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Abstract

The Ricci form is a moment map for the action of the group of
exact volume preserving diffeomorphisms on the space of almost com-
plex structures. This observation yields a new approach to the Weil–
Petersson symplectic form on the Teichmüller space of isotopy classes
of complex structures with real first Chern class zero and nonempty
Kähler cone. This extended version of the paper includes a proof of
the Bochner–Kodaira–Nakano identity (Appendix B), a brief exposi-
tion of Bott–Chern cohomology (Appendix C), and a discussion of the
relation between complex structures and differential forms of middle
degree (Appendix D).
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1 Introduction

This paper is based on a remark by Simon Donaldson. The remark is that
the space of linear complex structures on R2n can be viewed as a co-adjoint
SL(2n,R)-orbit and hence is equipped with a canonical symplectic form and
a Hamiltonian SL(2n,R)-action. Thus, for any volume form ρ on a closed ori-
ented 2n-manifold M , the space J (M) of almost complex structures carries
a natural symplectic structure. Following [13], one can then deduce that the
action of the group of exact volume preserving diffeomorphisms on J (M)
is a Hamiltonian group action with the Ricci form as a moment map. In the
integrable case this yields a new approach to the Weil–Petersson symplectic
form on the Teichmüller space of isotopy classes of complex structures with
real first Chern class zero and nonempty Kähler cone. Here are the details.

Fix a closed connected oriented 2n-manifold M and a positive volume
form ρ and denote by J (M) the space of almost complex structures com-
patible with the orientation. This space is equipped with a symplectic form

Ωρ,J(Ĵ1, Ĵ2) := 1
2

∫
M

trace
(
Ĵ1JĴ2

)
ρ for Ĵ1, Ĵ2 ∈ Ω0,1

J (M,TM). (1.1)

The Ricci form Ricρ,J ∈ Ω2(M) associated to ρ and J is defined by

Ricρ,J(u, v) := 1
4
trace

(
(∇uJ)J(∇vJ)

)
+ 1

2
trace

(
JR∇(u, v)

)
+ 1

2
dλ∇J (u, v)

for u, v ∈ Vect(M), where ∇ is a torsion-free ρ-connection and the 1-form λ∇J
on M is defined by λ∇J (u) := trace

(
(∇J)u

)
for u ∈ Vect(M). In the inte-

grable case iRicρ,J is the curvature of the Chern connection on the canonical
bundle associated to the Hermitian structure determined by ρ.

Theorem A (The Ricci Form). The Ricci form is independent of the
choice of the torsion-free ρ-connection ∇ used to define it. It is closed, rep-
resents the cohomology class 2πc1(TM, J), satisfies φ∗Ricρ,J = Ricφ∗ρ,φ∗J for
every diffeomorphism φ, and Ricefρ,J = Ricρ,J + 1

2
d(df ◦J) for all f ∈ Ω0(M).

Moreover, the map J 7→ 2Ricρ,J is a moment map for the action of the
group Diffex(M,ρ) of exact volume preserving diffeomorphisms on J (M),
i.e. if t 7→ Jt is a smooth path of almost complex structures on M , then

d

dt

∫
M

2Ricρ,Jt ∧ α = 1
2

∫
M

trace
(

(∂tJt)Jt(LvαJt)
)
ρ (1.2)

for t ∈ R and α ∈ Ω2n−2(M), where vα ∈ Vect(M) is defined by ι(vα)ρ = dα.

Proof. See Theorem 2.6.
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The proof of Theorem A is based on the aforementioned observation that
the space of linear complex structures is a co-adjoint SL(2n,R)-orbit. Theo-
rem A can then be derived from a general result of Donaldson [13] about the
action of the group Diffex(M,ρ) on a suitable space of sections of a fibration
over M . In Section 2 we give a direct proof which does not rely on [13]. That
the Ricci form is closed and represents 2π times the first Chern class is a con-
sequence of the formula Ricρ,J = 1

2
trace(JR∇̃) + dλ∇J , where ω ∈ Ω2(M) is

a nondegenerate 2-form compatible with J , ∇ is the Levi–Civita connection
of the metric ω(·, J ·), and ∇̃ := ∇− 1

2
J∇J . Moreover, λ∇J = 0 whenever ω

is closed, so one obtains the standard Ricci form in the symplectic case. We
emphasize that the dual space of the space of exact divergence-free vector
fields is the space of exact 2-forms on M , so one obtains a genuine moment
map only for almost complex structures with real first Chern class zero.

Equation (1.2) extends to an identity that holds for all vector fields v.
This identity takes the form∫

M

Λρ(J, Ĵ) ∧ ι(v)ρ = 1
2

∫
M

trace
(
ĴJLvJ

)
ρ (1.3)

for all Ĵ ∈ Ω0,1
J (M,TM) and all v ∈ Vect(M), where Λρ(J, Ĵ) ∈ Ω1(M) is de-

fined by (Λρ(J, Ĵ))(u) := trace((∇Ĵ)u+ 1
2
ĴJ∇uJ) for u ∈ Vect(M). Thus Λρ

is a 1-form on J (M) with values in Ω1(M). The next theorem shows that
the differential of this 1-form is a 2-form on J (M) with values in dΩ0(M).

Theorem B (The one-form Λρ). Let v ∈ Vect(M) and define fv ∈ Ω0(M)
by fvρ := dι(v)ρ. Then, for all J ∈J (M),

Λρ(J,LvJ) = 2ι(v)Ricρ,J − dfv ◦ J + dfJv. (1.4)

Moreover, if R2 →J (M) : (s, t) 7→ J(s, t) is a smooth map, then

∂sΛρ(J, ∂tJ)− ∂tΛρ(J, ∂sJ) + 1
2
dtrace((∂sJ)J(∂tJ)) = 0. (1.5)

Proof. See Theorem 2.7.

Theorem C (The Integrable Case). Let ρ ∈ Ω2n(M) be a positive vol-
ume form and let J ∈J (M) be an integrable almost complex structure.
Then 1

2π
Ricρ,J is a (1, 1)-form and represents the first Bott–Chern class of J .

Moreover, the first Bott–Chern class of J vanishes if and only if there exists a
diffeomorphism φ ∈ Diff0(M) such that Ricρ,φ∗J = 0. If Ricρ,J = Ricρ,φ∗J = 0
for some orientation preserving diffeomorphism φ, then φ∗ρ = ρ.

Proof. See Theorem 3.1.
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Let Jint,0(M) ⊂J (M) be the space of integrable almost complex struc-
tures with real first Chern class zero and nonempty Kähler cone. Then Theo-
rem C shows that the Teichmüller space T0(M) := Jint,0(M)/Diff0(M) can
be identified with the quotient space T0(M,ρ) := Jint,0(M,ρ)/Diff0(M,ρ),
where Jint,0(M,ρ) := {J ∈Jint,0(M) |Ricρ,J = 0}. We emphasize that the
quotient group Diff0(M,ρ)/Diffex(M,ρ) acts trivially. The space J (M)

carries a complex structure Ĵ 7→ −JĴ and the symplectic form Ωρ in (1.1)
is of type (1, 1). However, it is not Kähler because the symmetric pair-

ing 〈Ĵ1, Ĵ2〉 = 1
2

∫
M

trace(Ĵ1Ĵ2)ρ is indefinite in general. Thus complex sub-
manifolds of J (M) need not be symplectic. The space Jint,0(M) is an exam-
ple. Its tangent space at J is the kernel of ∂̄J : Ω0,1

J (M,TM)→ Ω0,2
J (M,TM).

If Ricρ,J = 0 and ∂̄J Ĵ = 0, then Theorem B implies that there exist unique
smooth functions f = fρ,Ĵ and g = fρ,JĴ such that

Λρ(J, Ĵ) = −df ◦ J + dg,

∫
M

fρ =

∫
M

gρ = 0. (1.6)

This implies that the restriction of the 2-form Ωρ,J to ker ∂̄J vanishes on the
subspace {LvJ | fv = fJv = 0}. It turns out that Ωρ descends to a symplectic
form on the Teichmüller space T0(M,ρ) ∼= T0(M) that is independent of ρ.
For J ∈Jint,0(M) let ρJ be the volume form with RicρJ ,J = 0 and

∫
M
ρJ = V .

Theorem D (Teichmüller Space). The formula

ΩJ(Ĵ1, Ĵ2) :=

∫
M

(
1
2
trace

(
Ĵ1JĴ2

)
− f1g2 + f2g1

)
ρJ , (1.7)

for J ∈Jint,0(M) and Ĵi ∈ Ω0,1
J (M,TM) with ∂̄J Ĵi = 0 and fi, gi as in (1.6),

defines a symplectic form on the Teichmüller space T0(M). It satisfies the

naturality condition Ωφ∗J(φ∗Ĵ1, φ
∗Ĵ2) = φ∗ΩJ(Ĵ1, Ĵ2) for every φ ∈ Diff+(M)

and thus the mapping class group acts on T0(M) by symplectomorphisms.

Proof. See Theorem 4.4.

Theorem D gives an alternative construction of the Weil–Petersson sym-
plectic form on Calabi–Yau Teichmüller spaces (see [21, 26, 31, 32, 33, 34]
for the polarized case and [15, Ch 16] for the symplectic form on T0(M) for
the K3 surface). The proof relies on Yau’s theorem and the observations, for
Ricci-flat Kähler manifolds (M,ω, J), that a vector field v is holomorphic if
and only if ι(v)ω is harmonic (Lemma 3.9), and that the space of ∂̄J -harmonic

1-forms Ĵ ∈ Ω0,1
J (M,TM) is invariant under the map Ĵ 7→ Ĵ∗ (Lemma 3.10).
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Associated to the symplectic form (1.7) on T0(M) and the complex struc-

ture Ĵ 7→ −JĴ is the symmetric bilinear form

〈Ĵ1, Ĵ2〉 =

∫
M

(
1
2
trace

(
Ĵ1Ĵ2

)
− f1f2 − g1g2

)
ρJ . (1.8)

This is indefinite in general, so T0(M) need not be Kähler. If ω is a Kähler
form with ωn/n! = ρJ , then the subspace of self-adjoint harmonic endomor-

phisms Ĵ = Ĵ∗ ∈ Ω0,1
J (M,TM) is positive for (1.8) (and tangent to the Teich-

müller space of ω-compatible complex structures). Its symplectic comple-
ment is the negative subspace of skew-adjoint harmonic endomorphisms. The
2-form (1.7) defines a symplectic connection on the space E0(M) of isotopy
classes of Ricci-flat Kähler structures, fibered over the space B0(M) of iso-
topy classes of Kählerable symplectic forms with real first Chern class zero,
whose fiber over [ω] is the space T0(M,ω) of ω-compatible (integrable) com-
plex structures J with Ricω,J = 0 modulo Symp(M,ω) ∩Diff0(M).

Theorem E (A Connection). The projection E0(M)→ B0(M) is a sub-
mersion and the 2-form (1.7) defines a symplectic connection on E0(M). The
connection 1-form A assigns to each Ricci-flat Kähler structure (ω, J) and

each closed 2-form ω̂ the unique element Ĵ = Aω,J(ω̂) ∈ Ω0,1
J (M,TM) that

satisfies ∂̄J Ĵ = 0 and Λρ(J, Ĵ) = −d〈ω̂, ω〉 ◦ J and ω̂ − J∗ω̂ = 〈(Ĵ − Ĵ∗)·, ·〉
and ΩJ(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1

J (M,TM) with ∂̄J Ĵ
′ = 0 and Ĵ ′ = (Ĵ ′)∗.

The connection is Diff+(M)-equivariant and is given by

Aω,J(ω̂) = LvJ + Ĵ0, 〈Ĵ0·, ·〉 = 1
2

(
(ω̂ − dλ̂)− J∗(ω̂ − dλ̂)

)
, (1.9)

where v ∈ Vect(M) and λ̂ = ι(v)ω ∈ Ω1(M) satisfy d∗(ω̂ − dλ̂) = 0, d∗λ̂ = 0.

Proof. See Lemma 4.5 and Theorem 4.6.

The Weil–Petersson metric on the fiber T0(M,ω) in Theorem E is Kähler
and has been studied by many authors (see e.g. [6, 17, 18, 26, 29], [31]-
[38], [41, 43] and the references therein). An important special case arises
when H2,0

J (M) = 0 for all J ∈Jint,0(M). In this case T0(M) is Kähler, each
polarized fiber T0(M,ω) is an open subset of T0(M), the symplectic forms
on the fibers agree on the overlaps (as noted by Todorov [37, p 328]), and
the connection is trivial.

Acknowledgement. Thanks to Simon Donaldson for suggesting this prob-
lem. Thanks to Paul Biran, Ron Donagi, Andrew Kresch, Rahul Pandhari-
pande, Yanir Rubinstein, and Claire Voisin for helpful discussions.
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2 The Ricci form

Linear complex structures

The standard orientation of R2n with the coordinates x1, . . . , xn, y1, . . . , yn is
determined by the volume form dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn. The space of
linear complex structures on R2n compatible with the orientation is given by

Jn =
{
gJ0g

−1
∣∣∣ g ∈ SL(2n,R)

}
, J0 :=

(
0 −1l
1l 0

)
. (2.1)

This is a co-adjoint orbit equipped with a Hamiltonian SL(2n,R)-action. Ab-
breviate G := SL(2n,R) and g := Lie(G) = sl(2n,R) and note that Jn ⊂ g.

Lemma 2.1. The set Jn ⊂ R2n×2n is a connected 2n2-dimensional submani-
fold and its tangent space at J ∈Jn is given by

TJJn =
{
Ĵ ∈ R2n×2n

∣∣ ĴJ + JĴ = 0
}

=
{

[ξ, J ]
∣∣ ξ ∈ g

}
. (2.2)

The formula Ĵ 7→ −JĴ defines a complex structure on Jn and the formula

τJ
(
Ĵ1, Ĵ2

)
:= 1

2
trace

(
Ĵ1JĴ2

)
= −trace

(
[ξ1, ξ2]J

)
(2.3)

for ξi ∈ g and Ĵi := [ξi, J ] defines a symplectic form τ ∈ Ω2(Jn). The G-
action G×Jn →Jn : (g, J) 7→ gJg−1 is Hamiltonian and is generated by
the G-equivariant moment map µ : Jn → g given by µ(J) = −J for J ∈Jn.

Proof. The set H := {h ∈ SL(2n,R) |hJ0 = J0h} is a Lie subgroup of G and
is isomorphic to the group of complex n× n-matrices with determinant in
the unit circle. So dim H = 2n2 − 1 and dim G = 4n2 − 1 and thus the ho-
mogeneous space G/H is a manifold of dimension 2n2. Since G is con-
nected, so is G/H. Next we claim that the map G→ R2n×2n : g 7→ gJ0g

−1

descends to a proper injective immersion ι : G/H→ R2n×2n. It is injective
by definition. To see that ι is an immersion, observe that T[g]G/H ∼= gg/gh
and dι([g])[gξ] = g[ξ, J0]g−1 for g ∈ G and ξ ∈ g. To prove that ι is proper,
choose gk ∈ G such that the sequence Jk := gkJ0g

−1
k converges to J0, and

define hk := g−1
k [e1 · · · en Jke1 · · · Jken], where the vectors e1, . . . , en ∈ R2n

form the standard basis of Rn × {0}. Then hk ∈ H for k sufficiently large
and limk→∞ gkhk = 1l. This shows that the map ι : G/H→ R2n×2n is a proper
injective immersion. Hence its image Jn = ι(G/H) is a connected 2n2-
dimensional submanifold of R2n×2n.

6



Now let J ∈Jn. Then gJg−1 ∈Jn for all g ∈ G and so [ξ, J ] ∈ TJJn for

all ξ ∈ g. Thus {[ξ, J ] | ξ ∈ g} ⊂ TJJn ⊂ {Ĵ ∈ R2n×2n | ĴJ + JĴ = 0}. Since
all three spaces have dimension 2n2, equality holds and this proves (2.2).
The formula (2.3) follows by direct calculation. To show that the 2-form τ

in (2.3) is nondegenerate, let Ĵ = [ξ, J ] ∈ TJJn \ {0} and define η := [ξ, J ]T

and Ĵ ′ := [η, J ]. Then τJ(Ĵ , Ĵ ′) = trace(η[ξ, J ]) = trace([ξ, J ]T [ξ, J ]) > 0.

The 2-form τ is closed and the complex structure Ĵ 7→ −JĴ is integrable by
Lemma A.1, as both structures are preserved by the torsion-free connection

∇tĴ := d
dt
Ĵ + 1

2
ĴJJ̇ + 1

2
J̇JĴ .

The map Jn → g : J 7→ µ(J) := −J is a moment map for the G-action be-

cause τJ([ξ, J ], Ĵ) = −trace(ξĴ) = trace((dµ(J)Ĵ)ξ) for J ∈Jn, Ĵ ∈ TJJn,
and ξ ∈ g. This proves Lemma 2.1.

Remark 2.2. The symplectic form τ in (2.3) is a (1, 1)-form with respect to

the complex structure Ĵ 7→ −JĴ . For n > 1 it is not a Kähler form, because
the bilinear form 〈Ĵ1, Ĵ2〉 = 1

2
trace(Ĵ1Ĵ2) is indefinite on each tangent space.

Remark 2.3. Let ω0 :=
∑n

i=1 dxi ∧ dyi denote the standard symplectic form
on R2n and consider the space of ω0-compatible linear complex structures

Jn,0 :=

{
J ∈Jn

∣∣∣∣ J∗ω0 = ω0 and ω0(ζ, Jζ) > 0
for all ζ ∈ R2n \ {0}

}
. (2.4)

This is a complex submanifold of Jn of real dimension n2 + n and the
symplectic form (2.3) restricts to a Kähler form on Jn,0. The symplec-
tic linear group Sp(2n) acts on Jn,0 by Kähler isometries and a moment
map µ : Jn,0 → sp(2n) for this action is again given by µ(J) = −J .

Remark 2.4. The group Sp(2n) acts on Siegel upper half space Sn ⊂ Cn×n

of symmetric matrices with positive definite imaginary part via

g∗Z := (AZ +B)(CZ +D)−1, g =:

(
A B
C D

)
for g ∈ Sp(2n) and Z ∈ Sn. There is a unique Sp(2n)-equivariant diffeomor-
phism from Sn to Jn,0 that sends i1l ∈ Sn to J0 ∈Jn,0. It is given by

J(Z) =

(
XY −1 −Y −XY −1X
Y −1 −Y −1X

)
∈Jn,0, Z = X + iY ∈ Sn.

This diffeomorphism is a Kähler isometry with respect to the Kähler metric
on Sn given by |Ẑ|2 = trace((Y −1X̂)2 + (Y −1Ŷ )2) for Ẑ = X̂ + iŶ ∈ TZSn.
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Definition of the Ricci form

By Lemma 2.1 the space Jn fits as a fiber into the general framework de-
veloped by Donaldson [13]. Starting from this observation we will show that
the action of the group of exact volume preserving diffeomorphisms on the
space of almost complex structures is a Hamiltonian group action with twice
the Ricci form as a moment map. Let M be a closed connected oriented 2n-
manifold. Assume M admits an almost complex structure compatible with
the orientation and denote the space of such almost complex structures by

J (M) :=

J ∈ Ω0(M,End(TM))

∣∣∣∣∣
J2 = −1l and
J is compatible with
the orientation of M

 . (2.5)

Thus J (M) is the space of sections of a bundle each of whose fibers is
equipped with a natural symplectic form by Lemma 2.1. It can be viewed
formally as an infinite-dimensional manifold whose tangent space at J is the
space TJJ (M) = {Ĵ ∈ Ω0(M,End(TM)) | ĴJ +JĴ = 0} = Ω0,1

J (M,TM) of
complex anti-linear 1-forms on M with values in TM . Every positive volume
form ρ ∈ Ω2n(M) determines a symplectic form Ωρ on J (M) defined by

Ωρ,J(Ĵ1, Ĵ2) := 1
2

∫
M

trace
(
Ĵ1JĴ2

)
ρ (2.6)

for J ∈J (M) and Ĵ1, Ĵ2 ∈ TJJ (M). The group G = Diff(M,ρ) of vol-
ume preserving diffeomorphisms acts on J (M) contravariantly by J 7→ φ∗J
for φ ∈ G and J ∈J (M). This action preserves the symplectic form Ωρ.

