Erratum:
 Self-dual instantons and holomorphic curves

Stamatis Dostoglou
University of Missouri

Dietmar A. Salamon
ETH-Zürich

28 September 2002

We correct two mistakes in [2]. The first concerns the exponential decay in the proof of [2, Theorem 7.4] (see Section 2 below) and the second concerns the bubbling argument in the proof of [2, Theorem 9.1] (see Section 3 below).

The analysis deals with the small ε limit of the self-duality equations

$$
\begin{gather*}
\partial_{t} A-d_{A} \Psi+*_{s}\left(\partial_{s} A-d_{A} \Phi-X_{s}(A)\right)=0 \\
\partial_{t} \Phi-\partial_{s} \Psi-[\Phi, \Psi]+\varepsilon^{-2} * F_{A}=0 \tag{1}\\
A(s+1, t)=f^{*} A(s, t), \Phi(s+1, t)=f^{*} \Phi(s, t), \Psi(s+1, t)=f^{*} \Psi(s, t) \tag{2}\\
\lim _{t \rightarrow \pm \infty} A(s, t)=A^{ \pm}(s), \lim _{t \rightarrow \pm \infty} \Phi(s, t)=\Phi^{ \pm}(s), \lim _{t \rightarrow \pm \infty} \Psi(s, t)=0 \tag{3}
\end{gather*}
$$

Here $P \rightarrow \Sigma$ is a nontrivial $\mathrm{SO}(3)$ bundle over a compact oriented 2 -manifold (with area form), $f: P \rightarrow P$ is an $\mathrm{SO}(3)$-equivariant lift of an area preserving diffeomorphism $h: \Sigma \rightarrow \Sigma, P_{f}$ and Σ_{h} denote the respective mapping tori, and $*_{s}$ denotes a family of Hodge $*$-operators on Σ associated to a smooth family of complex structures J_{s} such that $J_{s+1}=h^{*} J_{s} . \quad X_{s}: \mathcal{A}(P) \rightarrow \Omega^{1}\left(\Sigma, \mathfrak{g}_{P}\right)$ denotes a smooth family of Hamiltonian vector fields associated to Hamiltonian functions $H_{s}: \mathcal{A}(P) \rightarrow \mathbb{R}$ that are determined by the holonomy. They are gauge invariant and are smooth with respect to the C^{0}-topology on $\mathcal{A}(P)$. We have $A(s, t) \in \mathcal{A}(P)$ and $\Phi(s, t), \Psi(s, t) \in \Omega^{0}\left(\Sigma, \mathfrak{g}_{P}\right)$. The limit connections $a^{ \pm}=A^{ \pm}+\Phi^{ \pm} d s \in \mathcal{A}_{\text {flat }}\left(P_{f}, H\right)$ are H-flat as in [1, Proposition 4.4].

For a connection $A \in \mathcal{A}(P)$ with sufficiently small curvature we denote by $H_{A}^{1}:=\operatorname{ker} d_{A} \cap \operatorname{ker} d_{A} *_{s}$ the space of harmonic 1-forms in $\Omega^{1}\left(\Sigma, \mathfrak{g}_{P}\right)$ with respect to the connection A and the Hodge $*$-operator $*_{s}$, and by $\pi_{A}: \Omega^{1}\left(\Sigma, \mathfrak{g}_{P}\right) \rightarrow H_{A}^{1}$ the projection associated to the Hodge decomposition

$$
\Omega^{1}\left(\Sigma, \mathfrak{g}_{P}\right)=H_{A}^{1} \oplus \operatorname{im} d_{A} \oplus \operatorname{im} *_{s} d_{A} .
$$

This is well defined whenever F_{A} is sufficiently small (in the L^{∞}-norm). The value of the parameter s is understood from the context. When a connection $A(s)+\Phi(s) d s$ on P_{f} is given we abbreviate $\nabla_{s} \alpha:=\partial_{s} \alpha(s)+[\Phi(s), \alpha(s)]$.

1 A priori estimates

In preparation for the corrections in the proof of [2, Theorem 9.1] we need a stronger version of [2, Theorem 7.1].

Remark 1.1. The assertion of [2, Theorem 7.1] continues to hold if the hypothesis $\left\|B_{t}\right\|_{L^{\infty}}+\varepsilon\|C\|_{L^{\infty}} \leq c_{0}$ is replaced by the weaker inequality

$$
\begin{equation*}
\sup _{(s, t) \in \Omega}\left\|B_{t}(s, t)\right\|_{L^{2}(\Sigma)}+\varepsilon \sup _{(s, t) \in \Omega}\|C(s, t)\|_{L^{2}(\Sigma)} \leq c_{0} \tag{4}
\end{equation*}
$$

All the estimates in the proof of [2, Theorem 7.1] continue to hold under this assumption. To see this consider, as an example, the inequality

$$
\left|f_{0}\right| \leq v_{0}+c_{1} u_{0}
$$

on page 617. A key term in f_{0} is the expression $\left\langle B_{t}, *\left[B_{t} \wedge C\right]\right\rangle$. We can estimate this term by the product $\left\|B_{t}\right\|_{L^{2}(\Sigma)}\left\|B_{t}\right\|_{L^{4}(\Sigma)}\|C\|_{L^{4}(\Sigma)}$ and use the fact that, by (4), the first factor is bounded by c_{0}. Moreover, the inequality (4) implies $\left\|F_{A(s, t)}\right\|_{L^{2}(\Sigma)} \leq \varepsilon c_{0}$. This and the Sobolev embedding $W^{1,2}(\Sigma) \hookrightarrow L^{4}(\Sigma)$ imply uniform estimates of the form

$$
\begin{gathered}
\|\phi\|_{L^{4}(\Sigma)} \leq c_{1}\left\|d_{A} \phi\right\|_{L^{2}(\Sigma)} \\
\|\alpha\|_{L^{4}(\Sigma)} \leq c_{1}\left(\|\alpha\|_{L^{2}(\Sigma)}+\left\|d_{A} \alpha\right\|_{L^{2}(\Sigma)}+\left\|d_{A} *_{s} \alpha\right\|_{L^{2}(\Sigma)}\right)
\end{gathered}
$$

for all $(s, t) \in \Omega, \phi \in \Omega^{0}\left(\Sigma, \mathfrak{g}_{P}\right)$, and $\alpha \in \Omega^{1}\left(\Sigma, \mathfrak{g}_{P}\right)$ (see [2, Lemma 7.6]). Applying this to $\phi=C$ and $\alpha=B_{t}$ we obtain

$$
\left\|B_{t}\right\|_{L^{4}(\Sigma)}\|C\|_{L^{4}(\Sigma)} \leq c_{1} \sqrt{u_{0} v_{0}}
$$

and this leads to the required estimate. The term $\left\langle B_{t}, *_{s} d^{2} X_{s}(A)\left(B_{t}, B_{t}\right)\right\rangle$ can be estimated by $\left\|B_{t}\right\|_{L^{4}(\Sigma)}^{2} \leq v_{0}+c_{2} u_{0}$. A crucial observation is that the cubic terms in f_{0} do not involve derivatives. The arguments in the subsequent steps for the estimates of the higher derivatives are similar (see for example the inequality $\left|f_{1}\right| \leq v_{1}+c_{3}^{-1}\left(\varepsilon^{-1} v_{0}+\varepsilon^{-2} u_{0}\right)$ on page 618).
Corollary 1.2. Let $\Omega \subset \mathbb{C}$ be an open set and $K \subset \Omega$ be a compact subset. Then for every constant $c_{0}>0$, there exist constants $\varepsilon_{0}>0$ and $c>0$ such that the following holds. If $0<\varepsilon \leq \varepsilon_{0}$ and $\Xi=A+\Phi d s+\Psi d t$ is a connection on $\Omega \times \Sigma$ that satisfies (1) and (4) then

$$
\left\|B_{t}\right\|_{L^{\infty}(K \times \Sigma)}+\varepsilon\|C\|_{L^{\infty}(K \times \Sigma)} \leq c\left(\left\|B_{t}\right\|_{L^{2}(\Omega \times \Sigma)}+\varepsilon\|C\|_{L^{2}(\Omega \times \Sigma)}\right) .
$$

