Erratum: Self-dual instantons and holomorphic curves

Stamatis Dostoglou Dietmar A. Salamon University of Missouri ETH–Zürich

28 September 2002

We correct two mistakes in [2]. The first concerns the exponential decay in the proof of [2, Theorem 7.4] (see Section 2 below) and the second concerns the bubbling argument in the proof of [2, Theorem 9.1] (see Section 3 below).

The analysis deals with the small ε limit of the self-duality equations

$$\partial_t A - d_A \Psi + *_s (\partial_s A - d_A \Phi - X_s(A)) = 0, \partial_t \Phi - \partial_s \Psi - [\Phi, \Psi] + \varepsilon^{-2} * F_A = 0,$$
(1)

$$A(s+1,t) = f^*A(s,t), \ \Phi(s+1,t) = f^*\Phi(s,t), \ \Psi(s+1,t) = f^*\Psi(s,t),$$
(2)

$$\lim_{t \to \pm \infty} A(s,t) = A^{\pm}(s), \ \lim_{t \to \pm \infty} \Phi(s,t) = \Phi^{\pm}(s), \ \lim_{t \to \pm \infty} \Psi(s,t) = 0,$$
(3)

Here $P \to \Sigma$ is a nontrivial SO(3) bundle over a compact oriented 2-manifold (with area form), $f: P \to P$ is an SO(3)-equivariant lift of an area preserving diffeomorphism $h: \Sigma \to \Sigma$, P_f and Σ_h denote the respective mapping tori, and $*_s$ denotes a family of Hodge *-operators on Σ associated to a smooth family of complex structures J_s such that $J_{s+1} = h^*J_s$. $X_s: \mathcal{A}(P) \to \Omega^1(\Sigma, \mathfrak{g}_P)$ denotes a smooth family of Hamiltonian vector fields associated to Hamiltonian functions $H_s: \mathcal{A}(P) \to \mathbb{R}$ that are determined by the holonomy. They are gauge invariant and are smooth with respect to the C^0 -topology on $\mathcal{A}(P)$. We have $\mathcal{A}(s,t) \in \mathcal{A}(P)$ and $\Phi(s,t), \Psi(s,t) \in \Omega^0(\Sigma, \mathfrak{g}_P)$. The limit connections $a^{\pm} = A^{\pm} + \Phi^{\pm} ds \in \mathcal{A}_{\text{flat}}(P_f, H)$ are H-flat as in [1, Proposition 4.4].

For a connection $A \in \mathcal{A}(P)$ with sufficiently small curvature we denote by $H_A^1 := \ker d_A \cap \ker d_A *_s$ the space of harmonic 1-forms in $\Omega^1(\Sigma, \mathfrak{g}_P)$ with respect to the connection A and the Hodge *-operator $*_s$, and by $\pi_A : \Omega^1(\Sigma, \mathfrak{g}_P) \to H_A^1$ the projection associated to the Hodge decomposition

$$\Omega^1(\Sigma, \mathfrak{g}_P) = H^1_A \oplus \operatorname{im} d_A \oplus \operatorname{im} *_s d_A.$$

This is well defined whenever F_A is sufficiently small (in the L^{∞} -norm). The value of the parameter s is understood from the context. When a connection $A(s) + \Phi(s) ds$ on P_f is given we abbreviate $\nabla_s \alpha := \partial_s \alpha(s) + [\Phi(s), \alpha(s)]$.

1 A priori estimates

In preparation for the corrections in the proof of [2, Theorem 9.1] we need a stronger version of [2, Theorem 7.1].

Remark 1.1. The assertion of [2, Theorem 7.1] continues to hold if the hypothesis $||B_t||_{L^{\infty}} + \varepsilon ||C||_{L^{\infty}} \le c_0$ is replaced by the weaker inequality

$$\sup_{(s,t)\in\Omega} \|B_t(s,t)\|_{L^2(\Sigma)} + \varepsilon \sup_{(s,t)\in\Omega} \|C(s,t)\|_{L^2(\Sigma)} \le c_0.$$
(4)

All the estimates in the proof of [2, Theorem 7.1] continue to hold under this assumption. To see this consider, as an example, the inequality

$$|f_0| \le v_0 + c_1 u_0$$

on page 617. A key term in f_0 is the expression $\langle B_t, *[B_t \wedge C] \rangle$. We can estimate this term by the product $||B_t||_{L^2(\Sigma)} ||B_t||_{L^4(\Sigma)} ||C||_{L^4(\Sigma)}$ and use the fact that, by (4), the first factor is bounded by c_0 . Moreover, the inequality (4) implies $||F_{A(s,t)}||_{L^2(\Sigma)} \leq \varepsilon c_0$. This and the Sobolev embedding $W^{1,2}(\Sigma) \hookrightarrow L^4(\Sigma)$ imply uniform estimates of the form

$$\|\phi\|_{L^{4}(\Sigma)} \leq c_{1} \|d_{A}\phi\|_{L^{2}(\Sigma)},$$

$$\|\alpha\|_{L^{4}(\Sigma)} \leq c_{1} \left(\|\alpha\|_{L^{2}(\Sigma)} + \|d_{A}\alpha\|_{L^{2}(\Sigma)} + \|d_{A}*_{s}\alpha\|_{L^{2}(\Sigma)}\right)$$

for all $(s,t) \in \Omega$, $\phi \in \Omega^0(\Sigma, \mathfrak{g}_P)$, and $\alpha \in \Omega^1(\Sigma, \mathfrak{g}_P)$ (see [2, Lemma 7.6]). Applying this to $\phi = C$ and $\alpha = B_t$ we obtain

$$\|B_t\|_{L^4(\Sigma)} \|C\|_{L^4(\Sigma)} \le c_1 \sqrt{u_0 v_0}$$

and this leads to the required estimate. The term $\langle B_t, *_s d^2 X_s(A)(B_t, B_t) \rangle$ can be estimated by $\|B_t\|_{L^4(\Sigma)}^2 \leq v_0 + c_2 u_0$. A crucial observation is that the cubic terms in f_0 do not involve derivatives. The arguments in the subsequent steps for the estimates of the higher derivatives are similar (see for example the inequality $|f_1| \leq v_1 + c_3^{-1}(\varepsilon^{-1}v_0 + \varepsilon^{-2}u_0)$ on page 618).

