choose R and r such that $B_{R+p r}(z) \subset \Omega$ for every $z \in K$. Cover K by finitely many balls of radius R to obtain

$$
\begin{equation*}
\int_{K}\left\|F_{A}\right\|^{p}=\varepsilon^{2 p} \int_{K}\|C\|^{p} \leq c_{K, p} \varepsilon^{2 p} . \tag{8}
\end{equation*}
$$

It follows from (7) that the function $z \mapsto\|C(z)\|^{p}+c^{p}\left|z-z_{0}\right|^{2} / 8 \delta^{p-1} \varepsilon^{2}$ is subharmonic in Ω for every $z_{0} \in \mathbb{C}$. Hence, by the mean value inequality and (8), we have

$$
\begin{equation*}
\sup _{K}\left\|F_{A}\right\|=\varepsilon^{2} \sup _{K}\|C\| \leq c_{K, p} \varepsilon^{2-2 / p} \tag{9}
\end{equation*}
$$

for a suitable constant $c_{K, p}$. It follows from (8) and (9) that every connection $\Xi=A+\Phi d s+\Psi d t$ on $\Omega \times P$ that satisfies (2) and (3) also satisfies (1) in every compact subset of Ω and hence, by Corollary 1.1, satisfies the hypotheses of [1, Theorem 7.1]. Hence it follows from [1, Theorem 7.1] with $p=\infty$ that, for every open set U with $\operatorname{cl}(U) \subset \Omega$, there is a constant c_{U} such that every conection Ξ on $\Omega \times P$ that satisfies (2) and (3) also satisfies the estimates

$$
\begin{align*}
\varepsilon\left\|\nabla_{s} B_{t}\right\|_{L^{\infty}(U \times \Sigma)}+\varepsilon\left\|\nabla_{t} B_{t}\right\|_{L^{\infty}(U \times \Sigma)} & \leq c_{U}, \\
\varepsilon\|C\|_{L^{\infty}(U \times \Sigma)}+\varepsilon^{2}\left\|\nabla_{s} C\right\|_{L^{\infty}(U \times \Sigma)}+\varepsilon^{2}\left\|\nabla_{t} C\right\|_{L^{\infty}(U \times \Sigma)} & \leq c_{U}, \tag{10}\\
\|C\|_{L^{2}(U \times \Sigma)}+\varepsilon\left\|\nabla_{s} C\right\|_{L^{2}(U \times \Sigma)}+\varepsilon\left\|\nabla_{t} C\right\|_{L^{2}(U \times \Sigma)} & \leq c_{U} .
\end{align*}
$$

Note that the last inequality is equivalent to (4) for $p=2$.
Now consider the function $u: U \rightarrow \mathbb{R}$ defined by

$$
u(s, t)^{2}:=\frac{1}{2}\left(\|C(s, t)\|^{2}+\varepsilon^{2}\left\|\nabla_{s} C(s, t)\right\|^{2}+\varepsilon^{2}\left\|\nabla_{t} C(s, t)\right\|^{2}\right)
$$

Again all norms are L^{2}-norms on Σ. In the following we shall assume, for simplicity, that the Hodge $*$-operator $*_{s}=*$ is independent of s and that $X_{s}=0$ for all s. Then, as in the proof of [1, Theorem 7.1], we have

$$
\begin{aligned}
\Delta u^{2}= & \varepsilon^{-2}\left\|\mathrm{~d}_{A} C\right\|^{2}+\left\|\nabla_{s} C\right\|^{2}+\left\|\nabla_{t} C\right\|^{2}+\left\|\mathrm{d}_{A} \nabla_{s} C\right\|^{2}+\left\|\mathrm{d}_{A} \nabla_{t} C\right\|^{2} \\
& +\varepsilon^{2}\left\|\nabla_{s} \nabla_{s} C\right\|^{2}+\varepsilon^{2}\left\|\nabla_{t} \nabla_{t} C\right\|^{2}+2 \varepsilon^{2}\left\|\nabla_{s} \nabla_{t} C\right\|^{2} \\
& -2 \varepsilon^{2}\left\langle C,\left[\nabla_{s} C, \nabla_{t} C\right]\right\rangle-2 \varepsilon^{-2}\left\langle C, *\left[B_{t} \wedge B_{t}\right]\right\rangle \\
& -4\left\langle\nabla_{s} C, *\left[B_{t} \wedge \nabla_{s} B_{t}\right]\right\rangle-4\left\langle\nabla_{t} C, *\left[B_{t} \wedge \nabla_{t} B_{t}\right]\right\rangle \\
& +\left\langle\mathrm{d}_{A} \nabla_{s} C,\left[B_{s}, C\right]\right\rangle+\left\langle\mathrm{d}_{A} \nabla_{t} C,\left[B_{t}, C\right]\right\rangle \\
& -\left\langle\nabla_{s} C, *\left[B_{s} \wedge * \mathrm{~d}_{A} C\right]\right\rangle-\left\langle\nabla_{t} C, *\left[B_{t} \wedge * \mathrm{~d}_{A} C\right]\right\rangle .
\end{aligned}
$$

