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1 Introduction

The moduli space MD = Aflat
D /GD of framed flat G-connections over the 2-

disc D can be identified with the based loop group ΩG. The symplectic
action functional on the space of a paths of flat connections gives rise to a
cocycle θ : Aflat

D × GD → S1 and hence an action of GD on Aflat
D × C via

g∗(A, z) = (g∗A, θ(A, g)z).

The line bundle LD = Aflat
D ×GD C over MD carries a canonical connection

whose curvature form is equal to the symplectic form. Section 3 of his paper
describes a canonical group operation

(Ah0, z0) · (Ah1, z1) = (Ah0h1 , z0z1λ(h0, h1))

on Aflat
D × S1 which commutes with the action of the gauge group. This

identifies the unit circle bundle in LD with the central extension Ω̃G of the
loop group. The one-parameter subgroups in Ω̃G are horizontal lifts of the
one-parameter subgroups of ΩG with respect to the canonical connection.

Section 4 reviews the relation between holomorphic curves in the loop
group and anti-self-dual Yang-Mills instantons on the four sphere, as de-
scribed by Jarvis and Norbury [8]. Their work is placed in the context of the
correspondence between flat G-connections on the disc and based loops in G.
Section 4 explains how the Jarvis-Norbury theorem can be viewed as a special
case of Donaldson’s theorem about the correspondence between Hermitian
Yang-Mills connections and holomorphic bundles over Kähler manifolds Z
with boundary. The Kähler manifold in question is the product Z = S2×D
of the two-sphere and the two-disc, but the metric is singular near the bound-
ary.

2 Flat connections and line bundles

Fix a compact connected Lie group G and choose an invariant inner product
〈·, ·〉 on the Lie algebra g = Lie(G) such that the 3-form

τ =
1

24π
〈[g−1dg ∧ g−1dg]∧g−1dg〉 ∈ Ω3(G)

determines an integral cohomology class. Let P → Σ be a principal G-
bundle over a compact Riemann surface Σ without boundary and denote by
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MΣ the moduli space of flat connections on P . Following [10] we use the
Chern-Simons functional to construct a line bundle LΣ → MΣ with a nat-
ural connection. The first Chern class of this line bundle agrees with the
cohomology class of the symplectic form on MΣ. Sections 2.1 and 2.2 dis-
cuss background material about flat connections and the symplectic action,
Section 2.3 gives a construction of the line bundle LΣ in terms of a natural
cocycle, and Section 2.4 discusses a canonical connection on this line bundle.

2.1 Flat connections over Riemann surfaces

Let AΣ denote the space of connections on P and GΣ the identity component
in the group of gauge transformations. Throughout we think of a connection
A as an equivariant vertical Lie algebra valued 1-form on P and of a gauge
tranformation g as an equivariant function from P to G. Associated to a
connection A is the elliptic complex

Ω0(Σ, gP )
dA−→ Ω1(Σ, gP )

dA−→ Ω2(Σ, gP ).

Here gP → Σ is the Lie algebra bundle associated to P via the adjoint
action of G. The sections of this bundle form the Lie algebra of the gauge
group GΣ, the 1-forms are the tangent vectors of AΣ, the covariant derivative
dA : Ω0 → Ω1 is the infinitesimal action of GΣ, and the covariant derivative
dA : Ω1 → Ω2 is the differential of the curvature function

AΣ → Ω2(Σ, gP ) : A 7→ FA.

The space AΣ carries a natural symplectic form given by

ω(α, β) =

∫

Σ

〈α∧β〉

for α, β ∈ Ω1(Σ, gP ). Let us denote by

MΣ = Aflat
Σ /GΣ

the moduli space of flat connections on P . In [2] Atiyah and Bott describe
this space as a symplectic quotient. They observe that the action of GΣ onAΣ

preserves the symplectic structure and that the curvature can be interpreted
as a moment map. The moduli space MΣ is a manifolds with singularities at
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the reducible connections. At a regular point [A] the tangent space of MΣ is
the quotient

T[A]MΣ =
ker dA : Ω1(Σ, gP )→ Ω2(Σ, gP )

ker dA : Ω0(Σ, gP )→ Ω1(Σ, gP )
.

If we fix a metric on Σ then this quotient can be identified with the space

H1
A := ker dA ∩ ker dA

∗

of harmonic 1-forms on Σ with values in gP . With this description the
Hodge ∗-operator ∗ : H1

A → H1
A defines a complex structure on MΣ which

is compatible with the symplectic form. If G = SU(2) then a theorem of
Narasimhan-Seshadri asserts that the regular part of MΣ can be identified,
as a Kähler manifold, with the space of stable rank-2 bundles over Σ of degree
zero (see [4]).

Remark 2.1. If G = U(1) then the moduli space MΣ(U(1)) is the Jacobian
torus. If G has a finite fundmental group then MΣ(G) is simply connected
and the first Chern class of the tangent bundle TMΣ(G) is a positive integer
multiple of the class of the symplectic form ω/2π. The factor depends on the
Lie group. In the case G = SU(2) this factor is 8 and in the case G = SO(3)
with w2(P ) 6= 0 the factor is 4 (see [6]). In the case G = U(2) with c1(P ) odd,
the moduli space MΣ(U(2)) fibers over the Jacobian with fibres MΣ(SO(3)).

2.2 The symplectic action functional

We examine the symplectic action on the moduli space of flat connections.
Throughout we fix a base point A0 ∈ Aflat

Σ . Let D = {z ∈ C | |z| ≤ 1} denote
the closed unit disc in the complex plane and D → Aflat

Σ : x + iy 7→ A(x, y)
be any smooth function. Denote

A1(t) = A(e2πit).

Then the integral of the symplectic form ω over the disc A : D → AΣ is given
by

∫

D

∫

Σ

〈
∂A

∂x
∧∂A
∂y

〉
dx ∧ dy =

1

2

∫ 1

0

∫

Σ

〈
(A1(t)− A0)∧Ȧ1(t)

〉
dt. (1)

Now suppose that A(e2πit) = g(t)∗A for some smooth path of gauge trans-
formations g(t) = g(t+ 1) ∈ GΣ. Then the integral (1) is independent of the
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choice of the connection A and depends only on the homotopy class of the
loop g : S1 → GΣ. We claim that

1

2

∫ 1

0

∫

Σ

〈
(g(t)∗A− A0)∧ ∂

∂t
g(t)∗A

〉
dt = 2π deg(g : S1 → GΣ) (2)

for any two flat connections A,A0 ∈ Aflat
Σ . Here the degree of the loop

g is defined as follows. Think of g as a function P × S1 → G and consider
the pullback of the form τ ∈ Ω3(G) under this map. This form descends to
Σ× S1 under the obvious projection

π : P × S1 → Σ× S1

and the degree of g is defined as the integral of this form:

deg(g : S1 → GΣ) =

∫

Σ×S1

σ, π∗σ = g∗τ ∈ Ω3(P × S1).

By definition of τ , this number is always an integer.

Proof of (2). We first observe that the left hand side of (2) is independent
of A0 and hence we may assume A = A0. Next we prove that it depends
only on the homotopy class of the loop g. Hence choose a path of paths
s 7→ gs(t) with fixed endpoints and abbreviate g = gs(t), ġ = ∂tgs(t), and
ξ = gs(t)

−1∂sgs(t). Then ∂t(g
∗A) = dg∗A(g−1ġ) and ∂s(g

∗A) = dg∗Aξ. Hence

∂

∂s

1

2

∫ 1

0

∫

Σ

〈
(g∗A− A0)∧ ∂

∂t
g∗A

〉

=
1

2

∫ 1

0

∫

Σ

〈
dg∗Aξ∧

∂

∂t
g∗A

〉
+

1

2

∫ 1

0

∫

Σ

〈
(g∗A− A0)∧ ∂

∂t
dg∗Aξ

〉

=

∫ 1

0

∫

Σ

〈
dg∗Aξ∧

∂

∂t
g∗A

〉

=

∫ 1

0

∫

Σ

〈
dg∗Aξ∧dg∗A(g−1ġ)

〉

= 0.

This proves that the left hand side of (2) depends only on the homotopy class
of the path t 7→ g(t) with fixed endpoints.
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Next we prove (2) in the case where P = Σ × G is the product bundle
and A = A0 is the obvious product connection. Identify AΣ with the space
Ω1(Σ, g) of Lie algebra valued 1-forms so that A0 = 0. Then

1

2

∫ 1

0

∫

Σ

〈
g−1dg∧ ∂

∂t
g−1dg

〉
dt

=
1

2

∫ 1

0

∫

Σ

〈
g−1dg∧

(
d(g−1ġ) + [g−1dg, g−1ġ]

)〉
dt

=
1

4

∫ 1

0

∫

Σ

〈
[g−1dg ∧ g−1dg], g−1ġ

〉
dt

= 2π deg(g).

The last equality follows from the fact that the pullback of the integral dif-
ferential form τ ∈ Ω3(G) under the map g : Σ× [0, 1]→ G is given by

g∗τ =
1

8π

〈
[g−1dg ∧ g−1dg], g−1ġ

〉
∧ dt.

By definition, the integral of this 3-form is the degree of g. This proves (2)
in the case of the product bundle. In general, use the flat connection A0

to trivialize the bundle P in a neighbourhood of a point. It follows from
elementary arguments in homotopy theory that every loop g : R/Z → GΣ is
homotopic to a loop which is equal to 1l outside our given neighbourhood in
which the bundle has been trivialized. Hence (2) follows by combining the
homotopy invariance of the left hand side in (2) with the result for the trivial
bundle.