Corollary 1.2. Let $\Omega \subset \mathbb{C}$ be an open set and $K \subset \Omega$ be a compact subset. Then for every constant $c_0 > 0$, there exist constants $\varepsilon_0 > 0$ and c > 0 such that the following holds. If $0 < \varepsilon \leq \varepsilon_0$ and $\Xi = A + \Phi ds + \Psi dt$ is a connection on $\Omega \times \Sigma$ that satisfies (1) and (4) then

$$\|B_t\|_{L^{\infty}(K\times\Sigma)} + \varepsilon \,\|C\|_{L^{\infty}(K\times\Sigma)} \le c \left(\|B_t\|_{L^2(\Omega\times\Sigma)} + \varepsilon \,\|C\|_{L^2(\Omega\times\Sigma)}\right).$$

Proof. By Remark 1.1, the connection Ξ satisfies (7.4) in [2, page 615]. The assertion follows by taking $p = \infty$. More precisely, (7.4) asserts that

$$\|B_t\|_{L^{\infty}(K\times\Sigma)} + \varepsilon \|d_A C\|_{L^{\infty}(K\times\Sigma)} \le c \left(\|B_t\|_{L^2(\Omega\times\Sigma)} + \varepsilon \|C\|_{L^2(\Omega\times\Sigma)}\right).$$

Since $C + \varepsilon^{-2} * F_A = 0$, it follows from (4) that $||F_A||_{L^2(\Sigma)} \leq \varepsilon c_0$, hence $||C||_{L^4(\Sigma)} \leq c_1 ||d_A C||_{L^2(\Sigma)}$, hence $||F_A||_{L^4(\Sigma)} \leq \varepsilon c_2$ and, by [2, Lemma 7.6], $||C||_{L^{\infty}(\Sigma)} \leq c_3 ||d_A C||_{L^4(\Sigma)} \leq c_4 ||d_A C||_{L^{\infty}(\Sigma)}$.

The next a priori estimate is an adaptation of [3, Lemma 9.1] to the present context. It is needed in the bubbling analysis in Section 3.

Lemma 1.3. There is a constant $\delta_0 > 0$ with the following significance. Let $\Omega \subset \mathbb{R}^2$ be an open set and $K \subset \Omega$ be a compact subset. Then, for every $c_0 > 0$ and every $p \geq 2$, there are positive constants ε_0 and c such that the following holds. If $0 < \varepsilon \leq \varepsilon_0$ and the maps $A : \Omega \to \mathcal{A}(P)$ and $\Phi, \Psi : \Omega \to \Omega^0(\Sigma, \mathfrak{g}_P)$ satisfy (1) and

$$\|\partial_t A - d_A \Psi\|_{L^{\infty}(\Omega \times \Sigma)} \le c_0, \qquad \|F_A\|_{L^{\infty}(\Omega \times \Sigma)} \le \delta_0, \tag{5}$$

then

$$\int_{K} \left(\left\| F_{A} \right\|_{L^{2}(\Sigma)}^{p} + \varepsilon^{p} \left\| \nabla_{s} F_{A} \right\|_{L^{2}(\Sigma)}^{p} + \varepsilon^{p} \left\| \nabla_{t} F_{A} \right\|_{L^{2}(\Sigma)}^{p} \right) \le c \varepsilon^{2p}, \tag{6}$$

$$\sup_{K} \left(\|F_A\|_{L^2(\Sigma)} + \varepsilon \, \|\nabla_{\!s} F_A\|_{L^2(\Sigma)} + \varepsilon \, \|\nabla_{\!t} F_A\|_{L^2(\Sigma)} \right) \le c\varepsilon^{2-2/p}. \tag{7}$$

The proof uses the following estimate. Denote by $B_r(z) \subset \mathbb{C}$ the open ball of radius r centered at z and abbreviate $B_r := B_r(0)$.

Lemma 1.4 ([3]). Let $u: B_{R+r} \to \mathbb{R}$ be a C^2 -function and $f, g: B_{R+r} \to \mathbb{R}$ be continuous such that

$$f \le g + \Delta u, \qquad u \ge 0, \qquad f \ge 0, \qquad g \ge 0.$$

Then

$$\int_{B_R} f \le \int_{B_{R+r}} g + \frac{4}{r^2} \int_{B_{R+r} \setminus B_R} u.$$

Proof of Lemma 1.3. As in [2, Lemma 7.6] one can show that there exist constants $\delta_0 > 0$ and $c_1 > 0$ such that every $A \in \mathcal{A}(P)$ with $||F_A||_{L^{\infty}(\Sigma)} \leq \delta_0$ satisfies the inequalities

$$\|\phi\| \le c_1 \|d_A\phi\|,$$

$$\|d_A(*_s dX_s(A)\alpha + \dot{*}_s \alpha)\| \le c_1(\|\alpha\| + \|d_A\alpha\| + \|d_A*_s\alpha\|)$$

for $s \in \mathbb{R}$, $\phi \in \Omega^0(\Sigma; \mathfrak{g}_P)$, and $\alpha \in \Omega^1(\Sigma; \mathfrak{g}_P)$. Here and in the following all norms are L^2 -norms on Σ .

Now let A, Φ, Ψ satisf the hypotheses of the lemma and define

$$B_s := \partial_s A - d_A \Phi, \quad B_t := \partial_t A - d_A \Psi, \quad C := \partial_t \Phi - \partial_s \Psi - [\Phi, \Psi].$$
(8)

Then the proof of [2, Theorem 7.1] shows that

$$\varepsilon^2 \left(\nabla_s \nabla_s C + \nabla_t \nabla_t C \right) = d_A^{*_s} d_A C - 2 * \left[B_t \wedge B_t \right] + \left[*_s X_s(A) \wedge B_t \right] \\ - * d_A \left(*_s dX_s(A) B_t + \dot{*}_s B_t \right).$$

