The Viterbo-Maslov Index in Dimension Two

Joel W. Robbin
University of Wisconsin

Dietmar A. Salamon*
ETH-Zürich

2 May 2012

Abstract

We prove a formula that expresses the Viterbo-Maslov index of a smooth strip in an oriented 2-manifold with boundary curves contained in 1-dimensional submanifolds in terms the degree function on the complement of the union of the two submanifolds.

1 Introduction

We assume throughout this paper that Σ is a connected oriented 2-manifold without boundary and $\alpha, \beta \subset \Sigma$ are connected smooth one dimensional oriented submanifolds without boundary which are closed as subsets of Σ and intersect transversally. We do not assume that Σ is compact, but when it is, α and β are embedded circles. Denote the standard half disc by

$$
\mathbb{D}:=\{z \in \mathbb{C}|\operatorname{Im} z \geq 0,|z| \leq 1\} .
$$

Let \mathcal{D} denote the space of all smooth maps $u: \mathbb{D} \rightarrow \Sigma$ satisfying the boundary conditions $u(\mathbb{D} \cap \mathbb{R}) \subset \alpha$ and $u\left(\mathbb{D} \cap S^{1}\right) \subset \beta$. For $x, y \in \alpha \cap \beta$ let $\mathcal{D}(x, y)$ denote the subset of all $u \in \mathcal{D}$ satisfying the endpoint conditions $u(-1)=x$ and $u(1)=y$. Each $u \in \mathcal{D}$ determines a locally constant function $\mathrm{w}: \Sigma \backslash(\alpha \cup \beta) \rightarrow \mathbb{Z}$ defined as the degree

$$
\mathrm{w}(z):=\operatorname{deg}(u, z), \quad z \in \Sigma \backslash(\alpha \cup \beta) .
$$

[^0]When z is a regular value of u this is the algebraic number of points in the preimage $u^{-1}(z)$. The function w depends only on the homotopy class of u. We prove that the homotopy class of u is uniquely determined by its endpoints x, y and its degree function w (Theorem 2.4). The main theorem of this paper asserts that the Viterbo-Maslov index of an element $u \in \mathcal{D}(x, y)$ is given by the formula

$$
\begin{equation*}
\mu(u)=\frac{m_{x}+m_{y}}{2}, \tag{1}
\end{equation*}
$$

where m_{x} denotes the sum of the four values of w encountered when walking along a small circle surrounding x, and similarly for y (Theorem 3.4). The formula (1) plays a central role in our combinatorial approach [1, 7] to Floer homology $[4,5]$. An appendix contains a proof that the space of paths connecting α to β is simply connected under suitable assumptions.

Acknowledgement. We thank David Epstein for explaining to us the proof of Proposition A.1.

2 Chains and Traces

Define a cell complex structure on Σ by taking the set of zero-cells to be the set $\alpha \cap \beta$, the set of one-cells to be the set of connected components of $(\alpha \backslash \beta) \cup(\beta \backslash \alpha)$ with compact closure, and the set of two-cells to be the set of connected components of $\Sigma \backslash(\alpha \cup \beta)$ with compact closure. (There is an abuse of language here as the "two-cells" need not be homeomorphs of the open unit disc if the genus of Σ is positive and the "one-cells" need not be arcs if $\alpha \cap \beta=\emptyset$.) Define a boundary operator ∂ as follows. For each two-cell F let $\partial F=\sum \pm E$, where the sum is over the one-cells E which abut F and the plus sign is chosen iff the orientation of E (determined from the given orientations of α and β) agrees with the boundary orientation of F as a connected open subset of the oriented manifold Σ. For each one-cell E let $\partial E=b-a$ where a and b are the endpoints of the arc E and the orientation of E goes from a to b. (The one-cell E is either a subarc of α or a subarc of β and both α and β are oriented one-manifolds.) For $k=0,1,2$ a k-chain is defined to be a formal linear combination (with integer coefficients) of k-cells, i.e. a two-chain is a locally constant map $\Sigma \backslash(\alpha \cup \beta) \rightarrow \mathbb{Z}$ (whose support has compact closure in Σ) and a one-chain is a locally constant map $(\alpha \backslash \beta) \cup(\beta \backslash \alpha) \rightarrow \mathbb{Z}$ (whose support has compact closure in $\alpha \cup \beta$). It follows directly from the definitions that $\partial^{2} F=0$ for each two-cell F.