Definition 2.5 (Ricci Form). Fix a positive volume form ρ ∈ Ω2n(M),
an almost complex structure J ∈J (M), and a torsion-free ρ-connection ∇
on TM . The Ricci form of the pair (ρ, J) is the 2-form

Ricρ,J := 1
2

(
τ∇J + dλ∇J

)
, (2.7)

where τ∇J ∈ Ω2(M) and λ∇J ∈ Ω1(M) are defined by

τ∇J (u, v) := 1
2
trace

(
(∇uJ)J(∇vJ)

)
+ trace

(
JR∇(u, v)

)
,

λ∇J (u) := trace
(
(∇J)u

) (2.8)

for u, v ∈ Vect(M). For Ĵ ∈ Ω0,1
J (M,TM) define Λρ(J, Ĵ) ∈ Ω1(M) by(

Λρ(J, Ĵ)
)
(u) := trace

(
(∇Ĵ)u+ 1

2
ĴJ∇uJ

)
for u ∈ Vect(M). (2.9)
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The Ricci form as a moment map

The next theorem is the main result of this section. It asserts that the action
of the subgroup

G ex :=


φ ∈ Diff(M)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists a smooth isotopy
[0, 1]×Diff(M) : t 7→ φt
and a smooth family of vector fields
[0, 1]→ Vect(M) : t 7→ vt
such that ι(vt)ρ is exact for all t
and ∂tφt = vt ◦ φt for all t
and φ0 = id and φ1 = φ


(2.10)

of exact volume preserving diffeomorphisms on J (M) is a Hamiltonian
group action and is generated by the G -equivariant moment map which as-
signs to each J ∈J (M) twice the Ricci form Ricρ,J . The moment map must
take values in the dual space of the Lie algebra

Lie(G ex) = Vectex(M,ρ) = {v ∈ Vect(M) | ι(v)ρ is exact} .

Every (2n−2)-form α ∈ Ω2n−2(M) determines an exact divergence-free vector
field vα ∈ Vectex(M,ρ) via

ι(vα)ρ = dα.

Thus Vectex(M,ρ) can be identified with the quotient of the space Ω2n−2(M)
by the space of closed (2n − 2)-forms on M . Its dual space can be viewed
formally as the space of exact 2-forms on M , in that every exact 2-form τ
on M determines a linear functional

Vectex(M,ρ)→ R : vα 7→
∫
M

τ ∧ α.

With this understood, equation (2.15) in the following theorem is the as-
sertion that the map J 7→ 2Ricρ,J is a moment map for the action of G ex

on J (M). In general, however, the Ricci form is only closed and not exact;
only its differential in the direction of an infinitesimal almost complex struc-
ture is always exact. Thus the map J 7→ 2Ricρ,J is only a moment in the strict
sense of the word when restricted to the space of almost complex structures
with real first Chern class zero. One could attempt to rectify this situation
by subtracting a closed 2-form in the appropriate cohomology class from the
Ricci form, however such a modification would destroy the G ex-equivariance
of the moment map unless M has real dimension two.
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Theorem 2.6. Let ρ ∈ Ω2n(M) be a positive volume form, let J ∈J (M),

and let Ĵ ∈ Ω0,1
J (M,TM). Then the following holds.

(i) The Ricci form Ricρ,J and the 1-form Λρ(J, Ĵ) are independent of the
choice of the torsion-free ρ-connection ∇ used to define them. Moreover,

Ricefρ,J = Ricρ,J + 1
2
d(df ◦ J), Λefρ(J, Ĵ) = Λρ(J, Ĵ) + df ◦ Ĵ (2.11)

for all f ∈ Ω0(M) and the Ricci form and Λρ satisfy the naturality condition

φ∗Ricρ,J = Ricφ∗ρ,φ∗J , φ∗Λρ(J, Ĵ) = Λφ∗ρ(φ
∗J, φ∗Ĵ) (2.12)

for all φ ∈ Diff(M).

(ii) Every vector field v ∈ Vect(M) satisfies∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ = 1
2

∫
M

trace
(
ĴJLvJ

)
ρ. (2.13)

Moreover, every smooth path R→J (M) : t 7→ Jt of almost complex struc-

tures with J0 = J and d
dt

∣∣
t=0

Jt = Ĵ satisfies the equations

R̂icρ(J, Ĵ) :=
d

dt

∣∣∣∣
t=0

Ricρ,Jt = 1
2
d
(
Λρ(J, Ĵ)

)
(2.14)

and ∫
M

2R̂icρ(J, Ĵ) ∧ α = 1
2

∫
M

trace
(
ĴJLvαJ

)
ρ (2.15)

for α ∈ Ω2n−2(M), where vα ∈ Vect(M) is defined by ι(vα)ρ = dα.

(iii) Let ω ∈ Ω2(M) be a nondegenerate 2-form compatible with J such
that ωn/n! = ρ, let ∇ be the Levi-Civita connection of the Riemannian met-
ric 〈·, ·〉 = ω(·, J ·), and define

∇̃ := ∇− 1
2
J∇J. (2.16)

Then ∇̃ is a Hermitian connection and

Ricρ,J = 1
2

(
trace(JR∇̃) + dλ∇J

)
. (2.17)

Thus Ricρ,J is closed and represents the class 2πc1(TM, J). Moreover,

dω = 0 =⇒ λ∇J = 0, Ricρ,J = 1
2
trace(JR∇̃). (2.18)
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Proof. We prove part (i). Choose a smooth function

[0, 1]×M → R : (t, p) 7→ ft(p)

with f0 = 0 and f1 = f , define ρt := eftρ for 0 ≤ t ≤ 1, and choose a smooth
path of torsion-free connections ∇t on TM such that ∇tρt = 0 for all t.
For 0 ≤ t ≤ 1 define the 1-forms At ∈ Ω1(M,End(TM)) and αt ∈ Ω1(M) by

At := d
dt
∇t, αt(u) := trace

(
JAt(u)

)
(2.19)

for u ∈ Vect(M). Then, for all t and all u, v ∈ Vect(M), we have

At(u)v = At(v)u, trace(At(u)) = d(∂tft)(u), (2.20)

d
dt
∇t,uJ = [At(u), J ], d

dt
R∇t = d∇tAt. (2.21)

It follows from (2.8), (2.19), (2.20), and (2.21) that

d
dt
τ∇tJ (u, v) = trace

(
(∇t,uJ)At(v)− (∇t,vJ)At(u)

)
+ trace

(
Jd∇tAt(u, v)

)
= trace

(
d∇t(JAt)(u, v)

)
= dαt(u, v)

and
d
dt

∣∣
t=0

λ∇tJ (u) = trace
(
[At, J ]u

)
= trace

(
At(Ju)

)
− trace(JAt(u))

= d(∂tft)(Ju)− αt(u)

for all t and all u, v ∈ Vect(M). Hence

d
dt

∣∣
t=0

(τ∇tJ + dλ∇tJ ) = d
(
d(∂tft) ◦ J

)
.

Integrate this formula to obtain the first equation in (2.11) and consider the
case where ρt = ρ is independent of t to deduce that the 2-form Ricρ,J is
independent of the choice of the torsion-free ρ-connection ∇ used to define
it. Moreover, it follows from (2.19), (2.20), and (2.21) that

d
dt

trace
(
(∇tĴ)u+ 1

2
ĴJ∇t,uJ

)
= trace

(
[At, Ĵ ]u+ 1

2
ĴJ [At(u), J ]

)
= trace

(
At(Ĵu)

)
= d(∂tft)(Ĵu).

for all t and all u ∈ Vect(M). Integrate this formula to obtain the second
equation in (2.11) and consider the case where ρt = ρ is independent of t to

deduce that the 1-form Λρ(J, Ĵ) is independent of the choice of the torsion-
free ρ-connection ∇ used to define it. The naturality condition (2.12) follows
directly ftom the definitions and this proves (i).
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To prove part (ii) we use the formulas

trace(∇u)ρ = dι(u)ρ, (2.22)

(LvJ)u = J∇uv −∇Juv + (∇vJ)u (2.23)

for u, v ∈ Vect(M). By (2.23), we have

trace
(
ĴJLvJ

)
= trace

(
−Ĵ∇v − ĴJ∇J ·v + ĴJ∇vJ

)
= trace

(
−2Ĵ∇v + ĴJ∇vJ

)
for all u, v ∈ Vect(M). Here the second equality holds because two endomor-
phisms Φ and −JΦJ are conjugate and so have the same trace. Thus

Λρ(J, Ĵ)(v) = trace
(
(∇Ĵ)v + 1

2
ĴJ∇vJ

)
= trace

(
∇(Ĵv)− Ĵ∇v + 1

2
ĴJ∇vJ

)
= trace

(
∇(Ĵv)

)
+ 1

2
trace

(
ĴJLvJ

)
for all v ∈ Vect(M). Hence it follows from (2.22) with u = Ĵv that∫

M

Λρ(J, Ĵ) ∧ ι(v)ρ =

∫
M

Λρ(J, Ĵ)(v)ρ = 1
2

∫
M

trace
(
ĴJLvJ

)
ρ

for all v ∈ Vect(M). This proves (2.13).
Now fix a torsion-free ρ-connection ∇ and abbreviate

λ̂(u) := trace((∇Ĵ)u) = d
dt

∣∣
t=0

λ∇Jt(u), β̂(u) := 1
2
trace

(
ĴJ∇uJ

)
for u ∈ Vect(M). Then Λρ(J, Ĵ) = λ̂+ β̂ and

dβ̂(u, v)

= 1
2
Lutrace

(
ĴJ∇vJ

)
− 1

2
Lvtrace

(
ĴJ∇uJ

)
+ 1

2
trace

(
ĴJ∇[u,v]J

)
= 1

2
trace

(
(∇u(ĴJ))∇vJ

)
− 1

2
trace

(
(∇v(ĴJ))∇uJ

)
+ 1

2
trace

(
ĴJ
(
∇u∇vJ −∇v∇uJ +∇[u,v]J

))
= 1

2
trace

(
(∇uĴ)J(∇vJ)

)
− 1

2
trace

(
(∇vĴ)J(∇uJ)

)
+ 1

2
trace

(
ĴJ [R∇(u, v), J ]

)
= 1

2
trace

(
(∇uĴ)J(∇vJ)

)
+ 1

2
trace

(
(∇uJ)J(∇vĴ)

)
+ trace

(
ĴR∇(u, v)

)
= d

dt

∣∣
t=0

τ∇Jt (u, v)

for all u, v ∈ Vect(M). Since Ricρ,Jt = 1
2
(τ∇Jt + dλ∇Jt) this proves (2.14). Equa-

tion (2.15) follows directly from (2.13), (2.14), and Stokes’ theorem and this
proves part (ii).
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We prove part (iii). The connection ∇̃ in (2.16) will in general no longer
be torsion-free. However, since the endomorphism J∇uJ is skew-adjoint for
all u ∈ Vect(M), it preserves the Riemannian metric on M and the volume
form ρ. In addition it preserves the almost complex structure J because

∇̃uJ = ∇uJ − 1
2
[J∇uJ, J ] = ∇uJ − 1

2
J(∇uJ)J + 1

2
JJ∇uJ = 0

for all u ∈ Vect(M). Next we compute the curvature tensor of ∇̃. Fix three

vector fields u, v, w ∈ Vect(M). Then ∇̃vw = ∇vw − 1
2
J(∇vJ)w and so

∇̃u∇̃vw = ∇̃u
(
∇vw − 1

2
J(∇vJ)w

)
= ∇̃u∇vw − 1

2
J∇̃u

(
(∇vJ)w

)
= ∇u∇vw − 1

2
J(∇uJ)∇vw − 1

2
J∇u

(
(∇vJ)w

)
− 1

4
(∇uJ)(∇vJ)w

= ∇u∇vw − 1
2
J
(
∇u∇vJ

)
w − 1

4
(∇uJ)(∇vJ)w

− 1
2
J(∇uJ)∇vw − 1

2
J(∇vJ)∇uw.

Hence

R∇̃(u, v)w = ∇̃u∇̃vw − ∇̃u∇̃vw + ∇̃[u,v]w

= ∇u∇vw − 1
2
J
(
∇u∇vJ

)
w − 1

4
(∇uJ)(∇vJ)w

−∇v∇uw + 1
2
J
(
∇v∇uJ

)
w + 1

4
(∇vJ)(∇uJ)w

+∇[u,v]w − 1
2
J(∇[u,v]J)w

= R∇(u, v)w − 1
2
J [R∇(u, v), J ]w − 1

4
[∇uJ,∇vJ ]w

= 1
2
R∇(u, v)w − 1

2
JR∇(u, v)Jw − 1

4
[∇uJ,∇vJ ]w.

This implies

JR∇̃(u, v) = 1
2
JR∇(u, v) + 1

2
R∇(u, v)J − 1

4
J [∇uJ,∇vJ ] (2.24)

and hence

trace
(
JR∇̃(u, v)

)
= trace

(
JR∇(u, v)

)
+ 1

2
trace

(
(∇uJ)J(∇vJ)

)
. (2.25)

Thus trace(JR∇̃) = τ∇J and this proves (2.17). Since ∇̃ is a Hermitian con-

nection, the 2-form trace( 1
4π
JR∇̃) = tracec( 1

2π
JR∇̃) ∈ Ω2(M) is closed and

represents the first Chern class of (TM, J).
If ω is closed, then ∇JvJ = −J(∇vJ) for every vector field v ∈ Vect(M)

by [30, Lemma 4.1.14], so the endomorphism v 7→ (∇vJ)u anti-commutes
with J and therefore has trace zero. Hence λ∇J = 0. This proves part (iii)
and Theorem 2.6.
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For u ∈ Vect(M) define fu := fρ,u := divρ(u) ∈ Ω0(M), so that

fuρ = dι(u)ρ. (2.26)

Theorem 2.7. Let ρ ∈ Ω2n(M) be a positive volume form, let J ∈J (M),
and let u ∈ Vect(M). Then

Λρ(J,LuJ) = 2ι(u)Ricρ,J − dfu ◦ J + dfJu. (2.27)

Moreover, every smooth map R2 →J (M) : (s, t) 7→ J(s, t) satisfies

∂sΛρ(J, ∂tJ)− ∂tΛρ(J, ∂sJ) + 1
2
dtrace

(
(∂sJ)J(∂tJ)

)
= 0. (2.28)

Proof. The proof has six steps.

Step 1. We prove (2.28).

Let v ∈ Vect(M). Then it follows from equation (2.13) that∫
M

(
∂sΛρ(J, ∂tJ)− ∂tΛρ(J, ∂sJ)

)
∧ ι(v)ρ

= 1
2
∂s

∫
M

trace
(
(∂tJ)J(LvJ)

)
ρ− 1

2
∂t

∫
M

trace
(
(∂sJ)J(LvJ)

)
ρ

= 1
2

∫
M

trace
(
(Lv∂tJ)J(∂sJ) + (∂tJ)(LvJ)(∂sJ) + (∂tJ)J(Lv∂sJ)

)
ρ

= 1
2

∫
M

(
Lvtrace

(
(∂tJ)J(∂sJ)

))
ρ = 1

2

∫
M

dtrace
(
(∂tJ)J(∂sJ)

)
∧ ι(v)ρ.

This proves Step 1.

Step 2. dΛρ(J,LuJ) = 2dι(u)Ricρ,J − d(dfu ◦ J).

Let φt be the flow of u. Then φ∗tRicρ,J = Ricφ∗t ρ,φ∗t J by part (i) of Theorem 2.6.
Differentiate this equation and use parts (i) and (ii) of Theorem 2.6 to

get dι(u)Ricρ,J = R̂icρ(J,LuJ) + 1
2
d(dfu ◦ J) = 1

2

(
dΛρ(J,LuJ) + d(dfu ◦ J)

)
.

Step 3. Suppose ι(u)ρ is exact. Then u satisfies (2.27).

Choose α ∈ Ω2n−2(M) such that ι(u)ρ = dα. Then, for all v ∈ Vect(M),∫
M

2ι(u)Ricρ,J ∧ ι(v)ρ =

∫
M

2Ricρ,J ∧ ι(v)dα = −
∫
M

2dι(v)Ricρ,J ∧ α

= −
∫
M

d
(
Λρ(J,LvJ) + dfv ◦ J

)
∧ α = −

∫
M

(
Λρ(J,LvJ) + dfv ◦ J

)
∧ ι(u)ρ

=

∫
M

(
Λρ(J,LuJ)− dfJu

)
∧ ι(v)ρ.

Here the third equality follows from Step 2. This proves Step 3.
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Step 4. Let λ ∈ Ω0(M) and Ĵ ∈ Ω0,1
J (M,TM). Then

fλu = λfu + dλ(u), (2.29)

Λρ(J, λĴ) = λΛρ(J, Ĵ) + dλ ◦ Ĵ , (2.30)

LλuJ = λLuJ + Ĵu, Ĵu := Ju⊗ dλ− u⊗ dλ ◦ J. (2.31)

(2.29) and (2.30) follow from the definitions and (2.31) follows from (2.23).

Step 5. If u satisfies (2.27) and λ ∈ Ω0(M), then λu satisfies (2.27).

Let Ĵu ∈ Ω0,1
J (M,TM) be as in (2.31). We prove the identity

Λρ(J, Ĵu) + dλ ◦ LuJ = fJudλ− fudλ ◦ J + dLJuλ− dLuλ ◦ J. (2.32)

To see this, let v, w ∈ Vect(M). Then

(∇wĴu)v = ∇w
(
dλ(v)Ju− dλ(Jv)u

)
− dλ(∇wv)Ju+ dλ(J∇wv)u

= dλ(v)∇w(Ju) + (LwLvλ)Ju− (L∇wvλ)Ju

− dλ(Jv)∇wu− (LwLJvλ)u+ (LJ∇wvλ)u.

Hence it follows from (2.22) and (2.23) that

trace
(
(∇Ĵu)v

)
= dλ(v)trace

(
∇(Ju)

)
+ LJuLvλ− L∇Juvλ

− dλ(Jv)trace
(
∇u
)
− LuLJvλ+ LJ∇uvλ

= dλ(v)fJu − dλ(Jv)fu + LvLJuλ− LJvLuλ
− dλ((∇vJ)u+ (LuJ)v).

Since (Λρ(J, Ĵu))(v) = trace((∇Ĵu)v) + dλ((∇vJ)u), this proves (2.32). Now
suppose u satisfies (2.27) and let v ∈ Vect(M). Then, by Step 4, we have(

Λρ(J,LλuJ)
)
(v) =

(
Λρ(J, λLuJ + Ĵu)

)
(v)

= λ
(
Λρ(J,LuJ)

)
(v) +

(
Λρ(J, Ĵu)

)
(v) + dλ((LuJ)v)

= λ
(
2Ricρ,J(u, v)− dfu(Jv) + dfJu(v)

)
+ dλ(v)fJu − dλ(Jv)fu + LvLJuλ− LJvLuλ

= 2Ricρ,J(λu, v)− dfλu(Jv) + dfλJu(v).

Here the third equality uses (2.32). This proves Step 5.

Step 6. We prove (2.27).

There exist finitely many exact divergence-free vector fields ui and smooth
functions λi such that u =

∑
i λiui. For each i the vector field λiui satis-

fies (2.27) by Steps 3 and 5. Hence so does u and this proves Theorem 2.7.
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Equation (2.27) is equivalent to the formula

Ωρ,J(LuJ,LvJ) =

∫
M

(
2Ricρ,J(u, v) + fufJv − fJufv

)
ρ (2.33)

for u, v ∈ Vect(M). For exact divergence-free vector fields u, v this is the ana-
logue of the identity ω(Lxξ, Lxη) = 〈µ(x), [ξ, η]〉 for Hamiltonian group ac-
tions on finite-dimensional symplectic manifolds. The analogue in the scalar
curvature setting is discussed in Remark 2.10 below.

Scalar curvature

Let (M,ω) be a 2n-dimensional closed connected symplectic manifold and
denote by

J (M,ω) :=

J ∈ Ω0(M,End(TM))

∣∣∣∣∣
J2 = −1l and J∗ω = ω
and ω(x̂, Jx̂) > 0
for all x̂ ∈ TxM \ {0}


the space of all almost complex structures that are compatible with ω. This
is an infinite-dimensional Kähler submanifold of J (M) with the tangent

spaces TJJ (M,ω) = {Ĵ ∈ Ω0,1
J (M,TM) |ω(Ĵ ·, ·) + ω(·, Ĵ ·) = 0}, the sym-

plectic form Ωρ in (2.6), and the complex structure Ĵ 7→ −JĴ .

Definition 2.8 (Scalar Curvature). Let ω be a symplectic form on M ,
let J be an ω-compatible almost complex structure on M , let ∇ be the Levi-
Civita connection of the metric 〈·, ·〉 = ω(·, J ·), and let ∇̃ := ∇− 1

2
J(∇J).

Define the Ricci form of (ω, J) by Ricω,J := Ricωn/n!,J = 1
2
trace(JR∇̃) and

define the scalar curvature by

Sω,J := 2〈Ricω,J , ω〉 :=
2Ricω,J ∧ ωn−1/(n− 1)!

ωn/n!
∈ Ω0(M). (2.34)

By Theorem 2.6 the scalar curvature Sω,J in (2.34) satisfies∫
M

Sω,J
ωn

n!
= 4π

〈
c1(TM, J) ^

[ω]n−1

(n− 1)!
, [M ]

〉
(2.35)

and φ∗Sω,J = Sφ∗ω,φ∗J for every diffeomorphism φ : M →M . The following
result was proved by Donaldson [12], and independently by Fujiki [17] (in
the integrable case) and Quillen (for Riemann surfaces).
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Corollary 2.9 (Fujiki–Quillen–Donaldson). The map J 7→ Sω,J is an
equivariant moment map for the action of Ham(M,ω) on J (M,ω), i.e.
if H ∈ Ω0(M) and vH ∈ Vect(M) is the Hamiltonian vector field defined
by ι(vH)ω = dH, then every smooth path R→J (M,ω) : t 7→ Jt satisfies

d

dt

∫
M

Sω,JtH
ωn

n!
= 1

2

∫
M

trace
(

(∂tJt)Jt(LvHJt)
)ωn

n!
. (2.36)

Proof. Define J := J0, Ĵ := d
dt

∣∣
t=0

Jt, and ρ := ωn/n!. Then

d

dt

∣∣∣∣
t=0

∫
M

Sω,JtH
ωn

n!
=

∫
M

2HR̂icρ(J, Ĵ) ∧ ωn−1

(n− 1)!

