
J-holomorphic Curves
and Symplectic Topology

Second Edition
erratum

Dusa McDuff
Barnard College

Columbia University

Dietmar A. Salamon
ETH Zürich
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page 33: Here is a cleaner argument. The map w′ : U0 → C defined on page
32 by

(1) w′(z) :=
∏

ζ∈U0, ζ∼z

w(z)

is holomorphic and nonconstant and satisfies w′(z0) = 0. Hence a theorem in
complex analysis asserts that there exists a positive integer ` ∈ N, a neigh-
bourhood U1 ⊂ U0 of z0, and a biholomorphic map φ : U1 → V onto an open
neighbourhood V ⊂ C of zero such that φ(z0) = 0 and

w′(z) = φ(z)` for all z ∈ U1

(see [1, pp131–133, Thm 11] or [2, Satz 3.61]). Define

U := w(U1), f := φ ◦ w−1 : U → V.

Then U ⊂ C is an open neighbourhood of zero, f : U → V is a biholomorphic
map, f(0) = 0, and

(2) w′(z) =
(
f(w(z))

)`
for all z ∈ U1.
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Choose δ > 0 such that

(a) δ|w| ≤ |f(w)| ≤ δ−1|w| for all w ∈ U (shrinking U if necessary).

Then the following holds.

(b) δ`|w(z)|` ≤ |w′(z)| ≤ δ−`|w(z)|` for all z ∈ U1, by (2) and (a).

(c) If z, ζ ∈ U1 and z ∼ ζ then w′(z) = w′(ζ) and hence, by (b),

δ2|w(z)| ≤ |w(ζ)| ≤ δ−2|w(z)|.

(d) δ2m0|w(z)|m0 ≤ |w′(z)| ≤ δ−2m0|w(z)|m0 for all z ∈ U1 by (1) and (c).
Here m0 := m(z0) is as on page 32.

It follows from (b) and (d) that

m0 = `

and thus each sufficiently small nonzero complex number has precisely m0

preimages under w′ (again [1, Thm 11, p131] or [2, Satz 3.61]). Hence, for
all z, ζ ∈ U1 sufficiently close to z0, we have

z ∼ ζ ⇐⇒ w′(z) = w′(ζ).

This shows that the map

U ′0 := U0/∼ → C : [z] 7→ w′(z)

is injective and hence is a holomorphic coordinate chart on Σ/∼.

page 37: Exercise 2.6.6 is wrong. For example, every branched double cover
of CP1 ⊂ CP2 with positive genus has positive self-intersection number and
violates the adjunction inequality.

page 59, line 3: The construction of a diffeomorphism from P(L ⊕ C) to
the product S2 × S2 that sends the section CL to the anti-diagonal requires
the condition 2k = c1(L) = 2.

page 143, last line: The number ρε(x,x
′) should be defined by

ρε(x,x
′) := |E(u)− E(u′)|+ inf

f :T→T ′
inf
{φα}

ρε
(
x,x′; f, {φα}

)
.
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page 144, line 2: The number ρε(x,x
′; f, {φα}) should be defined by

ρε
(
x,x′; f, {φα}

)
:=
∑
αEβ

∣∣Eα(u;B2ε(zαβ)
)
− Ef(α)

(
u′;φα(B2ε(zαβ))

)∣∣
+
∑
α∈T

sup
z∈S2\Bε(Zα)

d
(
u′f(α) ◦ φα(z), uα(z)

)
+

∑
α 6=β

f(α)=f(β)

sup
z∈S2\Bε(zαβ)

d
(
φ−1
β ◦ φα(z), zβα

)
+

∑
f(α)6=f(β)

d
(
φ−1
β (z′f(β)f(α)), zβα

)
+
∑
α∈T

1≤i≤n

d
(
φ−1
α (z′f(α)i), zαi

)
.

(3)

(This definition is needed in the proof of equation (5.5.7) on page 146 in the
proof of Lemma 5.5.9. Thanks to Nate Bottman for pointing this out.)

page 145: There is a gap in the proof of Lemma 5.5.8 on page 145, line 21.
The energy limit equation on this line does not follow directly from (5.5.4).
The proof can be corrected as follows. (Thanks to Aleksey Zinger for sug-
gesting this argument.)

To prove the (Map) and (Energy) axioms, note that, since ρν converges
to zero, we have

mαβ(u) + E
(
uα;B2ε(zαβ)

)
= lim

ν→∞
Eα′
(
uν ;φνα(B2ε(zαβ))

)
,

mβα(u) + E
(
uβ;B2ε(zβα)

)
= lim

ν→∞
Eβ′
(
uν ;φνβ(B2ε(zβα))

)(5.5.4)

whenever αEβ, and the sequence uνα := uνα′ ◦ φνα converges to uα uniformly
on S2 \

⋃
αEβ Bε(zαβ) for all α. Hence, by Lemma 4.6.6, uνα converges uni-

formly with all derivatives on compact subsets of S2 \
⋃
αEβ Bε(zαβ).