2.3 A cocycle

The symplectic action functional gives rise to a cocycle θ : Aflat
Σ × GΣ → S1

given by

θ(A, g) = exp

(
i

2

∫ 1

0

∫

Σ

〈
(g(t)∗A− A0)∧ ∂

∂t
g(t)∗A

〉
dt

)
, (3)

where [0, 1]→ GΣ : t 7→ g(t) is a path of gauge transformations with g(0) =
1l and g(1) = g. The formula (2) shows that the right hand side of (3)
depends only on the endpoint of the path t 7→ g(t). This is reminiscent of
a construction by Ramdas, Singer, and Weitsman in [10]. The next lemma
summarizes the basic properties of θ.
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Lemma 2.2. (i) The differential of θ is given by

δθ(A, g)

θ(A, g)
=
i

2

∫

Σ

〈δA∧(g∗A0 − A0)〉+
i

2

∫

Σ

〈
(g∗A− A0)∧dg∗A(g−1δg)

〉
.

(ii) For A,A0 ∈ Aflat
Σ and g ∈ GΣ,

θ(A, g) = θ(A0, g) exp

(
i

2

∫

Σ

〈(A− A0)∧(g∗A0 − A0)〉
)
.

(ii) For A ∈ Aflat
Σ and g, h ∈ GΣ,

θ(A, gh) = θ(A, g)θ(g∗A, h).

Proof. The formula for the derivative of θ with respect to g is obvious from
the definition. To differentiate θ with respect to A, we choose a smooth path
s 7→ As of flat connections and abbreviate

θs = θ(A(s), g), α = δA = ∂sAs.

Then

∂sθs
θs

=
i

2

∂

∂s

∫ 1

0

∫

Σ

〈
(g(t)∗A− A0)∧ ∂

∂t
g(t)∗A

〉
dt

=
i

2

∫ 1

0

∫

Σ

〈
g(t)−1αg(t)∧ ∂

∂t
g(t)∗A

〉
dt

+
i

2

∫ 1

0

∫

Σ

〈
(g(t)∗A− A0)∧ ∂

∂t
g(t)−1αg(t)

〉
dt

= i

∫ 1

0

∫

Σ

〈
g(t)−1αg(t)∧ ∂

∂t
g(t)∗A

〉
dt

+
i

2

∫

Σ

〈
(g∗A− A0)∧g−1αg

〉
− i

2

∫

Σ

〈(A− A0)∧α〉

= i

∫ 1

0

∫

Σ

〈
α∧dA(ġ(t)g(t)−1)

〉
dt +

i

2

∫

Σ

〈(A0 − g∗A0)∧α〉

=
i

2

∫

Σ

〈α∧(g∗A0 − A0)〉 .

The last but one identity uses the formula g(g∗A−A0)g−1 = A−g∗A0 and the
last identity uses dAα = 0. Thus we have proved (i). Assertion (ii) follows
by integrating (i). To prove (iii) use paths g(t) and h(t) such that g(t) = g
for t ≥ 1/2 and h(t) = 1l for t ≤ 1/2. Then the result follows easily.
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The line bundle LΣ →MΣ can be expressed as the quotient

LΣ =
Aflat

Σ × C
GΣ

,

where the action of GΣ on Aflat
Σ × C is given by

g∗(A, z) = (g∗A, θ(A, g)z).

The cocycle condition in Lemma 2.2 (iii) shows that this is a group action. In
the next section we shall see that the bundle LΣ carries a natural connection.

Remark 2.3. By Lemma 2.2 (i), the infinitesimal action of ξ ∈ Lie(GΣ) =
Ω0(Σ, gP ) on the space AΣ × C is given by the vector field

(A, z) 7→
(
dAξ, z

i

2

∫

Σ

〈(A− A0)∧dAξ〉
)

on Aflat
Σ × C.

Remark 2.4. Both the bundle LΣ and the symplectic form on MΣ depend
on a choice of the inner product on g. If G is a simple Lie group then there is
only one invariant inner product with the required properties, but in general
there are many such inner products and this corresponds to the fact that
H2(MΣ;Z) is a Z-module of rank bigger than 1. This will become more
transparent in the next section where we discuss the first Chern class of the
bundle LΣ.

Remark 2.5. The bundle LΣ → MΣ extends naturally to the infinite di-
mensional quotient AΣ/GΣ. Correspondingly there is an extended cocycle

θ : AΣ × GΣ → S1

given by

θ(A, g) = exp

(
i

2

∫ 1

0

∫

Σ

(〈
(A(t)− A0)∧Ȧ(t)

〉
− 2

〈
FA(t) − FA0 ,Φ(t)

〉)
dt

)
,

where

A(t) := g(t)∗A ∈ AΣ, Φ(t) := g(t)−1ġ(t) ∈ Ω0(Σ, gP )
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for all t, and [0, 1] → GΣ : t 7→ g(t) is a path of gauge transformations such
that

g(0) = 1l, g(1) = g.

The exponent in the formula for θ is the Chern-Simons functional of the
connection A(t) + Φ(t) dt over Σ × [0, 1]. This functional agrees with the
symplectic action when A and A0 are flat. In the case of a trivial bundle
P = Σ×G an alternative definition of θ can be given in terms of the Chern-
Simons functional on a 3-manifold Y with boundary ∂Y = Σ (see Ramadas-
Singer-Weitsman [10]). In this case the Chern-Simons functional over Y can
be viewed as a section of the pullback of the line bundle LΣ → AΣ under the
obvious restriction map AY → AΣ.

2.4 A connection

Sections of LΣ can be represented as smooth functions u : Aflat
Σ → C which

satisfy the condition
u(g∗A) = θ(A, g)u(A) (4)

for A ∈ Aflat
Σ and g ∈ GΣ. An explicit formula for a connection on LΣ is

∇αu(A) = du(A)α− u(A)
i

2

∫

Σ

〈(A− A0)∧α〉 (5)

for A ∈ Aflat
Σ , α ∈ Ω1(Σ, gP ), and a section u : Aflat

Σ → C.

Lemma 2.6. (5) defines a connection on LΣ with curvature form −iω.

Proof. That the right hand side of (5) is a 1-form on MΣ with values in LΣ

is equivalent to the identities

∇g−1αgu(g∗A) = θ(A, g)∇αu(A), ∇dAξu(A) = 0, (6)

for A ∈ Aflat
Σ , g ∈ G, α ∈ Ω1(Σ, gP ), and ξ ∈ Ω0(Σ, gP ). To prove the first

identity in (6) differentiate (4) with respect to A and use Lemma 2.2 (i) to
obtain

du(g∗A)g−1αg − θ(A, g)du(A)α

=
i

2
θ(A, g)u(A)

∫

Σ

〈(A0 − g∗A0)∧α〉

=
i

2
u(g∗A)

∫

Σ

〈
(g∗A− A0)∧g−1αg

〉
− i

2
θ(A, g)u(A)

∫

Σ

〈(A− A0)∧α〉 .
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The last equality uses the formula A− g∗A0 = g(g∗A− A0)g−1. This proves
the first equation in (6). The second equation follows by differentiating (4)
with respect to g and using Lemma 2.2 (i). Thus we have proved that (5)
is a connection on LΣ. To examine the curvature we choose a 2-parameter
family (s, t) 7→ A(s, t) of flat connections on P and a function (s, t) 7→ z(s, t),
thought of as a section of the bundle LΣ along [A(s, t)]. Then

∇sz = ∂sz −
i

2

∫

Σ

〈(A− A0)∧∂sA〉 z.

One checks easily, by direct computation, that the curvature of (5) is given
by

∇s∇tz −∇t∇sz = −i
∫

Σ

〈∂sA∧∂tA〉 z.

This proves the lemma.

Corollary 2.7. The first Chern class of the line bundle LΣ → MΣ is (an
integral lift of) the cohomology class of the form ω/2π.

Proof. The first Chern class of a complex line bundle is represented by i/2π
times the curvature form. Hence the result follows from Lemma 2.6.

Remark 2.8. The horizontal lift of a point z0 ∈ C along a path t 7→ A(t)
with respect to the connection (5) is given by

z(t) = z0 exp

(
i

2

∫ t

0

∫

Σ

〈
(A(s)− A0)∧Ȧ(s)

〉
ds

)
. (7)

It follows from Lemma 2.2 (i), by direct calculation, that, for every path of
gauge transformation g(t) ∈ GΣ, the curve [A(t), z(t)] is horizontal if and
only if the curve [g(t)∗A(t), θ(A(t), g(t))z(t)] is horizontal.

3 The loop group

The discussion of the previous section generalizes easily to Riemann surfaces
with boundary. In this section we shall mainly consider the case where the
Riemann surface in question is the unit disc D. Section 3.1 reviews the
Kähler structure on the group of contractible based loops in G. Section 3.2
discusses the identification of the based loop group ΩG with the moduli
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space MD of framed flat G-connections on the disc. Section 3.3 describes the
central extension Ω̃G of the loop group in terms of a suitable group structure
on the pre-quantum line bundle LD →MD over the moduli space of framed
flat G-connections over the disc. Section 3.4 discusses the one-parameter
subgroups in Ω̃G. Section 3.5 explains how the constructions of this section
fit into the framework of Pressley and Segal [9].

3.1 The Kähler structure on the loop group

Denote by LG the group of contractible free loops in G and by

ΩG =
{
γ : S1 → G | γ(1) = 1l, γ ∼ 1l

}
= G\LG

the group of contractible based loops in G. The tangent space of ΩG at
a loop γ is the space of vector fields along γ (vanishing at 1) and can be
identified, by right translation, with the loop algebra Ωg of smooth functions
ζ : S1 → g which satisfy ζ(1) = 0. Thus we write a tangent vector to ΩG at
γ in the form ζγ where ζ ∈ Ωg. With this notation the symplectic form on
ΩG is given by

ωγ(ζγ, ηγ) =

∫

S1

〈dζ, η〉

for ζ, η ∈ Ωg. The complex structure on Ωg can be expressed in terms of the
complexified Lie algebra gc := g ⊕ ig as follows. Write a loop ζ ∈ Ωg as a
Fourier series

ζ(e2πit) =
∑

n>0

(
ζne

2πint + ζ̄ne
−2πint

)

with ζn = ξn + iηn ∈ gc and ζ̄n = ξn − iηn. In this notation the complex
structure on Ωg is given by the formula

(Iζ)(e2πit) =
∑

n>0

(
iζne

2πint − iζ̄ne−2πint
)

(8)

for ζ ∈ Ωg. At a general loop γ ∈ ΩG the complex structure is given by
γζ 7→ γIζ.