=

∫
M

HdΛρ(J, Ĵ) ∧ ωn−1

(n− 1)!

=

∫
M

Λρ(J, Ĵ) ∧ ι(vH)ρ.

Hence the assertion follows from Theorem 2.6.

Remark 2.10. For a closed connected symplectic 2n-manifold (M,ω) with
volume form ρ := ωn/n!, an almost complex structure J ∈J (M,ω), and two
Hamiltonian functions F,G : M → R equation (2.33) takes the form

Ωρ,J(LvF J,LvGJ) =

∫
M

2Ricω,J(vF , vG)ρ

=

∫
M

2Ricω,J ∧ ι(vG)ι(vF )ρ

=

∫
M

2Ricω,J ∧ ι(vG)

(
dF ∧ ωn−1

(n− 1)!

)
=

∫
M

2Ricω,J ∧ {F,G}
ωn−1

(n− 1)!

=

∫
M

Sω,J{F,G}ρ.

(2.37)

Here {F,G} := ω(vF , vG) denotes the Poisson bracket. If the scalar curvature
is constant, equation (2.37) implies that LvF J and JLvGJ are L2 orthogo-
nal and hence ‖LvF J + JLvGJ‖

2 = ‖LvF ‖
2 + ‖LvGJ‖

2 for all F,G ∈ Ω0(M).
If J is integrable, the scalar curvature is constant, and H1(M ;R) = 0, this in
turn implies that the Lie algebra of holomorphic vector fields is the complex-
ification of the Lie algebra of Killing vector fields and is therefore reductive
(Matsushima’s Theorem).
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Symplectic complements

The next theorem examines symplectic complements in TJJ (M). It shows
that the regular part of the Marsden–Weinstein quotient

W0(M,ρ) := {J ∈J (M) |Ricρ,J = 0}/Diffex(M,ρ) (2.38)

is an infinite-dimensional symplectic manifold.

Theorem 2.11 (Complements). Let ρ ∈ Ω2n(M) be a positive volume form

and J ∈J (M), Ĵ ∈ Ω0,1
J (M,TM), λ̂ ∈ Ω1(M). Then the following holds.

(i) There exists a Ĵ ′ ∈ Ω0,1
J (M,TM) such that Λρ(J, Ĵ

′) = λ̂ if and only

if
∫
M
λ̂ ∧ ι(v)ρ = 0 for all v ∈ Vect(M) with LvJ = 0.

(ii) There exists a v ∈ Vect(M) with LvJ = Ĵ if and only if Ωρ,J(Ĵ , Ĵ ′) = 0

for all Ĵ ′ ∈ Ω0,1
J (M,TM) with Λρ(J, Ĵ

′) = 0.

(iii) There exists a Ĵ ′ ∈ Ω0,1
J (M,TM) such that R̂icρ(J, Ĵ

′) = dλ̂ if and only

if
∫
M
dλ̂ ∧ α = 0 for all α ∈ Ω2n−2(M) with LvαJ = 0.

(iv) There exists a v ∈ Vect(M) such that LvJ = Ĵ and ι(v)ρ is exact if and

only if Ωρ,J(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1
J (M,TM) such that R̂icρ(J, Ĵ

′) = 0.

Proof. See page 19.

To prove Theorem 2.11 it is convenient to choose a nondegenerate 2-
form ω ∈ Ω2(M) that is compatible with J and satisfies ωn/n! = ρ. Let ∇
be the Levi-Civita connection of the Riemannian metric 〈·, ·〉 = ω(·, J ·) and
define the linear operator ∂̄J : Ω0(M,TM)→ Ω0,1

J (M,TM) by

(∂̄Jv)u := −1
2
J(LvJ)u = 1

2

(
∇uv + J∇Juv − J(∇vJ)u

)
(2.39)

for u, v ∈ Vect(M). Let ∂̄∗J be the formal adjoint operator of ∂̄J with respect
to the standard L2-inner products. Then both ∂̄J and ∂̄∗J are bounded linear
operators with closed images between appropriate Sobolev completions.

Lemma 2.12. Let Ĵ ∈ Ω0,1
J (M,TM). Then Λρ(J, Ĵ) = ι(J∂̄∗J Ĵ

∗)ω.

Proof. Let v ∈ Vect(M). Then part (ii) of Theorem 2.6 yields∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ = 1
2

∫
M

trace
(
ĴJLvJ

)
ρ = −〈Ĵ∗, ∂̄Jv〉L2

= −〈∂̄∗J Ĵ∗, v〉L2 =

∫
M

ω(J∂̄∗J Ĵ
∗, v)ρ =

∫
M

ι(J∂̄∗J Ĵ
∗)ω ∧ ι(v)ρ.

(2.40)

This proves Lemma 2.12.
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Proof of Theorem 2.11. Choose ω as in Lemma 2.12. We prove part (i). The

condition is necessary by (2.13). Conversely, assume
∫
M
λ̂ ∧ ι(v)ρ = 0 for

all v ∈ Vect(M) with LvJ = 0. Define the vector field u by ι(Ju)ω := λ̂.

Then 〈u, v〉L2 =
∫
M
ω(u, Jv)ρ = −

∫
M
λ̂ ∧ ι(v)ρ = 0 for all v ∈ ker ∂̄J . Hence

there exists a Ĵ ′ ∈ Ω0,1
J (M,TM) such that ∂̄∗J(Ĵ ′)∗ = u and so by Lemma 2.12

we have λ̂ = ι(Ju)ω = ι(J∂̄∗J(Ĵ ′)∗)ω = Λρ(J, Ĵ
′). This proves (i).

We prove part (ii). The condition is necessary by (2.13). Conversely,

assume Ωρ,J(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1
J (M,TM) that satisfy Λρ(J, Ĵ

′) = 0.

Let v ∈ Vect(M) with ∂̄∗J
(
∂̄Jv + 1

2
JĴ
)

= 0 and define Ĵ ′ := (∂̄Jv + 1
2
JĴ)∗.

Then ∂̄∗J(Ĵ ′)∗ = 0, hence Λρ(J, Ĵ
′) = 0 by (2.40), and hence Ωρ,J(Ĵ , Ĵ ′) = 0.

This implies
∫
M
|Ĵ ′|2ρ =

∫
M

trace
(
Ĵ ′(∂̄Jv + 1

2
JĴ)

)
ρ = 〈(Ĵ ′)∗, ∂̄Jv〉L2 = 0.

Thus Ĵ ′ = 0 and so Ĵ = 2J∂̄Jv = LvJ by (2.39). This proves (ii).
We prove part (iii). The condition is necessary by (2.15). Conversely,

assume
∫
M
dλ̂ ∧ α = 0 for all α ∈ Ω2n−2(M) with LvαJ = 0. Choose a ba-

sis u1, . . . , u` of V := {u ∈ Vect(M) | LuJ = 0} such that uk+1, . . . , u` form a
basis of {u ∈ V | ι(u)ρ ∈ imd}. Then ι(u1)ρ, . . . , ι(uk)ρ are linearly indepen-
dent in the quotient Ω2n−1(M)/imd. Hence, by Poincaré duality, there exist
closed 1-forms λ1, . . . , λk ∈ Ω1(M) such that

∫
M
λi ∧ ι(uj)ρ = δij for i, j ≤ k.

Define λ̂′ := λ̂−
∑k

i=1(
∫
M
λ̂ ∧ ι(ui)ρ)λi. Then we have

∫
M
λ̂′ ∧ ι(uj)ρ = 0

for j = 1, . . . , `. Hence by (i) there exists a 1-form Ĵ ′ ∈ Ω0,1
J (M,TM) such

that Λρ(J, Ĵ
′) = 2λ̂′. Thus R̂icρ(J, Ĵ

′) = dλ̂′ = dλ̂ and this proves (iii).
We prove part (iv). The condition is necessary by (2.15). Conversely,

assume Ωρ,J(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1
J (M,TM) such that R̂icρ(J, Ĵ

′) = 0.

Then by (ii) there is a v ∈ Vect(M) with LvJ = Ĵ . Choose ui, λi as in
the proof of part (iii) and define v0 := v −

∑k
i=1 xiui, xi :=

∫
M
λi ∧ ι(v)ρ.

Then Lv0J = Ĵ . We prove that ι(v0)ρ is exact. To see this, let λ̂ ∈ Ω1(M)

be any closed 1-form and define λ̂′ := λ̂ −
∑k

i=1 yiλi, yi :=
∫
M
λ̂ ∧ ι(ui)ρ.

Then
∫
M
λ̂′ ∧ ι(uj)ρ = 0 for j = 1, . . . , `. Hence by (i) there exists a 1-

form Ĵ ′ ∈ Ω0,1
J (M,TM) such that Λρ(J, Ĵ

′) = λ̂′. Thus R̂icρ(J, Ĵ
′) = 0,

hence Ωρ,J(Ĵ , Ĵ ′) = 0, and therefore∫
M

λ̂ ∧ ι(v0)ρ =

∫
M

λ̂ ∧ ι(v)ρ−
k∑
i=1

xiyi =

∫
M

λ̂′ ∧ ι(v)ρ = Ωρ,J

(
Ĵ ′, Ĵ

)
= 0.

This shows that ι(v0)ρ is exact and completes the proof of Theorem 2.11.
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3 The integrable case

Let M be a closed connected oriented 2n-manifold. In this section we restrict
attention to (integrable) complex structures that are compatible with the
orientation. Denote the space of such complex structures by Jint(M).

The Ricci form in the integrable case

Let J ∈Jint(M). Then (TM, J) is a holomorphic vector bundle with the
Cauchy–Riemann operator ∂̄J : Ω0,q

J (M,TM)→ Ω0,q+1
J (M,TM). It satisfies

2J∂̄J,uv = J∇uv −∇Juv = (LvJ)u (3.1)

and

2J∂̄J Ĵ(u, v) = J(∇uĴ)v − J(∇vĴ)u− J(∇JuĴ)Jv + J(∇JvĴ)Ju

= − d
dt

∣∣
t=0

NJt(u, v)
(3.2)

for all u, v ∈ Vect(M), all Ĵ ∈ Ω0,1
J (M,TM), and every smooth path of al-

most complex structures R→J (M) : t 7→ Jt with J0 = J and d
dt
|t=0Jt = Ĵ .

Here ∇ is a torsion-free connection on TM with ∇J = 0, equation (3.1)
follows from (2.23), and (3.2) follows by differentiating (A.2).

Next observe that

d(df ◦ J)(u, v)− d(df ◦ J)(Ju, Jv) = df(JNJ(u, v)). (3.3)

for all f ∈ Ω0(M) and all u, v ∈ Vect(M). Hence an almost complex struc-
ture J is integrable if and only if the 2-form d(df ◦ J) is of type (1, 1)
for all f ∈ Ω0(M). Theorem 3.1 below uses the Bott–Chern cohomology
group H1,1

BC(M,J) := (ker d ∩ Ω1,1
J (M))/{d(df ◦ J) | f ∈ Ω0(M)} [1, 2, 3, 5].

It shows that Ricρ,J is the standard Ricci form in the integrable case.

Theorem 3.1. Let ρ ∈ Ω2n(M) be a positive volume form, let J ∈Jint(M),
and let ∇ be a torsion-free ρ-connection with ∇J = 0. The following holds.

(i) Ricρ,J = 1
2
trace(JR∇) is a closed (1, 1)-form and 1

2π
Ricρ,J represents the

first Bott–Chern class of the holomorphic tangent bundle (TM, J).

(ii) There exists a diffeomorphism φ ∈ Diff0(M) such that Ricρ,φ∗J = 0 if and
only if the first Bott–Chern class of (TM, J) vanishes.

(iii) Let φ : M →M be an orientation preserving diffeomorphism and sup-
pose that Ricρ,J = Ricρ,φ∗J = 0. Then φ∗ρ = ρ. If in addition φ is isotopic to
the identity, then φ ∈ Diff0(M,ρ).
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Proof. The formula Ricρ,J = 1
2
trace(JR∇) follows from Definition 2.5. More-

over, Ricρ,J is independent of the choice of ∇ by part (i) of Theorem 2.6,
is closed and represents the cohomology class 2πc1(TM, J) ∈ H2(M ;R) by
part (iii) of Theorem 2.6, and is a (1, 1)-form by Lemma A.2.

Now choose a nondegenerate 2-form ω ∈ Ω2(M), compatible with J , such
that ρ is the volume form of the metric 〈·, ·〉 = ω(·, J ·). Let ∇ be the Levi–
Civita connection of this metric and define

∇̃ := ∇− 1
2
J∇J, ̂̂∇ := ∇̃ − 1

4
(A− A∗), (3.4)

where A ∈ Ω1(M,End(TM)) is the endomorphism valued 1-form defined by

A(u)v := J(∇vJ)u+ (∇JvJ)u (3.5)

for u, v ∈ Vect(M). Then, for all u ∈ Vect(M),

A(u)J = JA(u) = −A(Ju), A(u)∗J = JA(u)∗ = A(Ju)∗. (3.6)

This shows that ̂̂∇ is a Hermitian connection on TM and induces the same
Cauchy–Riemann operator on TM as the connection ∇̃ − 1

4
A. The latter

preserves J by (3.6) and is torsion-free by (A.2) (but it need not preserve ρ).
Hence, for all u, v ∈ Vect(M), we have

∂̄
̂̂∇
J,uv = ∂̄

∇̃− 1
4
A

J,u v = ∂̄J,uv = 1
2

(
∇uv + J∇Juv − J(∇vJ)u

)
.

Here the last equality holds because ∇ is torsion-free and J is integrable.

Thus ̂̂∇ is the unique Hermitian connection on TM with ∂̄
̂̂∇
J = ∂̄J .

The curvature tensor of ̂̂∇ is given by

R
̂̂∇ = R∇̃ + 1

4
d∇̃(A∗ − A) + 1

32
[(A∗ − A) ∧ (A∗ − A)].

Since J commutes with A∗ − A by (3.6), we obtain

trace(JR
̂̂∇) = trace(JR∇̃) + 1

4
trace

(
Jd∇̃(A∗ − A)

)
= trace(JR∇̃) + 1

4
trace

(
d∇̃(JA∗ − JA)

)
= trace(JR∇̃) + 1

2
d
(
trace(A) ◦ J

)
= trace(JR∇̃) + dλ∇J = 2Ricρ,J .

Here the third equality follows from (3.6) and the fact that the endomor-
phisms A(Ju) and A(Ju)∗ have the same trace, the fourth equality uses the
fact that the two summands in v 7→ A(Ju)v = (∇vJ)u+ (∇JvJ)Ju have the
same trace, both equal to λ∇J (u) (see equation (2.8)), and the last equality
follows from part (iii) of Theorem 2.6. This proves (i).
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We prove part (ii). Let φ ∈ Diff0(M) such that Ricρ,φ∗J = 0. Then we
have Ricφ∗ρ,J = φ∗Ricρ,φ∗J = 0 by part (i) of Theorem 2.6. Define the func-
tion f ∈ Ω0(M) by e−fρ := φ∗ρ. Then

Ricρ,J = Ricρ,J − Ricφ∗ρ,J = Ricρ,J − Rice−fρ,J = 1
2
d(df ◦ J).

Here the last equality uses (2.11). Since Ricρ,J represents 2π times the first
Bott–Chern class of (TM, J) by (i), this shows that c1,BC(TM, J) = 0.

Conversely, assume c1,BC(TM, J) = 0. Then, by part (i), there exists
a smooth function f : M → R such that Ricρ,J = 1

2
d(df ◦ J). Choose c ∈ R

such that ec
∫
M
ρ =

∫
M
e−fρ and replace f by f + c to obtain

∫
M
e−fρ =

∫
M
ρ.

Then by Moser isotopy there exists a smooth isotopy {φt}0≤t≤1 of M such
that φ0 = id and φ∗t

(
(1− t)ρ+ te−fρ

)
= ρ for 0 ≤ t ≤ 1. Thus the diffeomor-

phism φ := φ1 is isotopic to the identity and satisfies φ∗(e−fρ) = ρ. Hence

Ricρ,φ∗J = Ricφ∗(e−fρ),φ∗J = φ∗Rice−fρ,J = φ∗
(

Ricρ,J − 1
2
d(df ◦ J)

)
= 0.

This proves (ii).
We prove part (iii). Let φ ∈ Diff(M) be orientation preserving, assume

that Ricρ,φ∗J = Ricρ,J = 0, and define f ∈ Ω0(M) by e−fρ := φ∗ρ. Then

1
2
d(df ◦ J) = Ricρ,J − Rice−fρ,J = −Ricφ∗ρ,J = −φ∗Ricρ,φ∗J = 0.

Thus f is constant. Since
∫
M
e−fρ =

∫
M
φ∗ρ =

∫
M
ρ, it follows that f = 0

and so φ∗ρ = ρ. Moreover, Diff0(M,ρ) = Diff(M,ρ) ∩Diff0(M) by Moser
isotopy. This proves part (iii) and Theorem 3.1.

Example 3.2. Assume n = 1, suppose M has genus g ≥ 1, define V :=
∫
M
ρ

and c := 2π(2− 2g)V −1 ≤ 0, and let Kρ,J := Ricρ,J/ρ be the Gaußian curva-
ture. Then the moment map

J (M)→ Ω2(M) : J 7→ 2(Ricρ,J − cρ) = 2(Kρ,J − c)ρ

is G -equivariant and takes values in the space of exact 2-forms. The uni-
formization theorem for Riemann surfaces asserts that for every J ∈J (M)
there exists a diffeomorphism φ ∈ Diff0(M) such that Kφ∗ρ,J = c and there-
fore Ricρ,φ∗J = cρ. Moreover, if Ricρ,J = Ricρ,φ∗J = cρ for some orientation
preserving diffeomorphism φ and φ∗ρ =: efρ, then 1

2
d(df ◦ J) = c(ef − 1)ρ.

Hence d∗df = 2c(ef − 1) and this implies
∫
M
|df |2ρ = 2c

∫
M
f(ef − 1)ρ ≤ 0.

Thus f is constant and
∫
M
efρ =

∫
M
φ∗ρ =

∫
M
ρ, so f ≡ 0 and φ∗ρ = ρ.
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Let (M,ω, J) be a closed connected Kähler manifold. For a Kähler poten-
tial h : M → R (with mean value zero) let ωh := ω + i∂̄∂h = ω + 1

2
d(dh ◦ J)

be the associated symplectic form and let ρh := ωn
h/n!. The Calabi conjec-

ture asserts that the map h 7→ Ricρh,J is a bijection onto the space of closed
(1, 1)-forms representing the cohomology class 2πc1(TM, J). Injectivity was
proved by Calabi [8, 9] and surjectivity by Yau [44, 45].

Corollary 3.3 (Calabi–Yau). Let (M,ω, J) be a closed connected Kähler
manifold and let ρ ∈ Ω2n(M) be a positive volume form with

∫
M
ρ =

∫
M
ωn/n!.

Then the following holds.

(i) There exists a unique Kähler potential h : M → R such that ρh = ρ.

(ii) Assume ωn/n! = ρ and c1(TM, J) = 0 ∈ H2(M ;R). Then there exists a
diffeomorphism φ ∈ Diff0(M) such that

Ricρ,φ∗J = 0 and φ∗J is compatible with ω. (3.7)

(iii) Assume ωn/n! = ρ and Ricρ,J = 0. Suppose φ ∈ Diff(M) satisfies (3.7)
and the 2-form φ∗ω − ω is exact. Then φ∗ω = ω.

Proof. We prove part (i). By part (i) of Theorem 3.1, Ricρ,J is a closed
(1, 1)-form representing the cohomology class 2πc1(TM, J). Hence, by Yau’s
existence theorem [44, 45] and Calabi’s uniqueness theorem [8, 9], there exists
a unique Kähler potential h such that Ricρh,J = Ricρ,J . Since

∫
M
ρh =

∫
M
ρ by

assumption, this implies ρh = ρ by equation (2.11) in part (i) of Theorem 2.6.
We prove part (ii). By assumption and part (i) of Theorem 3.1 Ricρ,J is

an exact (1, 1)-form. Since J admits a compatible Kähler form, this implies
that there exists a function f ∈ Ω0(M) such that

Ricρ,J = 1
2
d(df ◦ J),

∫
M

e−fρ =

∫
M

ρ.

Hence Rice−fρ,J = 0 by part (i) of Theorem 2.6. Now it follows from (i)
that there exists a Kähler potential h such that ρh = e−fρ. Since ωh and ω
are compatible with J , Moser isotopy yields a diffeomorphism φ ∈ Diff0(M)
with φ∗ωh = ω. Thus φ∗J is compatible with ω and φ∗ρh = ρ. This im-
plies Ricρ,φ∗J = φ∗Ricρh,J = 0 by part (i) of Theorem 2.6.