For ε sufficiently small it follows that

$$
\Delta u^{2} \geq \frac{\delta}{\varepsilon^{2}} u^{2}-\frac{c}{\varepsilon^{2}} u
$$

with suitable positive constants δ and c. To see this examine the last eight terms in the formula for Δu^{2} and use (10). Now it follows as in (7) that

$$
u^{p} \leq \frac{c}{\delta} u^{p-1}+\frac{2 \varepsilon^{2}}{p \delta} \Delta u^{p}
$$

for $p \geq 2$. By (9) and (10), we have $u \leq c^{\prime} / \varepsilon$ for some constant c^{\prime}. Hence we can argue as above to show that, for every compact subset $K \subset U$, there is a constant $c_{K, p}>0$ such that $\int_{K} u^{p} \leq c_{K, p}$ and $\sup _{K} u^{p} \leq c_{K, p} \varepsilon^{-2}$. This proves the lemma.

3 Bubbling analysis

The assertion on page 634 that the limit connection Ξ_{0} represents a nonconstant holomorphic sphere $S^{2} \rightarrow \mathcal{M}(P)$ does not seem to follow from the argument in [1]. A modified bubbling argument does result in a nonconstant holomorphic sphere but only proves a weaker estimate, i.e. we must weaken the assertion of Theorem 9.1 and the assumption of Theorem 8.1. Then Theorem 9.2 remains valid.

For Theorem 8.1: The assertion of Theorem 8.1 in [1, page 623] continues to hold if the hypothesis (8.1) is replaced by the weaker inequality

$$
\begin{equation*}
\varepsilon^{-1}\left\|F_{A}\right\|_{L^{\infty}}+\left\|\partial_{t} A-\mathrm{d}_{A} \Psi\right\|_{L^{\infty}} \leq c_{0} \tag{11}
\end{equation*}
$$

To see this, replace the last inequality on page 625 by $\left\|C^{\nu}\right\|_{L^{p}} \leq c \varepsilon_{\nu}^{2 / p-1}$ or, equivalently,

$$
\left\|F_{A_{\nu}}\right\|_{L^{p}} \leq c \varepsilon_{\nu}^{1+2 / p} .
$$

For $p=2$ this follows from the first inequality in Step 2 on page 625 , for $p=\infty$ it holds by assumption, and for $2 \leq p \leq \infty$ it follows by interpolation. Now replace the constant ε_{ν}^{2} by $\varepsilon_{\nu}^{1+2 / p}$ in the following places.

- In the inequality (8.4) on page 626.
- Replace the inequality $\left\|A^{\prime}-A\right\|_{L^{p}} \leq c_{2} \varepsilon^{2}$ by $\left\|A^{\prime}-A\right\|_{L^{p}} \leq c_{2} \varepsilon^{1+2 / p}$ in the middle of page 626 .
- In the first two inequalities after (8.9), in the first inequality after (8.10), and in the first inequality in the proof of Step 5 (page 628).
- In the first inequality on page 629 and in the last inequality before (8.11).

The next lemma is a local version of Theorem 8.1; it is needed in the proof of Theorem 9.1. Let $\Omega_{\nu} \subset \mathbb{C}$ be an exhausting sequence of open sets and s_{ν}, $\varepsilon_{\nu}>0, \delta_{\nu}>0$ be seqences of real numbers such that $s_{\nu} \rightarrow s_{0}, \varepsilon_{\nu} \rightarrow 0, \delta_{\nu} \rightarrow 0$. Abbreviate $*_{\nu s}:=*_{s_{\nu}+\delta_{\nu} s}$ and $X_{\nu s}:=\delta_{\nu} X_{s_{\nu}+\delta_{\nu} s}$.