Remark 3.1. Let ‖·‖ denote the norm on the loop algebra, induced by the
symplectic form ω and the complex structure I. This is the H1/2-norm. In
terms of the Fourier coefficients it is given by

‖ζ‖2 = ω(ζ, Iζ) = 4π
∑

n>0

n|ζn|2. �
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Remark 3.2. There is a natural right action of LG on ΩG by

g∗γ(z) = g(1)−1γ(z)g(z) (9)

for g ∈ LG and γ ∈ ΩG. This action preserves the symplectic and complex
structures on ΩG. Thus, for every contractible free loop g ∈ LG, the map
ΩG→ ΩG : γ 7→ g∗γ is a Kähler isomorphism.

3.2 Flat connections over the disc

Every principal G-bundle over D admits a trivialization and we shall there-
fore only consider the product bundle P = D×G. Thus a G-connection over
D is simply a Lie-algebra valued 1-form A ∈ Ω1(D, g). Consider the space

Aflat
D :=

{
A ∈ Ω1(D, g) |FA = 0

}

of flat G-connections on D under the action of the gauge group

GD := {g ∈ C∞(D,G) | g|∂D = 1l} .

The quotient
MD := Aflat

D /GD
can be identified with the loop group ΩG as follows. Let

Map0(D,G) := {h ∈ C∞(D,G) | h(1) = 1l}

and suppose that the subgroup GD acts on Map0(D,G) on the left. Then
there is a bijection

Map0(D,G) −→ Aflat
D : h 7→ Ah := h−1dh.

The formula Ahg = g∗Ah shows that this map is equivariant and hence in-
duces a bijection of quotient spaces

ΩG ∼= GD\Map0(D,G) −→MD.

In [3] Thomas Davies proved that the diffeomorphism ΩG → MD identifies
the natural Kähler structures up to a sign.

Proposition 3.3 (Davies). The map ΩG → MD : [h] 7→ [Ah] is a Kähler
anti-isomorphism.
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Proof. The tangent space T[A]MD is the quotient

T[A]MD =
{dξ | ξ : D → g, ξ(1) = 0}
{dξ | ξ : D → g, ξ|∂D = 0} .

This space can be identified with the space of harmonic functions ξ : D → g

which vanish at 1, i.e.

T[A]MD
∼= {dξ | ξ : D → g, d∗dξ = 0, ξ(1) = 0} .

With this identification the complex structure on T[A]MD is given by the
Hodge ∗-operator dξ 7→ ∗dξ. Given a loop ζ ∈ Ωg with Fourier coefficients
ζn ∈ gc denote by ξζ : D → g the unique harmonic extension, given by

ξζ(z) =
∑

n>0

(
ζnz

n + ζ̄nz̄
n
)
.

The function
Ωg→ T[0]MD : ζ 7→ −dξζ

is the differential of our diffeomorphism at 1l. We must prove that it inter-
twines the two complex structures. Since ∗dξ = −dξ◦i and ∂̄ξ = 1

2
(dξ+idξ◦i)

we obtain
∗∂̄ξ = i∂̄ξ, ∗∂ξ = −i∂ξ.

This implies

∗dξζ = i∂̄ξζ − i∂ξζ = −∂̄ξIζ − ∂ξIζ = −dξIζ .

Here the second identity follows from (8). This proves that the diffeomor-
phism [h] 7→ [Ah] reverses the complex structures. To prove that it re-
verses the symplectic structures consider the differential of the diffeomor-
phism h 7→ Ah before taking the quotient. At a general point h this differ-
ential is given by

ξh 7→ dAh(h−1ξh) = h−1(dξ)h

for h ∈ Map0(D,G) and ξ ∈ Map0(D, g). Hence the formula
∫

D

〈h−1(dξ)h∧h−1(dη)h〉 =

∫

D

〈dξ∧dη〉 =

∫

∂D

〈ξ, dη〉 = −ωh(ξh, ηh)

shows that [h] 7→ [Ah] is an anti-symplectomorphism. This proves the propo-
sition.
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In [5] Donaldson proved that, for general Riemann surfaces Σ with bound-
ary, the (infinite dimensional) moduli space MΣ of framed flat G-connections
over Σ can be naturally identified with the space of isomorphism classes
of holomorphic Gc-bundles over Σ with trivialization over the boundary.
This theorem will be discussed further in Section 4.1. In the case Σ = D
it reduces to the well known factorization theorem ΩG = Hol(D,Gc)\LGc

(cf. Pressley-Segal [9]).

3.3 The central extension

In [9] Pressley and Segal describe a natural central extension Ω̃G of the loop
group ΩG:

1→ S1 ↪→ Ω̃G→ ΩG→ 1.

The purpose of this section is to give an explicit presentation of the central
extension as the circle bundle associated to the line bundle

LD = AD ×GD C→MD

over the moduli space MD of framed flat G-connections over the disc. Recall
that the action of GD on the product AD × C is determined by the cocycle

θ : Map0(D,G)× GD → S1

given by

θ(h, g) = exp

(
i

2

∫ 1

0

∫

D

〈
Ahg(t)∧

∂

∂t
Ahg(t)

〉
dt

)
(10)

for h ∈ Map0(D,G) and g ∈ GD. Here [0, 1]→ GD : t 7→ g(t) is a smooth path
of gauge transformations such that g(0) = 1l and g(1) = g. Note that this
formula coincides with (3) and that we have chosen A0 = 0. Note also that
the path t 7→ g(t) is required to satisfy the boundary condition g(t)|∂D = 1l
for all t. With this understood, all the assertions of Lemma 2.2 continue
to hold for Riemann surfaces with boundary. In particular, θ satisfies the
cocycle condition

θ(h, g1g2) = θ(h, g1)θ(hg1, g2) (11)

for h ∈ Map0(D,G) and g1, g2 ∈ GD, and hence defines an action of GD on
Map0(D,G)× S1 via

g∗(h, z) := (hg, θ(h, g)z).
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We denote by

Ω̃G :=
Map0(D,G)× S1

GD
the corresponding circle bundle over ΩG. By Corollary 2.7 and Proposi-
tion 3.3, its Euler class is the cohomology class of the symplectic form mul-
tiplied by 1/2π.

The total space Map0(D,G)×S1 carries a natural group structure which

descends to Ω̃G and thus identifies this space with the central extension of
ΩG. An explicit formula for the group operation is

(h0, z0) · (h1, z1) = (h0h1, z0z1λ(h0, h1)), (12)

where the function λ : Map0(D,G)×Map0(D,G)→ S1 is given by

λ(h0, h1) = exp

(
i

2

∫

D

〈
Ah0∧Ah1

−1

〉)
. (13)

The next proposition asserts that (12) is a group operation which descends

to the quotient Ω̃G.

Proposition 3.4. (12) defines a group operation on Map0(D,G)×S1 which
commutes with the action of GD.

Proof. Associativity of (12) is equivalent to the identity

λ(h0, h1)λ(h0h1, h2) = λ(h0, h1h2)λ(h1, h2) (14)

for h0, h1, h2 ∈ Map0(D,G). To prove this we consider logarithms. Namely
∫

D

〈
Ah0∧Ah1

−1

〉
+

∫

D

〈
Ah0h1∧Ah2

−1

〉

= −
∫

D

〈
h0
−1dh0∧dh1 · h1

−1
〉

−
∫

D

〈
h1
−1dh1 + h1

−1(h0
−1dh0)h1∧dh2 · h2

−1
〉

= −
∫

D

〈
h0
−1dh0∧dh1 · h1

−1
〉
−
∫

Σ

〈
h1
−1dh1∧dh2 · h2

−1
〉

−
∫

D

〈
h0
−1dh0∧h1(dh2 · h2

−1)h1
−1
〉

=

∫

D

〈
Ah1∧Ah2

−1

〉
+

∫

D

〈
Ah0∧A(h1h2)−1

〉
.
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This proves (14) and hence associativity. Since

λ(h, 1l) = λ(1l, h) = 1

it follows that the pair (1l, 1) ∈ Map0(D,G)×S1 is the neutral element. Since

λ(h, h−1) = 1

for all h ∈ Map0(D,G), the inverse of (h, z) is given by (h−1, z−1). This
proves the first assertion.

Next we prove that (12) commutes with the action of GD. One checks
easily that this is equivalent to the identity

θ(h0h1, h1
−1g0h1g1)λ(h0, h1) = θ(h0, g0)θ(h1, g1)λ(h0g0, h1g1). (15)

We shall first establish the formula

θ(h0h, h
−1g0h) = θ(h0, g0)

λ(h0g0, h)

λ(h0, h)
(16)

for h, h0 ∈ Map0(D,G) and g0 ∈ GD. To see this choose a path [0, 1]→ GD :
t 7→ g0(t) such that g0(0) = 1l and g0(1) = g0. Then

∫ 1

0

∫

D

〈
Ah0g0(t)h∧

∂

∂t
Ah0g0(t)h

〉
dt

=

∫ 1

0

∫

D

〈
h−1dh+ h−1Ah0g0(t)h∧h−1

(
∂

∂t
Ah0g0(t)

)
h

〉
dt

=

∫ 1

0

∫

D

〈
Ah0g0(t)∧

∂

∂t
Ah0g0(t)

〉
dt +

∫ 1

0

∫

D

〈
dh · h−1∧ ∂

∂t
Ah0g0(t)

〉
dt

=

∫ 1

0

∫

D

〈
Ah0g0(t)∧

∂

∂t
Ah0g0(t)

〉
dt +

∫ 1

0

∫

D

∂

∂t

〈
Ah0g0(t)∧Ah−1

〉
dt

=

∫ 1

0

∫

D

〈
Ah0g0(t)∧

∂

∂t
Ah0g0(t)

〉
dt +

∫

D

(
〈Ah0g0∧Ah−1〉 − 〈Ah0∧Ah−1〉

)
.