To prove (iii), note that (φ−1)∗ω is compatible with J and represents the
cohomology class of ω. Thus there is a Kähler potential h with ωh = (φ−1)∗ω.
Hence φ∗ρh = ρ and φ∗Ricρh,J = Ricρ,φ∗J = 0 by part (i) of Theorem 2.6.
Thus h = 0 by Calabi uniqueness, so φ∗ω = ω. This proves Corollary 3.3.
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Ricci-flat Kähler manifolds

Let ρ ∈ Ω2n(M) be a positive volume form. Then the symplectic form Ωρ

on J (M) is a (1, 1)-form for the complex structure Ĵ 7→ −JĴ . However, the

resulting symmetric bilinear form 〈Ĵ1, Ĵ2〉ρ,J = 1
2

∫
M

trace(Ĵ1Ĵ2)ρ is indefinite,
so J (M) is not Kähler and complex submanifolds need not be symplectic.
An example is the space of (integrable) complex structures with real first
Chern class zero and nonempty Kähler cone. It is denoted by

Jint,0(M) :=

{
J ∈Jint(M)

∣∣∣∣ c1(TM, J) = 0 ∈ H2(M ;R)
and J admits a Kähler form

}
.

Its tangent space at J is the kernel of ∂̄J : Ω0,1
J (M,TM)→ Ω0,2

J (M,TM).

Theorem 3.4. Let J ∈Jint,0(M) with Ricρ,J = 0 and let Ĵ ∈ Ω0,1
J (M,TM)

such that ∂̄J Ĵ = 0. Then the following holds.

(i) Ωρ,J(Ĵ , Ĵ ′) = 0 for all Ĵ ′ with ∂̄J Ĵ
′ = 0 if and only if there exists a vector

field v such that fv = fJv = 0 and LvJ = Ĵ .

(ii) Assume R̂icρ(J, Ĵ) = 0. Then Ωρ,J(Ĵ , Ĵ ′) = 0 for all Ĵ ′ with ∂̄J Ĵ
′ = 0

and R̂icρ(J, Ĵ
′) = 0 if and only if there exists a vector field v such that fv = 0

and LvJ = Ĵ or, equivalently, there exists an α ∈ Ω2n−2(M) with LvαJ = Ĵ .

Proof. See page 28.

Define Jint,0(M,ρ) := {J ∈Jint,0(M) |Ricρ,J = 0}. Part (ii) of Theo-
rem 3.4 (compare with part (iv) of Theorem 2.11) implies that the Teich-
müller space T0(M,ρ) := Jint,0(M,ρ)/Diff0(M,ρ) is a symplectic submani-
fold of the infinite-dimensional symplectic quotient W0(M,ρ) in (2.38). The
Teichmüller space will be discussed further in Section 4.

The proof of Theorem 3.4 relies on three lemmas about Ricci-flat Kähler
manifolds, which examine Λρ (Lemma 3.8), show that holomorphic vec-
tor fields correspond to harmonic 1-forms (Lemma 3.9), and show that the

space of harmonic infinitesimal complex structures is invariant under Ĵ 7→ Ĵ∗

(Lemma 3.10). These in turn require three preparatory lemmas about Hamil-
tonian and gradient vector fields (Lemma 3.5), about infinitesimal compati-
bility (Lemma 3.6), and about vector fields v such that LvJ is self-adjoint
(Lemma 3.7). While some of this material is well-known, we include full
proofs for completeness of the exposition. For a symplectic manifold (M,ω)
and J ∈J (M,ω) the Hamiltonian and gradient vector fields of H ∈ Ω0(M)
are given by ι(vH)ω = dH and ∇H = JvH .
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Lemma 3.5 (Hamiltonian and Gradient Vector Fields). Let (M,ω)
be a symplectic 2n-manifold, let J ∈J (M,ω), let H ∈ Ω0(M), and de-
fine ρ := ωn/n!. Then fvH = 0 and f∇H = −d∗dH. Moreover, if Ricρ,J = 0,
then Λρ(J,L∇HJ) = dd∗dH ◦ J and Λρ(J,LvHJ) = −dd∗dH.

Proof. Since ∗λ = −(λ ◦ J) ∧ ωn−1/(n− 1)! for all λ ∈ Ω1(M), we have

∗ι(v)ω = −(ι(v)ω ◦ J) ∧ ωn−1

(n−1)!
= ι(Jv)ω ∧ ωn−1

(n−1)!
= ι(Jv)ρ (3.8)

for all v ∈ Vect(M). Hence f∇H = ∗dι(JvH)ρ = ∗d∗dH = −d∗dH and the
remaining assertions follow from (2.27). This proves Lemma 3.5.

Lemma 3.6 (Infinitesimal Compatibility). Let M be an oriented 2n-
manifold and let J ∈J (M). If τ ∈ Ω1,1

J (M) and v ∈ Vect(M), then the Lie

derivatives τ̂ := Lvτ and Ĵ := LvJ satisfy the equation

τ̂(u, u′)− τ̂(Ju, Ju′) = τ(Ju, Ĵu′) + τ(Ĵu, Ju′) (3.9)

for all u, u′ ∈ Vect(M). If J is integrable and Ĵ ∈ Ω0,1
J (M,TM) satisfies the

equation ∂̄J Ĵ = 0, then τ := Ricρ,J and τ̂ := R̂icρ(J, Ĵ) satisfy equation (3.9)
for every positive volume form ρ ∈ Ω2n(M).

Proof. Let τ ∈ Ω1,1
J (M), let φt be the flow of v ∈ Vect(M), and let Jt := φ∗tJ .

If τ̂ := Lvτ and Ĵ := LvJ , differentiate the identity τt(u, u
′) = τt(Jtu, Jtu

′)
with τt := φ∗t τ to obtain (3.9). Now assume J is integrable and τ = Ricρ,J .

If τ̂ := R̂icρ(J,LvJ), then Lvτ − τ̂ = 1
2
d(dfv ◦ J) ∈ Ω1,1

J (M) by Theorem 2.7,

so (3.9) holds with Ĵ = LvJ . Now use the holomorphic Poincaré Lemma.

Lemma 3.7 (Self-Adjoint Lie Derivative LvJ). Let (M,ω) be a closed
connected symplectic 2n-manifold, let J ∈J (M,ω), and let v ∈ Vect(M).
Then the following holds (with ρ = ωn/n! in part (iii)).

(i) LvJ is self-adjoint if and only if dι(v)ω ∈ Ω1,1
J (M).

(ii) If J is integrable, then LvJ is self-adjoint if and only if there exists a
function F ∈ Ω0(M) such that dι(v +∇F )ω = 0.

(iii) ι(v)ω is harmonic if and only if fv = fJv = 0 and LvJ = (LvJ)∗.

Proof. Part (i) follows from Lemma 3.6 with τ = ω.
Now suppose J is integrable. Then LvJ and LJvJ = JLvJ are self-adjoint

for every symplectic vector field v by (i). Conversely, assume LvJ = (LvJ)∗.
Then dι(v)ω ∈ Ω1,1

J (M) by (i), and so there exists a function F ∈ Ω0(M)
such that dι(v)ω = d(dF ◦ J) = −dι(∇F )ω. This proves (ii).
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To prove (iii) define ρ := ωn/n!. Then (3.8) shows that d∗ι(v)ω = 0 if and
only if fJv = 0. If dι(v)ω = 0, then fv = 0 and LvJ is self-adjoint by (i).
Conversely, assume fv = 0 and LvJ = (LvJ)∗. Then dι(v)ω ∈ Ω1,1

J (M) by (i)
and 〈dι(v)ω, ω〉 = fv = 0. Thus

∗dι(v)ω = −dι(v)ω ∧ ωn−2

(n−2)!
,

so d∗dι(v)ω = 0, and hence dι(v)ω = 0. This proves Lemma 3.7.

Lemma 3.8 (Λρ in the Ricci-flat Case). Let (M,J, ω) be a closed con-
nected 2n-dimensional Ricci-flat Kähler manifold with volume form ρ = ωn/n!

and let Ĵ ∈ Ω0,1
J (M,TM) such that ∂̄J Ĵ = 0. Then R̂icρ(J, Ĵ) ∈ Ω1,1

J (M) and
there exists a unique pair of functions f = fĴ , g = fJĴ ∈ Ω0(M) such that

Λρ(J, Ĵ) = −df ◦ J + dg,

∫
M

fρ =

∫
M

gρ = 0. (3.10)

Moreover, if ∂̄∗J Ĵ = 0 then Λρ(J, Ĵ) = 0.

Proof. It follows directly from Lemma 3.6 that R̂icρ(J, Ĵ) ∈ Ω1,1
J (M). Now

assume ∂̄∗J Ĵ = 0 and let v := ∂̄∗J Ĵ
∗ ∈ Vect(M). Then ι(v)ω = −Λρ(J, JĴ) by

Lemma 2.12, hence dι(v)ω = −2R̂icρ(J, JĴ) is an exact (1, 1)-form, thus LvJ
is self-adjoint by Lemma 3.7, and so is JLvJ = −2∂̄Jv = 2∂̄J ∂̄

∗
J(Ĵ − Ĵ∗).

Thus ∂̄J ∂̄
∗
J(Ĵ∗ − Ĵ) is L2 orthogonal to Ĵ∗ − Ĵ and so ∂̄∗J Ĵ

∗ = ∂̄∗J(Ĵ∗ − Ĵ) = 0.

Hence Λρ(J, Ĵ) = 0 by Lemma 2.12. To prove (3.10), choose v ∈ Vect(M)

such that ∂̄∗J(Ĵ − LvJ) = 0. Then Λρ(J, Ĵ) = Λρ(J,LvJ) and hence f := fv
and g := fJv satisfy (3.10) by Theorem 2.7. This proves Lemma 3.8.

Lemma 3.9 (Holomorphic Vector Fields). Let M be a closed connected
oriented 2n-manifold, fix a positive volume form ρ ∈ Ω2n(M) and an almost
complex structure J ∈J (M) such that Ricρ,J = 0, and let v ∈ Vect(M).
Then the following holds.

(i) Λρ(J,LvJ) = 0 if and only if dι(v)ρ = dι(Jv)ρ = 0.

(ii) Assume J is compatible with a symplectic form ω such that ωn/n! = ρ
and that LvJ = 0. Then ι(v)ω is a harmonic 1-form.

(iii) Assume J is integrable and compatible with a symplectic form ω such
that ωn/n! = ρ. Then LvJ = 0 if and only if ι(v)ω is harmonic. If dι(v)ρ = 0,
then there exists a v0 ∈ Vect(M) such that ι(v0)ρ is exact and Lv0J = LvJ .
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Proof. To prove (i), observe that Λρ(J,LvJ) = −dfv ◦ J + dfJv by (2.27). As-
sume Λρ(J,LvJ) = 0 and choose a nondegenerate 2-form ω ∈ Ω2(M) that is
compatible with J and satisfies ωn/n! = ρ. Then equation (3.8) yields

0 = ∗
((
d(dfv ◦ J)

)
∧ ωn−1

(n−1)!

)
= d∗dfv − ∗

(
(dfv ◦ J) ∧ dω ∧ ωn−2

(n−2)!

)
.

By the Hopf maximum principle, this implies that fv is locally constant.
Thus fJv is also locally constant. Since fv and fJv have mean value zero on
each connected component of M , it follows that fv = fJv = 0. This proves (i).

Part (ii) follows directly from (i) and Lemma 3.7. To prove (iii), as-
sume J is integrable and ω is closed. If ι(v)ω is harmonic, then (LvJ)∗ = LvJ
and fv = fJv = 0 by Lemma 3.7, thus it follows from (i) and Lemma 2.12 that

0 = Λρ(J,LvJ) = ι(J∂̄∗J(LvJ)∗)ω = ι(J∂̄∗JLvJ)ω = −2ι(∂̄∗J ∂̄Jv)ω,

and so LvJ = 2J∂̄Jv = 0. Now assume dι(v)ρ = 0, choose α0 ∈ Ω2n−2(M)
such that d∗dα0 = dι(Jv)ω, and define v0 ∈ Vect(M) by ι(v0)ρ := dα0.
Then ι(Jv0)ω = ∗dα0 by (3.8). Hence dι(Jv0)ω = d∗dα0 = dι(Jv)ω. We also
have d∗ι(J(v − v0))ω = −dι(v − v0)ρ = 0. Thus ι(J(v − v0))ω is harmonic
and so Lv−v0J = −JLJ(v−v0)J = 0. This proves Lemma 3.9.

Lemma 3.10 (Harmonic Complex Anti-Linear Endomorphisms Ĵ).
Let (M,J, ω) be a closed connected 2n-dimensional Ricci-flat Kähler manifold

with volume form ρ := ωn/n! and let Ĵ ∈ Ω0,1
J (M,TM) such that ∂̄J Ĵ = 0

and ∂̄∗J Ĵ = 0. Then ∂̄J Ĵ
∗ = 0 and ∂̄∗J Ĵ

∗ = 0.

Proof. Let ∇ be the Levi-Civita connection of a Kähler metric ω(·, J ·). Then

the Bochner–Kodaira–Nakano identity for Ĵ ∈ Ω0,1
J (M,TM) takes the form

∂̄∗J ∂̄J Ĵ + ∂̄J ∂̄
∗
J Ĵ = 1

2
∇∗∇Ĵ + 1

2
[JQ, Ĵ ] + T (Ĵ), (3.11)

where

∇∗∇Ĵ = −
∑
i

(∇ei∇ei Ĵ + div(ei)∇ei Ĵ), T (Ĵ)u =
∑
i

R∇(ei, u)Ĵei

for a local orthonormal frame e1, . . . , e2n, and the skew-adjoint endomor-
phism Q is defined by 〈Q·, ·〉 = Ricρ,J . (See [11].) Since T (Ĵ)∗ = T (Ĵ∗), it

follows that the operator ∂̄∗J ∂̄J + ∂̄J ∂̄
∗
J commutes with the operator Ĵ 7→ Ĵ∗

in the Kähler–Einstein case Q = κJ . This proves Lemma 3.10.
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Proof of Theorem 3.4. Let Ĵ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ = 0. Then part (iii)

of Lemma 3.9 shows that the last two assertions in (ii) are equivalent. Next
observe the following.

Claim 1. R̂icρ(J, Ĵ) = 0 if and only if fĴ = 0.

Claim 2. Ωρ,J(Ĵ ,LvJ) =
∫
M

(
fĴfJv − fJĴfv

)
ρ for all v ∈ Vect(M).

By (2.14) and Lemma 3.8 we have R̂icρ(J, Ĵ) = 1
2
dΛρ(J, Ĵ) = −1

2
d(dfĴ ◦ J)

and this proves Claim 1. Claim 2 follows from (2.13) and Lemma 3.8.
Sufficiency in (i) and (ii) follows directly from Claim 1 and Claim 2. To

prove necessity, choose a symplectic form ω such that J is compatible with ω
and ωn/n! = ρ. Then (M,J, ω) is a Ricci-flat Kähler manifold.

We prove part (i). Assume Ωρ,J(Ĵ , Ĵ ′) = 0 for all Ĵ ′ with ∂̄J Ĵ
′ = 0 and

choose v ∈ Vect(M) such that ∂̄∗J(Ĵ − LvJ) = 0. Then Λρ(J, Ĵ − LvJ) = 0

by Lemma 3.8 and ∂̄J(Ĵ − LvJ)∗ = 0 by Lemma 3.10. Thus it follows from
the assumption and equations (2.13) and (2.33) that

0 = Ωρ,J(Ĵ − LvJ,LJvJ) = −Ωρ,J(LvJ,LJvJ) =

∫
M

(
f 2
v + f 2

Jv

)
ρ.

Hence fv = fJv = 0. Now fix an element Ĵ ′ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ

′ = 0.

Then Ωρ,J(Ĵ − LvJ, JĴ ′) = 0 by assumption and Claim 2. Thus

〈(Ĵ − LvJ)∗, Ĵ ′〉L2 =

∫
M

trace((Ĵ − LvJ)Ĵ ′)ρ = −2Ωρ,J(Ĵ − LvJ, JĴ ′) = 0.

This implies that there exists a τ ∈ Ω0,2
J (M,TM) with ∂̄∗Jτ = (Ĵ − LvJ)∗.

Hence ∂̄J ∂̄
∗
Jτ = ∂̄J(Ĵ − LvJ)∗ = 0 and so Ĵ = LvJ . This proves (i).

We prove part (ii). Assume R̂icρ(J, Ĵ) = 0 and Ωρ,J(Ĵ , Ĵ ′) = 0 for all Ĵ ′

that satisfy ∂̄J Ĵ
′ = 0 and R̂icρ(J, Ĵ

′) = 0. Then fĴ = 0 by Claim 1 and we

choose H ∈ Ω0(M) such that d∗dH = −fJĴ . Then Λρ(J, Ĵ − LvHJ) = 0 by

Lemma 3.5 and Lemma 3.8. Now let Ĵ ′ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ

′ = 0 and

choose F ∈ Ω0(M) such that d∗dF = −fĴ ′ . Then R̂icρ(J, Ĵ
′ − L∇FJ) = 0

by (2.14), Lemma 3.5, and Lemma 3.8. Hence

Ωρ,J(Ĵ − LvHJ, Ĵ ′) = Ωρ,J(Ĵ − LvHJ, Ĵ ′ − L∇FJ) = Ωρ,J(Ĵ , Ĵ ′ − L∇FJ) = 0

by assumption and Theorem 2.6. So part (i) asserts that there exists a

vector field u with fu = fJu = 0 and LuJ = Ĵ − LvHJ . Thus v := u+ vH is

a divergence-free vector field with LvJ = Ĵ . This proves Theorem 3.4.
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We close this section with a well known lemma (see [22]) that is used in
Theorem 4.6. We include a proof for completeness of the exposition.

Lemma 3.11 (Harmonic (0, 2)-Forms). Let (M,J, ω) be a closed con-
nected 2n-dimensional Ricci-flat Kähler manifold, let ∇ be the Levi-Civita
connection of the Kähler metric, let Ĵ ∈ Ω0,1

J (M,TM) with Ĵ + Ĵ∗ = 0, and

define ω̂ := 〈Ĵ ·, ·〉 ∈ Ω2(M). Then ω̂1,1
J = 0 and the following are equivalent.

(i) ∂̄J Ĵ = 0 and ∂̄∗J Ĵ = 0.

(ii) ∇Ĵ = 0.

(iii) ∇ω̂ = 0.

(iv) ω̂ is a harmonic 2-form.

(v) dω̂ = 0.

Proof. It follows directly from the definition that ω̂1,1
J = 0. To prove that (i)

is equivalent to (ii), let T be the operator in the proof of Lemma 3.10 and

assume that Ĵ is skew-adjoint. Then, by the first Bianchi identity, we have

T (Ĵ)u =
∑
i

R∇(ei, u)Ĵei =
∑
i,j

〈ej, Ĵei〉R∇(ei, u)ej

=
∑
i,j

〈Ĵej, ei〉
(
R∇(ej, ei)u+R∇(u, ej)ei

)
=
∑
j

R∇(ej, Ĵej)u− T (Ĵ)u.

Hence, for a local orthonormal frame with en+i = Jei, we obtain

T (Ĵ) = 1
2

∑
i

R∇(ei, Ĵei) = 1
4

∑
i

(
R∇(ei, Ĵei) +R∇(Jei, ĴJei)

)
= 0.

Thus ‖∂̄J Ĵ‖2 + ‖∂̄∗J Ĵ‖2 = ‖∇Ĵ‖2 by (3.11) with Q = 0 and so (i) is equivalent
to (ii). The equivalence of (ii) and (iii) follows directly from the definition
of ω̂. That (iii) implies (v) follows from Lemma A.1, and (iv) is equivalent
to (v) because ω̂1,1

J = 0 and so ∗ω̂ = ω̂ ∧ ωn−2/(n− 2)!. That (iv) implies (iii)
is a consequence of the Weitzenböck formula(

d∗dω̂ − dd∗ω̂ −∇∗∇ω̂
)

(u, v)

=
∑
i

(
ω̂
(
ei, R

∇(u, v)ei
)
− ω̂

(
u,R∇(v, ei)ei

)
+ ω̂

(
v,R∇(u, ei)ei

)) (3.12)

for ω̂ ∈ Ω2(M), u, v ∈ Vect(M), and a local orthonormal frame e1, . . . , e2n. In
the Ricci-flat Kähler case with ω̂1,1

J = 0 the right hand side in (3.12) vanishes
and hence ‖dω̂‖2 + ‖d∗ω̂‖2 = ‖∇ω̂‖2. This proves Lemma 3.11.
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4 Teichmüller space

The Calabi–Yau Teichmüller space

Fix a closed connected oriented 2n-manifold M . The Calabi–Yau Teich-
müller space is the space of isotopy classes of complex structures J with
real first Chern class zero and nonempty Kähler cone KJ . It is denoted by

T0(M) := Jint,0(M)/Diff0(M),

Jint,0(M) :=

{
J ∈Jint(M)

∣∣∣∣ c1(TM, J) = 0 ∈ H2(M ;R)
and J admits a Kähler form

}
.