Each $u \in \mathcal{D}$ determines a two-chain w via

$$
\begin{equation*}
\mathrm{w}(z):=\operatorname{deg}(u, z), \quad z \in \Sigma \backslash(\alpha \cup \beta) . \tag{2}
\end{equation*}
$$

and a one-chain ν via

$$
\nu(z):=\left\{\begin{align*}
\operatorname{deg}\left(\left.u\right|_{\partial \mathbb{D} \cap \mathbb{R}}: \partial \mathbb{D} \cap \mathbb{R} \rightarrow \alpha, z\right), & \text { for } z \in \alpha \backslash \beta, \tag{3}\\
-\operatorname{deg}\left(\left.u\right|_{\partial \mathbb{D} \cap S^{1}}: \partial \mathbb{D} \cap S^{1} \rightarrow \beta, z\right), & \text { for } z \in \beta \backslash \alpha .
\end{align*}\right.
$$

Here we orient the one-manifolds $\mathbb{D} \cap \mathbb{R}$ and $\mathbb{D} \cap S^{1}$ from -1 to +1 . For any one-chain $\nu:(\alpha \backslash \beta) \cup(\beta \backslash \alpha) \rightarrow \mathbb{Z}$ denote

$$
\nu_{\alpha}:=\left.\nu\right|_{\alpha \backslash \beta}: \alpha \backslash \beta \rightarrow \mathbb{Z}, \quad \nu_{\beta}:=\left.\nu\right|_{\alpha \backslash \beta}: \beta \backslash \alpha \rightarrow \mathbb{Z}
$$

Conversely, given locally constant functions $\nu_{\alpha}: \alpha \backslash \beta \rightarrow \mathbb{Z}$ and $\nu_{\beta}: \beta \backslash \alpha \rightarrow \mathbb{Z}$, denote by $\nu=\nu_{\alpha}-\nu_{\beta}$ the one-chain that agrees with ν_{α} on $\alpha \backslash \beta$ and agrees with $-\nu_{\beta}$ on $\beta \backslash \alpha$.
Definition 2.1 (Traces). Fix two (not necessarily distinct) intersection points $x, y \in \alpha \cap \beta$.
(i) Let $\mathrm{w}: \Sigma \backslash(\alpha \cup \beta) \rightarrow \mathbb{Z}$ be a two-chain. The triple $\Lambda=(x, y, \mathrm{w})$ is called an (α, β)-trace if there exists an element $u \in \mathcal{D}(x, y)$ such that w is given by (2). In this case $\Lambda=: \Lambda_{u}$ is also called the (α, β)-trace of u and we sometimes write $\mathrm{w}_{u}:=\mathrm{w}$.
(ii) Let $\Lambda=(x, y, \mathrm{w})$ be an (α, β)-trace. The triple $\partial \Lambda:=(x, y, \partial \mathrm{w})$ is called the boundary of Λ.
(iii) A one-chain $\nu:(\alpha \backslash \beta) \cup(\beta \backslash \alpha) \rightarrow \mathbb{Z}$ is called an (x, y)-trace if there exist smooth curves $\gamma_{\alpha}:[0,1] \rightarrow \alpha$ and $\gamma_{\beta}:[0,1] \rightarrow \beta$ such that $\gamma_{\alpha}(0)=\gamma_{\beta}(0)=x$, $\gamma_{\alpha}(1)=\gamma_{\beta}(1)=y, \gamma_{\alpha}$ and γ_{β} are homotopic in Σ with fixed endpoints, and

$$
\nu(z)=\left\{\begin{align*}
\operatorname{deg}\left(\gamma_{\alpha}, z\right), & \text { for } z \in \alpha \backslash \beta \tag{4}\\
-\operatorname{deg}\left(\gamma_{\beta}, z\right), & \text { for } z \in \beta \backslash \alpha
\end{align*}\right.
$$

Remark 2.2. Assume Σ is simply connected. Then the condition on γ_{α} and γ_{β} to be homotopic with fixed endpoints is redundant. Moreover, if $x=y$ then a one-chain ν is an (x, y)-trace if and only if the restrictions $\nu_{\alpha}:=\left.\nu\right|_{\alpha \backslash \beta}$ and $\nu_{\beta}:=-\left.\nu\right|_{\beta \backslash \alpha}$ are constant. If $x \neq y$ and α, β are embedded circles and A, B denote the positively oriented arcs from x to y in α, β, then a one-chain ν is an (x, y)-trace if and only if $\left.\nu_{\alpha}\right|_{\alpha \backslash(A \cup \beta)}=\left.\nu_{\alpha}\right|_{A \backslash \beta}-1$ and $\left.\nu_{\beta}\right|_{\beta \backslash(B \cup \alpha)}=\left.\nu_{\beta}\right|_{B \backslash \alpha}-1$. In particular, when walking along α or β, the function ν only changes its value at x and y.