It remains to show that the sequence uνα does not exhibit bubbling in
B2ε(zαβ) \Bδ(zαβ) for any δ > 0. Assume first that α′ 6= β′. Then α′E ′β′

and zαγ = limν→∞(φνα)−1(zνα′γ′) for all γ ∈ T with α′ 6= γ′ by part (ii) of
Lemma 5.5.6, and zβγ = limν→∞(φνβ)−1(zνβ′γ′) for all γ ∈ T with β′ 6= γ′. Thus

Eα′
(
uν ;φνα(B2ε(zαβ))

)
= mα′β′(uν) + E

(
uνα;B2ε(zαβ)

)
,

Eβ′
(
uν ;φνβ(B2ε(zβα))

)
= mβ′α′(uν) + E

(
uνβ;B2ε(zβα)

)
3



for ν sufficiently large and hence, by adding the two equations in (5.5.4) and
using

lim
ν→∞

(mα′β′(uν) +mβ′α′(uν)) = lim
ν→∞

E(uν) = E(u) = mαβ(u) +mβα(u),

we obtain
lim
ν→∞

(
E
(
uνα;B2ε(zαβ)

)
+ E

(
uνβ;B2ε(zβα)

))
< ~.

Thus E
(
uνα;B2ε(zαβ)

)
< ~ for ν sufficiently large, and so the sequence uνα

does not exhibit any bubbling in B2ε(zαβ). In the case α′ = β′ we use the
fact that the sequence φναβ := (φνα)−1 ◦ φνβ converges to zαβ u.c.s. on S2\{zβα}
as well as zαγ = limν→∞(φνα)−1(zνα′γ′) for all γ ∈ T with α′ 6= γ′ by part (ii)
of Lemma 5.5.6. Thus

Eα′
(
uν ;φνα(B2ε(zαβ))

)
+ Eα′

(
uν ;φνβ(B2ε(zβα))

)
= E(uν) + E

(
uνα;B2ε(zαβ) ∩ φναβ(B2ε(zβα))

)
for ν sufficiently large and hence, by adding the two equations in (5.5.4) and
using limν→∞E(uν) = E(u) = mαβ(u) +mβα(u), we obtain

lim
ν→∞

E
(
uνα;B2ε(zαβ) ∩ φναβ(B2ε(zβα))

)
< ~.

This implies that the sequence uνα does not exhibit bubbling in the spherical
shell B2ε(zβα) \Bδ(zβα) for any δ > 0 as claimed.

page 148, line 19: The assertion of Lemma 5.6.4 should be

C(U(C)) = C.

The uniqueness statement is wrong (and not addressed in the proof). A
counterexample is the space `1 of summable sequences, because a sequence
in `1 converges strongly if and only if it converges weakly.

page 150, Theorem 5.6.6: There is a gap in the proof of part (ii) of Theo-
rem 5.6.6. The proof only shows that the moduli spaceM0,n(M,A; J) is first
countable and separable, but this does not imply that it is second countable.
An example is the Sorgenfrey line with the nonstandard topology on the real
axis in which the open sets are unions of half-open intervals [a, b). This space
is separable and first countable. However, it is not second countable. Namely,
if B ⊂ 2R is a basis of the Sorgenfrey topology, then for every a ∈ R there ex-
ists an open set Ba ∈ B with a ∈ Ba ⊂ [a,∞); thus a = inf Ba, hence Ba 6= Bb

for a 6= b, and so the collection B is uncountable.
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Here is a proof of second countablility for the moduli space of genus
zero stable maps with n marked points. The proof will take up ten pages.
Assume throughout that (M,ω) is a closed symplectic manifold, let J be
an ω-tame almost complex structure on M , equip M with the Riemannian
metric 〈·, ·〉 = 1

2
(ω(·, J ·)− ω(J ·, ·)), and let A ∈ H2(M ;Z).

Theorem A. The moduli space M0,n(M,A; J) is second countable.