Lemma 3.1. Let $\Xi_{\nu}=A_{\nu}+\Phi_{\nu} \mathrm{d} s+\Psi_{\nu} \mathrm{d} t$ be a sequence of solutions of the equation (2), with $\left(*_{s}, X_{s}\right)$ replaced by $\left(*_{\nu s}, X_{\nu s}\right)$, on $\Omega_{\nu} \times P$ such that

$$
\begin{gather*}
\sup _{\nu}\left(\varepsilon_{\nu}^{-1}\left\|F_{A_{\nu}}\right\|_{L^{2}\left(\Omega_{\nu} \times \Sigma\right)}+\left\|\partial_{t} A_{\nu}-\mathrm{d}_{A_{\nu}} \Psi_{\nu}\right\|_{L^{2}\left(\Omega_{\nu} \times \Sigma\right)}\right)<\infty, \tag{12}\\
\sup _{\nu}\left(\varepsilon_{\nu}^{-1}\left\|F_{A_{\nu}}\right\|_{L^{\infty}\left(\Omega_{\nu} \times \Sigma\right)}+\left\|\partial_{t} A_{\nu}-\mathrm{d}_{A_{\nu}} \Psi_{\nu}\right\|_{L^{\infty}\left(\Omega_{\nu} \times \Sigma\right)}\right)<\infty .
\end{gather*}
$$

Then there is a subsequence, still denoted by Ξ_{ν}, a sequence of gauge transformations $g_{\nu}: \Omega_{\nu} \rightarrow \mathcal{G}(P)$, and a connection $\Xi_{0}=A_{0}+\Phi_{0} \mathrm{~d} s+\Psi_{0} \mathrm{~d} t$ on $\mathbb{C} \times P$ such that

$$
\begin{gathered}
\partial_{t} A_{0}-\mathrm{d}_{A_{0}} \Psi_{0}+*_{s_{0}}\left(\partial_{s} A_{0}-\mathrm{d}_{A_{0}} \Phi_{0}\right)=0, \quad F_{A_{0}}=0, \\
\lim _{\nu \rightarrow \infty}\left(\left\|g_{\nu}^{*} A_{\nu}-A_{0}\right\|_{L^{\infty}(K \times \Sigma)}+\sup _{(s, t) \in K}\left\|g_{\nu}^{-1} B_{\nu t} g_{\nu}-B_{0 t}\right\|_{L^{2}(\Sigma)}\right)=0
\end{gathered}
$$

for every compact set $K \subset \mathbb{C}$; here $B_{\nu t}:=\partial_{t} A_{\nu}-\mathrm{d}_{A_{\nu}} \Psi_{\nu}, B_{0 t}:=\partial_{t} A_{0}-\mathrm{d}_{A_{0}} \Psi_{0}$.
Proof. For every compact set $K \subset \mathbb{C}$ there is a constant $\nu_{K}>0$ such that, for every $(s, t) \in K$ and every $\nu \geq \nu_{K}$, there is a unique section $\eta_{\nu}(s, t) \in \Omega^{0}\left(\Sigma, \mathfrak{g}_{P}\right)$ such that

$$
F_{A_{\nu}^{\prime}}=0, \quad A_{\nu}^{\prime}:=A_{\nu}+*_{\nu s} \mathrm{~d}_{A_{\nu}} \eta_{\nu}
$$

and

$$
\begin{equation*}
\left\|d_{A_{\nu}} \eta_{\nu}\right\|_{L^{\infty}(\Sigma)} \leq c_{1}\left\|F_{A_{\nu}}\right\|_{L^{\infty}(\Sigma)} \leq c_{2} \varepsilon_{\nu} \tag{13}
\end{equation*}
$$

(see Lemma 8.2 in [1]). Choose $\Phi_{\nu}^{\prime}(s, t), \Psi_{\nu}^{\prime}(s, t) \in \Omega^{0}\left(\Sigma, \mathfrak{g}_{P}\right)$ such that

$$
\mathrm{d}_{A_{\nu}^{\prime}} *_{\nu s}\left(\partial_{s} A_{\nu}^{\prime}-\mathrm{d}_{A_{\nu}^{\prime}} \Phi_{\nu}^{\prime}-X_{\nu s}\left(A_{\nu}^{\prime}\right)\right)=\mathrm{d}_{A_{\nu}^{\prime}} *_{\nu s}\left(\partial_{t} A_{\nu}^{\prime}-\mathrm{d}_{A_{\nu}^{\prime}} \Psi_{\nu}^{\prime}\right)=0 .
$$