This proves (16). Moreover, by Lemma 2.2 (ii), θ(h, g) = θ(1l, g)λ(h, g) and
hence

θ(h, g)

λ(h, g)
=
θ(h′, g)

λ(h′, g)
(17)

for h, h′ ∈ Map0(D,G) and g ∈ GD.
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Using (11), (16), (17), and (14), in that order, we find

θ(h0h1, h1
−1g0h1g1)λ(h0, h1)

= θ(h0h1, h1
−1g0h1)θ(h0g0h1, g1)λ(h0, h1)

= θ(h0, g0)λ(h0g0, h1)θ(h0g0h1, g1)

= θ(h0, g0)θ(h1, g1)
λ(h0g0, h1)λ(h0g0h1, g1)

λ(h1, g1)

= θ(h0, g0)θ(h1, g1)λ(h0g0, h1g1).

This proves (15) and the proposition.

Proposition 3.4 gives rise to a group structure on the quotient

Ω̃G =
Map0(D,G)× S1

GD
.

Moreover, there are obvious homomorphisms

S1 → Ω̃G→ ΩG

given by z 7→ [1l, z] and [h, z] 7→ h|S1. It is easy to see that this sequence
is exact. In particular, the map [h, z] 7→ h|S1 is surjective since, by as-
sumption, ΩG is the group of contractible based loops. That the kernel
is the image of the homomorphism S1 → Ω̃G follows from the assertion
[h, z] ≡ [1l, θ(h, h−1)z] whenever h ∈ GD. The next proposition characterizes

the Lie algebra of Ω̃G.

Proposition 3.5. The Lie algebra Ω̃g = Lie(Ω̃G) is naturally isomorphic to
Ωg× R with Lie bracket given by

[(ξ, s), (η, t)] = ([ξ, η], ω(ξ, η)) (18)

for ξ, η ∈ Ωg and s, t ∈ R.

Proof. Differentiating the equation

(h, 1) · (exp(tη), 1) · (h, 1)−1 = (h exp(tη)h−1, λ(h, exp(tη))λ(h exp(tη), h−1))

with respect to t we find that the adjoint action of (h, 1) ∈ Map0(D,G)×S1

on the Lie algebra Map0(D, g)× iR is given by

(h, 1) · (η, 0) · (h, 1)−1 =

(
hηh−1,

i

2

∫

D

〈dAhη∧Ah〉 −
i

2

∫

D

〈Ah∧dη〉
)
. (19)
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Inserting h(t) = exp(tξ) and differentiating with respect to t we find that the
Lie bracket of two pairs (ξ, ir), (η, is) ∈ Map0(D, g)× iR is given by

[(ξ, ir), (η, is)] =

(
[ξ, η],−i

∫

D

〈dξ∧dη〉
)
.

Hence the map Map0(D, g) × iR → Ωg × R : (ξ, ir) 7→ (ξ|∂D, r) is a Lie
algebra homomorphism with respect to (18). Moreover, this homomorphism
is surjective, and its kernel is the space of all functions ξ : D → g which
vanish on the boundary, i.e. the tangent space of the orbit of (1l, 1) under
the action of GD. Hence the above map induces a Lie algebra isomorphism

Lie(Ω̃G) =
Map0(D, g)× iR

{ξ : D → g | ξ|∂D = 0} → Ωg× R.

This proves the proposition.

3.4 The exponential map

The circle bundle Ω̃G → ΩG carries a canonical connection. The horizon-
tal lift of a point [h0, z0] along a path [h(t)] ∈ Map0(D,G)/GD is given by
[h(t), z(t)] where

z(t) = z0 exp

(
i

2

∫ t

0

∫

D

〈
Ah(s)∧

∂

∂s
Ah(s)

〉
ds

)
. (20)

(See Section 2.4.) To compute the curvature of this connection it is useful to
consider the associated line bundle LD = Map0(D,G)×GD C and work with
covariant derivatives. It then follows as in Lemma 2.6 that the curvature
form of the canonical connection is equal to −iω. Hence the Euler class of
the circle bundle Ω̃G → ΩG is (an integral lift of) the cohomology class
ω/2π.

Remark 3.6. Let R → GD : t 7→ g(t) be a path of gauge transformations.
Then a path [h(t), z(t)] ∈ Map0(D,G) × S1 is horizontal for the canonical
connection if and only if the path [h(t)g(t), θ(h(t), g(t))z(t)] is horzontal.
This follows by direct calculation as in Remark 2.8. �

The next proposition characterizes the one-parameter subgroups in the
infinite dimensional Lie group Map0(D,G) × S1 as horizontal lifts of the
one-parameter subgroups of Map0(D,G).
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Proposition 3.7. The one-parameter subgroups in Map0(D,G) × S1 are
given by

exp(t(η, ir)) = (exp(tη), eirtz(t; η))

for r, t ∈ R and η ∈ Map0(D, g), where

z(t; η) = exp

(
i

2

∫ t

0

∫

D

〈
Aexp(sη)∧

∂

∂s
Aexp(sη)

〉
ds

)
. (21)

Proof. One checks easily by direct calculation that the left and right actions
of (η, 0) ∈ Map0(D, g)× iR on the group Map0(D,G)× S1 are given by

(η, 0) · (h, z) =

(
ξh, z

i

2

∫

D

〈dη∧Ah−1〉
)
,

(h, z) · (η, 0) =

(
hη,−z i

2

∫

D

〈Ah∧dη〉
)
.

Hence the curve exp(t(η, 0)) = (h(t), z(t)) ∈ Map0(D,G)× S1 is the unique
solution of the ordinary differential equation

ḣ(t) = h(t)η = ηh(t),
ż(t)

z(t)
=
i

2

∫

D

〈dη∧Ah−1〉 = − i
2

∫

D

〈Ah∧dη〉 . (22)

In particular, h(t) = exp(ηt). Since η = h−1ḣ = ḣh−1 we have

h−1(dη)h =
∂

∂t
h−1dh, h(dη)h−1 =

∂

∂t
dh · h−1.

This implies ∫

D

〈
dh · h−1 + h−1dh∧dη

〉
= 0

(differentiate with respect to t), and hence

−
∫

D

〈Ah∧dη〉 = −
∫

D

〈Ah−1∧dη〉 =

∫

D

〈
Ah∧h−1(dη)h

〉
=

∫

D

〈
Ah∧

∂

∂t
Ah

〉
.

Here we have used the formula Ah = −h−1Ah−1h. This shows that the
solution of (22) is given by (21) as claimed.

We would expect that the equivalence class [(exp(tη), z(t; η)] in the quo-

tient Ω̃G = Map0(D,G)×GD S1 depends only on the boundary values of η.
Explicitly, this can be expressed in the formula

z(t; η + ξ) = θ(exp(tη), exp(−tη) exp(t(η + ξ)))z(t; η) (23)

for ξ, η : D → g with η(1) = 0 and ξ|∂D = 0. This formula is a direct conse-
quence of Lemma 3.8 below with h(t) = exp(tη) and h(t)g(t) = exp(t(η+ξ)).
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3.5 Relation with the approach of Pressley–Segal

In [9] Pressley and Segal give an explicit presentation of an extension Γ̃ of
a group Γ in terms of the action of Γ on a simply connected symplectic
manifold (X,ω) with an integral symplectic form. Their construction is as
follows. Fix a base point x0 ∈ X and denote by

P ⊂ Γ×Map([0, 1], X)

the set of all pairs (γ, p) where p : [0, 1]→ X is a path connecting p(0) = x0

with p(1) = γx0. The symplectic action gives rise to an equivalence relation
on P × S1 given by

[γ, p, u] ≡ [γ′, p′, u′] ⇐⇒ γ = γ′, u = exp

(
i

∫
σ∗ω

)
u′, (24)

where σ ⊂ X is a surface with boundary p′#p−1. The central extension of
Γ is the group Γ̃ of equivalence classes in P × S1. The group operation is
given by catenation of paths and multiplication in S1. Pressley and Segal
suggest as an example the action of Γ = ΩG on itself. Our description of Ω̃G
is simply an explicit formula for this construction in the case X = MD.

Consider the space

H ⊂ Map([0, 1]×D,G)

of smooth maps h : [0, 1] × D → G which satisfy h(0, z) = h(t, 1) = 1l for
z ∈ D and 0 ≤ t ≤ 1, and are locally independent of t near the two ends.
This space carries a binary operation

h0#h1(t, z) =

{
h1(2t, z), 0 ≤ t ≤ 1/2,

h0(2t− 1, z)h1(1, z), 1/2 ≤ t ≤ 1.

This operation is associative on the quotient space H/ ∼, where the equi-
valence relation is given by reparametrization. Now think of h as a smooth
function [0, 1]→ Map0(D,G) and consider the symplectic action of the cor-
responding path [0, 1]→ Aflat

D : t 7→ Ah(t). This gives rise to a smooth map

Θ : H → S1

given by

Θ(h) = exp

(
i

2

∫ 1

0

∫

D

〈
Ah(t)∧∂tAh(t)

〉
dt

)
.
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This function descends to the quotient H/ ∼ but is not a semigroup homo-
morphism. There is a correction term in the product formula for catenations,
which involves the function λ introduced in (13). This is in fact how I dis-
covered the formula for the group operation (12).

Lemma 3.8. If h0, h1 ∈ H then

Θ(h0#h1) = Θ(h0)Θ(h1)λ(h0(1), h1(1)). (25)

If g, h ∈ H and g|[0,1]×∂D = 1l then

Θ(hg) = Θ(h#g) = Θ(h)θ(h(1), g(1)). (26)

Proof. If h is independent of t then one shows as in the proof of (16) that
∫ 1

0

∫

D

〈
Ah0(t)h∧∂tAh0(t)h

〉
=

∫ 1

0

∫

D

〈
Ah0(t)∧∂tAh0(t)

〉
+

∫

D

〈
Ah0(1)∧Ah−1

〉
.

With h = h1(1) this implies (25). The second equality in (26) follows
from (25) and the fact that

Θ(g)λ(h(1), g(1)) = θ(1l, g(1))λ(h(1), g(1)) = θ(h(1), g(1)).