The proof requires some preparation. For two stable maps

x = (u, z) =
(
{uα}α∈T , {zαβ}αEβ, {αi, zi}1≤i≤n

)
,

x′ = (u′, z′) =
(
{u′α′}α′∈T ′ , {z′α′β′}α′E′β′ , {α′i, z′i}1≤i≤n

)
of genus zero with n marked points, a sufficiently small constant ε > 0, a sur-
jective tree homomorphism f : T → T ′ satisfying f(αi) = α′i for i = 1, . . . , n,
and a tuple φ = {φα}α∈T ∈ GT of Möbius transformations φα, abbreviate

ρ1
f,φ,ε(x,x

′) :=
∑
αEβ

∣∣∣Eα(u;B2ε(zαβ)
)
− Ef(α)

(
u′;φα(B2ε(zαβ))

)∣∣∣,
ρ2
f,φ,ε(x,x

′) :=
∑
α∈T

sup
z∈S2\Bε(Zα)

dM
(
u′f(α) ◦ φα(z), uα(z)

)
,

ρ3
f,φ,ε(x,x

′) :=
∑
α 6=β

f(α)=f(β)

sup
z∈S2\Bε(zαβ)

dS2

(
φ−1
β ◦ φα(z), zβα

)
,

ρ4
f,φ(x,x′) :=

∑
f(α)6=f(β)

dS2

(
φ−1
β (z′f(β)f(α)), zβα

)
,

ρ5
f,φ(x,x′) :=

∑
α∈T

1≤i≤n

dS2

(
φ−1
α (z′f(α)i), zαi

)
.

(4)

Here we use the notation Zα := {zαβ | β ∈ T, αEβ}. Thus

ρε(x,x
′; f, {φα}) =

∑
i=1,2,3

ρif,φ,ε(x,x
′) +

∑
i=4,5

ρif,φ(x,x′)

(see equation (3) on page 3 of this erratum) and

ρε(x, [x
′]) := ρε(x,x

′) = inf
f,φ
ρε(x,x

′; f, {φα}).

Note that ρε(x, [x
′]) depends only on the isomorphism class of x′, while it

depends on the parametrization of x. In particular, even if x,x′ are both
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modelled on the same tree T , it is not symmetric in x and x′. It also does not
satisfy the triangle inequality, which is the essential ingredient of the proof
that a first countable metric space is second countable. The crucial step in
our proof of second countability is part (iii) of Lemma B that establishes a
substitute for the triangle inequality that is sufficient for our purposes.

Notice that ρif,φ,ε(x,x
′) is nonincreasing in ε for i = 2 and i = 3. It is

therefore useful to choose different values of ε for i = 1 and i = 2, 3 before
taking the infimum over all f and φ = {φα}. Thus, for 0 < ε′ ≤ ε we define

ρε,ε′(x,x
′; f, {φα}) := ρ1

f,φ,ε(x,x
′) +

∑
i=2,3

ρif,φ,ε′(x,x
′) +

∑
i=4,5

ρif,φ(x,x′),

ρε,ε′(x, [x
′]) := ρε,ε′(x,x

′) = inf
f,φ
ρε,ε′(x,x

′; f, {φα}).

Just as with ρε, the function ρε,ε′ has the property that, for fixed ε, ε′ > 0
and x ∈ SC0,n(M,A; J), a sequence [xν ] Gromov converges to [x] if and only
if ρε,ε′(x, [x

ν ])→ 0.
Further, slightly abusing notation, we will write y ∈ SC0,n(M,A; J) to

mean that y is a genus zero stable map with n-marked points representing
the homology class A, even though the collection of such stable maps is a
proper class and not a set. The isomorphism classes [y] of such stable maps,
however, do form a set M0,n(M,A; J) equipped with the Gromov topology.
For y ∈ SC0,n(M,A; J) and real numbers ε ≥ ε′ > 0 and ε′′ > 0 the set

Nε,ε′,ε′′(y) :=
{

[y′] ∈M0,n(M,A; J) | ρε,ε′(y, [y′]) < ε′′
}

is open inM0,n(M,A; J). Our goal is to prove that a countable collection of
such open sets is a basis of the topology of M0,n(M,A; J).

Fix an n-labelled tree (T,Λ) (as on p 115) and a collection of homology
classes Aα ∈ H2(M ;Z), one for each α ∈ T , with

∑
α∈T Aα = A. The stabil-

ity condition asserts that #Zα+#Λα ≥ 3 for each α ∈ T with Aα = 0. Given
these data, denote by SC0,n(M,A; J, T ) the set1 of all genus zero stable maps
x = (u, z) = ({uα}α∈T , {zαβ}αEβ, {αi, zi}1≤i≤n) with n marked points that
satisfy [uα] = Aα for all α ∈ T . For x,x′ ∈ SC0,n(M,A; J, T ) define

dC0(x,x′) := sup
α∈T

sup
z∈S2

dM(uα(z), u′α(z))

+
∑
α 6=β

dS2(zαβ, z
′
αβ) +

∑
α,i

dS2(zαi, z
′
αi).

(5)

1This is a set because the domain of each of these stable maps is a fixed union of
spheres.
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(See p 121 for the notation zαi and p 136 for the notation zαβ.) With this dis-
tance function SC0,n(M,A; J, T ) is a separable, and hence second countable,
metric space. Let ~ > 0 be the smallest energy of a nonconstant holomorphic
sphere.