Lemma 2.3. Let $x, y \in \alpha \cap \beta$ and $u \in \mathcal{D}(x, y)$. Then the boundary of the (α, β)-trace Λ_{u} of u is the triple $\partial \Lambda_{u}=(x, y, \nu)$, where ν is given by (3). In other words, if w is given by (2) and ν is given by (3) then $\nu=\partial \mathrm{w}$.

Proof. Choose an embedding $\gamma:[-1,1] \rightarrow \Sigma$ such that u is transverse to γ, $\gamma(t) \in \Sigma \backslash(\alpha \cup \beta)$ for $t \neq 0, \gamma(-1), \gamma(1)$ are regular values of $u, \gamma(0) \in \alpha \backslash \beta$ is a regular value of $\left.u\right|_{\mathbb{D} \cap \mathbb{R}}$, and γ intersects α transversally at $t=0$ such that orientations match in

$$
T_{\gamma(0)} \Sigma=T_{\gamma(0)} \alpha \oplus \mathbb{R} \dot{\gamma}(0)
$$

Denote $\Gamma:=\gamma([-1,1])$. Then $u^{-1}(\Gamma) \subset \mathbb{D}$ is a 1-dimensional submanifold with boundary

$$
\left.\partial u^{-1}(\Gamma)=u^{-1}(\gamma(-1)) \cup u^{-1}(\gamma(1)) \cup\left(u^{-1}(\gamma(0)) \cap \mathbb{R}\right)\right)
$$

If $z \in u^{-1}(\Gamma)$ then

$$
\operatorname{im} d u(z)+T_{u(z)} \Gamma=T_{u(z)} \Sigma, \quad T_{z} u^{-1}(\Gamma)=d u(z)^{-1} T_{u(z)} \Gamma
$$

We orient $u^{-1}(\Gamma)$ such that the orientations match in

$$
T_{u(z)} \Sigma=T_{u(z)} \Gamma \oplus d u(z) \mathbf{i} T_{z} u^{-1}(\Gamma)
$$

In other words, if $z \in u^{-1}(\Gamma)$ and $u(z)=\gamma(t)$, then a nonzero tangent vector $\zeta \in T_{z} u^{-1}(\Gamma)$ is positive if and only if the pair $(\dot{\gamma}(t), d u(z) \mathbf{i} \zeta)$ is a positive basis of $T_{\gamma(t)} \Sigma$. Then the boundary orientation of $u^{-1}(\Gamma)$ at the elements of $u^{-1}(\gamma(1))$ agrees with the algebraic count in the definition of $\mathrm{w}(\gamma(1))$, at the elements of $u^{-1}(\gamma(-1))$ is opposite to the algebraic count in the definition of $\mathrm{w}(\gamma(-1))$, and at the elements of $u^{-1}(\gamma(0)) \cap \mathbb{R}$ is opposite to the algebraic count in the definition of $\nu(\gamma(0))$. Hence

$$
\mathrm{w}(\gamma(1))=\mathrm{w}(\gamma(-1))+\nu(\gamma(0)) .
$$

In other words the value of ν at a point in $\alpha \backslash \beta$ is equal to the value of w slightly to the left of α minus the value of w slightly to the right of α. Likewise, the value of ν at a point in $\beta \backslash \alpha$ is equal to the value of w slightly to the right of β minus the value of w slightly to the left of β. This proves Lemma 2.3.

Theorem 2.4. (i) Two elements of \mathcal{D} belong to the same connected component of \mathcal{D} if and only if they have the same (α, β)-trace.
(ii) Assume Σ is diffeomorphic to the two-sphere. Then $\Lambda=(x, y, \mathrm{w})$ is an (α, β)-trace if and only if $\partial \mathrm{w}$ is an (x, y)-trace.
(iii) Assume Σ is not diffeomorphic to the two-sphere and let $x, y \in \alpha \cap \beta$. If ν is an (x, y)-trace, then there is a unique two-chain w such that $\Lambda:=(x, y, \mathrm{w})$ is an (α, β)-trace and $\partial \mathrm{w}=\nu$.
Proof. We prove (i). "Only if" follows from the standard arguments in degree theory as in Milnor [6]. To prove "if", fix two intersection points

$$
x, y \in \alpha \cap \beta
$$

and, for $X=\Sigma, \alpha, \beta$, denote by $\mathcal{P}(x, y ; X)$ the space of all smooth curves $\gamma:[0,1] \rightarrow X$ satisfying $\gamma(0)=x$ and $\gamma(1)=y$. Every $u \in \mathcal{D}(x, y)$ determines smooth paths $\gamma_{u, \alpha} \in \mathcal{P}(x, y ; \alpha)$ and $\gamma_{u, \beta} \in \mathcal{P}(x, y ; \beta)$ via

$$
\begin{equation*}
\gamma_{u, \alpha}(s):=u(-\cos (\pi s), 0), \quad \gamma_{u, \beta}(s)=u(-\cos (\pi s), \sin (\pi s)) . \tag{5}
\end{equation*}
$$