Proof. By Remark 1.1, the connection Ξ satisfies (7.4) in [2, page 615]. The assertion follows by taking $p=\infty$. More precisely, (7.4) asserts that

$$
\left\|B_{t}\right\|_{L^{\infty}(K \times \Sigma)}+\varepsilon\left\|d_{A} C\right\|_{L^{\infty}(K \times \Sigma)} \leq c\left(\left\|B_{t}\right\|_{L^{2}(\Omega \times \Sigma)}+\varepsilon\|C\|_{L^{2}(\Omega \times \Sigma)}\right) .
$$

Since $C+\varepsilon^{-2} * F_{A}=0$, it follows from (4) that $\left\|F_{A}\right\|_{L^{2}(\Sigma)} \leq \varepsilon c_{0}$, hence $\|C\|_{L^{4}(\Sigma)} \leq c_{1}\left\|d_{A} C\right\|_{L^{2}(\Sigma)}$, hence $\left\|F_{A}\right\|_{L^{4}(\Sigma)} \leq \varepsilon c_{2}$ and, by [2, Lemma 7.6], $\|C\|_{L^{\infty}(\Sigma)} \leq c_{3}\left\|d_{A} C\right\|_{L^{4}(\Sigma)} \leq c_{4}\left\|d_{A} C\right\|_{L^{\infty}(\Sigma)}$.

The next a priori estimate is an adaptation of [3, Lemma 9.1] to the present context. It is needed in the bubbling analysis in Section 3.

Lemma 1.3. There is a constant $\delta_{0}>0$ with the following significance. Let $\Omega \subset \mathbb{R}^{2}$ be an open set and $K \subset \Omega$ be a compact subset. Then, for every $c_{0}>0$ and every $p \geq 2$, there are positive constants ε_{0} and c such that the following holds. If $0<\varepsilon \leq \varepsilon_{0}$ and the maps $A: \Omega \rightarrow \mathcal{A}(P)$ and $\Phi, \Psi: \Omega \rightarrow \Omega^{0}\left(\Sigma, \mathfrak{g}_{P}\right)$ satisfy (1) and

$$
\begin{equation*}
\left\|\partial_{t} A-d_{A} \Psi\right\|_{L^{\infty}(\Omega \times \Sigma)} \leq c_{0}, \quad\left\|F_{A}\right\|_{L^{\infty}(\Omega \times \Sigma)} \leq \delta_{0} \tag{5}
\end{equation*}
$$

then

$$
\begin{gather*}
\int_{K}\left(\left\|F_{A}\right\|_{L^{2}(\Sigma)}^{p}+\varepsilon^{p}\left\|\nabla_{s} F_{A}\right\|_{L^{2}(\Sigma)}^{p}+\varepsilon^{p}\left\|\nabla_{t} F_{A}\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c \varepsilon^{2 p}, \tag{6}\\
\sup _{K}\left(\left\|F_{A}\right\|_{L^{2}(\Sigma)}+\varepsilon\left\|\nabla_{s} F_{A}\right\|_{L^{2}(\Sigma)}+\varepsilon\left\|\nabla_{t} F_{A}\right\|_{L^{2}(\Sigma)}\right) \leq c \varepsilon^{2-2 / p} . \tag{7}
\end{gather*}
$$

The proof uses the following estimate. Denote by $B_{r}(z) \subset \mathbb{C}$ the open ball of radius r centered at z and abbreviate $B_{r}:=B_{r}(0)$.

Lemma 1.4 ([3]). Let $u: B_{R+r} \rightarrow \mathbb{R}$ be a C^{2}-function and $f, g: B_{R+r} \rightarrow \mathbb{R}$ be continuous such that

$$
f \leq g+\Delta u, \quad u \geq 0, \quad f \geq 0, \quad g \geq 0
$$

Then

$$
\int_{B_{R}} f \leq \int_{B_{R+r}} g+\frac{4}{r^{2}} \int_{B_{R+r} \backslash B_{R}} u .
$$

Proof of Lemma 1.3. As in [2, Lemma 7.6] one can show that there exist constants $\delta_{0}>0$ and $c_{1}>0$ such that every $A \in \mathcal{A}(P)$ with $\left\|F_{A}\right\|_{L^{\infty}(\Sigma)} \leq \delta_{0}$ satisfies the inequalities

$$
\begin{aligned}
\|\phi\| & \leq c_{1}\left\|d_{A} \phi\right\| \\
\left\|d_{A}\left(*_{s} d X_{s}(A) \alpha+\dot{*}_{s} \alpha\right)\right\| & \leq c_{1}\left(\|\alpha\|+\left\|d_{A} \alpha\right\|+\left\|d_{A} *_{s} \alpha\right\|\right)
\end{aligned}
$$

for $s \in \mathbb{R}, \phi \in \Omega^{0}\left(\Sigma ; \mathfrak{g}_{P}\right)$, and $\alpha \in \Omega^{1}\left(\Sigma ; \mathfrak{g}_{P}\right)$. Here and in the following all norms are L^{2}-norms on Σ.

Now let A, Φ, Ψ satisy the hypotheses of the lemma and define

$$
\begin{equation*}
B_{s}:=\partial_{s} A-d_{A} \Phi, \quad B_{t}:=\partial_{t} A-d_{A} \Psi, \quad C:=\partial_{t} \Phi-\partial_{s} \Psi-[\Phi, \Psi] . \tag{8}
\end{equation*}
$$

Then the proof of [2, Theorem 7.1] shows that

$$
\begin{aligned}
\varepsilon^{2}\left(\nabla_{s} \nabla_{s} C+\nabla_{t} \nabla_{t} C\right)= & d_{A}^{*_{s}} d_{A} C-2 *\left[B_{t} \wedge B_{t}\right]+*\left[*_{s} X_{s}(A) \wedge B_{t}\right] \\
& -* d_{A}\left(*_{s} d X_{s}(A) B_{t}+\dot{*}_{s} B_{t}\right)
\end{aligned}
$$