Definition. For x ∈ SC0,n(M,A; J, T ), let ε0 = ε0(x) ∈ (0, π/2] be the largest
number that satisfies the following conditions for each vertex α ∈ T :

(6) αEβ, αEγ, β 6= γ =⇒ B2ε0(zαβ) ∩B2ε0(zαγ) = ∅,

(7) 0 < ε < ε0 =⇒
∑

β∈T, αEβ

E(uα, B2ε(zαβ)) <
~
2
.

Lemma B. Let x ∈ SC0,n(M,A; J, T ) and 0 < ε < ε0(x)/2. Then there exist
constants 0 < κ < ε/2 and K ≥ 1 such that the following holds for every
stable map y ∈ SC0,n(M,A; J, T ) modelled over the same tree.

(i) If dC0(x,y) < κ, then ε < ε0(y).

(ii) If dC0(x,y) < κ and 0 < ε′ ≤ ε, then

ρε,ε′(x, [y]) ≤ KdC0(x,y), ρε,ε′(y, [x]) ≤ KdC0(x,y).

(iii) If dC0(x,y) < κ and x′ ∈ SC0,n(M,A; J) is a stable map satisfying the
inequality ρε,ε′(y, [x

′]) < κ with ε′ := ε/2, then

(8) ρε(x, [x
′]) ≤ KdC0(x,y) + ρε,ε′(y, [x

′]).

Proof of Theorem A, assuming Lemma B. Pick a countable collection T of
labelled trees T = (T,Λ, {Aα}), one for each isomorphism class, and for
each T ∈ T choose a dense sequence {xTi }i∈N in the space SC0,n(M,A; J, T ).
We prove that the sets

Nε,ε′,ε′′(xTi ) :=
{

[x′] ∈M0,n(M,A; J) | ρε,ε′(xTi , [x′]) < ε′′
}
,

with ε, ε′ positive rational numbers satisfying ε′ < ε < ε0(xTi )/2, form a ba-
sis of the topology ofM0,n(M,A; J). To see this, choose x ∈ SC0,n(M,A; J)
and let U ⊂M0,n(M,A; J) be an open set containing the class [x]. As-
sume that x is modelled over a labelled tree T ∈ T and fix a rational num-
ber 0 < ε < ε0(x)/2. Then, by Lemma 5.5.8 and Theorem 5.6.6, there exists
a constant δ > 0 such that

V :=
{

[x′] ∈M0,n(M,A; J) | ρε(x, [x′]) < δ
}
⊂ U .
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Let 0 < κ < ε/2 and K ≥ 1 be as in Lemma B. Choose a rational number ε′′

such that 0 < ε′′ < min{δ/2, κ} and choose i with dC0(x,xTi ) < ε′′/K < κ.
Then ε < ε0(xTi ) by part (i) of Lemma B. Now define ε′ := ε/2 so that
part (iii) of Lemma B holds with y = xTi . We claim that

(9) [x] ∈ Nε,ε′,ε′′(xTi ) ⊂ U .

To see this, note first that ρε,ε′(x
T
i , [x]) ≤ KdC0(x,xTi ) < ε′′ by part (ii) of

Lemma B, and so [x] ∈ Nε,ε′,ε′′(xTi ). Now let [x′] ∈ Nε,ε′,ε′′(xTi ). Then we
have ρε,ε′(x

T
i , [x

′]) < ε′′ < κ and hence, by part (iii) of Lemma B,

ρε(x, [x
′]) ≤ KdC0(x,xTi ) + ρε,ε′(x

T
i , [x

′]) < ε′′ + ε′′ < δ.

Thus [x′] ∈ V ⊂ U . This proves (9) and Theorem A.

It remains to prove Lemma B, and this proof in turn will be based on
the following energy estimate for pairs of J-holomorphic curves that are
sufficiently close in C0-distance.

Lemma C. Let (Σ, j) be a closed Riemann surface and let u : Σ→M be a
J-holomorphic curve. Then there exist constants γ > 0 and c > 0 with the
following significance. If v : Σ→M is a J-holomorphic curve satisfying

sup
z∈Σ

dM(u(z), v(z)) < γ,

then

(10)
∣∣E(u;U)− E(v;U)

∣∣ ≤ c sup
z∈Σ

dM(u(z), v(z))

for every open set U ⊂ Σ.