Hence, with $\Delta := \partial^2/\partial s^2 + \partial^2/\partial t^2$ the standard Laplacian, we have

$$\begin{split} \Delta \|C\|^2 &= 2 \|\nabla_s C\|^2 + 2 \|\nabla_t C\|^2 + 2\langle \nabla_s \nabla_s C + \nabla_t \nabla_t C, C\rangle \\ &= 2\varepsilon^{-4} \|d_A *_s B_t\|^2 + 2\varepsilon^{-4} \|d_A B_t\|^2 + 2\varepsilon^{-2} \|d_A C\|^2 \\ &- 4\varepsilon^{-2} \langle C, *[B_t \wedge B_t] \rangle + 2\varepsilon^{-2} \langle C, *[*_s X_s(A) \wedge B_t] \rangle \\ &- 2\varepsilon^{-2} \langle C, *d_A (*_s dX_s(A)B_t + \dot{*}_s B_t) \rangle \\ &\geq \frac{\delta}{\varepsilon^2} \|C\|^2 - \frac{c}{\varepsilon^2} \|C\| \,. \end{split}$$

The last inequality holds for $\varepsilon \leq \varepsilon_0$, with ε_0 sufficiently small, and suitable positive constants δ and c, depending only on δ_0 , c_0 , and c_1 (as well as the metrics on Σ and the vector fields X_s). Since $2\Delta ||C||^p \geq p ||C||^{p-2} \Delta ||C||^2$ for $p \geq 2$, this implies

$$\|C\|^{p} \leq \frac{c}{\delta} \|C\|^{p-1} + \frac{2\varepsilon^{2}}{p\delta} \Delta \|C\|^{p}.$$

Using the inequality $ab \leq a^p/p + b^q/q$ with 1/p + 1/q = 1, $a := c/\delta$ and $b := ||C||^{p-1}$ we obtain $b^q = ||C||^p$, and hence

$$\left\|C\right\|^{p} \leq \frac{c^{p}}{\delta^{p}} + \frac{2\varepsilon^{2}}{\delta} \Delta \left\|C\right\|^{p}.$$
(9)

By Lemma 1.4, this implies that

$$\int_{B_R(z)} \|C\|^p \le \frac{\pi (R+r)^2 c^p}{\delta^p} + \frac{8\varepsilon^2}{r^2 \delta} \int_{B_{R+r}(z)} \|C\|^p$$

for every $z \in \mathbb{C}$ and every pair of positive real numbers R and r such that $B_{R+r}(z) \subset \Omega$. Now observe that $\varepsilon^2 ||C|| = ||F_A|| \leq \delta_0 \operatorname{Vol}(\Sigma)$ and use the last inequality repeatedly, with R replaced by $R + r, R + 2r, \ldots, R + (p-1)r$, to obtain the estimate $\int_{B_R(z)} ||C||^p \leq c_p$ for every $z \in \mathbb{C}$ such that $B_{R+pr}(z) \subset \Omega$. Now choose R and r such that $B_{R+pr}(z) \subset \Omega$ for every $z \in K$. Cover K by finitely many balls of radius R to obtain

$$\int_{K} \left\| F_{A} \right\|^{p} = \varepsilon^{2p} \int_{K} \left\| C \right\|^{p} \le c_{K,p} \varepsilon^{2p}.$$
(10)

It follows from (9) that the function $z \mapsto ||C(z)||^p + c^p |z - z_0|^2 / 8\delta^{p-1}\varepsilon^2$ is subharmonic in Ω for every $z_0 \in \mathbb{C}$. Hence, by the mean value inequality and (10), we have

$$\sup_{K} \|F_A\| = \varepsilon^2 \sup_{K} \|C\| \le c_{K,p} \varepsilon^{2-2/p}$$
(11)

for a suitable constant $c_{K,p}$. It follows from (10) and (11) that every connection $\Xi = A + \Phi ds + \Psi dt$ on $\Omega \times P$ that satisfies (1) and (5) also satisfies (4) in every compact subset of Ω and hence, by Corollary 1.2, satisfies the hypotheses of [2, Theorem 7.1]. Hence it follows from [2, Theorem 7.1] with $p = \infty$ that, for every open set U with $cl(U) \subset \Omega$, there is a constant c_U such that every connection Ξ on $\Omega \times P$ that satisfies (1) and (5) also satisfies the estimates

$$\varepsilon \|\nabla_{s}B_{t}\|_{L^{\infty}(U\times\Sigma)} + \varepsilon \|\nabla_{t}B_{t}\|_{L^{\infty}(U\times\Sigma)} \leq c_{U},$$

$$\varepsilon \|C\|_{L^{\infty}(U\times\Sigma)} + \varepsilon^{2} \|\nabla_{s}C\|_{L^{\infty}(U\times\Sigma)} + \varepsilon^{2} \|\nabla_{t}C\|_{L^{\infty}(U\times\Sigma)} \leq c_{U}, \quad (12)$$

$$\|C\|_{L^{2}(U\times\Sigma)} + \varepsilon \|\nabla_{s}C\|_{L^{2}(U\times\Sigma)} + \varepsilon \|\nabla_{t}C\|_{L^{2}(U\times\Sigma)} \leq c_{U}.$$

Note that the last inequality is equivalent to (6) for p = 2.

Now consider the function $u: U \to \mathbb{R}$ defined by

$$u(s,t)^{2} := \frac{1}{2} \left(\|C(s,t)\|^{2} + \varepsilon^{2} \|\nabla_{s}C(s,t)\|^{2} + \varepsilon^{2} \|\nabla_{t}C(s,t)\|^{2} \right)$$

Again all norms are L^2 -norms on Σ . In the following we shall assume, for simplicity, that the Hodge *-operator $*_s = *$ is independent of s and that $X_s = 0$ for all s. Then, as in the proof of [2, Theorem 7.1], we have

$$\begin{aligned} \Delta u^2 &= \varepsilon^{-2} \| d_A C \|^2 + \| \nabla_s C \|^2 + \| \nabla_t C \|^2 + \| d_A \nabla_s C \|^2 + \| d_A \nabla_t C \|^2 \\ &+ \varepsilon^2 \| \nabla_s \nabla_s C \|^2 + \varepsilon^2 \| \nabla_t \nabla_t C \|^2 + 2\varepsilon^2 \| \nabla_s \nabla_t C \|^2 \\ &- 2\varepsilon^2 \langle C, [\nabla_s C, \nabla_t C] \rangle - 2\varepsilon^{-2} \langle C, * [B_t \wedge B_t] \rangle \\ &- 4 \langle \nabla_s C, * [B_t \wedge \nabla_s B_t] \rangle - 4 \langle \nabla_t C, * [B_t \wedge \nabla_t B_t] \rangle \\ &+ \langle d_A \nabla_s C, [B_s, C] \rangle + \langle d_A \nabla_t C, [B_t, C] \rangle \\ &- \langle \nabla_s C, * [B_s \wedge * d_A C] \rangle - \langle \nabla_t C, * [B_t \wedge * d_A C] \rangle. \end{aligned}$$