Next we prove that, if R → H : s 7→ hs is a smooth path such that ∂sh = 0
on ∂([0, 1]×D), then Θ(hs) is independent of s. To see this note first that,
if ∂sh = 0 on [0, 1]× ∂D, then

∫ 1

0

∫

D

〈∂sAh∧∂tAh〉 dt =

∫ 1

0

∫

D

〈
dAh(h−1∂sh)∧∂tAh

〉
dt

=

∫ 1

0

∫

∂D

〈
h−1∂sh∧∂tAh

〉
dt

= 0.

Here we have used the fact that dAh∂tAh = ∂tFAh = 0. If ∂sh = 0 on
{0, 1} ×D then the previous equation implies

∂

∂s

∫ 1

0

∫

D

〈Ah∧∂tAh〉 dt =

∫ 1

0

∂

∂t

∫

D

〈Ah∧∂sAh〉 dt = 0.

Hence Θ(hs) is independent of s as claimed. Now the path h#g is homotopic,
by means of a homotopy which satisfies ∂sh = 0 on ∂([0, 1]×D), to the path
which is equal to 1l for 0 ≤ t ≤ 1/2 and equal to h(2t − 1)g(2t − 1) for
1/2 ≤ t ≤ 1. The value of Θ on this path is obviously equal to Θ(hg). This
proves the first equality in (26).
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Consider the space H× S1 with the equivalence relation

(h, u) ≡ (h′, u′) ⇐⇒
{
π(h) = π(h′),
Θ(h′)u′ = θ(h(1), h(1)−1h′(1))Θ(h)u,

(27)

where π(h) ∈ ΩG denotes the loop t 7→ h(1, e2πit). This equivalence rela-
tion is motivated by (24). Geometrically, the term θ(h(1), h(1)−1h′(1)) is the
symplectic action of the path running from h(1) to h′(1) with time indepen-
dent boundary condition. Now one can define the central extension of ΩG
as the set of equivalence classes (h, u) ∈ H×S1 under the above equivalence
relation. The group operation on this quotient space is given by

[h0, u0] · [h1, u1] = [h0#h1, u0u1].

There is a natural homomorphism from H×S1 to Map0(D,G)×S1 given by

(h, u) 7→ (h(1),Θ(h)u).

This map identifies the two quotient spaces.

Remark 3.9. It follows from Lemma 3.8 and the formulae in the proof of
Proposition 3.4 that the operation

(h0, u0) · (h1, u1) = (h0#h1, u0u1)

on H× S1 preserves the equivalence relation (27).

Remark 3.10. The correction term in (25) is reminiscent of similar terms
which appear in catenation formulas for the Maslov index and for generating
functions in symplectic geometry. (See for example [11, 12].) This is not
surprising. In all three contexts these terms arise from the symplectic action
functional.

4 Holomorphic curves and instantons

The correspondence between instantons over the 4-sphere and holomorphic
maps into the loop group was first observed by Atiyah [1]. In [8] Jarvis and
Norbury found a new approach to this correspondence. They use the fact
that the complement S4 − S1 is conformally diffeomorphic to the product
S2×D of the 2-sphere and the 2-disc with the round and hyperbolic metrics,
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respectively. Below we review their result in the light of the Kähler anti-
isomorphism between the loop group and the moduli space of framed flat
connections on the disc. From this point of view the Jarvis-Norbury theorem
appears as a counterpart to a construction in [7] which relates anti-self-dual
instantons on S2 × Σ with holomorphic curves in MΣ, where Σ is a closed
Riemann surface. In the present context the metric on the 2-disc is multiplied
by a small constant ε. In the ε → 0 limit the anti-self-dual instantons over
the 4-sphere degenerate to anti-holomorphic maps from the 2-sphere into the
loop group. The study of such an adiabatic limit was suggested by Donaldson
in [5].

4.1 Framed holomorphic bundles

The correspondence between flat connections and the loop group was con-
sidered by Donaldson in [5] and he observed the analogy between the Na-
rasimhan-Seshadri theorem for closed Riemann surfaces and factorization
theorems for loop groups (cf. Pressley–Segal [9]). Before explaining this
analogy we discuss a more general theorem in [5] about the relation between
Hermitian Yang-Mills G-connections over Kähler manifolds with boundary
and holomorphic Gc-bundles.

Let Z be a connected Kähler manifold with nonempty boundary. We
assume that the Lie group G is embedded in the unitary group U(n) so
that the complexified group Gc is embedded in GL(n,C) and its Lie algebra
gc = g + ig is embedded in Cn×n. Let us assume for simplicity that our
Gc-bundle over Z is topologically trivial. For example, this is true whenever
Z is a Riemann surface, or whenever Z has real dimension 4 and G is simply
connected. Under this assumption the set of G-connections over Z can be
identified with the spaceAZ = Ω1(Z, g) of Lie algebra valued 1-forms. Denote
by

A0,2
Z =

{
A ∈ Ω1(Z, g) |F 0,2

A = 0
}

the subspace of those connections whose curvature has vanishing (0, 2)-part.
This space can be naturally identified with the space of holomorphic Gc-
bundles over Z via the Cauchy Riemann operator ∂̄A = ∂̄ +A0,1. The condi-
tion F 0,2

A = 0 is equivalent to ∂̄A ◦ ∂̄A = 0. Consider the gauge group

GZ = {g : Z → G | g|∂Z = 1l}.
This group acts freely on A0,2

Z and the action preserves the symplectic and
complex structures. As in the case of manifolds without boundary (cf.
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Atiyah-Bott [2] for Riemann surfaces), the moment map of this action is
the part of the curvature parallel to the Kähler form ω:

A0,2
Z → Ω0(Z, g) : A 7→ 〈ω, FA〉.

Thus the zero set of the moment map is the set of connections A ∈ Ω1(Z, g)
which satisfy

F 0,2
A = 0 〈ω, FA〉 = 0. (28)

These are the Hermitian Yang-Mills G-connections over Z. In the case of
Riemann surfaces the solutions of (28) are the flat G-connections and in the
case of 4-manifolds they are the anti-self-dual Yang-Mills G-connections. In
general, we denote the symplectic quotient by

MHYM(Z,G) = AHYM
Z /GZ = A0,2

Z //GZ.

Note that this quotient is infinite dimensional whenever the boundary of Z
is nonempty. If Z = X is a 4-manifold we writeMasd(X,G) =MHYM(X,G)
and if Z = Σ is a Riemann surface we write MΣ =MHYM(Σ,G).

Exercise 4.1. Prove that every 2-form τ ∈ Ω1,1(Z, g) with dAτ = 0 satisfies
dA
∗τ = (dA〈ω, τ〉) ◦ J . In particular, for every A ∈ A0,2

Z ,

dA
∗FA = (dA〈ω, FA〉) ◦ J

and hence the solutions of (28) satisfy the Yang-Mills equation dA
∗FA = 0.

The complexified gauge group GcZ = {g : Z → Gc | g|∂Z = 1l} acts on A0,2
Z

by
(g∗A)0,1 = g−1∂̄g + g−1A0,1g. (29)

The quotient A0,2
Z /GcZ is the space of holomorphic Gc-bundles over Z, up to

isomorphisms which are the identity over the boundary. In [5] Donaldson
proved the following result, which can be viewed as the analogue, for mani-
folds with boundary, of the Narasimhan-Seshadri theorem which, for closed
Riemann surfaces, relates irreducible flat connections to stable bundles.

Theorem 4.2 (Donaldson). Let Z be a ccompact connected Kähler man-
ifold with nonempty boundary and G ⊂ U(n) be a compact connected Lie
group. Then the inclusion AHYM

Z → A0,2
Z induces a bijection AHYM

Z /GZ ∼=
A0,2
Z /GcZ.
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In [5] Donaldson phrased the result in a slightly different form. He proved
that, if E → Z is a holomorphic vector bundle with structure group Gc, then
every Hermitian Gc-structure over the boundary extends uniquely to a Her-
mitian Gc-structure H over Z in such a way that the resulting Hermitian
G-connection AH on E (determined by the Hermitian form and the holomor-
phic structure) is a Hermitian Yang-Mills connection. We now explain the
relation between these two formulations.

A holomorphic Gc-structure on E = Z×Cn is a Cauchy-Riemann operator
of the form ∂̄ + α where α ∈ Ω0,1(Σ, gc) satisfies

∂̄α +
1

2
[α ∧ α] = 0 (30)

A Hermitian Gc-structure is a function H : Z → Gc such that H(z) = H(z)∗

is a Hermitian matrix for every z ∈ Z. Any such pair α,H determines a
unique connection 1-form A = AH,α ∈ Ω1(Z, gc) such that

F 0,2
A = 0, A0,1 = α, dH = A∗H +HA. (31)

To see this consider the action of a complex gauge transformation γ : Z → Gc

on triples (A, α,H) via

A 7→ γ−1dγ + γ−1Aγ, α 7→ γ−1∂̄γ + γ−1αγ, H 7→ γ∗Hγ.

This action preserves (31) and the group acts transitively on the set of Her-
mitian structures. For H = 1l the unique solution of (31) is the G-connection
A1l,α = α− α∗ ∈ A0,2

Z . Hence A is uniquely determined by α for any H.
Donaldson’s theorem now asserts that, for every α ∈ Ω0,1(Z, gc) which

satisfies (30), there exists a unique Hermitian Gc-structure H such that

H|∂Z = 1l, 〈ω, FAH,α〉 = 0. (32)

This can be rephrased in terms of the action of GcZ on A0,2
Z as follows. Instead

of fixing the Cauchy-Riemann operator ∂̄ + α and varying the Hermitian
structure H we fix H = 1l and vary α. But Ω0,1(Z, gc) can be identified with
A0,2
Z via

Ω0,1(Z, gc)→ A0,2
Z : α 7→ A1l,α = α− α∗.