Hence, with $\Delta:=\partial^{2} / \partial s^{2}+\partial^{2} / \partial t^{2}$ the standard Laplacian, we have

$$
\begin{aligned}
\Delta\|C\|^{2}= & 2\left\|\nabla_{s} C\right\|^{2}+2\left\|\nabla_{t} C\right\|^{2}+2\left\langle\nabla_{s} \nabla_{s} C+\nabla_{t} \nabla_{t} C, C\right\rangle \\
= & 2 \varepsilon^{-4}\left\|d_{A} *_{s} B_{t}\right\|^{2}+2 \varepsilon^{-4}\left\|d_{A} B_{t}\right\|^{2}+2 \varepsilon^{-2}\left\|d_{A} C\right\|^{2} \\
& -4 \varepsilon^{-2}\left\langle C, *\left[B_{t} \wedge B_{t}\right]\right\rangle+2 \varepsilon^{-2}\left\langle C, *\left[*_{s} X_{s}(A) \wedge B_{t}\right]\right\rangle \\
& -2 \varepsilon^{-2}\left\langle C, * d_{A}\left(*_{s} d X_{s}(A) B_{t}+\dot{*}_{s} B_{t}\right)\right\rangle \\
\geq & \frac{\delta}{\varepsilon^{2}}\|C\|^{2}-\frac{c}{\varepsilon^{2}}\|C\| .
\end{aligned}
$$

The last inequality holds for $\varepsilon \leq \varepsilon_{0}$, with ε_{0} sufficiently small, and suitable positive constants δ and c, depending only on δ_{0}, c_{0}, and c_{1} (as well as the metrics on Σ and the vector fields X_{s}). Since $2 \Delta\|C\|^{p} \geq p\|C\|^{p-2} \Delta\|C\|^{2}$ for $p \geq 2$, this implies

$$
\|C\|^{p} \leq \frac{c}{\delta}\|C\|^{p-1}+\frac{2 \varepsilon^{2}}{p \delta} \Delta\|C\|^{p}
$$

Using the inequality $a b \leq a^{p} / p+b^{q} / q$ with $1 / p+1 / q=1, a:=c / \delta$ and $b:=\|C\|^{p-1}$ we obtain $b^{q}=\|C\|^{p}$, and hence

$$
\begin{equation*}
\|C\|^{p} \leq \frac{c^{p}}{\delta^{p}}+\frac{2 \varepsilon^{2}}{\delta} \Delta\|C\|^{p} \tag{9}
\end{equation*}
$$

By Lemma 1.4, this implies that

$$
\int_{B_{R}(z)}\|C\|^{p} \leq \frac{\pi(R+r)^{2} c^{p}}{\delta^{p}}+\frac{8 \varepsilon^{2}}{r^{2} \delta} \int_{B_{R+r}(z)}\|C\|^{p}
$$

for every $z \in \mathbb{C}$ and every pair of positive real numbers R and r such that $B_{R+r}(z) \subset \Omega$. Now observe that $\varepsilon^{2}\|C\|=\left\|F_{A}\right\| \leq \delta_{0} \operatorname{Vol}(\Sigma)$ and use the last inequality repeatedly, with R replaced by $R+r, R+2 r, \ldots, R+(p-1) r$, to obtain the estimate $\int_{B_{R}(z)}\|C\|^{p} \leq c_{p}$ for every $z \in \mathbb{C}$ such that $B_{R+p r}(z) \subset \Omega$. Now choose R and r such that $B_{R+p r}(z) \subset \Omega$ for every $z \in K$. Cover K by finitely many balls of radius R to obtain

$$
\begin{equation*}
\int_{K}\left\|F_{A}\right\|^{p}=\varepsilon^{2 p} \int_{K}\|C\|^{p} \leq c_{K, p} \varepsilon^{2 p} \tag{10}
\end{equation*}
$$

It follows from (9) that the function $z \mapsto\|C(z)\|^{p}+c^{p}\left|z-z_{0}\right|^{2} / 8 \delta^{p-1} \varepsilon^{2}$ is subharmonic in Ω for every $z_{0} \in \mathbb{C}$. Hence, by the mean value inequality and (10), we have

$$
\begin{equation*}
\sup _{K}\left\|F_{A}\right\|=\varepsilon^{2} \sup _{K}\|C\| \leq c_{K, p} \varepsilon^{2-2 / p} \tag{11}
\end{equation*}
$$

for a suitable constant $c_{K, p}$. It follows from (10) and (11) that every connection $\Xi=A+\Phi d s+\Psi d t$ on $\Omega \times P$ that satisfies (1) and (5) also satisfies (4) in every compact subset of Ω and hence, by Corollary 1.2, satisfies the hypotheses of [2, Theorem 7.1]. Hence it follows from [2, Theorem 7.1] with $p=\infty$ that,
for every open set U with $\operatorname{cl}(U) \subset \Omega$, there is a constant c_{U} such that every conection Ξ on $\Omega \times P$ that satisfies (1) and (5) also satisfies the estimates

$$
\begin{align*}
\varepsilon\left\|\nabla_{s} B_{t}\right\|_{L^{\infty}(U \times \Sigma)}+\varepsilon\left\|\nabla_{t} B_{t}\right\|_{L^{\infty}(U \times \Sigma)} & \leq c_{U}, \\
\varepsilon\|C\|_{L^{\infty}(U \times \Sigma)}+\varepsilon^{2}\left\|\nabla_{s} C\right\|_{L^{\infty}(U \times \Sigma)}+\varepsilon^{2}\left\|\nabla_{t} C\right\|_{L^{\infty}(U \times \Sigma)} & \leq c_{U}, \tag{12}\\
\|C\|_{L^{2}(U \times \Sigma)}+\varepsilon\left\|\nabla_{s} C\right\|_{L^{2}(U \times \Sigma)}+\varepsilon\left\|\nabla_{t} C\right\|_{L^{2}(U \times \Sigma)} & \leq c_{U} .
\end{align*}
$$

Note that the last inequality is equivalent to (6) for $p=2$.
Now consider the function $u: U \rightarrow \mathbb{R}$ defined by

$$
u(s, t)^{2}:=\frac{1}{2}\left(\|C(s, t)\|^{2}+\varepsilon^{2}\left\|\nabla_{s} C(s, t)\right\|^{2}+\varepsilon^{2}\left\|\nabla_{t} C(s, t)\right\|^{2}\right)
$$

Again all norms are L^{2}-norms on Σ. In the following we shall assume, for simplicity, that the Hodge $*$-operator $*_{s}=*$ is independent of s and that $X_{s}=0$ for all s. Then, as in the proof of [2, Theorem 7.1], we have

$$
\begin{aligned}
\Delta u^{2}= & \varepsilon^{-2}\left\|d_{A} C\right\|^{2}+\left\|\nabla_{s} C\right\|^{2}+\left\|\nabla_{t} C\right\|^{2}+\left\|d_{A} \nabla_{s} C\right\|^{2}+\left\|d_{A} \nabla_{t} C\right\|^{2} \\
& +\varepsilon^{2}\left\|\nabla_{s} \nabla_{s} C\right\|^{2}+\varepsilon^{2}\left\|\nabla_{t} \nabla_{t} C\right\|^{2}+2 \varepsilon^{2}\left\|\nabla_{s} \nabla_{t} C\right\|^{2} \\
& -2 \varepsilon^{2}\left\langle C,\left[\nabla_{s} C, \nabla_{t} C\right]\right\rangle-2 \varepsilon^{-2}\left\langle C, *\left[B_{t} \wedge B_{t}\right]\right\rangle \\
& -4\left\langle\nabla_{s} C, *\left[B_{t} \wedge \nabla_{s} B_{t}\right]\right\rangle-4\left\langle\nabla_{t} C, *\left[B_{t} \wedge \nabla_{t} B_{t}\right]\right\rangle \\
& +\left\langle d_{A} \nabla_{s} C,\left[B_{s}, C\right]\right\rangle+\left\langle d_{A} \nabla_{t} C,\left[B_{t}, C\right]\right\rangle \\
& -\left\langle\nabla_{s} C, *\left[B_{s} \wedge * d_{A} C\right]\right\rangle-\left\langle\nabla_{t} C, *\left[B_{t} \wedge * d_{A} C\right]\right\rangle .
\end{aligned}
$$