For ε sufficiently small it follows that

$$\Delta u^2 \ge \frac{\delta}{\varepsilon^2} u^2 - \frac{c}{\varepsilon^2} u$$

with suitable positive constants δ and c. To see this examine the last eight terms in the formula for Δu^2 and use (12). Now it follows as in (9) that

$$u^p \le \frac{c}{\delta} u^{p-1} + \frac{2\varepsilon^2}{p\delta} \Delta u^p$$

for $p \geq 2$. By (11) and (12), we have $u \leq c'/\varepsilon$ for some constant c'. Hence we can argue as above to show that, for every compact subset $K \subset U$, there is a constant $c_{K,p} > 0$ such that $\int_K u^p \leq c_{K,p}$ and $\sup_K u^p \leq c_{K,p}\varepsilon^{-2}$. This proves the lemma.

2 Exponential decay

The estimate $f'' \ge \rho^2 f$ in [2, page 623] does not follow from the preceding inequalities. To prove it one needs the following refinement of [2, Lemma 7.5]. All norms are understood on $[0, 1] \times \Sigma$. Norms without subscript are L^2 -norms.

Lemma 2.1. Assume all H-flat connections on P_f are nondegenerate. Then there are positive constants δ_0 , ε_0 , and c such that the following holds. If $A+\Phi ds$ is a connection on P_f satisfying

$$\|F_A\|_{L^{\infty}} + \|\partial_s A - d_A \Phi - X_s(A)\|_{L^{\infty}} \le \delta_0$$

and $0 < \varepsilon \leq \varepsilon_0$ then

$$\|\alpha\|^{2} + \|\phi\|^{2} + \|\psi\|^{2} \leq c \left(\|*_{s} \nabla_{s} \alpha - *_{s} dX_{s}(A)\alpha - *_{s} d_{A} \phi - d_{A} \psi \|^{2} + \varepsilon^{2} \|\nabla_{s} \psi - \varepsilon^{-2} d_{A} \alpha \|^{2} + \varepsilon^{2} \|\nabla_{s} *_{s} \phi + \varepsilon^{-2} d_{A} *_{s} \alpha \|^{2} \right)$$
(13)

for every infinitesimal connection $\alpha + \phi \, ds$ on P_f and every $\psi \in \Omega^0(\Sigma_h, \mathfrak{g}_{P_f})$.

Proof. Suppose not. Then there are sequences $\varepsilon_{\nu} \to 0$ and $A_{\nu} + \Phi_{\nu} ds \in \mathcal{A}(P_f)$ such that $||F_{A_{\nu}}||_{L^{\infty}} + ||\partial_s A_{\nu} - d_{A_{\nu}} \Phi_{\nu} - X_s(A_{\nu})||_{L^{\infty}} \to 0$ and (13) does not hold with $c = \nu$, $\varepsilon = \varepsilon_{\nu}$, $A = A_{\nu}$, $\Phi = \Phi_{\nu}$. The estimate (13) is gauge invariant. Hence, by Uhlenbeck's weak compactness theorem [6, 7], we may assume that the sequence $A_{\nu} + \Phi_{\nu} ds$ is bounded in $W^{1,p}$ (for some p > 3). Passing to a subsequence, if necessary, we may assume that it converges, weakly in $W^{1,p}$ and strongly in L^{∞} , to an *H*-flat connection $A + \Phi ds \in \mathcal{A}_{\text{flat}}(P_f, H)$. Since $A + \Phi ds$ is nondegenerate there are positive constants ν_0 and c_0 such that

$$\|\alpha_0\| \le c_0 \|\pi_{A_{\nu}} (\partial_s \alpha_0 + [\Phi_{\nu}, \alpha_0] - dX_s(A_{\nu})\alpha_0)\|$$

for every path $\alpha_0(s) \in H^1_{A_{\nu}(s)}$ such that $\alpha_0(s+1) = f^*\alpha_0(s)$ and every $\nu \ge \nu_0$.

Now the assertions of [1, Lemmata 7.3 and 7.4] continue to hold for connections $A + \Phi \, ds$ on P_f such that $||F_A||_{L^{\infty}}$ is sufficiently small and the constants in these lemmata depend continuously on $||\partial_s A - d_A \Phi||_{L^{\infty}}$. Since $||F_{A_{\nu}}||_{L^{\infty}}$ tends to zero, the sequence $||X_s(A_{\nu})||_{L^{\infty}}$ is bounded and so is $||\partial_s A_{\nu} - d_{A_{\nu}} \Phi_{\nu}||_{L^{\infty}}$. Hence, by [1, Lemma 7.4], there is a constant c > 0 such that

$$\begin{aligned} \|\alpha\|^{2} &\leq c \left(\|*_{s} \nabla_{s} \alpha - *_{s} dX_{s}(A_{\nu}) \alpha - *_{s} d_{A_{\nu}} \phi - d_{A_{\nu}} \psi \|^{2} \right. \\ &+ \varepsilon^{2} \left\| \nabla_{s} \psi - \varepsilon^{-2} d_{A_{\nu}} \alpha \right\|^{2} + \varepsilon^{2} \left\| \nabla_{s} *_{s} \phi + \varepsilon^{-2} d_{A_{\nu}} *_{s} \alpha \right\|^{2} \end{aligned}$$

for every infinitesimal connection $\alpha + \phi \, ds$ on P_f and every $\psi \in \Omega^0(\Sigma_h, \mathfrak{g}_{P_f})$. Here $\nabla_s := \partial_s + [\Phi_{\nu}, \cdot]$. Combining this with [1, Lemma 7.3] we find that the connection $A_{\nu} + \Phi_{\nu} \, ds$ satisfies (13) for $\nu \geq \nu_0$ and some constant c > 0. This contradicts our assumption on the sequence $A_{\nu} + \Phi_{\nu} \, ds$ and so the lemma is proved.