These paths are homotopic in Σ with fixed endpoints. An explicit homotopy is the map

$$
F_{u}:=u \circ \varphi:[0,1]^{2} \rightarrow \Sigma
$$

where $\varphi:[0,1]^{2} \rightarrow \mathbb{D}$ is the map

$$
\varphi(s, t):=(-\cos (\pi s), t \sin (\pi s)) .
$$

By Lemma 2.3, he homotopy class of $\gamma_{u, \alpha}$ in $\mathcal{P}(x, y ; \alpha)$ is uniquely determined by $\nu_{\alpha}:=\left.\partial \mathrm{w}_{u}\right|_{\alpha \backslash \beta}: \alpha \backslash \beta \rightarrow \mathbb{Z}$ and that of $\gamma_{u, \beta}$ in $\mathcal{P}(x, y ; \beta)$ is uniquely determined by $\nu_{\beta}:=-\left.\partial \mathrm{w}_{u}\right|_{\beta \backslash \alpha}: \beta \backslash \alpha \rightarrow \mathbb{Z}$. Hence they are both uniquely determined by the (α, β)-trace of u. If Σ is not diffeomorphic to the 2 -sphere the assertion follows from the fact that each component of $\mathcal{P}(x, y ; \Sigma)$ is contractible (because the universal cover of Σ is diffeomorphic to the complex plane). Now assume Σ is diffeomorphic to the 2 -sphere. Then $\pi_{1}(\mathcal{P}(x, y ; \Sigma))=\mathbb{Z}$ acts on $\pi_{0}(\mathcal{D})$ because the correspondence $u \mapsto F_{u}$ identifies $\pi_{0}(\mathcal{D})$ with a space of homotopy classes of paths in $\mathcal{P}(x, y ; \Sigma)$ connecting $\mathcal{P}(x, y ; \alpha)$ to $\mathcal{P}(x, y ; \beta)$. The induced action on the space of two-chains $\mathrm{w}: \Sigma \backslash(\alpha \cup \beta)$ is given by adding a global constant. Hence the map $u \mapsto \mathrm{w}$ induces an injective map

$$
\pi_{0}(\mathcal{D}(x, y)) \rightarrow\{2 \text {-chains }\}
$$

This proves (i).

We prove (ii) and (iii). Let w be a two-chain, suppose that

$$
\nu:=\partial \mathrm{w}
$$

is an (x, y)-trace, and denote

$$
\Lambda:=(x, y, \mathrm{w}) .
$$

Let $\gamma_{\alpha}:[0,1] \rightarrow \alpha$ and $\gamma_{\beta}:[0,1] \rightarrow \beta$ be as in Definition 2.1. Then there is a $u^{\prime} \in \mathcal{D}(x, y)$ such that the map $s \mapsto u^{\prime}(-\cos (\pi s), 0)$ is homotopic to γ_{α} and $s \mapsto u^{\prime}(-\cos (\pi s), \sin (\pi s))$ is homotopic to γ_{β}. By definition the (α, β)-trace of u^{\prime} is $\Lambda^{\prime}=\left(x, y, \mathrm{w}^{\prime}\right)$ for some two-chain w^{\prime}. By Lemma 2.3, we have

$$
\partial \mathrm{w}^{\prime}=\nu=\partial \mathrm{w}
$$

and hence $\mathrm{w}-\mathrm{w}^{\prime}=: d$ is constant. If Σ is not diffeomorphic to the two-sphere and Λ is the (α, β)-trace of some element $u \in \mathcal{D}$, then u is homotopic to u^{\prime} (as $\mathcal{P}(x, y ; \Sigma)$ is simply connected) and hence $d=0$ and $\Lambda=\Lambda^{\prime}$. If Σ is diffeomorphic to the 2 -sphere choose a smooth map $v: S^{2} \rightarrow \Sigma$ of degree d and replace u^{\prime} by the connected sum $u:=u^{\prime} \# v$. Then Λ is the (α, β)-trace of u. This proves Theorem 2.4.