With this identification the natural conjugation action of GcZ on Cauchy-Rie-
mann operators corresponds to the action on A0,2

Z via (29). Given α, let H
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be the Hermitian Gc-structure which satisfies (32). Choose g ∈ Gc such that
g∗Hg = 1l. Then

g∗A1l,α = A1l,g−1∂̄g+g−1αg = Ag∗Hg,g−1∂̄g+g−1αg = g−1dg + g−1AH,αg

is a Hermitian Yang-Mills G-connection on Z. Thus, for every G-connection
A = A1l,α ∈ A0,2

Z there exists a g ∈ GcZ such that g∗A is a Hermitian Yang-
Mills connection. On the other hand, if both A = A1l,α and g∗A are HYM
connections, then the previous equation shows that AH,α is HYM for H =
(gg∗)−1. Hence the uniqueness part of Donaldson’s theorem asserts that
H = 1l and hence g ∈ GZ . This shows that Theorem 4.2 is equivalent to
Theorem 1 in [5].

Remark 4.3. The idea of the proof of Theorem 4.2 is to use the gradient
flow of the Yang-Mills functional

YM(A) =
1

2

∫

Z

|FA|2
ωn

n!

on A0,2
Z . A gradient flow line with fixed boundary values is a path of connec-

tions
[0,∞)→ A0,2

Z : t 7→ B(t)

which satisfies the PDE

Ḃ + dB
∗FB = 0, Ḃ|∂Z = 0.

Using Exercise 4.1, one checks easily that the solutions of this equation have
the form B(t) = g(t)∗A where the path g(t) ∈ GcZ of complex gauge transfor-
mations satisfies

g−1ġ = i〈ω, Fg∗A〉.
In terms of the Hermitian structure H = (gg∗)−1 this differential equation
can be expressed in the form

ḢH−1 = 2i
〈
ω, ∂A(∂̄H ·H−1 −HA0,1H−1)− ∂̄A1,0

〉
. (33)

In [5] Donaldson proved that this equation has a unique solution on the
time interval [0,∞) with initial condition H(0) = 1l and boundary condition
H(t)|∂Z = 1l for all t. He also proved that the limit H∞ = limt→∞H(t) exists
for every A ∈ A0,2

Z and this limit is the required Hermitian metric and the
unique stationary solution of (33).
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Exercise 4.4. Let A ∈ A0,2
Z and g ∈ GcZ be given. Prove that

(g∗)−1Fg∗Ag
∗ = ∂A(∂̄H ·H−1 −HA0,1H−1)− ∂̄A1,0,

where H = (gg∗)−1.

Remark 4.5. It was observed by Jarvis and Norbury [8] that Theorem 4.2
extends to the case Z = S2 × D equipped with the product of the round
metric on the 2-sphere and the hyperbolic metric on the 2-disc. To see this
one can choose a sequence of Kähler forms ωε converging to the given singular
Kähler form and examine the corresponding sequence of Hermitian forms Hε

which satisfy
〈
ωε, ∂A(∂̄Hε ·H−1

ε −HεA
0,1H−1

ε )− ∂̄A1,0
〉

= 0, Hε|∂Z = 1l,

for some fixed connection A ∈ A0,2
Z . It is fairly easy to establish estimates

which guarantee the existence of the limit H0 = limε→0Hε. This limit is
the required solution of (33). Uniqueness follows from the maximum princi-
ple. The details are in [8] and are similar to the work of Donaldson in [5],
Section 2.3.

In the case of the 2-disc Theorem 4.2 reduces to a well known factorization
theorem for loop groups (see Pressley–Segal [9]) which we explain next. Every
holomorphic Gc-bundle E → D can be holomorphically trivialized. This
means that for every α ∈ Ω0,1(D, gc) there exists a function γ : D → Gc such
that α = γ−1∂̄γ. But this function γ is not unique. If f : D → Gc is any
holomorphic function then fγ and γ determine the same (0, 1)-form. Let
Aγ ∈ Ω1(D, g) denote the unique G-connection on D with (0, 1)-part γ−1∂̄γ:

A0,1
γ = γ−1∂̄γ.

Then the correspondence γ 7→ Aγ induces a bijection

Hol(D,Gc)\Map(D,Gc)→ AD.

The formula g∗Aγ = Aγg for g ∈ GcD shows that this bijection is equivariant
under the right action of GcD and hence induces a bijection of quotient spaces

Hol(D,Gc)\Map(D,Gc)/GcD ∼= AD/GcD ∼= Aflat
D /GD.

The last isomorphism is from Theorem 4.2. In explicit terms, for every
function γ : D → Gc, there exists a holomorphic function f : D → Gc,

27



a complex gauge transformation g ∈ GcD (with g|∂D = 1l), and a function
h ∈ Map0(D,G) such that

γ = fhg.

Moreover, in any two such factorizations γ0 = f0h0g0 and γ1 = f1h1g1 with
γ0|∂D = γ1|∂D, the function f0

−1f1 : D → Gc is holomorphic with boundary
values in G. Hence f0

−1f1 is constant and hence h0h1
−1 is constant on the

boundary. But since h0(1) = h1(1) = 1l, this implies h0|∂D = h1|∂D and
f0 = f1. In other words, every loop γ : S1 → Gc decomposes uniquely as
a product γ = fh where h : S1 → G is a based loop with h(1) = 1l and
f : S1 → Gc extends to a holomorphic function D → Gc. Thus Theorem 4.2
implies the following well-known factorization result for loop groups (see
Pressley-Segal [9]).

Theorem 4.6. Let G be a compact Lie group. Then the inclusion ΩG ↪→ LGc

of the based loop group into the complexified free loop group induces a bijection

ΩG ∼= Hol(D,Gc)\LGc,

where Hol(D,Gc) denotes the group of holomorphic maps g : D → Gc.

As pointed out by Donaldson [5], this factorization theorem can be proved
easier directly, without relying on Theorem 4.2. On the other hand it is not
clear if these direct arguments generalize to arbitrary Riemann surfaces.

4.2 Holomorphic curves in the loop group

An anti-holomorphic function u : S2 = C ∪ {∞} → ΩG is a solution of the
partial differential equation

∂su− I∂tu = 0 (34)

which has finite energy

E(u) =
1

2

∫

C

(
‖∂su‖2 + ‖∂tu‖2

)
dsdt <∞. (35)

Here s+ it denotes the complex coordinate, I denotes the complex structure
on ΩG discussed in Section 3.1, and

‖ξ‖ = ω(ξ, Iξ)
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is the H1/2-norm on the loop algebra, induced by the symplectic and complex
structures. The finite energy condition guarantees that the function

C \ {0} → ΩG : z 7→ u(1/z)

extends to an anti-holomorphic curve C → ΩG and hence u is an anti-
holomorphic sphere.

Lemma 4.7. Let u : S2 → ΩG be an anti-holomorphic curve. Then

deg(u) = − 1

2π
E(u).

Proof. Let s + it denote the coordinate on C ⊂ S2 and θ the coordinate on
S1 ∼= R/Z. Then the energy of u is given by

E(u) = −
∫

C
ωu(∂su, ∂tu) dsdt

=
1

2

∫

C

∫ 1

0

(
−〈∂θ(∂su · u−1), ∂tu · u−1〉+ 〈∂θ(∂tu · u−1), ∂su · u−1〉

)

=
1

2

∫

C

∫ 1

0

(
−〈∂s(∂θu · u−1), ∂tu · u−1〉+ 〈∂t(∂θu · u−1), ∂su · u−1〉

)

−
∫

C

∫ 1

0

〈∂θu · u−1, [∂su · u−1, ∂tu · u−1]〉

=
1

2

∫

C

∫ 1

0

〈∂θu · u−1, ∂s(∂tu · u−1)− ∂t(∂su · u−1)〉

−
∫

C

∫ 1

0

〈∂θu · u−1, [∂su · u−1, ∂tu · u−1]〉

= − 1

2

∫

C

∫ 1

0

〈∂θu · u−1, [∂su · u−1, ∂tu · u−1]〉

= − 2π deg(u).

The last equation uses the formula

u∗τ = (4π)−1〈[u−1∂su, u
−1∂tu], u−1∂θu〉ds ∧ dt ∧ dθ.

This proves the lemma.
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Let us denote by

H̃olk(S
2,ΩG) = {u : C→ ΩG | u satisfies (34) and deg(u) = −k}

the space of anti-holomorphic functions u : S2 → ΩG of degree −k. Note
that the latter condition is equivalent to E(u) = 2πk. It is important to

note that the group LG acts on the space H̃olk(S
2,ΩG) by (9). Namely, if

u : S2 → ΩG is an anti-holomorphic curve then so is g∗u for any contractible
free loop g ∈ LG and both curves have obviously the same degree. We denote
the quotient by

Holk(S
2,ΩG) = H̃olk(S

2,ΩG)/LG.

The goal of this and the following two sections is to identify this quotient
with the space of charge-k instantons over the 4-sphere.

It is interesting to rewrite (34) in a more explicit form. Recall from the
proof of Proposition 3.3 that ∗dξζ = ξIζ for every ζ ∈ Ωg where ξζ : D → g

denotes the harmonic extension of ζ. Hence (34) is equivalent to

dφ+ ∗dψ = 0, φ|∂D = −∂su · u−1, ψ|∂D = −∂tu · u−1. (36)

Here ∗ denotes the Hodge ∗-operator on D with respect to the standard
metric, φ(s, t) : D → g is the harmonic extension of −∂su ·u−1 for all s and t,
and similarly for ψ. Here the minus sign has been introduced for notational
convenience. Note that φ and ψ extend to smooth maps S2 ×D → g which
are harmonic over {z} ×D for every z ∈ S2.