Proof of [2, Theorem 7.4]. Let $A + \Phi ds + \Psi dt$ be a solution of (1-3) and let B_s , B_t , C be given by (8). Assume

$$\varepsilon^{-1} \|F_A\|_{L^{\infty}(\Sigma_h \times \mathbb{R})} + \|B_t\|_{L^{\infty}(\Sigma_h \times \mathbb{R})} \le c_0,$$

$$\varepsilon^{-1} \|F_A\|_{L^2(\Sigma_h \times [0,\infty))} + \|B_t\|_{L^2(\Sigma_h \times [0,\infty))} \le \delta.$$

Then, by Corollary 1.2, there is a constant $c_1 > 0$ such that

$$\varepsilon^{-1} \|F_A\|_{L^{\infty}(\Sigma_h \times \{t\})} + \|\partial_s A - d_A \Phi - X_s(A)\|_{L^{\infty}(\Sigma_h \times \{t\})} \le c_1 \delta \qquad (14)$$

for $t \geq 1$. Define

$$f(s) := \frac{1}{2} \int_0^1 \left(\|B_t(s,t)\|_{L^2(\Sigma,*_s)}^2 + \varepsilon^2 \|C(s,t)\|_{L^2(\Sigma,*_s)}^2 \right) \, dt.$$

Then

$$f''(s) = 2 \|\nabla_s B_t - dX_s(A)B_t - d_A C\|^2 + 2\varepsilon^{-2} \|d_A B_t\|^2 - 3\langle C, *_s[B_t \wedge B_t] \rangle + \langle *_s d^2 X_s(A)(B_t, B_t), B_t \rangle.$$

(See [2, page 622].) By (14), the connection $A(\cdot, t) + \Phi(\cdot, t) ds \in \mathcal{A}(P_f)$ satisfies the requirements of Lemma 2.1 for $t \geq 1$ and δ sufficiently small. Applying the estimate (13) to the triple $\alpha := B_t$, $\phi := C$, $\psi := 0$ and using the identity $\nabla_s *_s C + \varepsilon^{-2} d_A *_s B_t = 0$, we obtain

$$||B_t||^2 + ||C||^2 \le c_2 \left(||\nabla_s B_t - dX_s(A)B_t - d_A C||^2 + \varepsilon^{-2} ||d_A B_t|| \right).$$

(The mistake in [2] is the factor ε^2 in front of $||C||^2$ in this inequality; it can be removed because of the improved inequality in Lemma 2.1.) Combining this with the identity for f''(s) and the fact that $||B_t||_{L^{\infty}} \leq c_1 \delta$ we obtain the desired inequality $f''(t) \geq \rho^2 f(t)$ for $t \geq 1$ and $\rho > 0$ sufficiently small. With this understood the proof proceeds as in [2].

3 Bubbling analysis

The assertion in [2, page 634] that the limit connection Ξ_0 represents a **nonconstant** holomorphic sphere $S^2 \to \mathcal{M}(P)$ does not seem to follow from the argument in [2]. A modified bubbling argument will result in a nonconstant holomorphic sphere but only proves a weaker estimate. More precisely, we prove the following theorem instead of [2, Theorem 9.1].

Theorem 3.1. Let $a^{\pm} \in \mathcal{A}_{\text{flat}}(P_f, H)$ and assume that either $H \in \mathcal{H}_0^{\text{reg}}$ and $\mu_H(a^-, a^+) \leq 3$, or $\mathcal{CS}_H(a^-) - \mathcal{CS}_H(a^+) < 8\pi^2$. Then there exist positive constants ε_0 and c_0 such that

$$\varepsilon^{-1} \|F_A\|_{L^{\infty}} + \|\partial_t A - d_A \Psi\|_{L^{\infty}} \le c_0 \tag{15}$$

for every solution A, Φ , Ψ of (1-3) with $0 < \varepsilon \leq \varepsilon_0$.

Remark 3.2. The assertion of [2, Theorem 8.1] continues to hold if the hypothesis (8.1) is replaced by the weaker inequality (15). To see this, replace the last inequality in [2, page 625] by $\|C^{\nu}\|_{L^p} \leq c \varepsilon_{\nu}^{2/p-1}$ or, equivalently,

$$\|F_{A_{\nu}}\|_{L^p} \le c\varepsilon_{\nu}^{1+2/p}$$

For p = 2 this follows from the first inequality in [2, page 625, Step 2], for $p = \infty$ it holds by assumption, and for $2 \le p \le \infty$ it follows by interpolation. Now replace the constant ε_{ν}^2 by $\varepsilon_{\nu}^{1+2/p}$ in the following places.

- In the inequality (8.4) on page 626.
- Replace the inequality $||A' A||_{L^p} \le c_2 \varepsilon^2$ by $||A' A||_{L^p} \le c_2 \varepsilon^{1+2/p}$ in the middle of page 626.
- In the first two inequalities after (8.9), in the first inequality after (8.10), and in the first inequality in the proof of Step 5 (page 628).
- In the first inequality on page 629 and in the last inequality before (8.11).

The next theorem is a local version on [2, Theorem 8.1]. It is needed in the proof of Theorem 3.1. Let $\Omega_{\nu} \subset \mathbb{C}$ be an exhausting sequence of open sets and $s_{\nu}, \varepsilon_{\nu} > 0, \delta_{\nu} > 0$ be sequences of real numbers such that $s_{\nu} \to s_0, \varepsilon_{\nu} \to 0, \delta_{\nu} \to 0$. Abbreviate $*_{\nu s} := *_{s_{\nu}+\delta_{\nu}s}$ and $X_{\nu s} := \delta_{\nu}X_{s_{\nu}+\delta_{\nu}s}$.