Note that the sequence $\Xi_{\nu}^{\prime}=A_{\nu}^{\prime}+\Phi_{\nu}^{\prime} \mathrm{d} s+\Psi_{\nu}^{\prime} \mathrm{d} t$ depends only on ν and not on the compact set K in question. One proves exactly as in [1, pages 626-627] that the sequence Ξ_{ν}^{\prime} satisfies the estimates

$$
\begin{align*}
\left\|\Xi_{\nu}^{\prime}-\Xi_{\nu}\right\|_{1, p, \varepsilon ; K} & \leq c_{K, p} \varepsilon_{\nu}^{1+2 / p} \tag{14}\\
\left\|B_{\nu t}^{\prime}\right\|_{L^{\infty}(K \times \Sigma)} & \leq c_{K}, \tag{15}\\
\left\|B_{\nu t}^{\prime}+*_{\nu s}\left(B_{\nu s}^{\prime}-X_{\nu s}\left(A_{\nu}^{\prime}\right)\right)\right\|_{L^{p}(K \times \Sigma)} & \leq c_{K, p} \varepsilon_{\nu}^{1+2 / p} \tag{16}
\end{align*}
$$

for every compact set $K \subset \mathbb{C}$ and every $p \geq 2$, with suitable positive constants c_{K} and $c_{K, p}$. In addition we wish to prove the estimate

$$
\begin{equation*}
\sup _{K}\left\|B_{\nu t}^{\prime}-B_{\nu t}\right\|_{L^{2}(\Sigma)} \leq c_{K} \sqrt{\varepsilon_{\nu}} \tag{17}
\end{equation*}
$$

To see this we use the identities

$$
\begin{align*}
B_{t}^{\prime}-B_{t}= & \mathrm{d}_{A^{\prime}}\left(\Psi^{\prime}-\Psi\right)+*_{s} \mathrm{~d}_{A} \nabla_{t} \eta+*_{s}\left[B_{t}, \eta\right] \\
\mathrm{d}_{A} *_{s} \mathrm{~d}_{A}\left(\Psi^{\prime}-\Psi\right)= & \mathrm{d}_{A} *_{s} B_{t}-\left[\mathrm{d}_{A} B_{t}, \eta\right]-\left[F_{A}, \nabla_{t} \eta\right] \\
& -\left[\left(A^{\prime}-A\right) \wedge\left(\left[\mathrm{d}_{A} \nabla_{t} \eta+\left[B_{t}, \eta\right]\right)\right]\right. \tag{18}\\
\mathrm{d}_{A} *_{s} \mathrm{~d}_{A} \nabla_{t} \eta= & -\mathrm{d}_{A} B_{t}-\left[\mathrm{d}_{A} \nabla_{t} \eta \wedge \mathrm{~d}_{A} \eta\right]-\left[\left[B_{t}, \eta\right] \wedge d_{A} \eta\right] \\
& -2\left[B_{t} \wedge *_{s} \mathrm{~d}_{A} \eta\right]-\left[\mathrm{d}_{A} *_{s} B_{t}, \eta\right]
\end{align*}
$$

(see (8.5), (8.7), and (8.8) in [1]). Here we have dropped the subscript ν. Since

$$
\mathrm{d}_{A} B_{t}=\nabla_{t} F_{A}, \quad \mathrm{~d}_{A} *_{s} B_{t}=\mathrm{d}_{A} B_{s}=\nabla_{s} F_{A}
$$

we obtain from Lemma 2.1 with $p=2$ that, for every compact set $K \subset \mathbb{C}$, there is a constant $c_{K}^{\prime}>0$ such that

$$
\sup _{K}\left(\left\|\mathrm{~d}_{A} B_{t}\right\|_{L^{2}(\Sigma)}+\left\|\mathrm{d}_{A} *_{s} B_{t}\right\|_{L^{2}(\Sigma)}\right) \leq c_{K}^{\prime} \sqrt{\varepsilon}
$$

Hence it follows from (13) and the last equation in (18) that

$$
\sup _{K}\left\|\mathrm{~d}_{A} \nabla_{t} \eta\right\|_{L^{2}(\Sigma)} \leq c_{K}^{\prime \prime} \sqrt{\varepsilon} .
$$

Using this estimate and the second equation in (18) we obtain

$$
\sup _{K}\left\|\mathrm{~d}_{A}\left(\Psi^{\prime}-\Psi\right)\right\|_{L^{2}(\Sigma)} \leq c_{K}^{\prime \prime \prime} \sqrt{\varepsilon}
$$