For ε sufficiently small it follows that

$$
\Delta u^{2} \geq \frac{\delta}{\varepsilon^{2}} u^{2}-\frac{c}{\varepsilon^{2}} u
$$

with suitable positive constants δ and c. To see this examine the last eight terms in the formula for Δu^{2} and use (12). Now it follows as in (9) that

$$
u^{p} \leq \frac{c}{\delta} u^{p-1}+\frac{2 \varepsilon^{2}}{p \delta} \Delta u^{p}
$$

for $p \geq 2$. By (11) and (12), we have $u \leq c^{\prime} / \varepsilon$ for some constant c^{\prime}. Hence we can argue as above to show that, for every compact subset $K \subset U$, there is a constant $c_{K, p}>0$ such that $\int_{K} u^{p} \leq c_{K, p}$ and $\sup _{K} u^{p} \leq c_{K, p} \varepsilon^{-2}$. This proves the lemma.

2 Exponential decay

The estimate $f^{\prime \prime} \geq \rho^{2} f$ in [2, page 623] does not follow from the preceding inequalities. To prove it one needs the following refinement of [2, Lemma 7.5]. All norms are understood on $[0,1] \times \Sigma$. Norms without subscript are L^{2}-norms.

Lemma 2.1. Assume all H-flat connections on P_{f} are nondegenerate. Then there are positive constants $\delta_{0}, \varepsilon_{0}$, and c such that the following holds. If $A+\Phi d s$ is a connection on P_{f} satisfying

$$
\left\|F_{A}\right\|_{L^{\infty}}+\left\|\partial_{s} A-d_{A} \Phi-X_{s}(A)\right\|_{L^{\infty}} \leq \delta_{0}
$$

and $0<\varepsilon \leq \varepsilon_{0}$ then

$$
\begin{gather*}
\|\alpha\|^{2}+\|\phi\|^{2}+\|\psi\|^{2} \leq c\left(\left\|*_{s} \nabla_{s} \alpha-*_{s} d X_{s}(A) \alpha-*_{s} d_{A} \phi-d_{A} \psi\right\|^{2}\right. \\
\left.+\varepsilon^{2}\left\|\nabla_{s} \psi-\varepsilon^{-2} d_{A} \alpha\right\|^{2}+\varepsilon^{2}\left\|\nabla_{s} *_{s} \phi+\varepsilon^{-2} d_{A} *_{s} \alpha\right\|^{2}\right) \tag{13}
\end{gather*}
$$

for every infinitesimal connection $\alpha+\phi d s$ on P_{f} and every $\psi \in \Omega^{0}\left(\Sigma_{h}, \mathfrak{g}_{P_{f}}\right)$.
Proof. Suppose not. Then there are sequences $\varepsilon_{\nu} \rightarrow 0$ and $A_{\nu}+\Phi_{\nu} d s \in \mathcal{A}\left(P_{f}\right)$ such that $\left\|F_{A_{\nu}}\right\|_{L^{\infty}}+\left\|\partial_{s} A_{\nu}-d_{A_{\nu}} \Phi_{\nu}-X_{s}\left(A_{\nu}\right)\right\|_{L^{\infty}} \rightarrow 0$ and (13) does not hold with $c=\nu, \varepsilon=\varepsilon_{\nu}, A=A_{\nu}, \Phi=\Phi_{\nu}$. The estimate (13) is gauge invariant. Hence, by Uhlenbeck's weak compactness theorem [6, 7], we may assume that the sequence $A_{\nu}+\Phi_{\nu} d s$ is bounded in $W^{1, p}$ (for some $p>3$). Passing to a subsequence, if necessary, we may assume that it converges, weakly in $W^{1, p}$ and strongly in L^{∞}, to an H-flat connection $A+\Phi d s \in \mathcal{A}_{\text {flat }}\left(P_{f}, H\right)$. Since $A+\Phi d s$ is nondegenerate there are positive constants ν_{0} and c_{0} such that

$$
\left\|\alpha_{0}\right\| \leq c_{0}\left\|\pi_{A_{\nu}}\left(\partial_{s} \alpha_{0}+\left[\Phi_{\nu}, \alpha_{0}\right]-d X_{s}\left(A_{\nu}\right) \alpha_{0}\right)\right\|
$$

for every path $\alpha_{0}(s) \in H_{A_{\nu}(s)}^{1}$ such that $\alpha_{0}(s+1)=f^{*} \alpha_{0}(s)$ and every $\nu \geq \nu_{0}$.
Now the assertions of [1, Lemmata 7.3 and 7.4] continue to hold for connections $A+\Phi d s$ on P_{f} such that $\left\|F_{A}\right\|_{L^{\infty}}$ is sufficiently small and the constants in these lemmata depend continuously on $\left\|\partial_{s} A-d_{A} \Phi\right\|_{L^{\infty}}$. Since $\left\|F_{A_{\nu}}\right\|_{L^{\infty}}$ tends to zero, the sequence $\left\|X_{s}\left(A_{\nu}\right)\right\|_{L^{\infty}}$ is bounded and so is $\left\|\partial_{s} A_{\nu}-d_{A_{\nu}} \Phi_{\nu}\right\|_{L^{\infty}}$. Hence, by [1, Lemma 7.4], there is a constant $c>0$ such that

$$
\begin{aligned}
\|\alpha\|^{2} \leq & c\left(\left\|*_{s} \nabla_{s} \alpha-*_{s} d X_{s}\left(A_{\nu}\right) \alpha-*_{s} d_{A_{\nu}} \phi-d_{A_{\nu}} \psi\right\|^{2}\right. \\
& \left.+\varepsilon^{2}\left\|\nabla_{s} \psi-\varepsilon^{-2} d_{A_{\nu}} \alpha\right\|^{2}+\varepsilon^{2}\left\|\nabla_{s} *_{s} \phi+\varepsilon^{-2} d_{A_{\nu}} *_{s} \alpha\right\|^{2}\right)
\end{aligned}
$$

for every infinitesimal connection $\alpha+\phi d s$ on P_{f} and every $\psi \in \Omega^{0}\left(\Sigma_{h}, \mathfrak{g}_{P_{f}}\right)$. Here $\nabla_{s}:=\partial_{s}+\left[\Phi_{\nu}, \cdot\right]$. Combining this with [1, Lemma 7.3] we find that the connection $A_{\nu}+\Phi_{\nu} d s$ satisfies (13) for $\nu \geq \nu_{0}$ and some constant $c>0$. This contradicts our assumption on the sequence $A_{\nu}+\Phi_{\nu} d s$ and so the lemma is proved.