(4.1)

For every J ∈Jint,0(M) the space of holomorphic vector fields is isomor-
phic to H1(M ;R) by part (iii) of Lemma 3.9 and the Calabi–Yau Theorem.
Moreover, the Bogomolov–Tian–Todorov theorem asserts that the obstruc-
tion class vanishes [4, 36, 37]. Hence the cohomology of the complex

Ω0(M,TM)
∂̄J−→ Ω0,1

J (M,TM)
∂̄J−→ Ω0,2

J (M,TM) (4.2)

has constant dimension. (This assertion can also be derived from [42, Propo-
sition 9.30] and Lemma D.4.) It follows that the Teichmüller space T0(M) is a
smooth manifold [10, 23, 24, 25, 27, 28] whose tangent space at J ∈Jint,0(M)
is the cohomology of the complex (4.2), i.e.

T[J ]T0(M) =
ker(∂̄J : Ω0,1

J (M,TM)→ Ω0,2
J (M,TM))

im(∂̄J : Ω0(M,TM)→ Ω0,1
J (M,TM))

. (4.3)

Remark 4.1. The Teichmüller space is in general not Hausdorff, even for
the K3 surface [19, 39]. Let (M,J) be a K3-surface that admits an embedded
holomorphic sphere C ⊂M with self-intersection number C · C = −2, and
let τ : M →M be a Dehn twist about C. Then there exists a smooth family
of complex structures {Jt ∈ Jint,0(M)}t∈C and a smooth family of diffeo-
morphisms {φt ∈ Diff0(M)}t∈C\{0} such that J0 = J and φ∗tJt = τ ∗J−t for
all t ∈ C \ {0}. Thus Jt and τ ∗J−t represent the same class in Teichmüller
space, however, their limits limt→0 Jt = J0 and limt→0 τ

∗J−t = τ ∗J0 do not
represent the same class in Teichmüller space because their effective cones
differ. Namely, the class [C] ∈ H2(M ;Z) belongs to the effective cone of J0

while the class −[C] ∈ H2(M ;Z) belongs to the effective cone of τ ∗J0.
For general hyperKähler manifolds the Teichmüller space becomes Haus-

dorff after identifying inseparable complex structures (see Verbitsky [39, 40]),
which are biholomorphic by a theorem of Huybrechts [20].
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Teichmüller space as a symplectic quotient

Fix a positive volume form ρ on M and define

T0(M,ρ) := Jint,0(M,ρ)/Diff0(M,ρ),

Jint,0(M,ρ) :=
{
J ∈Jint,0(M) |Ricρ,J = 0

}
.

(4.4)

The tangent space of T0(M,ρ) at J ∈Jint,0(M,ρ) is the quotient

T[J ]T0(M,ρ) =

{
Ĵ ∈ Ω0,1

J (M,TM) | ∂̄J Ĵ = 0, R̂icρ(J, Ĵ) = 0
}{

LvJ | v ∈ Vect(M), dι(v)ρ = 0
} . (4.5)

Lemma 4.2. The inclusion ιρ : T0(M,ρ)→ T0(M) is a diffeomorphism.

Proof. The map ιρ is bijective by Theorem 3.1. The derivative of ιρ at an
element J ∈Jint,0(M,ρ) is the inclusion of the quotient (4.5) into (4.3). It is

injective because R̂icρ(J,LvJ) = −1
2
d(dfv ◦ J), and so R̂icρ(J,LvJ) = 0 im-

plies fv = 0 and thus dι(v)ρ = 0. It is surjective because, if Ĵ ∈ Ω0,1
J (M,TM)

satisfies ∂̄J Ĵ = 0 and F ∈ Ω0(M) is the unique solution of d∗dF = fĴ with
mean value zero, then Λρ(J,L∇FJ) = dd∗dF ◦J = dfĴ ◦J by Lemma 3.5 and

so R̂icρ(J, Ĵ + L∇FJ) = 0 by Lemma 3.8. This proves Lemma 4.2.

By Lemma 3.9 the quotient group Diff0(M,ρ)/Diffex(M,ρ) acts triv-
ially on Jint,0(M,ρ)/Diffex(M,ρ). Hence T0(M,ρ) is a submanifold of the
infinite-dimensional symplectic quotient W0(M,ρ) = J0(M,ρ)/Diffex(M,ρ)
in (2.38), which is regular near T0(M,ρ) by Lemma 3.9 and Theorem 2.11.
Moreover, Ωρ descends to a symplectic form on T0(M,ρ) by Theorem 3.4.
Here is a formula for the pushforward of this symplectic form under the diffeo-
morphism ιρ in Lemma 4.2. Let V > 0. By Theorem 3.1 every J ∈Jint,0(M)
admits a unique positive volume form ρ = ρJ ∈ Ω2n(M) such that

Ricρ,J = 0,

∫
M

ρ = V. (4.6)

Definition 4.3 (Weil–Petersson Symplectic Form). For J ∈Jint,0(M),

for the volume form ρJ in (4.6), and for Ĵ1, Ĵ2 ∈ Ω0,1
J (M,TM) with ∂̄J Ĵi = 0

and fi, gi as in Lemma 3.8, define

ΩJ(Ĵ1, Ĵ2) :=

∫
M

(
1
2
trace

(
Ĵ1JĴ2

)
− f1g2 + f2g1

)
ρJ , (4.7)

〈Ĵ1, Ĵ2〉J := ΩJ(Ĵ1,−JĴ2) =

∫
M

(
1
2
trace

(
Ĵ1Ĵ2

)
− f1f2 − g1g2

)
ρJ . (4.8)
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Theorem 4.4. (i) The 2-form ΩJ in (4.7) descends to a nondegenerate 2-
form on the quotient space (4.3) and defines a symplectic form on T0(M).
Its pullback to T0(M,ρ) under the diffeomorphism ιρ of Lemma 4.2 is the
symplectic form induced by Ωρ.

(ii) If φ : M →M is an orientation preserving diffeomorphism then

Ωφ∗J(φ∗Ĵ1, φ
∗Ĵ2) = ΩJ(Ĵ1, Ĵ2) (4.9)

for all Ĵ1, Ĵ2 ∈ Ω0,1
J (M,TM) such that ∂̄J Ĵi = 0. Thus the mapping class

group Γ := Diff+(M)/Diff0(M) acts on T0(M) by symplectomorphisms.

(iii) For a symplectic form ω ∈ Ω2(M) with real first Chern class zero define

T (M,ω) := Jint(M,ω)/∼, Jint(M,ω) := Jint(M) ∩J (M,ω), (4.10)

where J0 ∼ J1 iff there is a diffeomorphism φ ∈ Diff0(M) such that φ∗J0 = J1.
This space is a complex submanifold of T0(M) and the symplectic form (4.7)
restricts to the standard Kähler form on T (M,ω). The symmetric bilin-
ear form (4.8) is positive on T[J ]T (M,ω) and is negative on its symplectic
complement.

Proof. The proof has three steps.

Step 1. Let J ∈Jint,0(M), let Ĵ ∈ Ω0,1
J (M,TM) such that ∂̄J Ĵ = 0, and

let v ∈ Vect(M). Then ΩJ(Ĵ ,LvJ) = 0.

Let ρ := ρJ and let f = fĴ and g = fJĴ be as in Lemma 3.8. Then

ΩJ(Ĵ ,LvJ) = 1
2

∫
M

trace
(
ĴJLvJ

)
−
∫
M

(
ffJv − gfv)ρ

=

∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ−
∫
M

fdι(Jv)ρ+

∫
M

gdι(v)ρ = 0

because Λρ(J, Ĵ) = −df ◦ J + dg. This proves Step 1.

Step 2. Let J ∈Jint,0(M) and let Ĵ ∈ Ω0,1
J (M,TM) such that ∂̄J Ĵ = 0

and ΩJ(Ĵ , Ĵ ′) = 0 for all Ĵ ′ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ

′ = 0. Then Ĵ ∈ im∂̄J .

Choose a symplectic form ω such that J ∈Jint(M,ω) and ωn/n! = ρJ , and
choose functions F,G ∈ Ω0(M) such that d∗dF = −fJĴ and d∗dG = −fĴ .

Then Λρ(J,LvF+∇GJ) = Λρ(J, Ĵ) by Lemma 3.5 and hence, by Step 1,

Ωρ,J(Ĵ − LvF+∇GJ, Ĵ
′) = ΩJ(Ĵ − LvF+∇GJ, Ĵ

′) = ΩJ(Ĵ , Ĵ ′) = 0

for all Ĵ ′ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ

′ = 0. Hence, by part (i) of Theorem 3.4,

there exists a vector field v with LvJ = Ĵ − LvF+∇GJ . This proves Step 2.
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Step 3. We prove Theorem 4.4.

By Step 1 the 2-form (4.7) on Jint,0(M) descends to T0(M) and by Step 2 the
induced 2-form on T0(M) is nondegenerate. Its pullback under the diffeomor-
phism ιρ in Lemma 4.2 is the restricton of the symplectic form Ωρ on J (M)
to the subquotient T0(M,ρ). Hence it is closed and this proves part (i).
Part (ii) follows directly from the definitions and part (iii) holds because
the tangent space T[J ]T (M,ω) is the quotient of the space of self-adjoint

endomorphisms Ĵ = Ĵ∗ ∈ Ω0,1
J (M,TM) with ∂̄J Ĵ = 0 by those generated by

Hamiltonian and gradient vector fields. This proves Theorem 4.4.

A symplectic connection

Consider the fibration T0(M,ω) ↪→ E0(M)→ B0(M), where B0(M) denotes
the space of isotopy classes of symplectic forms with real first Chern class zero
which admit compatible complex structures and E0(M) denotes the space of
isotopy classes of Ricci-flat Kähler structures (ω, J) on M . Thus

T0(M,ω) := Jint,0(M,ω)/Symp(M,ω) ∩Diff0(M),

Jint,0(M,ω) := {J ∈Jint(M,ω) |Ricω,J = 0} ,
B0(M) := S0(M)/Diff0(M),

S0(M) :=

{
ω ∈ Ω2(M)

∣∣∣∣ dω = 0, ωn > 0, cR1 (ω) = 0,
Jint(M,ω) 6= ∅

}
,

E0(M) := K0(M)/Diff0(M),

K0(M) := {(ω, J) |ω ∈ S0(M), J ∈Jint(M,ω), Ricω,J = 0} .

(4.11)

These quotient spaces are finite-dimensional manifolds. Here is a list of the
real dimensions for the cases where M is the 2n-torus, the K3 surface, the
Enriques surface, the quintic in CP4, the banana manifold B in [7], and a rigid
Calabi–Yau 3-fold JB introduced recently by Jim Bryan (as yet unpublished).

M
T0(M) KJ E0(M) B0(M) T0(M,ω)

2hn−1,1
M,L h1,1 h1,1 + 2hn−1,1

M,L h1,1 + 2h2,0 2hn−1,1
M,L − 2h2,0

T2n 2n2 n2 3n2 2n2 − n n2 + n
K3 40 20 60 22 38

Enriques 20 10 30 10 20
Quintic 202 1 203 1 202

B 16 20 36 20 16
JB 0 4 4 4 0
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The symplectic form (4.7) in Theorem 4.4 gives rise to a closed 2-form
on E0(M) which restricts to the canonical Kähler form on each fiber and
whose kernel at (ω, J) is the space H1,1

J (M)×{0}. It gives rise to a symplectic
connection on E0(M) as in [30, Chapter 6]. To describe this connection, it
will be convenient to use the notation

(J∗ω̂)(u, u′) := ω̂(Ju, Ju′),

(ι(J)ω̂)(u, u′) := ω̂(Ju, u′) + ω̂(u, Ju′).
(4.12)

for ω̂ ∈ Ω2(M) and u, u′ ∈ Vect(M). The 2-forms J∗ω̂ and ι(J)ω̂ are closed
whenever ω̂ is harmonic, because ω̂2,0

J = 1
4
(ω̂ − J∗ω̂)− i

4
ι(J)ω̂.

The tangent space of K0(M) at (ω, J) with ρ := ωn/n! is the space of all

pairs (ω̂, Ĵ) ∈ Ω2(M)× Ω0,1
J (M,TM) that satisfy the conditions

ω̂(u, u′)− ω̂(Ju, Ju′) = ω(Ĵu, Ju′) + ω(Ju, Ĵu′) (4.13)

for all u, u′ ∈ Vect(M) and

dω̂ = 0, ∂̄J Ĵ = 0, R̂icρ(J, Ĵ) + 1
2
d(d〈ω̂, ω〉 ◦ J) = 0. (4.14)

We will strengthen the last condition in (4.14) and require

Λρ(J, Ĵ) = −d〈ω̂, ω〉 ◦ J. (4.15)

The definition of the connection is based on the next lemma.

Lemma 4.5. Let (ω, J) ∈ K0(M) be a Ricci-flat Kähler structure, denote
by 〈·, ·〉 := ω(·, J ·) the Kähler metric, define ρ := ωn/n!, and let ω̂ ∈ Ω2(M)

be a closed 2-form. Then, for Ĵ ∈ Ω0,1
J (M,TM), the following are equivalent.

(a) Ĵ satisfies (4.13), (4.14), (4.15), and, for all Ĵ ′ ∈ Ω0,1
J (M,TM),

Ĵ ′ = (Ĵ ′)∗, ∂̄J Ĵ
′ = 0 =⇒ ΩJ(Ĵ , Ĵ ′) = 0. (4.16)

(b) If v ∈ Vect(M) satisfies

d∗(ω̂ − dι(v)ω) = 0, d∗ι(v)ω = 0, (4.17)

and ω̂0 ∈ Ω2(M) and Ĵ0 ∈ Ω0,1
J (M,TM) are defined by

ω̂0 := ω̂ − dι(v)ω, 〈Ĵ0·, ·〉 = 1
2

(
ω̂0 − J∗ω̂0

)
, (4.18)

then Ĵ = LvJ + Ĵ0.

Moreover, for every closed 2-form ω̂ there exists a unique Ĵ ∈ Ω0,1
J (M,TM)

that satisfies the equivalent conditions (a) and (b).
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Proof. We prove in three steps that (a) is equivalent to (b).

Step 1. Suppose Ĵ1 and Ĵ2 satisfy (a). Then Ĵ1 = Ĵ2.

The difference Ĵ := Ĵ1 − Ĵ2 satisfies (a) with ω̂ = 0. Hence Ĵ = Ĵ∗ by (4.13),

and ∂̄J Ĵ = 0 by (4.14), and Λρ(J, Ĵ) = 0 by (4.15). Let Ĵ ′ ∈ Ω0,1
J (M,TM)

with ∂̄J Ĵ
′ = 0, choose a vector field v′ such that ∂̄∗J(Ĵ ′ − Lv′J) = 0, and de-

fine (Ĵ ′ − Lv′J
)+

:= 1
2
(Ĵ ′ − Lv′J + (Ĵ ′ − Lv′J)∗). Then ∂̄J(Ĵ ′ − Lv′J)+ = 0

by Lemma 3.10, hence ΩJ(Ĵ , (Ĵ ′ − Lv′J)+) = 0 by (4.16), and this implies

that ΩJ(Ĵ , Ĵ ′) = ΩJ(Ĵ , Ĵ ′ − Lv′J) = ΩJ(Ĵ , (Ĵ ′ − Lv′J)+) = 0. Thus by The-

orem 4.4 there exists a vector field v with LvJ = Ĵ . Since Ĵ = Ĵ∗, Lemma 3.7
asserts that there exist functions F,H ∈ Ω0(M) and a vector field v0 such
that v := v0 + vH +∇F and ι(v0)ω is a harmonic 1-form. Thus Lv0J = 0 by
Lemma 3.9 and dd∗dF ◦J−dd∗dH = Λρ(J,LvJ) = 0 by Lemma 3.5. Hence F

and H are constant, so Ĵ = Lv0J = 0 and Ĵ1 = Ĵ2. This proves Step 1.

Step 2. Suppose v ∈ Vect(M) satisfies (4.17), define ω̂0 and Ĵ0 by (4.18),

and define Ĵ := LvJ + Ĵ0. Then Ĵ satisfies (a).

By (4.18) and (3.8), we have

fvρ = dι(v)ρ = dι(v)ω ∧ ωn−1

(n−1)!
= 〈ω̂ − ω̂0, ω〉ρ,

fJvρ = dι(Jv)ρ = d∗ι(v)ω = 0.
(4.19)

Moreover, ω̂0 is a harmonic 2-form and so is ω̂0 − J∗ω̂0. Thus ∂̄J Ĵ0 = 0
and ∂̄∗J Ĵ0 = 0 by Lemma 3.11, hence Λρ(J, Ĵ0) = 0 by Lemma 3.8, and there-

fore Λρ(J, Ĵ) = Λρ(J,LvJ) = −dfv ◦ J = −d〈ω̂, ω〉 ◦ J by (4.19). Since Ĵ0

is skew-adjoint by (4.18), we have ΩJ(Ĵ , Ĵ ′) = ΩJ(LvJ, Ĵ ′) = 0 for all Ĵ ′

with Ĵ ′ = (Ĵ ′)∗ and ∂̄J Ĵ
′ = 0 and, by Lemma 3.6,

〈(Ĵ − Ĵ∗)·, ·〉 = 〈(LvJ − (LvJ)∗)·, ·〉+ 2〈Ĵ0·, ·〉 = ω̂ − J∗ω̂.

Hence Ĵ satisfies (a) and this proves Step 2.

Step 3. (a) is equivalent to (b).

By Step 2, (b) implies (a). Now assume Ĵ satisfies (a) and v satisfies (4.17).

Define ω̂0 and Ĵ0 by (4.18). Then LvJ + Ĵ0 satisfies (a) by Step 2 and

so Ĵ = LvJ + Ĵ0 by Step 1. Thus Ĵ satisfies (b) and this proves Step 3.
Thus we have established the equivalence of (a) and (b). By Step 2 and

Hodge theory there exists an element Ĵ ∈ Ω0,1
J (M,TM) that satisfies (a).

Uniqueness was established in Step 1 and this proves Lemma 4.5.
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Theorem 4.6 (Symplectic Connection). (i) Let (ω, J) ∈ K0(M) and
let ρ := ωn/n!. Then there exists a unique linear map

Aω,J : Ω2(M) ⊃ ker d→ Ω0,1
J (M,TM)

which assigns to every closed real valued 2-form ω̂ ∈ Ω2(M) the unique in-

finitesimal complex structure Ĵ = Aω,J(ω̂) ∈ Ω0,1
J (M,TM) that satisfies the

equivalent conditions (a) and (b) in Lemma 4.5.

(ii) The 1-form A is Diff(M)-equivariant, i.e.

Aφ∗ω,φ∗J(φ∗ω̂) = φ∗Aω,J(ω̂) (4.20)

for every (ω, J) ∈ K0(M), every closed 2-form ω̂, and every orientation pre-
serving diffeomorphism φ : M →M . Moreover,

Aω,J(dι(v)ω) = LvJ (4.21)

for all (ω, J) ∈ K0(M) and all v ∈ Vect(M) with dι(Jv)ωn = 0.

(iii) The curvature of the connection A is a Diff0(M)-equivariant 2-form
on S0(M) with values in the space of smooth functions on the fiber T0(M,ω).
It assigns to every ω ∈ S0(M) and every pair ω̂1, ω̂2 of closed 2-forms on M
the Hamiltonian function Hω;ω̂1,ω̂2 : T0(M,ω)→ R given by

Hω;ω̂1,ω̂2(J) := −ΩJ

(
Aω,J(ω̂1),Aω,J(ω̂2)

)
= 1

2

∫
M

(
ι(J)(ω̂1 − dλ̂1)

)
∧ ω̂2 ∧ ωn−2

(n−2)!

(4.22)

for J ∈Jint(M,ω) with Ricω,J = 0, where the 1-form λ̂1 ∈ Ω1(M) is chosen

such that d∗(ω̂1 − dλ̂1) = 0 with respect to the Kähler metric 〈·, ·〉 := ω(·, J ·).
The Hamiltonian vector field on T0(M,ω) generated by this function is the
vertical part of the Lie bracket of the horizontal lifts of two vector fields
on B0(M) that take the values ω̂i at ω (see [30, Lemma 6.4.8]).

Proof. Part (i) and (4.21) follow directly from Lemma 4.5, while (4.20) fol-
lows by combining uniqueness in part (i) with the naturality conditions in
Theorem 2.6 and Theorem 4.4. This proves (i) and (ii).