Proposition 3.3 suggests an alternative way of rewriting (34), namely as
a holomorphic curve f : S2 →MD into the moduli space of framed flat con-
nections over the 2-disc. Any such holomorphic curve f can be represented
by a smooth function C→ Aflat

D : s+ it 7→ A(s, t), and two Lie algebra valued
functions Φ,Ψ : C×D → g which satisfies the partial differential equation

∂sA− dAΦ + ∗(∂tA− dAΨ) = 0, (37)

and the boundary condition

Φ(s, t)|∂D = Ψ(s, t)|∂D = 0, (38)

and have finite energy

E(A,Φ,Ψ) =
1

2

∫

C

∫

D

(
|∂sA− dAΦ|2 + |∂tA− dAΨ|2

)
<∞. (39)
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For each s + it ∈ C we think of Φ(s, t) and Ψ(s, t) as Lie algebra valued
functions on the 2-disc D which vanish on the boundary. In other words, Φ
and Ψ are functions from C→ Lie(GD). They satisfy the condition

dA
∗dAΦ = dA

∗∂sA, dA
∗dAΨ = dA

∗∂tA. (40)

The next remark shows that Φ and Ψ are uniquely determined by A and
condition (40).

Remark 4.8. Given a smooth function C → Map0(D,G) : s + it 7→ h(s, t)
denote A := Ah := h−1dh and, for all s and t, let φ(s, t) be the unique
harmonic extension of −∂sh · h−1|∂D. Then

Φh := h−1∂sh+ h−1φh

is the unique solution of (40) with Φ|∂D = 0.

Remark 4.9. The gauge group

G = {g : C×D → G | ∂sg|C×∂D = ∂tg|C×∂D = 0}. (41)

acts on the space of solutions of (37) and (38) via

Ã = g∗A, Φ̃ = g−1∂sg + g−1Φg, Ψ̃ = g−1∂tg + g−1Ψg. (42)

These equations are to be understood pointwise for all s and t. Note that
the transformed solution has the same energy as the original one. If we think
of Ξ = A + Φ ds + Ψ dt as a connection over C × D, then this corresponds
to the action of the gauge group. Note also that g(s, t) need not be in GD
and hence g(s, t)∗A(s, t) will not, in general, represent the same point in ΩG.
However, for any two maps g, h : D → G we have

g∗Ah = Ag∗h, g∗h(z) := g(1)−1h(z)g(z).

Hence the action of an element g ∈ G which is not equal to 1 on C × ∂D
corresponds to the action of LG on H̃olk(S

2,ΩG).

Remark 4.10. Every finite energy solution Ξ = A + Φ ds + Ψ dt of (37)
and (38) extends to S2, modulo gauge equivalence. More explicitly, this
means that there exists a gauge transformation g : C \ {0} → GD such that
the transformed solution (42) extends smoothly to S2 \ {0}. Equivalently,
the function C \ {0} → Aflat

D : z 7→ Ã(1/z) extends smoothly to C.
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Remark 4.11. Note that the solutions of (36) extends smoothly to S2 ×D
while those of (37) and (38) only do so after applying a prior gauge transfor-
mation as in Remark 4.10. The reason lies in the boundary condition. By
assumption our anti-holomorphic curve u : S2 × S1 → G has nonzero degree
−k and hence does not extend smoothly to S2 × D. Hence our function
h : C×D → G does not extend smoothly to S2 × D. To understand this
phenomenon more precisely we examine the correspondence between the so-
lutions of (36) and (37). Given a holomorphic sphere u : S2 → ΩG, every
extension h : C×D → G of u gives rise to a solution Ξh = Ah+Φh ds+Ψh dt
of (37) and (38), given by

Ah = h−1dh, Φh = h−1∂sh + h−1φh, Ψh = h−1∂th + h−1ψh, (43)

where (φ, ψ) denotes the unique solution of (36) (see Remark 4.8). Moreover,
any two extensions h and h′ = hg correspond to gauge equivalent solutions
Ξh and Ξhg = g∗Ξh. Note that one can think of h : C × D → G as a
gauge transformation (which is not equal to the identity on the boundary)
and of Ξh := h∗(φ ds + ψ dt) as the transformed solution. In other words,
φ ds + ψ dt is a special solution of (37) with A = 0, but which does not, of
course, satisfy the boundary condition (38). While the solution φ ds + ψ dt
extends smoothly to S2×D, neither h nor the transformed solution Ξh extend
smoothly to S2 ×D.

Remark 4.12. Denote by A0(G, k) the space of solutions of (37) and (38)
with FA(s,t) = 0 for all s and t and E(A,Φ,Ψ) = 2πk. The gauge group (41)
acts on this space and we denote the quotient by M0(G, k) = A0(G, k)/G.
By Remarks 4.9 and 4.10 there is a natural bijection

Holk(S
2,ΩG) ∼= A0(G, k)/G =M0(G, k).

Explicitly, this bijection can be described as follows. Given an anti-holomor-
phic map u : S2 → ΩG, lift it over C ⊂ S2 to a map C → Map0(D,G) :
s + it 7→ h(s, t) and define the image of u to be the gauge equivalence class
of the connection Ξh = Ah + Φh ds + Ψh dt, defined by (43). It follows from
the above discussion that the map u 7→ [Ξh] is a bijection of the respective
quotient spaces.

Exercise 4.13. Let C → Map0(D,G) : s + it 7→ h(s, t) represent an anti-
holomorphic sphere in the loop group and denote Ξ = Ξh ∈ A0(G, k). Prove
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that the energy of this sphere is given by

E(Ξh) =

∫

C

∫

D

〈∂s(h−1dh)∧∂t(h−1dh)〉 = −2π deg(h : S2 × ∂D → G).

Note here that the restriction h|C×∂D extends smoothly to S2×∂D. Compare
this with Lemma 4.7.

4.3 Instantons on the four-sphere

Let B be an anti-self-dual G-connection on the 4-sphere. Explicitly, one can
think of B as a Lie algebra valued 1-form

B =

3∑

i=0

Bi dxi ∈ Ω1(R4, g)

on R4 whose curvature form

FB =
∑

i<j

Fij dxi ∧ dxj, Fij = ∂iBj − ∂jBi + [Bi, Bj]

satisfies the anti-self-duality equation

F01 + F23 = F02 + F31 = F03 + F12 = 0,

and has finite Yang-Mills action

YM(B) =
1

2

∫

R4

∑

i<j

|Fij|2 <∞.

Now let us denote by H ⊂ C the closed upper half plane and by int(H)
the open upper half plane. Consider the map S2 × H → R4 = R × R3 :
(y, u+ iv) 7→ x = (u, vy), i.e.

x0 = u, x1 = vy1, x2 = vy2, x3 = vy3.

This map is an orientation preserving diffeomorphism from S2× int(H) onto
the complement of the x0-axis. It extends smoothly to a surjection S2×H→
R4 which maps the boundary S2× ∂H onto the x0-axis. The pullback of the
standard metric on R4, multiplied by the function (x1

2 +x2
2 +x3

2)−1, agrees
with the product of the standard metric on S2 and the hyperbolic metric on
int(H).
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Remark 4.14. Denote by

D =
{
z = x+ iy ∈ C | x2 + y2 ≤ 1

}
, H = {w = u+ iv ∈ C | v ≥ 0}

the closed unit disc and the closed upper half space, respectively. Consider
the standard hyperbolic metric on int(H) and the standard hyperbolic metric
on int(D) multiplied by a factor ε2. These metrics are given by

gD =
4ε2(dx2 + dy2)

(1− x2 − y2)2
, gH =

du2 + dv2

v2
.

The diffeomorphism int(D)→ int(H) : z 7→ w = iε−1(1+z)(1−z)−1 identifies
these two metrics. Explicitly, the image point w = u+ iv ∈ H is given by

u =
−2y

ε((x− 1)2 + y2)
, v =

1− x2 − y2

ε((x− 1)2 + y2)
. �

Remark 4.15. The 2-sphere

S2 = {y ∈ R3 | |y| = 1}

with its standard metric is isometric to the Riemann sphere C ∪ {∞} with
the metric

gC =
4(ds2 + dt2)

(1 + s2 + t2)2
.

An explicit formula for the isometry C→ S2 : s+ it 7→ (y1, y2, y3) is

y1 =
2s

1 + s2 + t2
, y2 =

2t

1 + s2 + t2
, y3 =

1− s2 − t2
1 + s2 + t2

.

This corresponds to stereographic projection from the south pole.

Let gε denote the product metric, on S2 × int(D), of the round metric
on S2 and the hyperbolic metric on int(D), rescaled by the factor ε2. On
C × int(D) with coordinates s + it ∈ C and x + iy ∈ int(D) this metric is
given by

gε =
4(ds2 + dt2)

(1 + s2 + t2)2
+

4ε2(dx2 + dy2)

(1− x2 − y2)2
. (44)

Denote by fε : C × int(D) → R4 the composition of the above map S2 ×
int(H)→ R4 with the isometries of Remarks 4.14 and 4.15. Then the image
point

(x0, x1, x2, x3) = fε(s+ it, x + iy)
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is given by

x0 =
−2y

ε((x− 1)2 + y2)
,

x1 =
2s(1− x2 − y2)

ε(1 + s2 + t2)((x− 1)2 + y2)
, (45)

x2 =
2t(1− x2 − y2)

ε(1 + s2 + t2)((x− 1)2 + y2)

x3 =
(1− s2 − t2)(1− x2 − y2)

ε(1 + s2 + t2)((x− 1)2 + y2)
.

This map is an orientation preserving conformal diffeomorphism from S2 ×
int(D) with the metric gε onto R4 \Re0 with its standard metric. It extends
to a smooth surjection S2 × (D \ {1}) → R4 which maps S2 × (S1 \ {1})
onto the x0-axis. It is useful to introduce another conformal transformation
φ : S4 → S4 which maps (0, 0, 0,−1) to ∞. Then the composition φ ◦ fε
maps C×D to R4 = S4 \ {∞} and hence the pullback of any anti-self-dual
connections 1-form over R4 under φ◦fε is smooth over C×D. Note, however,
that it will not in general extend to a smooth connection 1-form over S2×D
unless we perform a prior gauge transformation as in Remark 4.10. Now our
pullback connection fε

∗φ∗B is anti-self-dual over C× int(D) with respect to
gε. Any such connection can be written in the form

Ξ = A+ Φ ds+ Ψ dt,

where A = A(s, t) ∈ Ω1(D, g) and Φ = Φ(s, t) and Ψ = Ψ(s, t) are Lie
algebra valued functions on D which satisfy the boundary condition (38).
The curvature of this connection is given by

FΞ = FA + (dAΦ− ∂sA) ∧ ds+ (dAΨ− ∂tA) ∧ dt
+ (∂sΨ− ∂tΦ + [Φ,Ψ]) ds ∧ dt.