Remark 2.5. Let $\Lambda=(x, y, \mathrm{w})$ be an (α, β)-trace and define

$$
\nu_{\alpha}:=\left.\partial \mathrm{w}\right|_{\alpha \backslash \beta}, \quad \nu_{\beta}:=-\left.\partial \mathrm{w}\right|_{\beta \backslash \alpha} .
$$

(i) The two-chain w is uniquely determined by the condition $\partial \mathrm{w}=\nu_{\alpha}-\nu_{\beta}$ and its value at one point. To see this, think of the embedded circles α and β as traintracks. Crossing α at a point $z \in \alpha \backslash \beta$ increases w by $\nu_{\alpha}(z)$ if the train comes from the left, and decreases it by $\nu_{\alpha}(z)$ if the train comes from the right. Crossing β at a point $z \in \beta \backslash \alpha$ decreases w by $\nu_{\beta}(z)$ if the train comes from the left and increases it by $\nu_{\beta}(z)$ if the train comes from the right. Moreover, ν_{α} extends continuously to $\alpha \backslash\{x, y\}$ and ν_{β} extends continuously to $\beta \backslash\{x, y\}$. At each intersection point $z \in(\alpha \cap \beta) \backslash\{x, y\}$ with intersection index +1 (respectively -1) the function w takes the values

$$
k, \quad k+\nu_{\alpha}(z), \quad k+\nu_{\alpha}(z)-\nu_{\beta}(z), \quad k-\nu_{\beta}(z)
$$

as we march counterclockwise (respectively clockwise) along a small circle surrounding the intersection point.
(ii) If Σ is not diffeomorphic to the 2-sphere then, by Theorem 2.4 (iii), the (α, β)-trace Λ is uniquely determined by its boundary $\partial \Lambda=\left(x, y, \nu_{\alpha}-\nu_{\beta}\right)$.
(iii) Assume Σ is not diffeomorphic to the 2 -sphere and choose a universal covering $\pi: \mathbb{C} \rightarrow \Sigma_{\dot{\tilde{\beta}}}$. Choose a point $\tilde{x} \in \pi^{-1}(x)$ and lifts $\tilde{\alpha}$ and $\tilde{\beta}$ of α and β such that $\tilde{x} \in \tilde{\alpha} \cap \tilde{\beta}$. Then Λ lifts to an $(\tilde{\alpha}, \tilde{\beta})$-trace

$$
\tilde{\Lambda}=(\tilde{x}, \tilde{y}, \tilde{\mathrm{w}}) .
$$

More precisely, the one chain $\nu:=\nu_{\alpha}-\nu_{\beta}=\partial \mathrm{w}$ is an (x, y)-trace, by Lemma 2.3. The paths $\gamma_{\alpha}:[0,1] \rightarrow \alpha$ and $\gamma_{\beta}:[0,1] \rightarrow \beta$ in Definition 2.1 lift to unique paths $\gamma_{\tilde{\alpha}}:[0,1] \rightarrow \tilde{\alpha}$ and $\gamma_{\tilde{\beta}}:[0,1] \rightarrow \tilde{\beta}$ connecting \tilde{x} to \tilde{y}. For $\tilde{z} \in \mathbb{C} \backslash(\tilde{A} \cup \tilde{B})$ the number $\tilde{\mathrm{w}}(\tilde{z})$ is the winding number of the loop $\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}$ about \tilde{z} (by Rouché's theorem). The two-chain w is then given by

$$
\mathrm{w}(z)=\sum_{\tilde{z} \in \pi^{-1}(z)} \tilde{\mathrm{w}}(\tilde{z}), \quad z \in \Sigma \backslash(\alpha \cup \beta)
$$

To see this, lift an element $u \in \mathcal{D}(x, y)$ with (α, β)-trace Λ to the universal cover to obtain an element $\tilde{u} \in \mathcal{D}(\tilde{x}, \tilde{y})$ with $\Lambda_{\tilde{u}}=\tilde{\Lambda}$ and consider the degree.

Definition 2.6 (Catenation). Let $x, y, z \in \alpha \cap \beta$. The catenation of two (α, β)-traces $\Lambda=(x, y, \mathrm{w})$ and $\Lambda^{\prime}=\left(y, z, \mathrm{w}^{\prime}\right)$ is defined by

$$
\Lambda \# \Lambda^{\prime}:=\left(x, z, \mathrm{w}+\mathrm{w}^{\prime}\right) .
$$