Proof of [2, Theorem 7.4]. Let $A+\Phi d s+\Psi d t$ be a solution of (1-3) and let B_{s}, B_{t}, C be given by (8). Assume

$$
\begin{gathered}
\varepsilon^{-1}\left\|F_{A}\right\|_{L^{\infty}\left(\Sigma_{h} \times \mathbb{R}\right)}+\left\|B_{t}\right\|_{L^{\infty}\left(\Sigma_{h} \times \mathbb{R}\right)} \leq c_{0}, \\
\varepsilon^{-1}\left\|F_{A}\right\|_{L^{2}\left(\Sigma_{h} \times[0, \infty)\right)}+\left\|B_{t}\right\|_{L^{2}\left(\Sigma_{h} \times[0, \infty)\right)} \leq \delta .
\end{gathered}
$$

Then, by Corollary 1.2, there is a constant $c_{1}>0$ such that

$$
\begin{equation*}
\varepsilon^{-1}\left\|F_{A}\right\|_{L^{\infty}\left(\Sigma_{h} \times\{t\}\right)}+\left\|\partial_{s} A-d_{A} \Phi-X_{s}(A)\right\|_{L^{\infty}\left(\Sigma_{h} \times\{t\}\right)} \leq c_{1} \delta \tag{14}
\end{equation*}
$$

for $t \geq 1$. Define

$$
f(s):=\frac{1}{2} \int_{0}^{1}\left(\left\|B_{t}(s, t)\right\|_{L^{2}\left(\Sigma, *_{s}\right)}^{2}+\varepsilon^{2}\|C(s, t)\|_{L^{2}\left(\Sigma, *_{s}\right)}^{2}\right) d t
$$

Then

$$
\begin{aligned}
f^{\prime \prime}(s)= & 2\left\|\nabla_{s} B_{t}-d X_{s}(A) B_{t}-d_{A} C\right\|^{2}+2 \varepsilon^{-2}\left\|d_{A} B_{t}\right\|^{2} \\
& -3\left\langle C, *_{s}\left[B_{t} \wedge B_{t}\right]\right\rangle+\left\langle *_{s} d^{2} X_{s}(A)\left(B_{t}, B_{t}\right), B_{t}\right\rangle .
\end{aligned}
$$

(See [2, page 622].) By (14), the connection $A(\cdot, t)+\Phi(\cdot, t) d s \in \mathcal{A}\left(P_{f}\right)$ satisfies the requirements of Lemma 2.1 for $t \geq 1$ and δ sufficiently small. Applying the estimate (13) to the triple $\alpha:=B_{t}, \phi:=C, \psi:=0$ and using the identity $\nabla_{s} *_{s} C+\varepsilon^{-2} d_{A} *_{s} B_{t}=0$, we obtain

$$
\left\|B_{t}\right\|^{2}+\|C\|^{2} \leq c_{2}\left(\left\|\nabla_{s} B_{t}-d X_{s}(A) B_{t}-d_{A} C\right\|^{2}+\varepsilon^{-2}\left\|d_{A} B_{t}\right\|\right)
$$

(The mistake in [2] is the factor ε^{2} in front of $\|C\|^{2}$ in this inequality; it can be removed because of the improved inequality in Lemma 2.1.) Combining this with the identity for $f^{\prime \prime}(s)$ and the fact that $\left\|B_{t}\right\|_{L^{\infty}} \leq c_{1} \delta$ we obtain the desired inequality $f^{\prime \prime}(t) \geq \rho^{2} f(t)$ for $t \geq 1$ and $\rho>0$ sufficiently small. With this understood the proof proceeds as in [2].

3 Bubbling analysis

The assertion in [2, page 634] that the limit connection Ξ_{0} represents a nonconstant holomorphic sphere $S^{2} \rightarrow \mathcal{M}(P)$ does not seem to follow from the argument in [2]. A modified bubbling argument will result in a nonconstant holomorphic sphere but only proves a weaker estimate. More precisely, we prove the following theorem instead of [2, Theorem 9.1].
Theorem 3.1. Let $a^{ \pm} \in \mathcal{A}_{\text {flat }}\left(P_{f}, H\right)$ and assume that either $H \in \mathcal{H}_{0}^{\text {reg }}$ and $\mu_{H}\left(a^{-}, a^{+}\right) \leq 3$, or $\mathcal{C} \mathcal{S}_{H}\left(a^{-}\right)-\mathcal{C} \mathcal{S}_{H}\left(a^{+}\right)<8 \pi^{2}$. Then there exist positive constants ε_{0} and c_{0} such that

$$
\begin{equation*}
\varepsilon^{-1}\left\|F_{A}\right\|_{L^{\infty}}+\left\|\partial_{t} A-d_{A} \Psi\right\|_{L^{\infty}} \leq c_{0} \tag{15}
\end{equation*}
$$

for every solution A, Φ, Ψ of (1-3) with $0<\varepsilon \leq \varepsilon_{0}$.
Remark 3.2. The assertion of [2, Theorem 8.1] continues to hold if the hypothesis (8.1) is replaced by the weaker inequality (15). To see this, replace the last inequality in [2, page 625] by $\left\|C^{\nu}\right\|_{L^{p}} \leq c \varepsilon_{\nu}^{2 / p-1}$ or, equivalently,

$$
\left\|F_{A_{\nu}}\right\|_{L^{p}} \leq c \varepsilon_{\nu}^{1+2 / p}
$$

For $p=2$ this follows from the first inequality in [2, page 625, Step 2], for $p=\infty$ it holds by assumption, and for $2 \leq p \leq \infty$ it follows by interpolation. Now replace the constant ε_{ν}^{2} by $\varepsilon_{\nu}^{1+2 / p}$ in the following places.

- In the inequality (8.4) on page 626.
- Replace the inequality $\left\|A^{\prime}-A\right\|_{L^{p}} \leq c_{2} \varepsilon^{2}$ by $\left\|A^{\prime}-A\right\|_{L^{p}} \leq c_{2} \varepsilon^{1+2 / p}$ in the middle of page 626 .
- In the first two inequalities after (8.9), in the first inequality after (8.10), and in the first inequality in the proof of Step 5 (page 628).
- In the first inequality on page 629 and in the last inequality before (8.11).

The next theorem is a local version on [2, Theorem 8.1]. It is needed in the proof of Theorem 3.1. Let $\Omega_{\nu} \subset \mathbb{C}$ be an exhausting sequence of open sets and $s_{\nu}, \varepsilon_{\nu}>0, \delta_{\nu}>0$ be seqences of real numbers such that $s_{\nu} \rightarrow s_{0}, \varepsilon_{\nu} \rightarrow 0$, $\delta_{\nu} \rightarrow 0$. Abbreviate $*_{\nu s}:=*_{s_{\nu}+\delta_{\nu} s}$ and $X_{\nu s}:=\delta_{\nu} X_{s_{\nu}+\delta_{\nu} s}$.