Theorem 3.3. Let $\Xi_{\nu} = A_{\nu} + \Phi_{\nu} ds + \Psi_{\nu} dt$ be a sequence of solutions of the equations

$$\partial_t A_{\nu} - d_{A_{\nu}} \Psi_{\nu} + *_{\nu s} (\partial_s A_{\nu} - d_{A_{\nu}} \Phi_{\nu} - X_{\nu s}(A)) = 0, \partial_t \Phi_{\nu} - \partial_s \Psi_{\nu} - [\Phi_{\nu}, \Psi_{\nu}] + \varepsilon_{\nu}^{-2} * F_{A_{\nu}} = 0,$$
 (16)

on $\Omega_{\nu} \times P$ such that

$$\sup_{\nu} \left(\varepsilon_{\nu}^{-1} \| F_{A_{\nu}} \|_{L^{2}(\Omega_{\nu} \times \Sigma)} + \| \partial_{t} A_{\nu} - d_{A_{\nu}} \Psi_{\nu} \|_{L^{2}(\Omega_{\nu} \times \Sigma)} \right) < \infty,$$
(17)
$$\sup_{\nu} \left(\varepsilon_{\nu}^{-1} \| F_{A_{\nu}} \|_{L^{\infty}(\Omega_{\nu} \times \Sigma)} + \| \partial_{t} A_{\nu} - d_{A_{\nu}} \Psi_{\nu} \|_{L^{\infty}(\Omega_{\nu} \times \Sigma)} \right) < \infty.$$

Then there is a subsequence, still denoted by Ξ_{ν} , a sequence of gauge transformations $g_{\nu} : \Omega_{\nu} \to \mathcal{G}(P)$, and a connection $\Xi_0 = A_0 + \Phi_0 ds + \Psi_0 dt$ on $\mathbb{C} \times P$ such that

$$\partial_t A_0 - d_{A_0} \Psi_0 + *_{s_0} (\partial_s A_0 - d_{A_0} \Phi_0) = 0, \qquad F_{A_0} = 0,$$
$$\lim_{\nu \to \infty} \left(\|g_{\nu}^* A_{\nu} - A_0\|_{L^{\infty}(K \times \Sigma)} + \sup_{(s,t) \in K} \|g_{\nu}^{-1} B_{\nu t} g_{\nu} - B_{0t}\|_{L^2(\Sigma)} \right) = 0$$

for every compact subset $K \subset \mathbb{C}$. Here we denote $B_{\nu t} := \partial_t A_{\nu} - d_{A_{\nu}} \Psi_{\nu}$ and $B_{0t} := \partial_t A_0 - d_{A_0} \Psi_0$.

Proof. We argue as in the proof of [2, Theorem 8.1, Step 3] and use Lemma 1.3 to obtain sharper estimates. More precisely, for every compact subset $K \subset \mathbb{C}$ there is a constant $\nu_K > 0$ such that, for every $(s,t) \in K$ and every $\nu \geq \nu_K$, there is a unique section $\eta_{\nu}(s,t) \in \Omega^0(\Sigma,\mathfrak{g}_P)$ such that

$$F_{A'_{\nu}} = 0, \qquad A'_{\nu} := A_{\nu} + *_{\nu s} d_{A_{\nu}} \eta_{\nu},$$

$$\|d_{A_{\nu}}\eta_{\nu}\|_{L^{\infty}(\Sigma)} \le c_1 \|F_{A_{\nu}}\|_{L^{\infty}(\Sigma)} \le c_2 \varepsilon_{\nu}.$$
(18)

Choose $\Phi'_{\nu}(s,t), \Psi'_{\nu}(s,t) \in \Omega^0(\Sigma, \mathfrak{g}_P)$ such that

$$d_{A'_{\nu}} *_{\nu s} \left(\partial_s A'_{\nu} - d_{A'_{\nu}} \Phi'_{\nu} - X_{\nu s} (A'_{\nu}) \right) = d_{A'_{\nu}} *_{\nu s} \left(\partial_t A'_{\nu} - d_{A'_{\nu}} \Psi'_{\nu} \right) = 0.$$

Note that the sequence $\Xi'_{\nu} = A'_{\nu} + \Phi'_{\nu} ds + \Psi'_{\nu} dt$ depends only on ν and not on the compact set K in question. One proves exactly as in [2, pages 626–627] that the sequence Ξ'_{ν} satisfies the estimates

$$\|\Xi'_{\nu} - \Xi_{\nu}\|_{1,p,\varepsilon;K} \leq c_{K,p}\varepsilon_{\nu}^{1+2/p}, \qquad (19)$$

$$\|B'_{\nu t}\|_{L^{\infty}(K \times \Sigma)} \leq c_K, \qquad (20)$$

$$\|B'_{\nu t} + *_{\nu s} (B'_{\nu s} - X_{\nu s}(A'_{\nu}))\|_{L^{p}(K \times \Sigma)} \leq c_{K,p} \varepsilon_{\nu}^{1+2/p},$$
(21)

for every compact set $K \subset \mathbb{C}$ and every $p \geq 2$, with suitable positive constants c_K and $c_{K,p}$. In addition we wish to prove the estimate

$$\sup_{K} \|B'_{\nu t} - B_{\nu t}\|_{L^2(\Sigma)} \le c_K \sqrt{\varepsilon_{\nu}}.$$
(22)

To see this recall the identities (8.5-7) from [2]. They have the form

$$B'_{t} - B_{t} = d_{A'}(\Psi' - \Psi) + *_{s}d_{A}\nabla_{t}\eta + *_{s}[B_{t},\eta],$$

$$d_{A} *_{s}d_{A}(\Psi' - \Psi) = d_{A} *_{s}B_{t} - [d_{A}B_{t},\eta] - [F_{A},\nabla_{t}\eta]$$

$$-[(A' - A) \wedge ([d_{A}\nabla_{t}\eta + [B_{t},\eta])] \qquad (23)$$

$$d_{A} *_{s}d_{A}\nabla_{t}\eta = -d_{A}B_{t} - [d_{A}\nabla_{t}\eta \wedge d_{A}\eta] - [[B_{t},\eta] \wedge d_{A}\eta]$$

$$-2[B_{t} \wedge *_{s}d_{A}\eta] - [d_{A} *_{s}B_{t},\eta]$$

Here we have dropped the subscript ν . Since

$$d_A B_t = \nabla_t F_A, \qquad d_A *_s B_t = d_A B_s = \nabla_s F_A$$

we obtain from Lemma 1.3 that, for every compact set $K\subset\mathbb{C},$ there is a constant $c_K'>0$ such that

$$\sup_{K} \left(\|d_A B_t\|_{L^2(\Sigma)} + \|d_A *_s B_t\|_{L^2(\Sigma)} \right) \le c'_K \sqrt{\varepsilon}.$$