For part (iii) we must verify the second equality in (4.22). Fix a sym-
plectic form ω ∈ Ω2(M) with real first Chern class zero, define ρ := ωn/n!,
and let ω̂1, ω̂2 ∈ Ω2(M) be closed. Let J ∈Jint(M,ω) such that Ricρ,J = 0,

choose λ̂i ∈ Ω1(M) such that d∗(ω̂i − dλ̂i) = 0 and d∗λ̂i = 0 with respect to

the Kähler metric 〈·, ·〉 = ω(·, J ·), and define vi ∈ Vect(M) by ι(vi)ω := λ̂i.
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By (i) and Lemma 4.5, we have

Aω,J(ω̂i) = Ĵi + LviJ, 〈Ĵi·, ·〉 = 1
2

(
(ω̂i − dλ̂i)− J∗(ω̂i − dλ̂i)

)
. (4.23)

Since Λρ(J, Ĵi) = 0 and fJvi = 0 by (4.19), equation (4.23) yields

Hω;ω̂1,ω̂2(J) = −ΩJ

(
Ĵ1 + Lv1J, Ĵ2 + Lv2J

)
= −1

2

∫
M

trace
(
Ĵ1JĴ2

)
ρ.

Now choose a local orthonormal frame e1, . . . , e2n. Then

−1
2
trace

(
Ĵ1JĴ2

)
= −1

2

∑
i

〈JĴ1ei, Ĵ2ei〉 = −1
2

∑
i

〈JĴ1ei, ej〉〈ej, Ĵ2ei〉

=
∑
i<j

〈Ĵ1ei, Jej〉〈ej, Ĵ2ei〉 = 1
2
〈ι(J)τ1, τ2〉,

where τi := 〈Ĵi·, ·〉 = 1
2
(ω̂i−dλ̂i−J∗(ω̂i−dλ̂i)). This 2-form satisfies (τi)

1,1
J = 0

and hence ∗τi = τi ∧ ωn−2/(n− 2)!. Moreover, ι(J)τi = ι(J)(ω̂i − dλ̂i). Thus

Hω;ω̂1,ω̂2(J) = −1
2

∫
M

trace
(
Ĵ1JĴ2

)
ρ = 1

2

∫
M

(
ι(J)τ1

)
∧ ∗τ2

= 1
4

∫
M

(
ι(J)(ω̂1 − dλ̂1)

)
∧
(
ω̂2 − dλ̂2 − J∗(ω̂2 − dλ̂2)

)
∧ ωn−2

(n−2)!

= 1
2

∫
M

(
ι(J)(ω̂1 − dλ̂1)

)
∧
(
ω̂2 − dλ̂2

)
∧ ωn−2

(n−2)!

= 1
2

∫
M

(
ι(J)(ω̂1 − dλ̂1)

)
∧ ω̂2 ∧ ωn−2

(n−2)!
.

This proves (4.22). The right hand side of (4.22) depends only on the
cohomology classes of ω̂1 and ω̂2. Hence it is invariant under the action
of Diff0(M) ∩ Symp(M,ω) on J , because φ∗ω̂i− ω̂i is exact for φ ∈ Diff0(M).
Thus it descends to a function on T0(M,ω). This proves Theorem 4.6.

The quotient of the Calabi–Yau Teichmüller space by the mapping class
group is the Calabi–Yau moduli space M0(M) := Jint,0(M)/Diff+(M). For
each Kählerable symplectic form ω with real first Chern class zero there is a
polarized Calabi–Yau moduli space M0(M,ω) := Jint,0(M,ω)/Symp(M,ω),
the quotient of the polarized Teichmüller space T0(M,ω) by the symplectic
mapping class group. The study of the geometry of these moduli spaces
is a vast and extremely active area of research in both mathematics and
physics. An overview of the subject and many references can be found in the
article [46] by Shing-Tung Yau.
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A Torsion-free connections

Let M be an oriented 2n-manifold. We prove that a nondegenerate 2-form
on M is preserved by a torsion-free connection if and only if it is closed,
and that an almost complex structure on M is preserved by a torsion-free
connection if and only if it is integrable. We use the sign conventions

[Lu,Lv] + L[u,v] = 0

for the Lie bracket and

NJ(u, v) = [u, v] + J [Ju, v] + J [u, Jv]− [Ju, Jv] (A.1)

for the Nijenhuis tensor. If ∇ is a torsion-free connection on TM then

NJ(u, v) = (∇uJ)Jv + (∇JuJ)v − (∇vJ)Ju− (∇JvJ)u. (A.2)

Lemma A.1. Let M be a 2n-manifold.

(i) An almost complex structure J is integrable if and only if there ex-
ists a torsion-free connection ∇ on TM such that ∇J = 0. If J is inte-
grable and ρ ∈ Ω2n(M) is a volume form inducing the same orientation
as J , then there exists a torsion-free connection ∇ on TM such that ∇ρ = 0
and ∇J = 0.

(ii) A nondegenerate 2-form ω ∈ Ω2(M) is closed if and only if there exists
a torsion-free connection ∇ on TM such that ∇ω = 0.

Proof. We prove part (i). If ∇ is a torsion-free connection with ∇J = 0 it
follows directly from (A.2) that NJ = 0. Conversely suppose J is integrable
and let ρ be a volume form on M inducing the same orientation as J . Fix
a background metric g on M . Then gJ := g + J∗g is a metric with respect
to which J is skew-adjoint and, if dvolJ ∈ Ω2n(M) is the volume form of this
metric, then the metric gρ,J := (ρ/dvolJ)1/ngJ has the volume form ρ. Let ∇
be the Levi-Civita connection of the metric gρ,J . Then ∇ is torsion-free
and ∇ρ = 0. Let α(u) := 1

2
trace(J(∇J)u) and define

∇̂uv := ∇uv − 1
2
J(∇uJ)v − 1

4
J(∇vJ)u− 1

4
(∇JvJ)u

+
α(u)v + α(v)u− α(Ju)Jv − α(Jv)Ju

2n + 2
.

(A.3)

Then ∇̂ρ = 0, ∇̂J = 0, and a calculation shows that Tor∇̂ = −1
4
NJ , so ∇̂ is

torsion-free if and only if J is integrable. This proves (i).
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We prove part (ii). If ∇ is torsion-free and ∇ω = 0 then

dω(u, v, w) = Lu(ω(v, w)) + Lv(ω(w, u)) + Lw(ω(u, v))

+ ω([v, w], u) + ω([w, u], v) + ω([u, v], w)

= ω([v, w]−∇wv +∇vw, u) + ω([w, u]−∇uw +∇wu, v)

+ ω([u, v]−∇vu+∇uv, w) = 0.

Conversely, suppose ω is a symplectic form and choose an almost complex
structure J on M that is compatible with ω, so 〈·, ·〉 := ω(·, J ·) is a Rieman-
nian metric. Let ∇ be its Levi-Civita connection. Then

〈(∇uJ)v, w〉+ 〈(∇vJ)w, u〉+ 〈(∇wJ)u, v〉 = dω(u, v, w) = 0 (A.4)

for all u, v, w ∈ Vect(M) by [30, Lemma 4.1.14]. Define˜̃∇uv := ∇uv + A(u)v, A(u)v := −1
3
J
(
(∇uJ)v + (∇vJ)u

)
. (A.5)

This connection is torsion-free and satisfies JA(u) + A(u)∗J = ∇uJ for every
vector field u ∈ Vect(M) by a straight forward calculation. Hence

ω( ˜̃∇uv, w) + ω(v, ˜̃∇uw) = 〈J∇uv + JA(u)v, w〉+ 〈Jv,∇uw + A(u)w〉
= 〈(JA(u) + A(u)∗J)v, w〉+ 〈J∇uv, w〉+ 〈Jv,∇uw〉
= 〈(∇uJ)v, w〉+ 〈J∇uv, w〉+ 〈Jv,∇uw〉
= Lu〈Jv, w〉 = Lu

(
ω(v, w)

)
for all u, v, w ∈ Vect(M). This proves Lemma A.1.

Lemma A.2. Let M be an oriented 2n-manifold, let ρ ∈ Ω2n(M) be a pos-
itive volume form, let J ∈ Jint(M) be a complex structure compatible with
the orientation, and let ∇ be a torsion-free ρ-connection such that ∇J = 0.
Then trace(JR∇) is a (1, 1)-form.

Proof. Since ∇ is torsion-free, R∇ satisfies the first Bianchi identity. Thus

R(u, v)w + JR(Ju, v)w + JR(u, Jv)w −R(Ju, Jv)w

= R(u, v)w + JR(Ju, v)w + JR(u, Jv)w +R(Jv, w)Ju+R(w, Ju)Jv

= R(u, v)w + JR(Ju, v)w + JR(w, Ju)v + JR(u, Jv)w + JR(Jv, w)u

= R(u, v)w − JR(v, w)Ju− JR(w, u)Jv

= R(u, v)w +R(v, w)u+R(w, u)v = 0

and so JR(u, v)−R(Ju, v)−R(u, Jv)− JR(Ju, Jv) = 0. Take the trace to
obtain trace(JR(u, v)) = trace(JR(Ju, Jv)). This proves Lemma A.2.
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B The Bochner–Kodaira–Nakano identity

This appendix gives a self-contained proof of the Bochner–Kodaira–Nakano
identity (3.11) for complex anti-linear 1-forms with values in the tangent
bundle. This formula plays a central role in the proofs of Lemma 3.10 and
Lemma 3.11. Assume throughout that (M,ω, J) is a 2n-dimensional Kähler
manifold with the volume form ρ := ωn/n!, denote by ∇ the Levi-Civita con-
nection of the Kähler metric, by R∇ ∈ Ω2(M,End(TM)) the Riemann cur-
vature tensor, by Ricρ,J := 1

2
trace(JR∇) ∈ Ω2(M) the Ricci-form, and define

the complex linear skew-adjoint endomorphism Q ∈ Ω0(M,End(TM)) by

〈Qu, v〉 = Ricρ,J(u, v) (B.1)

for u, v ∈ Vect(M). Define the map T : Ω0,1
J (M,TM)→ Ω0,1

J (M,TM) by

T (Ĵ)u :=
2n∑
i=1

R∇(ei, u)Ĵei (B.2)

for Ĵ ∈ Ω0,1
J (M,TM) and u ∈ Vect(M), where e1, . . . , e2n is a local orthonor-

mal frame of the tangent bundle. With this notation the operator ∇∗∇ on
the space of sections of the endomorphism bundle is given by

∇∗∇Ĵ = −
∑
i

(
∇ei∇ei Ĵ + div(ei)∇ei Ĵ

)
(B.3)

for Ĵ ∈ Ω0,1
J (M,TM).

Theorem B.1 (Bochner–Kodaira–Nakano). Every Ĵ ∈ Ω0,1
J (M,TM)

satisfies the equation

∂̄∗J ∂̄J Ĵ + ∂̄J ∂̄
∗
J Ĵ = 1

2
∇∗∇Ĵ + 1

2
[JQ, Ĵ ] + T (Ĵ). (B.4)

Proof. See page 44.

The proof relies on the following three lemmas. Throughout we use the
notation e1, . . . , e2n for a local orthonormal frame of the tangent bundle, and
it will sometimes be convenient to choose the frame such that en+i = Jei
for i = 1, . . . , n. We will use the notation div(u) for the divergence of a
vector field u ∈ Vect(M); thus div(u) = trace(∇u) and div(u)ρ = dι(u)ρ.
For u ∈ Vect(M) we denote by Lu the Lie derivative (of any object on M)
in the direction of u; thus Luf = df ◦ u for f ∈ Ω0(M) and Luv = [v, u]
for v ∈ Vect(M). (Note the sign convention for the Lie bracket.)
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Lemma B.2. Let B : TM ⊗ TM → E be any bilinear form on the tangent
bundle with values in a vector bundle E →M . Then

2n∑
i=1

(
B(ei,∇uei) +B(∇uei, ei)

)
= 0 (B.5)

for all u ∈ Vect(M). Moreover,

2n∑
i=1

(∇eiei + div(ei)ei) = 0. (B.6)

Proof. Define the coefficients cij by

cij := 〈∇uei, ej〉

so that ∇uei =
∑

j cijej. Then cij + cji = Lu〈ei, ej〉 = 0, because the frame is
orthonormal and ∇ is a Riemannian connection. Hence

2n∑
i=1

B(ei,∇uei) =
2n∑
i=1

2n∑
j=1

cijB(ei, ej)

= −
2n∑
j=1

2n∑
i=1

cjiB(ei, ej)

= −
2n∑
j=1

B(∇uej, ej)

and this proves (B.5). Since

0 = Lei〈ej, ei〉 = 〈∇eiej, ei〉+ 〈ej,∇eiei〉

for all i and j, we also have

2n∑
i=1

〈ej, div(ei)ei +∇eiei〉 = div(ej)−
2n∑
i=1

〈∇eiej, ei〉

= div(ej)− trace(∇ej)
= 0

for all j. This proves (B.6) and Lemma B.2.
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Lemma B.3. The endomorphism Q in (B.1) is given by

Qu = −1
2

2n∑
i=1

R∇(ei, Jei)u =
2n∑
i=1

JR∇(u, ei)ei (B.7)

for u ∈ Vect(M).

Proof. Let u, v ∈ Vect(M). Then by (B.1) we have

〈Qu, v〉 = Ricρ,J(u, v)

= 1
2
trace(JR∇(u, v))

= 1
2

2n∑
i=1

〈ei, JR∇(u, v)ei〉

= −1
2

2n∑
i=1

〈R∇(u, v)ei, Jei〉

= −1
2

2n∑
i=1

〈R∇(ei, Jei)u, v〉.

This proves the first equality in (B.7). Moreover, it follows from the first
Bianchi identity that

Qu = −1
2

2n∑
i=1

R∇(ei, Jei)u

= 1
2

2n∑
i=1

(
R∇(u, ei)Jei +R∇(Jei, u)ei

)
= 1

2

2n∑
i=1

(
R∇(u, ei)Jei −R∇(ei, u)Jei

)
=

2n∑
i=1

R∇(u, ei)Jei

=
2n∑
i=1

JR∇(u, ei)ei.

Here the third step uses a frame that satisfies en+i = Jei for i = 1, . . . , n.
This proves (B.7) and Lemma B.3.
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Lemma B.4. Let Ĵ ∈ Ω0,1
J (M,TM) and τ ∈ Ω0,2

J (M,TM). Then

∂̄∗J Ĵ = −
2n∑
i=1

(∇ei Ĵ)ei ∈ Vect(M), (B.8)

∂̄∗Jτ = −
2n∑
i=1

(∇eiτ)(ei, ·) ∈ Ω0,1
J (M,TM). (B.9)

Proof. For u ∈ Vect(M) the formal adjoint operator of the covariant deriva-
tive ∇u is given by ∇u∗ = −∇u − div(u). Fix a vector field X ∈ Vect(M).

Since the (1, 0)-form ∂JX = 1
2
(∇X − J(∇X)J) is orthogonal to Ĵ , we have

〈∂̄∗J Ĵ , X〉L2 = 〈Ĵ , ∂̄JX〉L2 = 〈Ĵ ,∇X〉L2 =

∫
M

trace
(
Ĵ∗∇X

)
ρ

=
2n∑
i=1

∫
M

〈Ĵei,∇eiX〉ρ = −
2n∑
i=1

∫
M

〈∇ei(Ĵei) + div(ei)Ĵei, X〉ρ

= −
2n∑
i=1

∫
M

〈∇ei(Ĵei)− Ĵ∇eiei, X〉ρ = −
2n∑
i=1

∫
M

〈(∇ei Ĵ)ei, X〉ρ.

Here the penultimate step uses (B.6) in Lemma B.2. This proves (B.8). Now

〈∂̄∗Jτ, Ĵ〉L2 = 〈τ, d∇Ĵ〉L2 = 1
2

2n∑
i,j=1

∫
M

〈τ(ei, ej), (∇ei Ĵ)ej − (∇ej Ĵ)ei〉ρ

=
2n∑

i,j=1

∫
M

〈τ(ei, ej), (∇ei Ĵ)ej〉ρ

=
2n∑

i,j=1

∫
M

〈τ(ei, ej),∇ei(Ĵej)− Ĵ∇eiej〉ρ

= −
2n∑

i,j=1

∫
M

〈∇ei(τ(ei, ej)) + div(ei)τ(ei, ej)− τ(ei,∇eiej), Ĵej〉ρ

= −
2n∑

i,j=1

∫
M

〈(∇eiτ)(ei, ej), Ĵej〉ρ.

Here the last but one step uses equation (B.5) and the last step uses equa-
tion (B.6) in Lemma B.2. This proves equation (B.9) and Lemma B.4.
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Proof of Theorem B.1. Let Ĵ ∈ Ω0,1
J (M,TM) and let X := ∂̄∗J Ĵ ∈ Vect(M)

and τ := ∂̄J Ĵ ∈ Ω0,2
J (M,TM). Then, by Lemma B.4, we have

X = −
∑
i

(∇ei Ĵ)ei,

(∂̄JX)(u) = 1
2

(
∇uX + J∇JuX

)
,

τ(u, v) = 1
2

(
(∇uĴ)v − (∇vĴ)u− (∇JuĴ)Jv + (∇JvĴ)Ju

)
,

(∂̄∗Jτ)(u) = −
∑
i

(∇eiτ)(ei, u)

for all u, v ∈ Vect(M). Hence, by Lemma B.2,

(∂̄∗J ∂̄J Ĵ + ∂̄J ∂̄
∗
J Ĵ)(u) = (∂̄∗Jτ)(u) + (∂̄JX)(u)

= −
∑
i

∇ei
(
τ(ei, u)

)
+
∑
i

τ(∇eiei, u) +
∑
i

τ(ei,∇eiu)

− 1
2

∑
i

(
∇u((∇ei Ĵ)ei) + J∇Ju((∇ei Ĵ)ei)

)
= −1

2

∑
i

∇ei
(

(∇ei Ĵ)u− (∇uĴ)ei − (∇Jei Ĵ)Ju+ (∇JuĴ)Jei

)
− 1

2

∑
i

div(ei)
(

(∇ei Ĵ)u− (∇uĴ)ei − (∇Jei Ĵ)Ju− (∇JuĴ)Jei

)
+ 1

2

∑
i

(
(∇ei Ĵ)∇eiu− (∇∇eiuĴ)ei − (∇Jei Ĵ)J∇eiu+ (∇J∇eiuĴ)Jei

)
− 1

2

∑
i

(
(∇u∇ei Ĵ)ei + (∇ei Ĵ)∇uei + J(∇Ju∇ei Ĵ)ei + J(∇ei Ĵ)∇Juei

)
= −1

2

∑
i

(
∇ei∇ei Ĵ + div(ei)∇ei Ĵ

)
u+ 1

2

∑
i

(
∇ei∇Jei Ĵ + div(ei)∇Jei Ĵ

)
Ju

+ 1
2

∑
i

(
∇ei∇uĴ −∇u∇ei Ĵ +∇[ei,u]Ĵ

)
ei

− 1
2

∑
i

(
∇ei∇JuĴ −∇Ju∇ei Ĵ +∇[ei,Ju]Ĵ

)
Jei

= 1
2
(∇∗∇Ĵ)u+ 1

2

∑
i

(
∇ei∇Jei Ĵ + div(ei)∇Jei Ĵ

)
Ju

+ 1
2

∑
i

[R∇(ei, u), Ĵ ]ei − 1
2

∑
i

[R∇(ei, Ju), Ĵ ]Jei.
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Here we have used equation (B.3) and the formula

[R∇(u, v), Ĵ ] = ∇u∇vĴ −∇v∇uĴ +∇[u,v]Ĵ

for the Riemann curvature tensor. Now use the identities (B.6) in Lemma B.2
and (B.7) in Lemma B.3 to obtain

−[Q, Ĵ ] = 1
2

∑
i

[R∇(ei, Jei), Ĵ ]

= 1
2

∑
i

(
∇ei∇Jei Ĵ −∇Jei∇ei Ĵ +∇[ei,Jei]Ĵ

)
= 1

2

∑
i

(
∇ei∇Jei Ĵ −∇∇ei (Jei)Ĵ

)
− 1

2

∑
i

(
∇Jei∇ei Ĵ −∇∇Jeiei Ĵ

)
=
∑
i

(
∇ei∇Jei Ĵ −∇∇ei (Jei)Ĵ

)
=
∑
i

(
∇ei∇Jei Ĵ + div(ei)∇Jei Ĵ

)
.

This yields the formula

(∂̄∗J ∂̄J Ĵ + ∂̄J ∂̄
∗
J Ĵ)u

= 1
2
(∇∗∇Ĵ)u− 1

2
[Q, Ĵ ]Ju+ 1

2

∑
i

(
[R∇(ei, u), Ĵ ]ei − [R∇(ei, Ju), Ĵ ]Jei

)
= 1

2
(∇∗∇Ĵ)u− 1

2
[Q, Ĵ ]Ju+ 1

2

∑
i

(
[R∇(ei, u), Ĵ ]ei + [R∇(Jei, Ju), Ĵ ]ei

)
= 1

2
(∇∗∇Ĵ)u− 1

2
[Q, Ĵ ]Ju+

∑
i

[R∇(ei, u), Ĵ ]ei

= 1
2
(∇∗∇Ĵ)u− 1

2
[Q, Ĵ ]Ju−

∑
i

ĴR∇(ei, u)ei +
∑
i

R∇(ei, u)Ĵei

= 1
2
(∇∗∇Ĵ)u− 1

2
[Q, Ĵ ]Ju−

∑
i

ĴJJR∇(u, ei)ei + T (Ĵ)u

= 1
2
(∇∗∇Ĵ)u− 1

2
QĴJu+ 1

2
ĴQJu− ĴJQu+ T (Ĵ)u

= 1
2
(∇∗∇Ĵ)u+ 1

2
JQĴu− 1

2
ĴJQu+ T (Ĵ)u

= 1
2
(∇∗∇Ĵ)u+ 1

2
[JQ, Ĵ ]u+ T (Ĵ)u.