Let $u \in \mathcal{D}(x, y)$ and $u^{\prime} \in \mathcal{D}(y, z)$ and suppose that u and u^{\prime} are constant near the ends $\pm 1 \in \mathbb{D}$. For $0<\lambda<1$ sufficiently close to one the λ-catenation of u and u^{\prime} is the map $u \#_{\lambda} u^{\prime} \in \mathcal{D}(x, z)$ defined by

$$
\left(u \#_{\lambda} u^{\prime}\right)(\zeta):= \begin{cases}u\left(\frac{\zeta+\lambda}{1+\lambda \zeta}\right), & \text { for } \operatorname{Re} \zeta \leq 0 \\ u^{\prime}\left(\frac{\zeta-\lambda}{1-\lambda \zeta}\right), & \text { for } \operatorname{Re} \zeta \geq 0\end{cases}
$$

Lemma 2.7. If $u \in \mathcal{D}(x, y)$ and $u^{\prime} \in \mathcal{D}(y, z)$ are as in Definition 2.6 then

$$
\Lambda_{u \# \lambda u^{\prime}}=\Lambda_{u} \# \Lambda_{u^{\prime}} .
$$

Thus the catenation of two (α, β)-traces is again an (α, β)-trace.
Proof. This follows directly from the definitions.

3 The Maslov Index

Definition 3.1. Let $x, y \in \alpha \cap \beta$ and $u \in \mathcal{D}(x, y)$. Choose an orientation preserving trivialization

$$
\mathbb{D} \times \mathbb{R}^{2} \rightarrow u^{*} T \Sigma:(z, \zeta) \mapsto \Phi(z) \zeta
$$

and consider the Lagrangian paths

$$
\lambda_{0}, \lambda_{1}:[0,1] \rightarrow \mathbb{R P}^{1}
$$

given by

$$
\begin{aligned}
& \lambda_{0}(s):=\Phi(-\cos (\pi s), 0)^{-1} T_{u(-\cos (\pi s), 0)} \alpha, \\
& \lambda_{1}(s):=\Phi(-\cos (\pi s), \sin (\pi s))^{-1} T_{u(-\cos (\pi s), \sin (\pi s))} \beta .
\end{aligned}
$$

The Viterbo-Maslov index of u is defined as the relative Maslov index of the pair of Lagrangian paths $\left(\lambda_{0}, \lambda_{1}\right)$ and will be denoted by

$$
\mu(u):=\mu\left(\Lambda_{u}\right):=\mu\left(\lambda_{0}, \lambda_{1}\right)
$$

By the naturality and homotopy axioms for the relative Maslov index (see for example [8]), the number $\mu(u)$ is independent of the choice of the trivialization and depends only on the homotopy class of u; hence it depends only on the (α, β)-trace of u, by Theorem 2.4. The relative Maslov index $\mu\left(\lambda_{0}, \lambda_{1}\right)$ is the degree of the loop in $\mathbb{R P}^{1}$ obtained by traversing λ_{0}, followed by a counterclockwise turn from $\lambda_{0}(1)$ to $\lambda_{1}(1)$, followed by traversing λ_{1} in reverse time, followed by a clockwise turn from $\lambda_{1}(0)$ to $\lambda_{0}(0)$. This index was first defined by Viterbo [9] (in all dimensions). Another exposition is contained in [8].

Remark 3.2. The Viterbo-Maslov index is additive under catenation, i.e. if

$$
\Lambda=(x, y, \mathrm{w}), \quad \Lambda^{\prime}=\left(y, z, \mathrm{w}^{\prime}\right)
$$

are (α, β)-traces then

$$
\mu\left(\Lambda \# \Lambda^{\prime}\right)=\mu(\Lambda)+\mu\left(\Lambda^{\prime}\right)
$$

For a proof of this formula see $[9,8]$.

Definition 3.3. Let $\Lambda=(x, y, \mathrm{w})$ be an (α, β)-trace and

$$
\nu_{\alpha}:=\left.\partial \mathrm{w}\right|_{\alpha \backslash \beta}, \quad \nu_{\beta}:=-\left.\partial \mathrm{w}\right|_{\beta \backslash \alpha} .
$$

Λ is said to satisfy the arc condition if

$$
\begin{equation*}
x \neq y, \quad \min \left|\nu_{\alpha}\right|=\min \left|\nu_{\beta}\right|=0 . \tag{6}
\end{equation*}
$$

When Λ satisfies the arc condition there are $\operatorname{arcs} A \subset \alpha$ and $B \subset \beta$ from x to y such that

$$
\nu_{\alpha}(z)=\left\{\begin{align*}
\pm 1, & \text { if } z \in A, \tag{7}\\
0, & \text { if } z \in \alpha \backslash \bar{A}, \quad \nu_{\beta}(z)=\left\{\begin{array}{rl}
\pm 1, & \text { if } z \in B \\
0, & \text { if } z \in \beta \backslash \bar{B} .
\end{array} . . \begin{array}{rl}
\end{array} . \quad \begin{array}{rl}
\end{array}\right)
\end{align*}\right.
$$