Let us denote by ∗ε the Hodge ∗-operator on C× int(D) with respect to the
metric (44). On 2-forms this operator is given by

∗εds ∧ dt =
ε2(1 + s2 + t2)2

(1− x2 − y2)2
dx ∧ dy,

∗εds ∧ dx = −dt ∧ dy, ∗εds ∧ dy = dt ∧ dx.
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Hence the anti-self-duality equations on C×D take the form

∂sA− dAΦ + ∗(∂tA− dAΨ) = 0, (46)

and

∂sΨ− ∂tΦ + [Φ,Ψ] +
(1− x2 − y2)2

ε2(1 + s2 + t2)2
∗ FA = 0. (47)

Here ∗ denotes the Hodge ∗-operator on D with respect to the flat metric
The functions A, Φ, Ψ are understood to be smooth over C × D, where
D ⊂ C denotes the closed unit disc, and Φ and Ψ satisfy the boundary
condition (38). The Yang-Mills action of Ξ with respect to the metric gε is
given by

YMε(Ξ) =
1

2

∫

C

∫

D

(
|∂sA− dAΦ|2 + |∂tA− dAΨ|2

+
ε2(1 + s2 + t2)2

(1− x2 − y2)2
|∂sΨ− ∂tΦ + [Φ,Ψ]|2 (48)

+
(1− x2 − y2)2

ε2(1 + s2 + t2)2
|FA|2

)
dxdydsdt.

Let us denote by Aε(G, k) the space of solutions of the anti-self-dual Yang-
Mills equations (46), (47) on S2 × D with boundary condition (38), which
have Yang-Mills energy 2πk. The gauge group G, given by (41), acts on this
space as in Remark 4.9, and we denote the quotient by

Mε(G, k) = Aε(G, k)/G.

We also denote by Masd(S4; G, k) the moduli space of gauge equivalence
classes of anti-self-dual charge-k instantons on S4. Note that this space can
be identified with the quotient Aasd(R4; G, k)/Map(R4,G).

Proposition 4.16. Let fε : C× int(D) → R4 be the function given by (45)
and φ : S4 → S4 be a conformal diffeomorphism such that φ(0, 0, 0,−1) =∞.
Then, for every ε > 0, the map

Aasd(R4; G, k) −→ Aε(G, k) : B 7→ fε
∗φ∗B

induces a bijection from the moduli spaceMasd(S4; G, k) of anti-self-dual in-
stantons over the 4-sphere to the moduli spaceMε(G, k) of solutions of (46),
(47), and (38).
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Proof. Note first that

fε(C×D) = S4 \ {x ∈ R4 | x1 = x2 = 0, x3 < 0}.

Hence φ ◦ fε(C×D) ⊂ S4−{∞}. This implies that the pullback connection
fε
∗φ∗B is smooth over C×D. The diffeomorphism (45) satisfies ∂sfε = ∂tfε =

0 on C×∂D. Hence the pullback connection A+Φ ds+Ψ dt = fε
∗φ∗B of any

connection 1-form B ∈ Ω1(R4, g) satisfies the boundary condition (38). That
fε
∗φ∗B satisfies (46) and (47) whenever B is anti-self-dual (with respect to the

standard metric) follows from the conformal invariance of the anti-self-dual
Yang-Mills equations. Since the pullback g◦φ◦fε of any gauge transformation
g : R4 → G lies in the gauge group G, defined by (41), it follows that the map
B 7→ fε

∗φ∗B descends to the quotient spaces. We prove that the induced
map is injective. Hence suppose that B and B ′ are anti-self-dual charge-k
instantons on R4 such that

fε
∗φ∗B′ = g∗fε

∗φ∗B

for some gauge transformation g ∈ G. The condition ∂sg = ∂tg = 0 on
C × ∂D guarantees that there exists a gauge transformation u : R4 → G,
smooth over R4 − R and continuous along R, such that

g = u ◦ φ ◦ fε.

This implies that B′ = u∗B over R4\R. Since B and B′ are smooth it follows
that u is smooth over all of R4, and hence B and B′ are gauge equivalent.
This proves that our map is injective.

We prove that the map is onto. Let Ξ = A + Φ ds + Ψ dt ∈ Aε(G, k)
be given and define B ∈ Ω1(R4 \ R, g) by Ξ =: fε

∗φ∗B. The boundary
condition (38) guarantees that B extends to a continuous 1-form on all of
R4. Moreover, B is an anti-self-dual charge-k instanton over R4 \ R. Hence
the removable singularity theorem for anti-self-dual instantons asserts that
there exists a continuous gauge tranformation u : R4 → G, which is smooth
over R4 \ R, such that u∗B is smooth over R4. Hence

f ∗εφ
∗u∗B = Ξ′ = A′ + Φ′ ds+ Ψ′ dt

lies in the image of our map Aasd(S4; G, k) −→ Aε(G, k). Moreover,

Ξ′ = g∗Ξ,
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where
g = u ◦ φ ◦ fε : C×D → G.

This gauge transformation is smooth over C× int(D), continuous over C×D,
and independent of s and t over the boundary. However, the equation Ξ′ =
g∗Ξ, where Ξ and Ξ′ are both smooth up to the boundary, implies that u
is also smooth up to the boundary and hence Ξ is gauge equivalent to a
connection Ξ′ in the image of our map. Hence the induced map on quotient
spaces is onto. This proves the proposition.

4.4 An adiabatic limit

The following theorem relates the moduli spaces Mε(G, k) and M0(G, k),
and hence describes a correspondence between anti-self-dual instantons over
the 4-sphere and anti-holomorphic spheres in the loop group. We use the
notation

Gc = {g : C×D → Gc | ∂sg|C×∂D = ∂tg|C×∂D = 0}.

Theorem 4.17 (Jarvis-Norbury). For every Ξε ∈ Aε(G, k) there exists a
unique Ξ0 ∈ A0(G, k), which is complex gauge equivalent to Ξε via a Hermi-
tian gauge tranformation g ∈ Gc. This defines a bijection Tε : Mε(G, k) →
M0(G, k) for every ε > 0.

The Definition of Tε is obvious from Theorem 4.2. Namely, given a solu-
tion Ξ = A+Φ ds+Ψ dt of (46), (47) and (38), choose a smooth family of com-
plex gauge transformations C→ GcD : s+ it 7→ g(s, t) such that g(s, t)∗A(s, t)

is flat for all s and t. Then define Ã(s, t) ∈ AD, and Φ̃(s, t), Ψ̃(s, t) ∈ Lie(GD)
by

Ã = g∗A, Φ̃ + iΨ̃ = g−1(∂sg + i∂tg) + g−1(Φ + iΨ)g. (49)

It is easy to see that (46) is preserved under this transformation, and hence

Ξ̃ = Ã+Φ̃ ds+Ψ̃dt is a solution of (37). Secondly, it follows from Theorem 4.2
that different choices of complex gauge transformations g(s, t) give rise to

(real) gauge equivalent solutions Ξ̃. Hence the map Tε is well defined.

Lemma 4.18. Let Ξ = A + Φ ds + Ψ dt be a solution of (37) and (38) and
g = g(s, t) ∈ GcD be a smooth family of complex gauge transformations. Let

Ξ̃ = Ã+ Φ̃ ds+ Ψ̃ dt be given by (49). Then Ξ̃ is also a solution of (37).
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Proof. Equation (37) can be written in the form

∂sA
0,1 + i∂tA

0,1 = ∂̄A(Φ + iΨ).

That this equation is invariant under complex gauge transformations as
in (49), follows directly from the identities

∂s(g
∗A)0,1 = ∂̄g∗A(g−1∂sg) + g−1(∂sA

0,1)g, ∂̄g∗A(g−1Φg) = g−1(∂̄AΦ)g

This proves the lemma.

Proof of Theorem 4.17. Note that the (46) is equivalent to F 0,2
Ξ = 0 and (47)

is equivalent to 〈ωε, FΞ〉 = 0 where ωε is the symplectic form on S2 × D
determined by gε and the standard complex structure. Hence Theorem 4.17
is a special case of Theorem 4.2 where the Kähler manifold Z is the product
S2×D. But the metric gε is singular near the boundary and so Theorem 4.17
follows from Remark 4.5.

We point out here that the inverse map Tε−1 : M0(G, k) −→ Mε(G, k)
converges to the identity as ε → 0 in the following sense. For every Ξ0 ∈
A0(G, k) and every p > 2 there exists an ε0 > 0 and a collection of gε-anti-
self-dual connections Ξε ∈ Aε(G, k) for 0 < ε < ε0 such that

Tε([Ξε]) = [Ξ0]

and Ξε converges to Ξ0 in the W 1,p-norm (with respect to the product of the
round metric on S2 and the hyperbolic metric on D). To see this note that
the Yang-Mills energy of a connection Ξ = A+ Φ ds+ Ψ dt ∈ A0(G, k) with
respect to the metric gε is given by

YMε(Ξ) =
1

2

∫

C

∫

D

(
|∂sA− dAΦ|2 + |∂tA− dAΨ|2

+
ε2(1 + s2 + t2)2

(1− x2 − y2)2
|∂sΨ− ∂tΦ + [Φ,Ψ]|2

)
dxdydsdt.

This converges to the minimum E(Ξ) = 2πk of the Yang-Mills functional as
ε→ 0. One can use this to prove that the complex gauge equivalent solution
Ξε = g∗εΞ of (46) and (47) is almost flat over each slice {s + it} × D. This
gives rise to an estimate for the difference Ξε−Ξ. Alternatively, one can use
the techniques in [7].
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