Proof. By combining the elliptic estimate in Lemma C.2.1 (p 586) with the
estimate in Proposition 3.5.3 (p 70), we find that the C0-distance of u and v
controls their W 1,p-distance. More precisely, fix a volume form dvolΣ ∈ Ω2(Σ)
and a constant p > 2, assume that γ > 0 is smaller than the injectivity
radius of M , write v = expu(ξ) for ξ ∈ Ω0(Σ, u∗TM) with ‖ξ‖L∞ < γ, and
denote by Fu : Ω0(Σ, u∗TM)→ Ω0,1(Σ, u∗TM) the map in (3.1.3) on page 41.
Then Fu(0) = Fu(ξ) = 0 and so, by Lemma C.2.1 and Proposition 3.5.3,

‖ξ‖W 1,p ≤ c1 (‖Duξ‖Lp + ‖ξ‖Lp)

≤ c1

(
sup

0≤t≤1
‖Duξ − dFu(tξ)ξ‖Lp + ‖ξνα‖Lp

)
≤ c0c1 ‖ξ‖L∞ ‖ξ‖W 1,p + c1 ‖ξ‖Lp .
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With ‖ξ‖L∞ ≤ 1/2c0c1 this gives ‖ξ‖W 1,p ≤ 2c1 ‖ξ‖Lp . Hence∣∣∣E(v;U)− E(u;U)
∣∣∣ =

∣∣∣∣12 ∫
U

(
|d expu(ξ)|

2 − |du|2
)

dvolΣ

∣∣∣∣
≤ c2

∫
U

((
|∇ξ|+ |ξ|

)2
+ |∇ξ|+ |ξ|

)
dvolΣ

≤ c2c3

(
‖ξ‖2

W 1,p + ‖ξ‖W 1,p

)
≤ c2c3

(
4c2

1 ‖ξ‖
2
Lp + 2c1 ‖ξ‖Lp

)
≤ c4 ‖ξ‖L∞

= c4 sup
z∈Σ

dM(u(z), v(z))

for every open set U ⊂ Σ. This proves Lemma C.

Proof of Lemma B. Fix a stable map x ∈ SC0,n(M,A; J, T ), modelled over a
tree T = (T,Λ, {Aα}), and a constant 0 < ε < ε0(x)/2.

We prove part (i). Assume, by contradiction, that (i) does not hold. Then
there exists a sequence of stable maps xν ∈ SC0,n(M,A; J, T ), modelled over
the same tree T = (T,Λ, {Aα}), such that

(11) lim
ν→∞

dC0(x,xν) = 0, sup
ν∈N

ε0(xν) ≤ ε.

By definition of dC0 in (5) this implies that the sequence (uνα)ν∈N of J-
holomorphic spheres converges to uα in the C0 topology, and hence in the
C∞ topology, for every α ∈ T . It follows also from the definition of dC0 that

lim
ν→∞

dS2(zαβ, z
ν
αβ) = 0

for all α, β ∈ T with αEβ. Choose ν0 so large that dS2(zαβ, z
ν
αβ) < ε for

all α, β ∈ T with αEβ and all ν ≥ ν0. Then, for all ν ≥ ν0 and all α, β, γ ∈ T
with αEβ, αEγ, and β 6= γ, it follows from the inequality 0 < ε < ε0(x)/2
and (6) that

d(zναβ, z
ν
αγ) ≥ d(zαβ, zαγ)− d(zαβ, z

ν
αβ)− d(zαγ, z

ν
αγ)

> 4ε0(x)− 2ε

> 6ε,

and therefore
B3ε(z

ν
αβ) ∩B3ε(z

ν
αγ) = ∅.

9



Moreover, B3ε(z
ν
αβ) ⊂ B4ε(zαβ) for all α, β ∈ T with αEβ and all ν ≥ ν0.

Hence, by (7) with 2ε < ε0(x), we have

lim
ν→∞

∑
β∈T, αEβ

E(uνα, B3ε(z
ν
αβ)) ≤ lim

ν→∞

∑
β∈T, αEβ

E(uνα, B4ε(zαβ))

=
∑

β∈T, αEβ

E(uα, B4ε(zαβ))

<
~
2
.

for all α ∈ T . Thus ε0(xν) ≥ 3ε/2 for ν sufficiently large, in contradiction
to (11). This proves part (i).

We prove part (ii). Assume, by contradiction, that (ii) does not hold.
Then there exists a sequence of stable maps xν ∈ SC0,n(M,A; J, T ), mod-
elled over the same tree T = (T,Λ, {Aα}), and a sequence of real num-
bers 0 < εν < ε such that

lim
ν→∞

dC0(x,xν) = 0,

max {ρε,εν (x, [xν ])}, ρε,εν (xν , [x])} > ν dC0(x,xν)
(12)

for all ν ∈ N. With f = id : T → T and φα = id ∈ G for all α ∈ T , it follows
from the definitions in (4) and (5) that

ρ3
f,φ,εν (x,x

ν) = ρ3
f,φ,εν (x

ν ,x) = 0,

ρ2
f,φ,εν (x,x

ν) +
∑
i=4,5

ρif,φ(x,xν) ≤ dC0(x,xν),

ρ2
f,φ,εν (x

ν ,x) +
∑
i=4,5

ρif,φ(xν ,x) ≤ dC0(x,xν).