Hence it follows from (18) and the last equation in (23) that

$$\sup_{K} \|d_A \nabla_t \eta\|_{L^2(\Sigma)} \le c_K'' \sqrt{\varepsilon}.$$

Using this estimate and the second equation in (23) we obtain

$$\sup_{K} \|d_A(\Psi' - \Psi)\|_{L^2(\Sigma)} \le c_K'''\sqrt{\varepsilon}.$$

and

Combining the last two estimates with the first equation in (23) we obtain (22). Now Ξ'_{ν} descends to a sequence

$$\bar{u}'_{\nu}: K \to \mathcal{M}(P)$$

of approximate holomorphic curves (see (21)) with uniformly bounded derivatives (see (20)). We must prove that the sequence \bar{u}'_{ν} is bounded in $W^{2,p}$ for some p > 2. By the elliptic bootstrapping analysis for holomorphic curves (see [4, Appendix B]), this is equivalent to a $W^{1,p}$ -bound on $\bar{\partial}_J(\bar{u}'_{\nu})$. To obtain such a bound we examine the following formula from [2, page 627]:

$$B'_{t} + *_{s}(B'_{s} - X_{s}(A')) = *_{s} \dot{*}_{s} d_{A} \eta - [X_{s}(A), \eta] - *_{s}(X_{s}(A') - X_{s}(A)) + [(A' - A), \nabla_{s} \eta] - *_{s}[(A' - A), \nabla_{t} \eta]$$
(24)
$$- d_{A'}(\Psi' - \Psi + \nabla_{s} \eta) - *_{s} d_{A'}(\Phi' - \Phi - \nabla_{t} \eta).$$

To begin with observe that, by Lemma 1.3, we have estimates of the form

$$\int_{K} \left(\|d_A B_t\|_{L^2(\Sigma)}^p + \|d_A \ast_s B_t\|_{L^2(\Sigma)}^p \right) \le c_{K,p} \varepsilon^p$$

Carrying the argument in the proof of Lemma 1.3 one step further we obtain estimates for the second derivatives of the curvature and hence

$$\int_{K} \left(\left\| d_A \nabla_{\!s} B_t \right\|_{L^2(\Sigma)}^p + \left\| d_A \ast_s \nabla_{\!s} B_t \right\|_{L^2(\Sigma)}^p \right) \le c_{K,p};$$

similarly for ∇_t . Differentiate the identities in (23) to obtain

$$\int_{K} \left(\left\| d_{A} \nabla_{s} \nabla_{s} \eta \right\|_{L^{2}(\Sigma)}^{p} + \left\| d_{A} \nabla_{t} \nabla_{t} \eta \right\|_{L^{2}(\Sigma)}^{p} + \left\| d_{A} \nabla_{s} \nabla_{t} \eta \right\|_{L^{2}(\Sigma)}^{p} \right) \leq c_{K,p},$$
$$\int_{K} \left(\left\| d_{A} \nabla_{s} (\Psi' - \Psi) \right\|_{L^{2}(\Sigma)}^{p} + \left\| d_{A} \nabla_{t} (\Psi' - \Psi) \right\|_{L^{2}(\Sigma)}^{p} \right) \leq c_{K,p}.$$

Combining these estimates with (24) we obtain

$$\int_{K} \|\nabla_{s}(B'_{t} + *_{s}(B'_{s} - X_{s}(A')))\|_{L^{2}(\Sigma)}^{p} \leq c_{K,p},$$

and similarly for ∇_t . This is the required $W^{1,p}$ -estimate for $\bar{\partial}_J(\bar{u}'_{\nu})$. It follows that \bar{u}'_{ν} is bounded in $W^{2,p}$ and hence has a C^1 -convergent subsequence. The limit of this subsequence is the required holomorphic curve in $\mathcal{M}(P)$. The assertion of the theorem now follows from (22) and the C^1 -convergence of \bar{u}'_{ν} . \Box

Proof of Theorem 3.1. Suppose, by contradiction, that there are sequences $\varepsilon_{\nu} \to 0$ and $\Xi_{\nu} = A_{\nu} + \Phi_{\nu} ds + \Psi_{\nu} dt$ such that Ξ_{ν} satisfies (1-3) with $\varepsilon = \varepsilon_{\nu}$ and

$$\varepsilon_{\nu}^{-1} \|F_{A_{\nu}}\|_{L^{\infty}} + \|\partial_t A_{\nu} - d_{A_{\nu}} \Psi_{\nu}\|_{L^{\infty}} \to \infty.$$

For each ν define the energy density $e_{\nu} : \mathbb{R}^2 \to \mathbb{R}$ by

$$e_{\nu}(s,t) := \varepsilon_{\nu}^{-1} \left\| F_{A_{\nu}(s,t)} \right\|_{L^{2}(\Sigma)} + \left\| \partial_{t} A_{\nu}(s,t) - d_{A_{\nu}(s,t)} \Psi_{\nu}(s,t) \right\|_{L^{2}(\Sigma,*_{s})}.$$

By Corollary 1.2, and the time shift invariance of equation (1), this sequence is unbounded. Passing to a subsequence, we may assume that there is a sequence $w_{\nu} = (s_{\nu}, t_{\nu}) \in [0, 1] \times \mathbb{R}$ such that $e_{\nu}(w_{\nu}) \to \infty$. Applying a time shift, and passing to a further subsequence, we may assume that w_{ν} converges to $w_0 = (s_0, t_0)$. Using Hofer's lemma ([2, Lemma 9.3]), we may assume that there is a sequence of real numbers $0 < \rho_{\nu} < 1/2$ such that

$$\sup_{|w-w_{\nu}| \le \rho_{\nu}} e_{\nu}(w) \le 2e_{\nu}(w_{\nu}), \qquad \rho_{\nu}e_{\nu}(w_{\nu}) \to \infty$$

There are three cases to consider.

Case 1: $\varepsilon_{\nu}e_{\nu}(w_{\nu}) \to \infty$. In this case a nontrivial instanton on S^4 bubbles off. The argument is standard (see [2, pages 630–631]).