Here the plus sign is chosen iff the orientation of A from x to y agrees with that of α, respectively the orientation of B from x to y agrees with that of β. In this situation the quadruple (x, y, A, B) and the triple $(x, y, \partial \mathrm{w})$ determine one another and we also write

$$
\partial \Lambda=(x, y, A, B)
$$

for the boundary of Λ. When $u \in \mathcal{D}$ and $\Lambda_{u}=(x, y, \mathrm{w})$ satisfies the arc condition and $\partial \Lambda_{u}=(x, y, A, B)$ then

$$
s \mapsto u(-\cos (\pi s), 0)
$$

is homotopic in α to a path traversing A and the path

$$
s \mapsto u(-\cos (\pi s), \sin (\pi s))
$$

is homotopic in β to a path traversing B.
Theorem 3.4. Let $\Lambda=(x, y, \mathrm{w})$ be an (α, β)-trace. For $z \in \alpha \cap \beta$ denote by $m_{z}(\Lambda)$ the sum of the four values of w encountered when walking along a small circle surrounding z. Then the Viterbo-Maslov index of Λ is given by

$$
\begin{equation*}
\mu(\Lambda)=\frac{m_{x}(\Lambda)+m_{y}(\Lambda)}{2} \tag{8}
\end{equation*}
$$

We first prove the result for the 2-plane and the 2 -sphere (Section 4). When Σ is not simply connected we reduce the result to the case of the 2 -plane (Section 5). The key is the identity

$$
\begin{equation*}
m_{g \tilde{x}}(\tilde{\Lambda})+m_{g^{-1} \tilde{y}}(\tilde{\Lambda})=0 \tag{9}
\end{equation*}
$$

for every lift $\tilde{\Lambda}$ to the universal cover and every deck transformation $g \neq \mathrm{id}$.

4 The Simply Connected Case

A connected oriented 2-manifold Σ is called planar if it admits an (orientation preserving) embedding into the complex plane.

Proposition 4.1. Equation (8) holds when Σ is planar.
Proof. Assume first that $\Sigma=\mathbb{C}$ and $\Lambda=(x, y, \mathrm{w})$ satisfies the arc condition. Thus the boundary of Λ has the form

$$
\partial \Lambda=(x, y, A, B)
$$

where $A \subset \alpha$ and $B \subset \beta$ are arcs from x to y and $\mathrm{w}(z)$ is the winding number of the loop $A-B$ about the point $z \in \Sigma \backslash(A \cup B)$ (see Remark 2.5). Hence the formula (8) can be written in the form

$$
\begin{equation*}
\mu(\Lambda)=2 k_{x}+2 k_{y}+\frac{\varepsilon_{x}-\varepsilon_{y}}{2} . \tag{10}
\end{equation*}
$$

Here $\varepsilon_{z}=\varepsilon_{z}(\Lambda) \in\{+1,-1\}$ denotes the intersection index of A and B at a point $z \in A \cap B, k_{x}=k_{x}(\Lambda)$ denotes the value of the winding number w at a point in $\alpha \backslash A$ close to x, and $k_{y}=k_{y}(\Lambda)$ denotes the value of w at a point in $\alpha \backslash A$ close to y. We now prove (10) under the assumption that Λ satisfies the arc condition. The proof is by induction on the number of intersection points of B and α and has seven steps.
Step 1. We may assume without loss of generality that

$$
\begin{equation*}
\Sigma=\mathbb{C}, \quad \alpha=\mathbb{R}, \quad A=[x, y], \quad x<y \tag{11}
\end{equation*}
$$

and $B \subset \mathbb{C}$ is an embedded arc from x to y that is transverse to \mathbb{R}.
Choose a diffeomorphism from Σ to \mathbb{C} that maps A to a bounded closed interval and maps x to the left endpoint of A. If α is not compact the diffeomorphism can be chosen such that it also maps α to \mathbb{R}. If α is an embedded circle the diffeomorphism can be chosen such that its restriction to B is transverse to \mathbb{R}; now replace the image of α by \mathbb{R}. This proves Step 1 .
Step 2. Assume (11) and let $\bar{\Lambda}:=(x, y, z \mapsto-\mathrm{w}(\bar{z}))$ be the $(\alpha, \bar{\beta})$-trace obtained from Λ by complex conjugation. Then Λ satisfies (10) if and only if $\bar{\Lambda}$ satisfies (10).
Step 2 follows from the fact that the numbers $\mu, k_{x}, k_{y}, \varepsilon_{x}, \varepsilon_{y}$ change sign under complex conjugation.