Combining the last two estimates with the first equation in (18) we obtain (17). Now Ξ_{ν}^{\prime} descends to a sequence

$$
\bar{u}_{\nu}^{\prime}: K \rightarrow \mathcal{M}(P)
$$

of approximate holomorphic curves (see (16)) with uniformly bounded derivatives (see (15)). We must prove that the sequence \bar{u}_{ν}^{\prime} is bounded in $W^{2, p}$ for some $p>2$. By the elliptic bootstrapping analysis for holomorphic curves (see $\left[3\right.$, Appendix B]), this is equivalent to a $W^{1, p_{-}}$bound on $\bar{\partial}_{J}\left(\bar{u}_{\nu}^{\prime}\right)$. To obtain such a bound we examine the following formula from [1, page 627]:

$$
\begin{align*}
B_{t}^{\prime}+*_{s}\left(B_{s}^{\prime}-X_{s}\left(A^{\prime}\right)\right)= & *_{s} \dot{*}_{s} \mathrm{~d}_{A} \eta-\left[X_{s}(A), \eta\right]-*_{s}\left(X_{s}\left(A^{\prime}\right)-X_{s}(A)\right) \\
& +\left[\left(A^{\prime}-A\right), \nabla_{s} \eta\right]-*_{s}\left[\left(A^{\prime}-A\right), \nabla_{t} \eta\right] \tag{19}\\
& -\mathrm{d}_{A^{\prime}}\left(\Psi^{\prime}-\Psi+\nabla_{s} \eta\right)-*_{s} \mathrm{~d}_{A^{\prime}}\left(\Phi^{\prime}-\Phi-\nabla_{t} \eta\right)
\end{align*}
$$

To begin with observe that, by Lemma 2.1, we have estimates of the form

$$
\int_{K}\left(\left\|\mathrm{~d}_{A} B_{t}\right\|_{L^{2}(\Sigma)}^{p}+\left\|\mathrm{d}_{A} *_{s} B_{t}\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c_{K, p} \varepsilon^{p}
$$

Carrying the argument in the proof of Lemma 2.1 one step further we obtain estimates for the second derivatives of the curvature and hence

$$
\int_{K}\left(\left\|\mathrm{~d}_{A} \nabla_{s} B_{t}\right\|_{L^{2}(\Sigma)}^{p}+\left\|\mathrm{d}_{A} *_{s} \nabla_{s} B_{t}\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c_{K, p}
$$

similarly for ∇_{t}. Differentiate the identities in (18) to obtain

$$
\begin{gathered}
\int_{K}\left(\left\|\mathrm{~d}_{A} \nabla_{s} \nabla_{s} \eta\right\|_{L^{2}(\Sigma)}^{p}+\left\|\mathrm{d}_{A} \nabla_{t} \nabla_{t} \eta\right\|_{L^{2}(\Sigma)}^{p}+\left\|\mathrm{d}_{A} \nabla_{s} \nabla_{t} \eta\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c_{K, p}, \\
\int_{K}\left(\left\|\mathrm{~d}_{A} \nabla_{s}\left(\Psi^{\prime}-\Psi\right)\right\|_{L^{2}(\Sigma)}^{p}+\left\|\mathrm{d}_{A} \nabla_{t}\left(\Psi^{\prime}-\Psi\right)\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c_{K, p} .
\end{gathered}
$$

Combining these estimates with (19) we obtain

$$
\int_{K}\left\|\nabla_{s}\left(B_{t}^{\prime}+*_{s}\left(B_{s}^{\prime}-X_{s}\left(A^{\prime}\right)\right)\right)\right\|_{L^{2}(\Sigma)}^{p} \leq c_{K, p}
$$

and similarly for ∇_{t}. This is the required $W^{1, p}$-estimate for $\bar{\partial}_{J}\left(\bar{u}_{\nu}^{\prime}\right)$. It follows that \bar{u}_{ν}^{\prime} is bounded in $W^{2, p}$ and hence has a C^{1}-convergent subsequence. The limit of this subsequence is the required holomorphic curve in $\mathcal{M}(P)$. The assertion of the lemma now follows from (17) and the C^{1}-convergence of \bar{u}_{ν}^{\prime}.
For Theorem 9.1: On Page 630 replace the estimate in the assertion of Theorem 9.1 by (11) above. In the proof on page 631 replace the factor ε_{ν}^{-2} in (9.1) and (9.2) by ε_{ν}^{-1}. Replace the next displayed formula by

$$
c_{\nu}=c_{\nu}\left(w_{\nu}\right)=\varepsilon_{\nu}^{-1}\left\|F_{A_{\nu}\left(w_{\nu}\right)}\right\|_{L^{2}(\Sigma)}+\left\|\partial_{t} A_{\nu}\left(w_{\nu}\right)-\mathrm{d}_{A_{\nu}\left(w_{\nu}\right)} \Psi_{\nu}\left(w_{\nu}\right)\right\|_{L^{2}(\Sigma)}
$$