Next we observe that, again for f = id and φ = id, we have

ρ1
f,φ,ε(x

ν ,x) =
∑
αEβ

∣∣E(uα, B2ε(z
ν
αβ))− E(uνα, B2ε(z

ν
αβ))

∣∣,
ρ1
f,φ,ε(x,x

ν) =
∑
αEβ

∣∣E(uα, B2ε(zαβ))− E(uνα, B2ε(zαβ))
∣∣.

Hence it follows from Lemma C that there exists a constant c > 0 such that

ρ1
f,φ,ε(x

ν ,x) ≤ c dC0(x,xν), ρ1
f,φ,ε(x,x

ν) ≤ c dC0(x,xν)

for ν sufficiently large. This contradicts (12) for ν sufficiently large and
completes the proof of part (ii).
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We prove part (iii) in two steps. We show first that a stable map x′

(modelled on T ′) that is ρε,ε′ close to y (modelled on T ), which in turn is
d0-close to x (modelled on T ), has bounded derivative away from the bubble
points of x.

Step 1. There exist constants κ > 0 and K ≥ 1 such that the following holds.
Assume dC0(x,y) < κ, x′ = (u′, z′) ∈ SC0,n(M,A; J, T ′) is a stable map mod-
elled over a labelled tree T ′, f : T → T ′ is a surjective tree homomorphism,
and φ = {φα} ∈ GT such that ρε,ε′(y,x

′; f, φ) < κ with ε′ := ε/2. Then

sup
α∈T

sup
S2\Bε(Zα(x))

∣∣d(u′f(α) ◦ φα)
∣∣ ≤ K,

where Zα(x) := {zαβ(x) | β ∈ T, αEβ}.
Suppose, by contradiction, that this does not hold. Then there exists a
sequence of stable maps yν = (vν , z(yν)) modelled over T , a sequence of
stable maps xν = (uν , zν) modelled over a sequence of trees T ν , a sequence of
surjective tree homomorphisms f ν : T → T ν , and a sequence φν = {φνα} ∈ GT

such that

(13) lim
ν→∞

dC0(x,yν) = 0, lim
ν→∞

ρε(y
ν ,xν ; f ν , φν) = 0,

(14) sup
S2\Bε(Zα(x))

∣∣d(uνfν(α) ◦ φνα)
∣∣ > ν.

By (13) we have

lim
ν→∞

(
sup
α∈T

sup
z∈S2

dM
(
vνα(z), uα(z)

)
+
∑
αEβ

dS2

(
zαβ(yν), zαβ(x)

))
= 0,

lim
ν→∞

∑
α∈T

sup
z∈S2\Bε/2(Zα(yν))

dM
(
uνfν(α) ◦ φνα(z), vνα(z)

)
= 0.

This implies Bε/2(Zα(yν)) ⊂ B3ε/4(Zα(x)) for ν sufficiently large and hence

lim
ν→∞

∑
α∈T

sup
z∈S2\B3ε/4(Zα(x))

dM
(
uνfν(α) ◦ φνα(z), uα(z)

)
= 0.

Thus, for every α ∈ T , the sequence uνfν(α) ◦ φνα converges to uα uniformly

on the open set S2 \ B3ε/4(Zα(x)) and therefore, by the standard bubbling
argument, its first derivatives are uniformly bounded on the compact sub-
set S2 \Bε(Zα(x)). This contradicts (14) and proves Step 1.
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Step 2. We prove part (iii).

Denote by e(T ) the number of edges of T and by v(T ) := #T the number of
vertices. Choose γ > 0 and c > 0 such that the assertion of Lemma C holds
with u = uα for each vertex α ∈ T and choose constants κ > 0 and K ≥ 1
such that parts (i) and (ii) of Lemma B are satisfied and the assertion of
Step 1 holds. Shrinking κ if necessary, we may also assume that

(15) κ < ε/2, max
α∈T

(
‖duα‖L∞ + 1

)
κ < γ.

Define ε′ := ε/2 and let y = (v, z(y)) ∈ SC0,n(M,A; J, T ) with dC0(x,y) < κ.
We will prove that there exist constants Ki > 0 for i = 1, 2, 3, 4, 5 such

that the following holds. If x′ = (u′, z′) ∈ SC0,n(M,A; J, T ′) is a stable map
modelled over a labelled tree T ′, f : T → T ′ is a surjective tree homomor-
phism, and φ ∈ GT such that

ρε,ε′(y,x
′; f, φ) < κ,

then

ρ1
f,φ,ε(x,x

′) ≤ K1 dC0(x,y) + ρ1
f,φ,ε(y,x

′),

ρif,φ,ε(x,x
′) ≤ Ki dC0(x,y) + ρif,φ,ε′(y,x

′), for i = 2, 3,

ρif,φ(x,x′) ≤ Ki dC0(x,y) + ρif,φ(y,x′), for i = 4, 5.