Theorem 3.3. Let $\Xi_{\nu}=A_{\nu}+\Phi_{\nu} d s+\Psi_{\nu} d t$ be a sequence of solutions of the equations

$$
\begin{align*}
\partial_{t} A_{\nu}-d_{A_{\nu}} \Psi_{\nu}+*_{\nu s}\left(\partial_{s} A_{\nu}-d_{A_{\nu}} \Phi_{\nu}-X_{\nu s}(A)\right) & =0, \\
\partial_{t} \Phi_{\nu}-\partial_{s} \Psi_{\nu}-\left[\Phi_{\nu}, \Psi_{\nu}\right]+\varepsilon_{\nu}^{-2} * F_{A_{\nu}} & =0, \tag{16}
\end{align*}
$$

on $\Omega_{\nu} \times P$ such that

$$
\begin{gather*}
\sup _{\nu}\left(\varepsilon_{\nu}^{-1}\left\|F_{A_{\nu}}\right\|_{L^{2}\left(\Omega_{\nu} \times \Sigma\right)}+\left\|\partial_{t} A_{\nu}-d_{A_{\nu}} \Psi_{\nu}\right\|_{L^{2}\left(\Omega_{\nu} \times \Sigma\right)}\right)<\infty, \tag{17}\\
\sup _{\nu}\left(\varepsilon_{\nu}^{-1}\left\|F_{A_{\nu}}\right\|_{L^{\infty}\left(\Omega_{\nu} \times \Sigma\right)}+\left\|\partial_{t} A_{\nu}-d_{A_{\nu}} \Psi_{\nu}\right\|_{L^{\infty}\left(\Omega_{\nu} \times \Sigma\right)}\right)<\infty .
\end{gather*}
$$

Then there is a subsequence, still denoted by Ξ_{ν}, a sequence of gauge transformations $g_{\nu}: \Omega_{\nu} \rightarrow \mathcal{G}(P)$, and a connection $\Xi_{0}=A_{0}+\Phi_{0} d s+\Psi_{0} d t$ on $\mathbb{C} \times P$ such that

$$
\begin{gathered}
\partial_{t} A_{0}-d_{A_{0}} \Psi_{0}+*_{s_{0}}\left(\partial_{s} A_{0}-d_{A_{0}} \Phi_{0}\right)=0, \quad F_{A_{0}}=0 \\
\lim _{\nu \rightarrow \infty}\left(\left\|g_{\nu}^{*} A_{\nu}-A_{0}\right\|_{L^{\infty}(K \times \Sigma)}+\sup _{(s, t) \in K}\left\|g_{\nu}^{-1} B_{\nu t} g_{\nu}-B_{0 t}\right\|_{L^{2}(\Sigma)}\right)=0
\end{gathered}
$$

for every compact subset $K \subset \mathbb{C}$. Here we denote $B_{\nu t}:=\partial_{t} A_{\nu}-d_{A_{\nu}} \Psi_{\nu}$ and $B_{0 t}:=\partial_{t} A_{0}-d_{A_{0}} \Psi_{0}$.

Proof. We argue as in the proof of [2, Theorem 8.1, Step 3] and use Lemma 1.3 to obtain sharper estimates. More precisely, for every compact subset $K \subset \mathbb{C}$ there is a constant $\nu_{K}>0$ such that, for every $(s, t) \in K$ and every $\nu \geq \nu_{K}$, there is a unique section $\eta_{\nu}(s, t) \in \Omega^{0}\left(\Sigma, \mathfrak{g}_{P}\right)$ such that

$$
F_{A_{\nu}^{\prime}}=0, \quad A_{\nu}^{\prime}:=A_{\nu}+*_{\nu S} d_{A_{\nu}} \eta_{\nu}
$$

and

$$
\begin{equation*}
\left\|d_{A_{\nu}} \eta_{\nu}\right\|_{L^{\infty}(\Sigma)} \leq c_{1}\left\|F_{A_{\nu}}\right\|_{L^{\infty}(\Sigma)} \leq c_{2} \varepsilon_{\nu} \tag{18}
\end{equation*}
$$

Choose $\Phi_{\nu}^{\prime}(s, t), \Psi_{\nu}^{\prime}(s, t) \in \Omega^{0}\left(\Sigma, \mathfrak{g}_{P}\right)$ such that

$$
d_{A_{\nu}^{\prime}} *_{\nu s}\left(\partial_{s} A_{\nu}^{\prime}-d_{A_{\nu}^{\prime}} \Phi_{\nu}^{\prime}-X_{\nu s}\left(A_{\nu}^{\prime}\right)\right)=d_{A_{\nu}^{\prime}} *_{\nu s}\left(\partial_{t} A_{\nu}^{\prime}-d_{A_{\nu}^{\prime}} \Psi_{\nu}^{\prime}\right)=0 .
$$

Note that the sequence $\Xi_{\nu}^{\prime}=A_{\nu}^{\prime}+\Phi_{\nu}^{\prime} d s+\Psi_{\nu}^{\prime} d t$ depends only on ν and not on the compact set K in question. One proves exactly as in [2, pages 626-627] that the sequence Ξ_{ν}^{\prime} satisfies the estimates

$$
\begin{align*}
\left\|\Xi_{\nu}^{\prime}-\Xi_{\nu}\right\|_{1, p, \varepsilon ; K} & \leq c_{K, p} \varepsilon_{\nu}^{1+2 / p} \tag{19}\\
\left\|B_{\nu t}^{\prime}\right\|_{L^{\infty}(K \times \Sigma)} & \leq c_{K} \tag{20}\\
\left\|B_{\nu t}^{\prime}+*_{\nu s}\left(B_{\nu s}^{\prime}-X_{\nu s}\left(A_{\nu}^{\prime}\right)\right)\right\|_{L^{p}(K \times \Sigma)} & \leq c_{K, p} \varepsilon_{\nu}^{1+2 / p}, \tag{21}
\end{align*}
$$

for every compact set $K \subset \mathbb{C}$ and every $p \geq 2$, with suitable positive constants c_{K} and $c_{K, p}$. In addition we wish to prove the estimate

$$
\begin{equation*}
\sup _{K}\left\|B_{\nu t}^{\prime}-B_{\nu t}\right\|_{L^{2}(\Sigma)} \leq c_{K} \sqrt{\varepsilon_{\nu}} . \tag{22}
\end{equation*}
$$

To see this recall the identities (8.5-7) from [2]. They have the form

$$
\begin{align*}
B_{t}^{\prime}-B_{t}= & d_{A^{\prime}}\left(\Psi^{\prime}-\Psi\right)+*_{s} d_{A} \nabla_{t} \eta+*_{s}\left[B_{t}, \eta\right] \\
d_{A} *_{s} d_{A}\left(\Psi^{\prime}-\Psi\right)= & d_{A} *_{s} B_{t}-\left[d_{A} B_{t}, \eta\right]-\left[F_{A}, \nabla_{t} \eta\right] \\
& -\left[\left(A^{\prime}-A\right) \wedge\left(\left[d_{A} \nabla_{t} \eta+\left[B_{t}, \eta\right]\right)\right]\right. \tag{23}\\
d_{A} *_{s} d_{A} \nabla_{t} \eta= & -d_{A} B_{t}-\left[d_{A} \nabla_{t} \eta \wedge d_{A} \eta\right]-\left[\left[B_{t}, \eta\right] \wedge d_{A} \eta\right] \\
& -2\left[B_{t} \wedge *_{s} d_{A} \eta\right]-\left[d_{A} *_{s} B_{t}, \eta\right]
\end{align*}
$$