On page 633 the assertion that the limits $A_{\infty}(\theta)$ and $\Phi_{\infty}(\theta)$ exist can be proved by a similar argument as in [2, Proposition 11.1]. Alternatively, one can use the beautiful and elegant argument in [4] for a direct proof of the energy identity.

On page 634 replace the second displayed inequality by

$$
\sup _{|w| \leq \rho_{\nu} c_{\nu}}\left(\frac{1}{\varepsilon_{\nu} c_{\nu}}\left\|F_{\widetilde{A}_{\nu}(w)}\right\|_{L^{2}(\Sigma)}+\left\|\partial_{t} \widetilde{A}_{\nu}(w)-\mathrm{d}_{\widetilde{A}_{\nu}(w)} \widetilde{\Psi}_{\nu}(w)\right\|_{L^{2}(\Sigma)}\right) \leq 2
$$

We prove that the limit connection Ξ_{0} represents a nonconstant holomorphic sphere. First, note that

$$
\frac{1}{\varepsilon_{\nu} c_{\nu}}\left\|F_{\widetilde{A}_{\nu}(0)}\right\|_{L^{2}(\Sigma)}+\left\|\partial_{t} \widetilde{A}_{\nu}(0)-\mathrm{d}_{\widetilde{A}_{\nu}(0)} \widetilde{\Psi}_{\nu}(0)\right\|_{L^{2}(\Sigma)}=1
$$

and use Corollary 1.1 with ε replaced by $\widetilde{\varepsilon}_{\nu}:=\varepsilon_{\nu} c_{\nu} \rightarrow 0$ to deduce that the functions $\partial_{t} \widetilde{A}_{\nu}-\mathrm{d}_{\widetilde{A}_{\nu}} \widetilde{\Psi}_{\nu}$ and $\left(\varepsilon_{\nu} c_{\nu}\right)^{-1} F_{\widetilde{A}_{\nu}}$ are uniformly bounded on every compact subset of $\mathbb{C} \times \sum_{\sim}$. Second, use Lemma 3.1 to deduce that the sequence $\widetilde{\Xi}_{\nu}=\widetilde{A}_{\nu}+\widetilde{\Phi}_{\nu} \mathrm{d} s+\widetilde{\Psi}_{\nu} \mathrm{d} t$ has a C^{1} convergent subsequence (after gauge transformation). Third, use Lemma 2.1 to deduce that $\left(\varepsilon_{\nu} c_{\nu}\right)^{-1}\left\|F_{\widetilde{A}_{\nu}(0)}\right\|_{L^{2}(\Sigma)} \rightarrow 0$ and hence

$$
\left\|\partial_{t} A_{0}(0)-\mathrm{d}_{A_{0}(0)} \Psi_{0}(0)\right\|_{L^{2}(\Sigma)}=\lim _{\nu \rightarrow \infty}\left\|\partial_{t} \widetilde{A}_{\nu}(0)-\mathrm{d}_{\widetilde{A}_{\nu}(0)} \widetilde{\Psi}_{\nu}(0)\right\|_{L^{2}(\Sigma)}=1
$$

References

[1] S. Dostoglou and D.A. Salamon, Self-dual instantons and holomorphic curves, Annals of Mathematics 139 (1994), 581-640.
[2] A.R. Gaio, D.A. Salamon, Gromov-Witten invariants of symplectic quotients and adiabatic limits, Preprint ETH-Zürich, June 2001. Submitted. http://www.math.ethz.ch/ salamon
[3] D. McDuff, D. Salamon, J-holomorphic Curves and Symplectic Topolpogy, AMS Colloquium Publications, Volume 52, 2004.
[4] K. Wehrheim, Energy identity for anti-self-dual instantons on $\mathbb{C} \times \Sigma$, Math. Res. Lett. 13 (2006), 161-166.