(16)

Once this has been established, take the sum of the inequalities in (16) and
then take the infimum over all f and φ satisfying ρε,ε′(y,x

′; f, φ) < κ to
obtain the estimate (8) for every stable map x′ ∈ SC0,n(M,A; J, T ′) that sat-
isfies ρε,ε′(y, [x

′]) < κ. Thus it remains to prove (16).

For each edge αEβ choose an isometry ιαβ : S2 → S2 such that

ιαβ(zxαβ) = zyαβ, sup
z∈S2

dS2(z, ιαβ(z)) ≤ d(zxαβ, z
y
αβ) < κ.

Here we shorten the notation and denote the tuples z(x), z(y) respectively
by (zxαβ), (zyαβ). Then ιαβ(B2ε(z

x
αβ)) = B2ε(z

y
αβ), and by (15)

sup
z∈S2

dM(uα(z), vα ◦ ιαβ(z)) <
(
‖duα‖L∞ + 1

)
κ < γ

for every edge αEβ.
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We now deduce from Lemma C that

ρ1
f,φ,ε(x,x

′) =
∑
αEβ

∣∣Eα(u;B2ε(z
x
αβ)
)
− Ef(α)

(
u′;φα(B2ε(z

x
αβ))

)∣∣
≤
∑
αEβ

∣∣Eα(u;B2ε(z
x
αβ)
)
− Eα

(
v;B2ε(z

y
αβ)
)∣∣

+
∑
αEβ

∣∣Eα(v;B2ε(z
y
αβ)
)
− Ef(α)

(
u′;φα(B2ε(z

x
αβ))

)∣∣
≤
∑
αEβ

∣∣E(uα;B2ε(z
x
αβ)
)
− E

(
vα ◦ ιαβ;B2ε(z

x
αβ)
)∣∣+ ρ1

f,φ,ε(y,x
′)

+
∑
αEβ

∣∣Ef(α)

(
u′;φα(B2ε(z

y
αβ))

)
− Ef(α)

(
u′;φα(B2ε(z

x
αβ))

)∣∣
≤ e(T )(c+ 8πεK2) dC0(x,y) + ρ1

f,φ,ε(y,x
′).

Here the last inequality uses the fact that both the sets B2ε(z
y
αβ) \B2ε(z

x
αβ)

and B2ε(z
x
αβ) \B2ε(z

y
αβ) are contained in the annulus

2ε− dS2(zxαβ, z
y
αβ) ≤ dS2(z, zxαβ) ≤ 2ε+ dS2(zxαβ, z

y
αβ)

whose area is bounded above by 8πε dC0(x,y) and which is contained in
the set S2 \Bε(Zα(x)), on which the first derivative of u′f(α) ◦ φα is bounded

above by K (see Step 1). This proves (16) for i = 1.
Next we prove (16) for i = 2, 3. Observe that

dS2(zxαβ, z
y
αβ) ≤ dC0(x,y) < κ < ε/2

for all α, β ∈ T with α 6= β. Hence, because we assume ε′ = ε/2, we have
Bε′(z

y
αβ) ⊂ Bε(z

x
αβ) so that S2 \ Bε(Zα(x)) ⊂ S2 \ Bε′(Zα(y)), for all α ∈ T .

Thus it follows from (4) that

ρ2
f,φ,ε(x,x

′) =
∑
α∈T

sup
z∈S2\Bε(Zα(x))

dM
(
uα(z), u′f(α) ◦ φα(z)

)
≤
∑
α∈T

sup
z∈S2\Bε′ (Zα(y))

dM
(
uα(z), u′f(α) ◦ φα(z)

)
≤
∑
α∈T

sup
z∈S2

dM(uα(z), vα(z))

+
∑
α∈T

sup
z∈S2\Bε′ (Zα(y))

dM
(
vα(z), u′f(α) ◦ φα(z)

)
≤ v(T ) dC0(x,y) + ρ2

f,φ,ε′(y,x
′).
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This proves (16) for i = 2. Since Bε′(z
y
αβ) ⊂ Bε(z

x
αβ) as noted above, we

have S2 \Bε(z
x
αβ) ⊂ S2 \Bε′(z

y
αβ) for every edge αEβ, and hence

ρ3
f,φ,ε(x,x

′) =
∑
α 6=β

f(α)=f(β)

sup
z∈S2\Bε(zxαβ)

dS2

(
zxβα, φ

−1
β ◦ φα(z)

)
≤

∑
α 6=β

f(α)=f(β)

sup
z∈S2\Bε′ (z

y
αβ)

dS2

(
zxβα, φ

−1
β ◦ φα(z)

)

≤
∑
α 6=β

f(α)=f(β)

(
dS2(zxβα, z

y
βα) + sup

z∈S2\Bε′ (z
y
αβ)

dS2

(
zyβα, φ

−1
β ◦ φα(z)

))

≤ dC0(x,y) + ρ3
f,φ,ε′(y,x

′).