Here we have dropped the subscript ν. Since

$$
d_{A} B_{t}=\nabla_{t} F_{A}, \quad d_{A} *_{s} B_{t}=d_{A} B_{s}=\nabla_{s} F_{A}
$$

we obtain from Lemma 1.3 that, for every compact set $K \subset \mathbb{C}$, there is a constant $c_{K}^{\prime}>0$ such that

$$
\sup _{K}\left(\left\|d_{A} B_{t}\right\|_{L^{2}(\Sigma)}+\left\|d_{A} *_{s} B_{t}\right\|_{L^{2}(\Sigma)}\right) \leq c_{K}^{\prime} \sqrt{\varepsilon} .
$$

Hence it follows from (18) and the last equation in (23) that

$$
\sup _{K}\left\|d_{A} \nabla_{t} \eta\right\|_{L^{2}(\Sigma)} \leq c_{K}^{\prime \prime} \sqrt{\varepsilon} .
$$

Using this estimate and the second equation in (23) we obtain

$$
\sup _{K}\left\|d_{A}\left(\Psi^{\prime}-\Psi\right)\right\|_{L^{2}(\Sigma)} \leq c_{K}^{\prime \prime \prime} \sqrt{\varepsilon}
$$

Combining the last two estimates with the first equation in (23) we obtain (22). Now Ξ_{ν}^{\prime} descends to a sequence

$$
\bar{u}_{\nu}^{\prime}: K \rightarrow \mathcal{M}(P)
$$

of approximate holomorphic curves (see (21)) with uniformly bounded derivatives (see (20)). We must prove that the sequence \bar{u}_{ν}^{\prime} is bounded in $W^{2, p}$ for some $p>2$. By the elliptic bootstrapping analysis for holomorphic curves (see [4, Appendix B]), this is equivalent to a $W^{1, p}$-bound on $\bar{\partial}_{J}\left(\bar{u}_{\nu}^{\prime}\right)$. To obtain such a bound we examine the following formula from [2, page 627]:

$$
\begin{align*}
B_{t}^{\prime}+*_{s}\left(B_{s}^{\prime}-X_{s}\left(A^{\prime}\right)\right)= & *_{s} \dot{*}_{s} d_{A} \eta-\left[X_{s}(A), \eta\right]-*_{s}\left(X_{s}\left(A^{\prime}\right)-X_{s}(A)\right) \\
& +\left[\left(A^{\prime}-A\right), \nabla_{s} \eta\right]-*_{s}\left[\left(A^{\prime}-A\right), \nabla_{t} \eta\right] \tag{24}\\
& -d_{A^{\prime}}\left(\Psi^{\prime}-\Psi+\nabla_{s} \eta\right)-*_{s} d_{A^{\prime}}\left(\Phi^{\prime}-\Phi-\nabla_{t} \eta\right) .
\end{align*}
$$

To begin with observe that, by Lemma 1.3, we have estimates of the form

$$
\int_{K}\left(\left\|d_{A} B_{t}\right\|_{L^{2}(\Sigma)}^{p}+\left\|d_{A} *_{s} B_{t}\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c_{K, p} \varepsilon^{p}
$$

Carrying the argument in the proof of Lemma 1.3 one step further we obtain estimates for the second derivatives of the curvature and hence

$$
\int_{K}\left(\left\|d_{A} \nabla_{s} B_{t}\right\|_{L^{2}(\Sigma)}^{p}+\left\|d_{A} *_{s} \nabla_{s} B_{t}\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c_{K, p}
$$

similarly for ∇_{t}. Differentiate the identities in (23) to obtain

$$
\begin{gathered}
\int_{K}\left(\left\|d_{A} \nabla_{s} \nabla_{s} \eta\right\|_{L^{2}(\Sigma)}^{p}+\left\|d_{A} \nabla_{t} \nabla_{t} \eta\right\|_{L^{2}(\Sigma)}^{p}+\left\|d_{A} \nabla_{s} \nabla_{t} \eta\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c_{K, p}, \\
\int_{K}\left(\left\|d_{A} \nabla_{s}\left(\Psi^{\prime}-\Psi\right)\right\|_{L^{2}(\Sigma)}^{p}+\left\|d_{A} \nabla_{t}\left(\Psi^{\prime}-\Psi\right)\right\|_{L^{2}(\Sigma)}^{p}\right) \leq c_{K, p} .
\end{gathered}
$$

Combining these estimates with (24) we obtain

$$
\int_{K}\left\|\nabla_{s}\left(B_{t}^{\prime}+*_{s}\left(B_{s}^{\prime}-X_{s}\left(A^{\prime}\right)\right)\right)\right\|_{L^{2}(\Sigma)}^{p} \leq c_{K, p}
$$

and similarly for ∇_{t}. This is the required $W^{1, p}$-estimate for $\bar{\partial}_{J}\left(\bar{u}_{\nu}^{\prime}\right)$. It follows that \bar{u}_{ν}^{\prime} is bounded in $W^{2, p}$ and hence has a C^{1}-convergent subsequence. The limit of this subsequence is the required holomorphic curve in $\mathcal{M}(P)$. The assertion of the theorem now follows from (22) and the C^{1}-convergence of \bar{u}_{ν}^{\prime}.
Proof of Theorem 3.1. Suppose, by contradiction, that there are sequences $\varepsilon_{\nu} \rightarrow 0$ and $\Xi_{\nu}=A_{\nu}+\Phi_{\nu} d s+\Psi_{\nu} d t$ such that Ξ_{ν} satisfies (1-3) with $\varepsilon=\varepsilon_{\nu}$ and

$$
\varepsilon_{\nu}^{-1}\left\|F_{A_{\nu}}\right\|_{L^{\infty}}+\left\|\partial_{t} A_{\nu}-d_{A_{\nu}} \Psi_{\nu}\right\|_{L^{\infty}} \rightarrow \infty
$$

For each ν define the energy density $e_{\nu}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
e_{\nu}(s, t):=\varepsilon_{\nu}^{-1}\left\|F_{A_{\nu}(s, t)}\right\|_{L^{2}(\Sigma)}+\left\|\partial_{t} A_{\nu}(s, t)-d_{A_{\nu}(s, t)} \Psi_{\nu}(s, t)\right\|_{L^{2}\left(\Sigma, *_{s}\right)} .
$$

By Corollary 1.2, and the time shift invariance of equation (1), this sequence is unbounded. Passing to a subsequence, we may assume that there is a sequence $w_{\nu}=\left(s_{\nu}, t_{\nu}\right) \in[0,1] \times \mathbb{R}$ such that $e_{\nu}\left(w_{\nu}\right) \rightarrow \infty$. Applying a time shift, and passing to a further subsequence, we may assume that w_{ν} converges to $w_{0}=\left(s_{0}, t_{0}\right)$. Using Hofer's lemma ([2, Lemma 9.3]), we may assume that there is a sequence of real numbers $0<\rho_{\nu}<1 / 2$ such that

$$
\sup _{\left|w-w_{\nu}\right| \leq \rho_{\nu}} e_{\nu}(w) \leq 2 e_{\nu}\left(w_{\nu}\right), \quad \rho_{\nu} e_{\nu}\left(w_{\nu}\right) \rightarrow \infty
$$