Case 2: $\varepsilon_{\nu}e_{\nu}(w_{\nu}) \to 1$. In this case a nontrivial instanton on $\mathbb{C} \times \Sigma$ bubbles off. The bubbling analysis relies on an asymptotic analysis of finite energy solutions of (1) over $\mathbb{C} \times \Sigma$ and on the resulting energy quantization. In [2, pages 632–633] this argument is only sketched. In [3, Proposition 11.1] an analogous argument has been carried out in a situation where the space of connections on P is replaced by a finite dimensional symplectic manifold equipped with a Hamiltonian group action. The adaptation of the proof to the present case is straight forward.

Case 3: $\varepsilon_{\nu}e_{\nu}(w_{\nu}) \to 0$. In this case a nonconstant holomorphic sphere in the moduli space $\mathcal{M}(P) := \mathcal{A}_{\text{flat}}(P)/\mathcal{G}(P)$ of flat connections bubbles off. Abbreviate $c_{\nu} := e_{\nu}(w_{\nu})$ and consider the rescaled sequence

$$\widetilde{A}_{\nu}(w) := A_{\nu}(w_{\nu} + c_{\nu}^{-1}w),$$

$$\widetilde{\Phi}_{\nu}(w) := c_{\nu}^{-1}\Phi_{\nu}(w_{\nu} + c_{\nu}^{-1}w), \qquad \widetilde{\Psi}_{\nu}(w) := c_{\nu}^{-1}\Psi_{\nu}(w_{\nu} + c_{\nu}^{-1}w).$$

This triple satisfies (16) and (17) with $\delta_{\nu} := c_{\nu}^{-1}$, ε_{ν} replaced by $\tilde{\varepsilon}_{\nu} := \varepsilon_{\nu}c_{\nu}$, and $\Omega_{\nu} := B_{\rho_{\nu}c_{\nu}}$. By assumption, we have

$$\left\|\partial_t \widetilde{A}_{\nu} - d_{\widetilde{A}_{\nu}} \widetilde{\Psi}_{\nu}\right\|_{L^2(\Sigma)} + \frac{1}{\widetilde{\varepsilon}_{\nu}} \left\|F_{\widetilde{A}_{\nu}}\right\|_{L^2(\Sigma)} = \frac{e_{\nu}(w_{\nu} + c_{\nu}^{-1}w)}{e_{\nu}(w_{\nu})} \le 2 \qquad (25)$$

for $|w| \leq \rho_{\nu} c_{\nu}$ and

$$\left\|\partial_t \widetilde{A}_{\nu}(0) - d_{\widetilde{A}_{\nu}(0)} \widetilde{\Psi}_{\nu}(0)\right\|_{L^2(\Sigma)} + \frac{1}{\widetilde{\varepsilon}_{\nu}} \left\|F_{\widetilde{A}_{\nu}(0)}\right\|_{L^2(\Sigma)} = 1.$$
(26)

It follows from (25) and Corollary 1.2 that, for every compact subset $K \subset \mathbb{C}$, there are positive constants ν_K and c_K such that, for every $\nu \geq \nu_K$,

$$\left\|\partial_t \widetilde{A}_{\nu} - d_{\widetilde{A}_{\nu}} \widetilde{\Psi}_{\nu}\right\|_{L^{\infty}(K \times \Sigma)} + \frac{1}{\widetilde{\varepsilon}_{\nu}} \left\|F_{\widetilde{A}_{\nu}}\right\|_{L^{\infty}(K \times \Sigma)} \le c_K.$$
 (27)

Hence $\tilde{\Xi}_{\nu} = \tilde{A}_{\nu} + \tilde{\Phi}_{\nu} ds + \tilde{\Psi}_{\nu} dt$ satisfies all the requirements of Theorem 3.3. The limit connection Ξ_0 represents a finite energy holomorphic sphere in the symplectic quotient $\mathcal{M}(P)$. We prove that it is nonconstant. Namely, by (27) and Lemma 1.3, we have

$$\lim_{\nu \to \infty} \frac{1}{\tilde{\varepsilon}_{\nu}} \left\| F_{\tilde{A}_{\nu}(0)} \right\|_{L^{2}(\Sigma)} = 0.$$

Hence, by Theorem 3.3 and (26),

$$\left\|\partial_t A_0(0) - d_{A_0(0)}\Psi_0(0)\right\|_{L^2(\Sigma)} = \lim_{\nu \to \infty} \left\|\partial_t \widetilde{A}_\nu(0) - d_{\widetilde{A}_\nu(0)}\widetilde{\Psi}_\nu(0)\right\|_{L^2(\Sigma)} = 1.$$

This concludes the discussion of case 3.

Since the bubbling in all three cases results in nontrivial instantons, respectively nonconstant holomorphic spheres, we can argue as in [2, pages 624–625] to obtain a contradiction. Thus the theorem is proved.

One can now use Theorem 3.1 and the strenthened form of [2, Theorem 8.1] in Remark 3.2 to prove [2, Theorem 9.2].

References

- S. Dostoglou and D.A. Salamon, Cauchy-Riemann operators, self-duality, and the spectral flow, in *First European Congress of Mathematics, Volume I, Invited Lectures (Part 1)*, edited by A. Joseph, F. Mignot, F. Murat, B. Prum, R. Rentschler, Birkhäuser Verlag, Progress in Mathematics, Vol. 119, 1994, pp. 511–545.
- [2] S. Dostoglou and D.A. Salamon, Self-dual instantons and holomorphic curves, Annals of Mathematics 139 (1994), 581–640.
- [3] A.R. Gaio, D.A. Salamon, Gromov–Witten invariants of symplectic quotients and adiabatic limits, Preprint ETH–Zürich, June 2001.
- [4] D. McDuff, D. Salamon, J-holomorphic Curves and Quantum Cohomology, Third Edition, to appear 2003.
- [5] D.A. Salamon, Quantum products for mapping tori and the Atiyah-Floer conjecture, Amer. Math. Soc. Transl. 196 (1999), 199–235. Revised in December 2000, http://www.math.ethz.ch/ salamon
- [6] K. Uhlenbeck, Connections with L^p bounds on the curvature, Commun. Math. Phys. 83 (1982), 31–42.
- [7] K. Wehrheim, Uhlenbeck Compactness, in preparation.