Here the last inequality follows from (4) and (5). Thus we have proved
that (16) holds for i = 1, 2, 3. For i = 4, 5 and Ki = 1 the estimate follows
directly from the triangle inequality and the definitions in (4) and (5). This
proves (16), part (iii), and Lemma B.

page 161, line 16: Replace πE by evE.

page 162, line 20: The set ∆E is always a submanifold of ME.

page 165, line 13: Replace πE by evE.

page 171: In Exercise 6.4.10 a symplectic embedding is understood as an em-
bedding whose image is a symplectic submanifold. The resulting J-holomor-
phic sphere in this example has Chern number 2− 2m (and not 2−m).

page 246: The proof of Lemma 7.5.5 contains a mistake. The element
wI ∈ M0,I defined by (7.5.1) is not a regular value of the projection

(17) πk,I : M0,k → M0,I ,

and so Yk,I := π−1
k,I(wI) is not a submanifold of M0,k. Moreover, even if

wI is chosen as a regular value of the projection (17), and if k ∈ I and
#I ≥ 4, then, while Yk,I and Yk−1,I\{k} have the same dimension 2(k −#I),
the projection

(18) π0,k : Yk,I → Yk−1,I\{k}
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(which forgets the kth marked point) is not necessarily a holomorphic dif-
feomorphism; it may collapse certain submanifolds to points. Nevertheless,
Lemma 7.5.5 is correct and the proof can be fixed as follows.

First, the class βk,I can be represented by any fibre of the projection (17),
whether or not it is the preimage of a regular value. The fibres are all
connected and a point wI ∈ M0,I is a regular value of (17) if and only if it
belongs to the top stratum.

Second, if wI is a regular value of the projection (17) and k ∈ I, then the
point wI\{k} ∈ M0,I\{k} (obtained by deleting all the crossratios involving the
index k) is a regular value of the projection πk−1,I\{k} : M0,k−1 → M0,I\{k} and
the two preimages Yk,I and Yk−1,I\{k} both have have dimension 2(k −#I).

Third, the restricted projecton (18) will typically be a kind of blow-up
map, collapsing some submanifolds. However, it has degree one and hence
maps the fundamental class of Yk,I to that of Yk−1,I\{k}. So the forgetful map

π0,k : M0,k → M0,k−1

sends the homology class βk,I represented by the fundamental class of Yk,I to
the class βk−1,I\{k} represented by the fundamental class of Yk−1,I\{k}. This
proves part (ii) of Lemma 7.5.5 in the case k ∈ I.

page 342, line -8: To use Theorem 9.4.7 we must prove that M̃ is minimal.

page 343, line -12: To use Theorem 9.4.2 we must prove that M̃ is minimal.

page 368, line 15/16: Eliashberg–Mishachev.

page 534–546: The discussion of determinant bundles needs rewriting to
correct signs [3].

page 584, line -9: In equation (C.1.8) replace Ω1,1(Σ, E∗) by Ω1,1(Σ).

page 637, line -12: Replace the first displayed equation in the second
paragraph by the equation

wm,m+1,n,i =
w1,m,m+1,n − 1

w1,m,m+1,n − w1,m,m+1,i

.

This holds for 1 < i < m and for all w near w0 by (D.4.3). To see this, one
must verify that (1,∞, w1,m,m+1,n, w1,m,m+1,i) /∈ ∆3 at the relevant points.
Indeed, w1,m,m+1,n(z0) =∞ by assumption and w1,m,m+1,i(z

0) 6=∞, because
the points zα1, zαm, zαm+1 are pairwise distinct and zαi 6= zαm+1 when i ≤ m.
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page 644, line 5: In Exercise D.6.2 the set M0,n+1 is contained in but is
not equal to the set of regular points of the projection π : M0,n+1 → M0,n

which forgets the (n+ 1)st marked point. The equivalence class of a tuple

z =
(
{zαβ}αEβ , {αi, zi}1≤i≤n+1

)
∈ SC0,n+1

is a singular point of π if and only if nαn+1 = 3 and Λαn+1 = {n + 1}.
Exercise: Characterize this condition in terms of the corresponding tuple
{wijk`}1≤i,j,k,`≤n+1 := w(z) ∈ M0,n+1 of crossratios.

References
[1] Lars V. Ahlfors, Complex Analysis, Third Edition. McGraw-Hill Inc, 1979.

[2] Dietmar A. Salamon, Funktionentheorie. Birkhäuser, 2012.
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