There are three cases to consider.
Case 1: $\varepsilon_{\nu} e_{\nu}\left(w_{\nu}\right) \rightarrow \infty$. In this case a nontrivial instanton on S^{4} bubbles off. The argument is standard (see [2, pages 630-631]).
Case 2: $\varepsilon_{\nu} e_{\nu}\left(w_{\nu}\right) \rightarrow 1$. In this case a nontrivial instanton on $\mathbb{C} \times \Sigma$ bubbles off. The bubbling analysis relies on an asymptotic analysis of finite energy solutions of (1) over $\mathbb{C} \times \Sigma$ and on the resulting energy quantization. In [2, pages 632-633] this argument is only sketched. In [3, Proposition 11.1] an analogous argument has been carried out in a situation where the space of connections on P is replaced by a finite dimensional symplectic manifold equipped with a Hamiltonian group action. The adaptation of the proof to the present case is straight forward.
Case 3: $\varepsilon_{\nu} e_{\nu}\left(w_{\nu}\right) \rightarrow 0$. In this case a nonconstant holomorphic sphere in the moduli space $\mathcal{M}(P):=\mathcal{A}_{\text {flat }}(P) / \mathcal{G}(P)$ of flat connections bubbles off. Abbreviate $c_{\nu}:=e_{\nu}\left(w_{\nu}\right)$ and consider the rescaled sequence

$$
\begin{gathered}
\widetilde{A}_{\nu}(w):=A_{\nu}\left(w_{\nu}+c_{\nu}^{-1} w\right) \\
\widetilde{\Phi}_{\nu}(w):=c_{\nu}^{-1} \Phi_{\nu}\left(w_{\nu}+c_{\nu}^{-1} w\right), \quad \widetilde{\Psi}_{\nu}(w):=c_{\nu}^{-1} \Psi_{\nu}\left(w_{\nu}+c_{\nu}^{-1} w\right) .
\end{gathered}
$$

This triple satisfies (16) and (17) with $\delta_{\nu}:=c_{\nu}^{-1}, \varepsilon_{\nu}$ replaced by $\widetilde{\varepsilon}_{\nu}:=\varepsilon_{\nu} c_{\nu}$, and $\Omega_{\nu}:=B_{\rho_{\nu} c_{\nu}}$. By assumption, we have

$$
\begin{equation*}
\left\|\partial_{t} \widetilde{A}_{\nu}-d_{\widetilde{A}_{\nu}} \widetilde{\Psi}_{\nu}\right\|_{L^{2}(\Sigma)}+\frac{1}{\widetilde{\varepsilon}_{\nu}}\left\|F_{\widetilde{A}_{\nu}}\right\|_{L^{2}(\Sigma)}=\frac{e_{\nu}\left(w_{\nu}+c_{\nu}^{-1} w\right)}{e_{\nu}\left(w_{\nu}\right)} \leq 2 \tag{25}
\end{equation*}
$$

for $|w| \leq \rho_{\nu} c_{\nu}$ and

$$
\begin{equation*}
\left\|\partial_{t} \widetilde{A}_{\nu}(0)-d_{\widetilde{A}_{\nu}(0)} \widetilde{\Psi}_{\nu}(0)\right\|_{L^{2}(\Sigma)}+\frac{1}{\widetilde{\varepsilon}_{\nu}}\left\|F_{\widetilde{A}_{\nu}(0)}\right\|_{L^{2}(\Sigma)}=1 \tag{26}
\end{equation*}
$$

It follows from (25) and Corollary 1.2 that, for every compact subset $K \subset \mathbb{C}$, there are positive constants ν_{K} and c_{K} such that, for every $\nu \geq \nu_{K}$,

$$
\begin{equation*}
\left\|\partial_{t} \widetilde{A}_{\nu}-d_{\widetilde{A}_{\nu}} \widetilde{\Psi}_{\nu}\right\|_{L^{\infty}(K \times \Sigma)}+\frac{1}{\widetilde{\varepsilon}_{\nu}}\left\|F_{\widetilde{A}_{\nu}}\right\|_{L^{\infty}(K \times \Sigma)} \leq c_{K} \tag{27}
\end{equation*}
$$

Hence $\widetilde{\Xi}_{\nu}=\widetilde{A}_{\nu}+\widetilde{\Phi}_{\nu} d s+\widetilde{\Psi}_{\nu} d t$ satisfies all the requirements of Theorem 3.3. The limit connection Ξ_{0} represents a finite energy holomorphic sphere in the symplectic quotient $\mathcal{M}(P)$. We prove that it is nonconstant. Namely, by (27) and Lemma 1.3, we have

$$
\lim _{\nu \rightarrow \infty} \frac{1}{\widetilde{\varepsilon}_{\nu}}\left\|F_{\widetilde{A}_{\nu}(0)}\right\|_{L^{2}(\Sigma)}=0
$$

Hence, by Theorem 3.3 and (26),

$$
\left\|\partial_{t} A_{0}(0)-d_{A_{0}(0)} \Psi_{0}(0)\right\|_{L^{2}(\Sigma)}=\lim _{\nu \rightarrow \infty}\left\|\partial_{t} \widetilde{A}_{\nu}(0)-d_{\widetilde{A}_{\nu}(0)} \widetilde{\Psi}_{\nu}(0)\right\|_{L^{2}(\Sigma)}=1
$$

This concludes the discussion of case 3 .
Since the bubbling in all three cases results in nontrivial instantons, respectively nonconstant holomorphic spheres, we can argue as in [2, pages 624-625] to obtain a contradiction. Thus the theorem is proved.

One can now use Theorem 3.1 and the strenthened form of [2, Theorem 8.1] in Remark 3.2 to prove [2, Theorem 9.2].

References

[1] S. Dostoglou and D.A. Salamon, Cauchy-Riemann operators, self-duality, and the spectral flow, in First European Congress of Mathematics, Volume I, Invited Lectures (Part 1), edited by A. Joseph, F. Mignot, F. Murat, B. Prum, R. Rentschler, Birkhäuser Verlag, Progress in Mathematics, Vol. 119, 1994, pp. 511-545.
[2] S. Dostoglou and D.A. Salamon, Self-dual instantons and holomorphic curves, Annals of Mathematics 139 (1994), 581-640.
[3] A.R. Gaio, D.A. Salamon, Gromov-Witten invariants of symplectic quotients and adiabatic limits, Preprint ETH-Zürich, June 2001.
[4] D. McDuff, D. Salamon, J-holomorphic Curves and Quantum Cohomology, Third Edition, to appear 2003.
[5] D.A. Salamon, Quantum products for mapping tori and the Atiyah-Floer conjecture, Amer. Math. Soc. Transl. 196 (1999), 199-235. Revised in December 2000, http://www.math.ethz.ch/ salamon
[6] K. Uhlenbeck, Connections with L^{p} bounds on the curvature, Commun. Math. Phys. 83 (1982), 31-42.
[7] K. Wehrheim, Uhlenbeck Compactness, in preparation.