Here we have used (B.2) and Lemma B.3. This proves Theorem B.1.
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C Bott–Chern cohomology

Let M be a closed connected 2n-manifold and let J be an almost complex
structure on M .

Lemma C.1. The almost complex structure J is integrable if and only if
2-form d(df ◦ J) is of type (1, 1) for every smooth function f : M → R.

Proof. The assertion follows directly from the identity

d(df ◦ J)(u, v)− d(df ◦ J)(Ju, Jv) = df(JNJ(u, v)). (C.1)

for all f ∈ Ω0(M) and all u, v ∈ Vect(M). To prove this equation, choose a
Riemannian metric on M with respect to which the almost complex structure
is skew-adjoint, let ∇ be the Levi-Civita connection of this metric, denote
by ∇f the gradient of f , and abbreviate τf := d(df ◦ J). Then

τf (u, v) = Lu(df(Jv))− Lv(df(Ju)) + df(J [u, v])

= Lu〈∇f, Jv〉 − Lv〈∇f, Ju〉+ 〈∇f, J [u, v]〉
= 〈∇u∇f, Jv〉 − 〈∇v∇f, Ju〉+ 〈∇f, (∇uJ)v − (∇vJ)u〉

and hence

τf (Ju, Jv) = −〈∇Ju∇f, v〉+ 〈∇Jv∇f, u〉+ 〈∇f, (∇JuJ)Jv − (∇JvJ)Ju〉.

Take the difference of these equations and use the fact that the covariant
Hessian of f is symmetric to obtain

τf (u, v)− τf (Ju, Jv) = 〈∇f, (∇uJ)v − (∇vJ)u− (∇JuJ)Jv + (∇JvJ)Ju〉
= 〈∇f, JNJ(u, v)〉
= df(JNJ(u, v)).

Here the second equality follows from (A.2). This proves Lemma C.1.

Throughout the remainder of this appendix we assume that J is inte-
grable. Then ∂̄ ◦ ∂̄ = 0 and so

i∂∂̄f = id∂̄f = −1
2
d(df ◦ J) (C.2)

for every smooth function f : M → R.
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The Bott–Chern cohomology groups of M are defined by

Hp,q
BC(M ;C) :=

{
τ ∈ Ωp,q(M ;C) | ∂τ = 0, ∂̄τ = 0

}{
∂∂̄σ |σ ∈ Ωp−1,q−1(M ;C)

} .

These are finite-dimensional complex vector spaces [5]. In the Kähler case the
∂∂̄-lemma asserts that every exact (p, q)-form on M belongs to the image of
the operator ∂∂̄ : Ωp−1,q−1(M ;C)→ Ωp,q(M ;C). This implies that the Bott–
Chern cohomology group agrees with the deRham cohomology group

Hp,q
dR(M ;C) :=

{τ ∈ Ωp,q(M ;C) | dτ = 0}
{dα |α ∈ Ωp+q−1(M ;C), dα ∈ Ωp,q(M)}

and the direct sum of these groups is Hp+q
dR (M ;C). In general, there is a

surjective mapHp,q
BC(M ;C)→ Hp,q

dR(M ;C) which may have a nontrivial kernel.
In the present paper the relevant case is p = q = 1. Denote by Ω1,1(M)

the space of real valued 2-forms τ ∈ Ω2(M) that satisfy τ(u, v) = τ(Ju, Jv)
for all u, v ∈ Vect(M) and define

H1,1
BC(M) :=

{τ ∈ Ω1,1(M) | dτ = 0}
{d(df ◦ J) | f ∈ Ω0(M ;R)}

. (C.3)

The kernel of the homomorphism H1,1
BC(M)→ H1,1

dR(M) has the dimension

κ(J) := dim
{dλ |λ ∈ Ω1(M), dλ ∈ Ω1,1(M)}
{d(df ◦ J) | f ∈ Ω0(M)}

. (C.4)

To examine this invariant, choose a nondegenerate 2-form ω that is compat-
ible with J , so 〈·, ·〉 := ω(·, J ·) is a Riemannian metric on M , and denote
by ∗ : Ωk(M)→ Ω2n−k(M) the Hodge ∗-operator of this metric. Then

∗λ = −(λ ◦ J) ∧ ωn−1

(n− 1)!
, ∗

(
λ ∧ ωn−1

(n− 1)!

)
= −λ ◦ J (C.5)

for λ ∈ Ω1(M). For n ≥ 2 the operator τ 7→ ∗(τ ∧ ωn−2/(n− 2)!) on Ω2(M)
has trace zero and eigenvalues ±1 and n− 1. Define

Ω±(M) :=

{
τ ∈ Ω2(M)

∣∣∣ ∗(τ ∧ ωn−2

(n− 2)!

)
= ±τ

}
.

Then Ω1,1(M) = Ω0(M)ω ⊕ Ω−(M) and

∗
(
τ ∧ ωn−2

(n− 2)!

)
= 〈τ, ω〉ω − J∗τ, 〈τ, ω〉ω

n

n!
:= τ ∧ ωn−1

(n− 1)!
, (C.6)

for all τ ∈ Ω2(M), where (J∗τ)(u, v) := τ(Ju, Jv) for u, v ∈ Vect(M).
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Lemma C.2. (i) The numbers

κ0(J, ω) := dim
{〈dλ, ω〉 |λ ∈ Ω1(M), dλ ∈ Ω1,1(M)}
{〈d(df ◦ J), ω〉 | f ∈ Ω0(M)}

,

κ1(J, ω) := dim
{
dλ |λ ∈ Ω1(M), dλ ∈ Ω1,1(M), 〈dλ, ω〉 = 0

} (C.7)

are finite and κ0(J, ω) ∈ {0, 1}. Moreover, the number κ0(J, ω) vanishes
whenever ωn−1 is closed, and κ1(J, ω) vanishes whenever ωn−2 is closed.

(ii) κ(J) = κ0(J, ω) + κ1(J, ω).

(iii) κ(J) = 0 if and only if for every exact (1, 1)-form τ ∈ Ω1,1(M) there
exists a function f ∈ Ω0(M) such that d(df ◦ J) = τ . Moreover, κ(J) = 0
whenever J admits a Kähler form.

Proof. We prove part (i). Define the operator L0 : Ω0(M)→ Ω0(M) by

L0f := 〈d(df ◦ J), ω〉 = d∗df − (df ◦ J) ∧ d(ωn−1/(n− 1)!)

ωn/n!
(C.8)

for f ∈ Ω0(M). Here the second equation follows from (C.5). Then L0 is a
second order elliptic operator without zeroth order terms. Thus its kernel
consists of the constant functions by the Hopf maximum principle. More-
over, L0 is an index zero Fredholm operator and so has a one-dimensional
cokernel. Thus κ0(J, ω) ∈ {0, 1}. If ωn−1 is closed then L0 = d∗d and the
function 〈dλ, ω〉 has mean value zero for all λ ∈ Ω1(M), so κ0(J, ω) = 0.

Next define the operator d+ : Ω1(M)→ Ω1(M) by

d+λ := dλ+ ∗
(
dλ ∧ ωn−2

(n−2)!

)
(C.9)

for λ ∈ Ω1(M). Then it follows from (C.6) that a 1-form λ ∈ Ω1(M) satis-
fies d+λ = 0 if and only if dλ ∈ Ω1,1(M) and 〈dλ, ω〉 = 0. Thus

κ1(J, ω) = dim(d(ker d+)) = dim(ker d+/ ker d). (C.10)

Now define the operator L1 : Ω1(M)→ Ω1(M) by

L1λ := d∗d+λ+ dd∗λ = (d∗d+ dd∗)λ− ∗
(
dλ ∧ d ωn−2

(n−2)!

)
. (C.11)

Then L1 is a second order elliptic operator and so has a finite dimensional
kernel. Its kernel contains the space ker d+ ∩ ker d∗, which in turn contains
the space H1(M) := ker d ∩ ker d∗ of harmonic 1 forms. Moreover, the quo-
tient (ker d+ ∩ ker d∗)/H1(M) has dimension κ1(J, ω) by (C.10). Thus

dimH1(M) + κ1(J, ω) = dim(ker d+ ∩ ker d∗) ≤ dim kerL1 <∞.
If dωn−2 = 0 then L1 = d∗d+ dd∗ and so κ1(J, ω) = 0. This proves part (i).
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To prove part (ii), assume first that κ0(J, ω) = 1 and choose λ0 ∈ Ω1(M)
such that dλ0 ∈ Ω1,1(M) and 〈dλ0, ω〉 /∈ imL0. Then

Ω0(M) = imL0 ⊕ R〈dλ0, ω〉. (C.12)

We prove that

Ω1,1(M) ∩ imd = Rdλ0 ⊕ d(ker d+)⊕ {d(df ◦ J) | f ∈ Ω0(M)}. (C.13)

First note that dλ0 /∈ d(ker d+) by (C.6) and (C.9), and that dλ0 6= d(df ◦ J)
for all f ∈ Ω0(M) because 〈dλ0, ω〉 /∈ imL0. Moreover, if λ ∈ Ω1(M) satis-
fies d+λ = 0 and dλ = d(df ◦ J) for some f ∈ Ω0(M), then

L0f = 〈d(df ◦ J), ω〉 = 〈dλ, ω〉 = 0,

and so f is constant. Thus the right hand side of (C.13) is a direct sum
decomposition. Now let λ ∈ Ω1(M) with dλ ∈ Ω1,1(M). Then by (C.12)
there exist a real number s and a function f ∈ Ω0(M) such that

〈dλ, ω〉 = 〈d(df ◦ J), ω〉+ s〈dλ0, ω〉.

Define λ1 := λ− df ◦ J − sλ0. Then dλ1 ∈ Ω1,1(M) and λ1 ∈ ker d+ by (C.6)
and (C.9), and we have dλ = sdλ0 + dλ1 + d(df ◦ J). This proves (C.13). It
follows from (C.10) and (C.13) that κ(J) = 1 + κ1(J, ω). This proves part (ii)
in the case κ0(J, ω) = 1. The proof in the case κ0(J, ω) = 0 is analogous.

Part (iii) follows directly from the definitions and parts (i) and (ii). This
proves Lemma C.2.

Corollary C.3. Let M be closed connected oriented smooth four-manifold,
let J be a complex structure on M that is compatible with the orientation,
let ω ∈ Ω2(M) be a nondegenerate 2-form that is compatible with J , and
equip M with the Riemannian metric 〈·, ·〉 := ω(·, J ·). Then

κ1(J, ω) = 0

and κ(J) = κ0(J, ω) ∈ {0, 1}. Moreover, the following are equivalent.

(i) κ(J) = 1.

(ii) Ω0(M) = {〈dλ, ω〉 |λ ∈ Ω1(M), dλ ∈ Ω1,1(M)}.
(iii) Every self-dual harmonic 2-form τ ∈ Ω2(M) satisfies 〈τ, ω〉 ≡ 0.

(iv) H2,+
ω,J (M) ⊂ Ω2,0

J (M)⊕ Ω0,2
J (M).
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Proof. Since M has dimension four, ωn−2 is the constant function 1 and
so κ1(J, ω) = 0 by Lemma C.2. This shows that κ(J) = κ0(J, ω) ∈ {0, 1}.
The equivalence of (i) and (ii) follows from the fact that the operator L0

in (C.8) has a one-dimensional cokernel and that κ0(J, ω) = 1 if and only if

imL0 (
{
〈dλ, ω〉

∣∣λ ∈ Ω1(M), dλ ∈ Ω1,1(M)
}
⊂ Ω0(M).

Next observe that the L2-orthogonal complement of the image of the oper-
ator d+ : Ω1(M)→ Ω+

ω,J(M) is the space H2,+
ω,J (M) of self-dual harmonic 2-

forms, and that (ii) holds if and only if Ω0(M)ω ⊂ imd+ (see equation (C.6)).
Thus (ii) holds if and only if the spaces H2,+

ω,J (M) and Ω0(M)ω are L2 or-
thogonal to each other, and this is equivalent to (iii). The equivalence of (iii)
and (iv) follows from the fact that the space Ω2,0

J (M ;C)⊕ Ω0,2
J (M ;C) inter-

sects Ω2(M) in the space of all τ ∈ Ω2(M) that satisfy τ(u, v) + τ(Ju, Jv) = 0
for all u, v ∈ Vect(M), the L2 orthogonal complement of Ω0(M)ω in Ω2,+

ω,J(M).
This proves Corollary C.3.

On a closed connected oriented smooth four-manifold M Corollary C.3
shows that the set of complex structures J that satisfy κ(J) = 0 is open, and
that κ(J) = 1 whenever b2,+(M) = 0.

Remark C.4. Let E be a holomorphic vector bundle over a complex mani-
fold (M,J). Then, for every Hermitian metric h on E, there exists a unique
Hermitian connection ∇ on E such that ∂̄∇ = ∂̄ : Ω0(M,E)→ Ω0,1(M,E).
The real valued 2-form i

2π
tracec(F∇) is a closed (1, 1)-form which represents

the first Chern class of E. If h′(s1, s2) = h(s1, Qs2) is another Hermitian
structure (with Q a section of the bundle of positive definite Hermitian auto-
morphisms with respect to h) then the corresponding Hermitian connection
is given by ∇′ = ∇+Q−1∂Q and the complex trace of its curvature is

tracec(F∇
′
) = tracec(F∇)− ∂∂̄f, f := detc(Q) : M → R.

Thus by (C.2) the first Chern class

c1(E) =

[
i

2π
tracec(F∇)

]
dR

∈ H2
dR(M)

in de Rham cohomology lifts to a well defined class

c1,BC(E) :=

[
i

2π
tracec(F∇)

]
BC

∈ H1,1
BC(M)

in Bott–Chern cohmology, called the first Bott–Chern class of E. (For
more details see [1, 2, 3, 5]).
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D Complex structures and n-forms

Fix a closed connected oriented 2n-manifold M and a complex line bun-
dle L→M with a Hermitian form 〈s1, s2〉 for s1, s2 ∈ Ω0(M,L) (complex
anti-linear in the first variable and complex linear in the second variable).
Define

cn := (−1)
n(n+1)

2 in =

{
1, if n is even,
−i, if n is odd.

(D.1)

Lemma D.1. Let J ∈ J (M) be an almost complex structure compatible
with the orientation. Then c1(TM, J) = c1(L) ∈ H2(M ;Z) if and only if
there exists a nowhere vanishing n-form θ ∈ Ωn,0

J (M,L). If this holds then

ρ := cn〈θ∧θ〉 ∈ Ω2n(M) (D.2)

is a positive volume form on M .

Proof. The first Chern class of (TM, J) agrees with minus the first Chern
class of the complex line bundle Λn,0

J T ∗M . Hence c1(TM, J) = c1(L) if and
only if E := Λn,0

J T ∗M ⊗ L admits a a trivialization or, equivalently, a nowhere
vanishing section, and such a section is an (n, 0)-form θ ∈ Ωn,0

J (M,L).
To show that, for any nowhere vanishing n-form θ ∈ Ωn,0

J (M), the for-
mula (D.2) defines a positive volume form on M , fix an element m ∈M
and choose a complex isomorphism (Cn, i)→ (TmM,J). Let zi = xi + iyi
for i = 1, . . . , n be the coordinates on Cn. Then there is an element λ ∈ Lm
(the fiber of L over m) such that

θm = λdz1 ∧ · · · ∧ dzn.

Hence

ρm = cn〈θm∧θm〉

=
(−1)

n(n−1)
2

in
|λ|2dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn

= 2n|λ|2dz1 ∧ dz1

2i
∧ · · · ∧ dzn ∧ dzn

2i
= 2n|λ|2dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

Thus ρ is a positive volume form on M and this proves Lemma D.1.

51



Lemma D.2. Let J ∈J (M) be an almost complex structure compatible
with the orientation, let θ ∈ Ωn,0

J (M,L) be a nowhere vanishing (n, 0)-form,
let ω ∈ Ω2(M) be a nondegenerate 2-form that is compatible with J such that

ωn

n!
= cn〈θ∧θ〉 =: ρ, (D.3)

and let ∗ : Ωp,q
J (M,L)→ Ωn−q,n−p

J (M,L) be the Hodge ∗-operator of the Rie-
mannian metric 〈·, ·〉 := ω(·, J ·). Then the following holds.

(i) For every Ĵ ∈ Ω0,1
J (M,TM) there is a unique β ∈ Ωn−1,1

J (M,L) such that

iι(u)β − ι(Ju)β = ι(Ĵu)θ (D.4)

for all u ∈ Vect(M).

(ii) For every β ∈ Ωn−1,1
J (M,L) there exists a unique Ĵ ∈ Ω0,1

J (M,TM) such
that (D.4) holds for all u ∈ Vect(M).

(iii) Suppose β ∈ Ωn−1,1
J (M,L) and Ĵ ∈ Ω0,1

J (M,TM) satisfy equation (D.4).
Then

iι(u)∗β − ι(Ju)∗β = −cnι(Ĵ∗u)θ (D.5)

for all u ∈ Vect(M). Moreover,

Ĵ = Ĵ∗ ⇐⇒ ∗β = −cnβ ⇐⇒ β ∧ ω = 0, (D.6)

Ĵ + Ĵ∗ = 0 ⇐⇒ ∗β = cnβ ⇐⇒ β ∈ Ωn−2,0
J (M,L) ∧ ω. (D.7)

(iv) Suppose β ∈ Ωn−1,1
J (M,L) and Ĵ ∈ Ω0,1

J (M,TM) satisfy equation (D.4)
and let ω̂ ∈ Ω2(M). Then

ω ∧ β + ω̂ ∧ θ = 0 ⇐⇒ ω̂(u, v)− ω̂(Ju, Jv) = 〈(Ĵ − Ĵ∗)u, v〉
for all u, v ∈ Vect(M).

(D.8)

(v) Let β, β′ ∈ Ωn−1,1
J (M,L) and Ĵ , Ĵ ′ ∈ Ω0,1

J (M,TM) be given such that the

pairs (β, Ĵ) and (β′, Ĵ ′) satisfy (D.4). Then the pointwise inner product of β
and β′ is given by

〈β, β′〉 = Re

(
〈β∧ ∗ β′〉

ρ

)
= 1

8
trace

(
Ĵ∗Ĵ ′

)
ρ. (D.9)

Moreover, we have

cn〈β∧β′〉 = −1
8
trace

(
Ĵ Ĵ ′
)
ρ+ i

8
trace

(
ĴJĴ ′

)
ρ. (D.10)
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Proof. Define β ∈ Ωn(M,L) by

β(v1, . . . , vn) := θ(−1
2
JĴv1, v2, . . . , vn)

+ θ(v1,−1
2
JĴv2, v3, . . . , vn)

+ · · ·+ θ(v1, . . . , vn−1,−1
2
JĴvn)

for v1, . . . , vn ∈ Vect(M). Then

β(Ju, v2, . . . , vn) + θ(Ĵu, v2, . . . , vn) = θ(1
2
Ĵu, v2, . . . , vn)

+ θ(Ju,−1
2
JĴv2, v3, . . . , vn)

+ · · ·+ θ(Ju, v2, . . . , vn−1,−1
2
JĴvn)

= iβ(u, v2, . . . , vn)

for all u, v2, . . . , vn ∈ Vect(M). Thus β is an (n − 1, 1)-form that satisfies
equation (D.4). If β′ is another (n− 1, 1)-form that satisfies equation (D.4),
then ι(Ju)(β′ − β) = iι(u)(β′ − β), thus β′ − β ∈ Ωn,0

J (M,L), and so β′ = β.
This proves (i).

We prove part (ii). Thus let β ∈ Ωn−1,1
J (M,L) be given. Then for every

vector field u ∈ Vect(M) the (n−1)-form iι(u)β − ι(Ju)β is of type (n− 1, 0)
and hence can be written in the form ι(v)θ for some vector field v ∈ Vect(M)
that is uniquely determined by u. This shows that there exists a unique sec-
tion Ĵ ∈ Ω0(M,End(TM)) of the endomorphism bundle that satisfies (D.4)
for all u ∈ Vect(M). By (D.4) we have

ι(ĴJu)θ = iι(Ju)β + ι(u)β = −iι(Ĵu)θ = −ι(JĴu)θ

for all u ∈ Vect(M) and thus ĴJ + JĴ = 0. This proves (ii).
We prove part (iii). It suffices to consider the trivial line bundle and the

standard structures on R2n with the coordinates x1, . . . , xn, y1, . . . , yn. They
are given by

J =

(
0 −1l
1l 0

)
, ω =

n∑
i=1

dxi ∧ dyi, θ =
dz1√

2
∧ · · · ∧ dzn√

2
, (D.11)

where zi := xi + iyi for i = 1, . . . , n. A complex anti-linear endomorphism
has the form

Ĵ =

(
A B
B −A

)
, A+ iB = (aij)i,j=1,...,n ∈ Cn×n. (D.12)
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The corresponding (n− 1, 1)-form β ∈ Ωn−1,1
J (R2n) is given by

β =
1

2i

n∑
i,j=1

aij
dz1√

2
∧ · · · dzi−1√

2
∧ dz̄j√

2
∧ dzi+1√

2
∧ · · · ∧ dzn√

2
. (D.13)

Now Ĵ∗ is represented by the transposed matrix AT + iBT = (aji)i,j=1,...,n and

∗β =
−cn
2i

n∑
i,j=1

aji
dz1√

2
∧ · · · dzi−1√

2
∧ dz̄j√

2
∧ dzi+1√

2
∧ · · · ∧ dzn√

2
.

This proves (D.5). Now (D.6) and (D.7) follow from (D.5) and the eigenspace
decomposition of the Hodge ∗-operator on Ωn−1,1(M). This proves (iii).

We prove part (iv). Continue the notation in the proof of part (iii),

so J, ω, θ, Ĵ , β are as in (D.11), (D.12), and (D.13). Then a 2-form ω̂ ∈ Ω2(M)

satisfies ω̂(u, v)− ω̂(Ju, Jv) = 〈(Ĵ − Ĵ∗)u, v〉 for all u, v ∈ Vect(M) if and
only if its (0, 2)-part is given by ω̂0,2 = −1

4

∑
i,j aijdz̄i ∧ dz̄j, and this in turn

is equivalent to the equation ω̂ ∧ θ = −ω ∧ β. This proves (iv).
We prove part (v). Continue the notation in the proof of part (iii) and

use the same notation for (β′, Ĵ ′) with A,B, aij replaced by A′, B′, a′ij. Then

β ∧ ∗β′ = −cn
4

n∑
i,j=1

n∑
k,`=1

āija
′
`k

dz̄1√
2
∧ · · · ∧ dz̄i−1√

2
∧ dzj√

2
∧ dz̄i+1√

2
∧ · · · ∧ dz̄n√

2

∧ dz1√
2
∧ · · · ∧ dzk−1√

2
∧ dz̄`√

2
∧ dzk+1√

2
∧ · · · ∧ dzn√

2

=
cn
4

n∑
i,j=1

āija
′
ji

dz̄1√
2
∧ · · · ∧ dz̄n√

2
∧ dz1√

2
∧ · · · ∧ dzn√

2

=
1

4

n∑
i,j=1

āija
′
jicnθ ∧ θ

=
1

4
trace(A− iB)T (A′ + iB′)ρ.

Thus Re(β ∧ ∗β′) = 1
4
trace(ATA′ +BTB′)ρ = 1

8
trace(ĴT Ĵ ′)ρ and this proves

equation (D.9). Moreover, the pair (c̄n ∗ β,−Ĵ∗) satisfies (D.4) by part (iii).

Thus Re(cnβ ∧ β′) = Re(c̄n ∗ β ∧ β′) = −1
8
trace(Ĵ Ĵ ′)ρ. This confirms (D.10)

for the real part. The formula for the imaginary part holds because both
sides of the equation are complex linear in Ĵ ′ with respect to the complex
structure Ĵ ′ 7→ JĴ ′. This proves (v) and Lemma D.2.

54



The next lemma adapts an observation by Donaldson in [14, Lemma 1]
to the present setting.

Lemma D.3. Let ρ be a positive volume form and let J ∈ J (M) be a
positive almost complex structure such that c1(TM, J) = c1(L) ∈ H2(M ;Z).
Then the following are equivalent.

(i) J is integrable.

(ii) There exists a nowhere vanishing n-form θ ∈ Ωn,0
J (M,L) and a Hermitian

connection ∇L on L such that d∇Lθ = 0 and cn〈θ∧θ〉 = ρ.

If (i) holds then the pair (∇L, θ) in (ii) is uniquely determined by J up to
unitary gauge equivalence. If (ii) holds then

(F∇L)0,2
J = 0, Ricρ,J = iF∇L . (D.14)

If (i) and (ii) hold and ∇ is a torsion-free connection on TM that satis-
fies ∇J = 0, then ∇ρ = 0 if and only if ∇θ = 0.

Proof. We prove that (i) implies (ii). By Lemma D.1 there exists a nowhere
vanishing (n, 0)-form θ ∈ Ωn,0

J (M,L) such that cn〈θ∧θ〉 = ρ. Choose any Her-
mitian connection ∇0 on L. Then d∇0θ ∈ Ωn,1

J (M,L) because J is integrable
and hence there exists a unique 1-form η ∈ Ω0,1

J (M) such that η ∧ θ = d∇0θ.
Define the Hermitian connection ∇L by ∇L := ∇0 + η − η. Then

d∇Lθ = d∇0θ + (η − η) ∧ θ = η ∧ θ = 0

because η ∈ Ω1,0
J (M). This shows that (i) implies (ii). Moreover, (ii) implies

(F∇L)0,2
J ∧ θ = F∇L ∧ θ = d∇Ld∇Lθ = 0

and hence (F∇L)0,2
J = 0.

We prove uniqueness in (ii). If (θ′,∇L′) is any other pair as in (ii), then
there exists a unique unitary gauge transformation g : M → S1 such that

θ′ = g−1θ

Hence the 1-form α := ∇L′ −∇L ∈ Ω1(M, iR) satisfies

0 = d∇L
′
θ′ = d∇L+α(g−1θ) = α ∧ g−1θ + dg−1 ∧ θ = (α0,1 − g−1∂̄g) ∧ g−1θ.

Hence α0,1 = g−1∂̄g and so α = g−1∂̄Jg − ḡ−1∂J ḡ = g−1dg because g−1dg is
a 1-form on M with values in iR. Thus

∇L′ = ∇L + g−1dg = g∗∇L
and this proves uniqueness up to unitary gauge equivalence.
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We prove that (ii) implies (i). If θ ∈ Ωn,0
J (M,L) and ∇L is any complex

connection on L then (d∇Lθ)n−1,2 = 1
4
ι(NJ)θ, where

(ι(NJ)θ)(v1, . . . , vn+1)

:=
∑
i<j

(−1)i+j−1θ (NJ(vi, vj), v1, . . . , v̂i, . . . , v̂j, . . . , vn+1) (D.15)

for v1, . . . , vn+1 ∈ Vect(M). If d∇Lθ = 0 it follows that ι(NJ)θ = 0. If θ van-
ishes nowhere this implies NJ = 0. To see this, fix two vector fields v1, v2.
Then ι(NJ(v1, v2))θ is a nonzero (n − 1, 0)-form while the remaining sum-
mands on the right in (D.15) are of type (n− 2, 1) or (n− 3, 2). This implies
that ι(NJ(v1, v2))θ = 0 and hence NJ(v1, v2) = 0 because θ vanishes nowhere.
Thus NJ = 0 and therefore J is integrable.

Now assume (ii) and let ∇ be a torsion-free connection on TM that satis-
fies ∇J = 0 and ∇ρ = 0. Such a connection exists by part (i) of Lemma A.1.
For u ∈ Vect(M) the n-form ∇uθ ∈ Ωn(M,L) is defined by

(∇uθ)(v1, . . . vn) := ∇L,u
(
θ(v1, . . . , vn)

)
− θ(∇uv1, v2, . . . , vn)− · · · − θ(v2, . . . , vn−1,∇uvn)

Since ∇J = 0, this is an (n, 0)-form. Hence there exists a unique complex
valued 1-form α ∈ Ω1(M,C) such that

∇uθ = α(u)θ

for all u ∈ Vect(M). Now the equation d∇Lθ = 0 can be expressed in the form

(∇uθ)(v1, . . . vn) =
n∑
i=1

(−1)i−1(∇viθ)(u, v1, . . . , vi−1, vi+1, . . . , vn)

for u, v1, . . . , vn ∈ Vect(M). The right hand side of this equation is complex
linear in u and this implies α ∈ Ω1,0(M), i.e.

α(Ju) = iα(u)

for all u ∈ Vect(M). Since ρ = cn〈θ∧θ〉 and ∇ρ = 0, we also have Reα = 0,
hence α = 0, and so ∇θ = 0. This implies tracec(R∇) = F∇L and therefore

Ricρ,J = 1
2
trace(JR∇) = itracec(R∇) = iF∇L .

This proves Lemma D.3.
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Lemma D.4. Let ρ ∈ Ω2n(M) be a positive volume form, let J ∈Jint(M),
let ∇L be a Hermitian connection on L, and let θ ∈ Ωn,0

J (M,L) be nowhere
vanishing such that d∇Lθ = 0 and cn〈θ∧θ〉 = ρ. Then the following holds.

(i) Let v ∈ Vect(M) and define Ĵ := LvJ and β := ∂̄∇LJ ι(v)θ ∈ Ωn−1,1
J (M,L)

and h := 1
2
(fv − ifJv). Then d∇Lι(v)θ = β + hθ and (D.4) holds for all u.

(ii) Suppose Ĵ ∈ Ω0,1
J (M,TM) and β ∈ Ωn−1,1

J (M,L) satisfy (D.4). Then

∂̄∗J Ĵ = 0 ⇐⇒
(
∂̄∇LJ
)∗
β = 0, (D.16)

∂̄J Ĵ = 0 ⇐⇒ ∂̄∇LJ β = 0. (D.17)

(iii) Let Ĵ and β be as in (ii) and let Λρ(J, Ĵ) be as in (2.9). Then

i∂∇LJ β + 1
2
Λρ(J, Ĵ) ∧ θ = 0. (D.18)

(iv) Let Ĵ and β be as in (ii) with ∂̄J Ĵ = 0 and let Ricρ,J and R̂icρ(J, Ĵ) be

as in Theorem 2.6. Then Ricρ,J ∧ β + R̂icρ(J, Ĵ) ∧ θ = 0.

(v) Let Ĵ and β be as in (ii) with ∂̄J Ĵ = 0 and assume F∇L = 0 and J admits
a Kähler form. Then there exists a unique function h ∈ Ω0(M,C) such that

d∇L
(
β + hθ

)
= 0,

∫
M

hρ = 0. (D.19)

Moreover, h = 1
2
(f − ig) in the notation of Lemma 3.8, and β + hθ ∈ imd∇L

if and only if there exists a vector field v such that Ĵ = LvJ .

Proof. Fix a torsion-free connection ∇ such that ∇J = 0 and ∇θ = 0. Next
define L∇Lv α := d∇Lι(v)α + ι(v)d∇Lα for α ∈ Ωk(M,L) and v ∈ Vect(M) Then

(L∇Lv α)(v1, . . . , vk) = ∇L,v
(
α(v1, . . . , vk)

)
−
∑

α(. . . , vi−1, [vi, v], vi+1, . . . )

for v, v1, . . . , vk ∈ Vect(M) and L∇Lv θ = d∇Lι(v)θ. Hence, by the Leibniz rule,

(d∇Lι(v)θ)(v1, . . . , vn) = θ(∇v1v, v2, . . . , vn) + · · ·+ θ(v1, . . . , vn−1,∇vnv)

for all v, v1, . . . , vn ∈ Vect(M). Since θ is complex multi-linear this implies

iι(u)d∇Lι(v)θ − ι(Ju)d∇Lι(v)θ = ι(J∇uv −∇Juv)θ = ι((LvJ)u)θ (D.20)

for all u, v ∈ Vect(M). Hence

ι((LvJ)u)θ = iι(u)(d∇Lι(v)θ)n−1,1
J − ι(Ju)(d∇Lι(v)θ)n−1,1

J = iι(u)β − ι(Ju)β

for all u, v and this proves (D.4). The equation 〈θ∧∂∇LJ ι(v)θ〉 = 〈θ∧hθ〉 follows
directly from the definitions and the formula ρ = cn〈θ∧θ〉. This proves (i).
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We prove part (ii). The equivalence in (D.16) follows from the identity

〈β, ∂̄∇LJ ι(v)θ〉L2 = 1
8

∫
M

trace
(
Ĵ∗LvJ

)
ρ = 1

4
〈Ĵ , J∂̄Jv〉L2 = 1

4
〈∂̄∗J Ĵ , Jv〉L2

for v ∈ Vect(M). Here we have used part (v) of Lemma D.2 as well as (i).
To prove (D.17), define αu ∈ Ωn(M,L) by

αu := iι(u)d∇Lβ − ι(Ju)d∇Lβ (D.21)

for u ∈ Vect(M). We will prove that, for all u, v ∈ Vect(M),

iι(v)αu − ι(Jv)αu = ι(J∂̄J Ĵ(u, v))θ. (D.22)

Equation (D.22) shows that ∂̄J Ĵ = 0 if and only if αu ∈ Ωn,0
J (M,L) for ev-

ery vector field u ∈ Vect(M). By (D.21) this is equivalent to the condi-
tion d∇Lβ ∈ Ωn,1

J (M,L) or, equivalently, to ∂̄∇LJ β = (d∇Lβ)n−1,2
J = 0.

To prove (D.22), fix a torsion-free connection ∇ that satisfies ∇J = 0

and ∇θ = 0. Then it follows from (D.20) with v replaced by Ĵv that

iι(u)d∇Lι(Ĵv)θ − ι(Ju)d∇Lι(Ĵv)θ

= ι
(
J(∇uĴ)v − (∇JuĴ)v

)
θ + ι

(
JĴ∇uv − Ĵ∇Juv

)
θ

(D.23)

for all u, v ∈ Vect(M). Moreover,

αu = iι(u)d∇Lβ − ι(Ju)d∇Lβ = iL∇Lu β − L
∇L
Juβ − d

∇Lι(Ĵu)θ (D.24)

for all u ∈ Vect(M) by (D.4). With this understood, we obtain

iι(v)αu − ι(Jv)αu = −ι(v)L∇Lu β − iι(v)L∇LJuβ − iι(v)dι(Ĵu)θ

− iι(Jv)L∇Lu β + ι(Jv)L∇LJuβ + ι(Jv)d∇Lι(Ĵu)θ

= −L∇Lu ι(v)β − ι([u, v])β − iL∇LJuι(v)β − iι([Ju, v])β

− iL∇Lu ι(Jv)β − iι([u, Jv])β + L∇LJuι(Jv)β + ι([Ju, Jv])β

− iι(v)dι(Ĵu)θ + ι(Jv)dι(Ĵu)θ

= iι(u)d∇Lι(Ĵv)θ − ι(Ju)d∇Lι(Ĵv)θ − iι(v)d∇Lι(Ĵu)θ

+ ι(Jv)d∇Lι(Ĵu)θ + ι(JĴ [u, v])θ + ι(ĴJ [Ju, Jv])θ

= ι
(
J(∇uĴ)v − (∇JuĴ)v − J(∇vĴ)u+ (∇JvĴ)u

)
θ

= ι(J∂̄J Ĵ(u, v))θ.

Here the first equality follows from (D.24), the third from (D.4), and the
fourth from (D.23). This proves (D.22) and (ii).
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We prove part (iii). Since i∂∇LJ β ∈ Ωn,1
J (M,L), there is an η ∈ Ω0,1

J (M)
such that

i∂∇LJ β + η ∧ θ = 0. (D.25)

Now let v ∈ Vect(M). Then the pair (LvJ, ∂̄∇LJ ι(v)θ) satisfies (D.4) by (i).
Hence, by (2.13) and (D.10), we have

1
4

∫
M

Λρ(J, Ĵ) ∧ ι(v)ρ = 1
8

∫
M

trace
(
ĴJLvJ

)
ρ

= Im

(∫
M

cn〈β∧∂̄∇LJ ι(v)θ〉
)

= Re

(∫
M

cn〈(iβ)∧d∇Lι(v)θ〉
)

= (−1)n+1Re

(∫
M

cn〈(id∇Lβ)∧ι(v)θ〉
)

= −Re

(∫
M

cn〈(ι(v)i∂∇LJ β)∧θ〉
)

= Re

(∫
M

η(v)cn〈θ∧θ〉
)

=

∫
M

Re(η) ∧ ι(v)ρ.

Here the penultimate equality follows from (D.25). Thus Re(η) = 1
4
Λρ(J, Ĵ),

hence η = 1
2
Λρ(J, Ĵ)0,1

J , and so (D.18) follows from (D.25). This proves (iii).

We prove part (iv). Since ∂̄J Ĵ = 0 it follows from part (ii) that ∂̄∇LJ β = 0.

Hence id∇Lβ + 1
2
Λρ(J, Ĵ) ∧ θ = 0 by (D.18) and so, by Lemma D.3, we have

Ricρ,J ∧ β = iF∇L ∧ β = id∇Ld∇Lβ = −1
2
dΛρ(J, Ĵ) ∧ θ = −R̂icρ(J, Ĵ) ∧ θ.

If Ricρ,J is nondegenerate, the assertion follows directly from Lemma 3.6 and
part (iv) of Lemma D.2. This proves (iv).

We prove part (v). Since F∇L = 0 we have Ricρ,J = 0 by Lemma D.3.
Hence Lemma 3.8 asserts that there exists a unique pair of smooth func-
tions f, g ∈ Ω0(M) of mean value zero such that Λρ(J, Ĵ) = −df ◦ J + dg.

Let h := 1
2
(f − ig). Then ∂̄Jh = − i

2
Λρ(J, Ĵ)0,1

J and so d∇L(β + hθ) = 0
by (D.18). If β + hθ ∈ imd∇L , choose a Kähler form ω such that ωn/n! = ρ
and use the identity d∇L(d∇L)∗ + (d∇L)∗d∇L = 2(∂̄∇LJ (∂̄∇LJ )∗ + (∂̄∇LJ )∗∂̄∇LJ ) to de-
duce that β = ∂̄∇LJ ι(v)θ for some vector field v. This proves Lemma D.4.
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If Ĵ ∈ Ω0,1
J (M,TM) satisfies ∂̄J Ĵ = 0, then the n-form

θ̂ := β + hθ ∈ Ωn(M,L)

in part (v) of Lemma D.4 should be thought of as the tangent vector asso-

ciated to Ĵ in the projective space of closed complex valued n-forms modulo
scaling. Namely, if t 7→ Jt is a smooth path of (integrable) complex struc-

tures such that ∂t|t=0Jt = Ĵ , and t 7→ θt ∈ Ωn,0
Jt

(M,L) is a smooth path of

nowhere vanishing closed (n, 0)-forms, then ∂t|t=0θt ∈ θ̂ + Cθ.

Corollary D.5. Let M be an closed connected oriented 2n-manifold, let J
be a complex structure on M with real first Chern class zero and nonempty
Kähler cone, let L→M be a Hermitian line bundle equipped with a flat con-
nection ∇L such that c1(L) = c1(TM, J) ∈ H2(M ;Z), let θ ∈ Ωn,0

J (M,L) be a
nowhere vanishing (n, 0)-form such that d∇Lθ = 0, and define ρ := cn〈θ∧θ〉.
For i = 1, 2 let Ĵi ∈ Ω0,1

J (M,TM) such that ∂̄J Ĵi = 0, let βi ∈ Ωn−1,1
J (M,L)

satisfy (D.4) for all u ∈ Vect(M) with Ĵ = Ĵi, let hi ∈ Ω0(M,C) be the unique

function that satisfies (D.19) with β = βi, and define θ̂i := βi + hiθ. Then

Re

(
cn

∫
M

〈θ̂1∧θ̂2〉
)

= −1
8

∫
M

trace(Ĵ1Ĵ2)ρ+

∫
M

Re(h̄1h2)ρ,

Im

(
cn

∫
M

〈θ̂1∧θ̂2〉
)

= 1
8

∫
M

trace(Ĵ1JĴ2)ρ+

∫
M

Im(h̄1h2)ρ.

(D.26)

Proof. This follows directly from (D.9) and the definition of θ̂i.

The discussion in this appendix is inspired by Donaldson’s symplectic
form on the space of complex structures on a Fano manifold in [14]. He
proved in [14, Theorem 1] in the Fano case that the Hermitian form

(Ĵ1, Ĵ2) 7→ cn

∫
M

〈θ̂1∧θ̂2〉

is negative definite on the space of complex structures compatible with a fixed
symplectic form ω. In the Calabi–Yau case (with the symplectic form not
fixed) this Hermitian form on the kernel of ∂̄J : Ω0,1

J (M,TM)→ Ω0,2
J (M,TM)

vanishes on the image of the operator ∂̄J : Ω0(M,TM)→ Ω0,1
J (M,TM) and

descends to a well-defined and nondegenerate, but indefinite, Hermitian form
on the quotient space ker ∂̄J/im∂̄J = T[J ]T0(M). Its imaginary part is the
symplectic form on Teichmüller space in Theorem 4.4.

60



References
[1] Daniele Angella & Adriano Tomassini, On the ∂∂̄-Lemma and Bott–Chern cohomology. Inventiones

Mathematicae 192 (2013), 71–81. https://arxiv.org/abs/1402.1954

[2] Daniele Angella & Adriano Tomassini, On Bott–Chern cohomology and formality. Journal of Ge-
ometry and Physics 93 (2015), 52–61. https://arxiv.org/abs/1411.6037

[3] Jean-Michel Bismut & Henri Gillet & Christophe Soulé, Analytic torsion and holomorphic determi-
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