Step 3. Assume (11). If $B \cap \mathbb{R}=\{x, y\}$ then Λ satisfies (10).
In this case B is contained in the upper or lower closed half plane and the loop $A \cup B$ bounds a disc contained in the same half plane. By Step 1 we may assume that B is contained in the upper half space. Then $\varepsilon_{x}=1, \varepsilon_{y}=-1$, and $\mu(\Lambda)=1$. Moreover, the winding number w is one in the disc encircled by A and B and is zero in the complement of its closure. Since the intervals $(-\infty, 0)$ and $(0, \infty)$ are contained in this complement, we have $k_{x}=k_{y}=0$. This proves Step 3 .
Step 4. Assume (11) and $\#(B \cap \mathbb{R})>2$, follow the arc of B, starting at x, and let x^{\prime} be the next intersection point with \mathbb{R}. Assume $x^{\prime}<x$, denote by B^{\prime} the arc in B from x^{\prime} to y, and let $A^{\prime}:=\left[x^{\prime}, y\right]$ (see Figure 1). If the (α, β)-trace Λ^{\prime} with boundary $\partial \Lambda^{\prime}=\left(x^{\prime}, y, A^{\prime}, B^{\prime}\right)$ satisfies (10) so does Λ.

Figure 1: Maslov index and catenation: $x^{\prime}<x<y$.
By Step 2 we may assume $\varepsilon_{x}(\Lambda)=1$. Orient B from x to y. The ViterboMaslov index of Λ is minus the Maslov index of the path $B \rightarrow \mathbb{R} P^{1}: z \mapsto T_{z} B$, relative to the Lagrangian subspace $\mathbb{R} \subset \mathbb{C}$. Since the Maslov index of the arc in B from x to x^{\prime} is +1 we have

$$
\begin{equation*}
\mu(\Lambda)=\mu\left(\Lambda^{\prime}\right)-1 \tag{12}
\end{equation*}
$$

Since the orientations of A^{\prime} and B^{\prime} agree with those of A and B we have

$$
\begin{equation*}
\varepsilon_{x^{\prime}}\left(\Lambda^{\prime}\right)=\varepsilon_{x^{\prime}}(\Lambda)=-1, \quad \varepsilon_{y}\left(\Lambda^{\prime}\right)=\varepsilon_{y}(\Lambda) \tag{13}
\end{equation*}
$$

Now let $x_{1}<x_{2}<\cdots<x_{m}<x$ be the intersection points of \mathbb{R} and B in the interval $(-\infty, x)$ and let $\varepsilon_{i} \in\{-1,+1\}$ be the intersection index of \mathbb{R} and B at x_{i}. Then there is an integer $\ell \in\{1, \ldots, m\}$ such that $x_{\ell}=x^{\prime}$ and $\varepsilon_{\ell}=-1$. Moreover, the winding number w slightly to the left of x is

$$
k_{x}(\Lambda)=\sum_{i=1}^{m} \varepsilon_{i} .
$$

It agrees with the value of w slightly to the right of $x^{\prime}=x_{\ell}$. Hence

$$
\begin{equation*}
k_{x}(\Lambda)=\sum_{i=1}^{\ell} \varepsilon_{i}=\sum_{i=1}^{\ell-1} \varepsilon_{i}-1=k_{x^{\prime}}\left(\Lambda^{\prime}\right)-1, \quad k_{y}\left(\Lambda^{\prime}\right)=k_{y}(\Lambda) . \tag{14}
\end{equation*}
$$

It follows from equation (10) for Λ^{\prime} and equations (12), (13), and (14) that

$$
\begin{aligned}
\mu(\Lambda) & =\mu\left(\Lambda^{\prime}\right)-1 \\
& =2 k_{x^{\prime}}\left(\Lambda^{\prime}\right)+2 k_{y}\left(\Lambda^{\prime}\right)+\frac{\varepsilon_{x^{\prime}}\left(\Lambda^{\prime}\right)-\varepsilon_{y}\left(\Lambda^{\prime}\right)}{2}-1 \\
& =2 k_{x^{\prime}}\left(\Lambda^{\prime}\right)+2 k_{y}\left(\Lambda^{\prime}\right)+\frac{-1-\varepsilon_{y}(\Lambda)}{2}-1 \\
& =2 k_{x^{\prime}}\left(\Lambda^{\prime}\right)+2 k_{y}\left(\Lambda^{\prime}\right)+\frac{1-\varepsilon_{y}(\Lambda)}{2}-2 \\
& =2 k_{x}(\Lambda)+2 k_{y}(\Lambda)+\frac{\varepsilon_{x}(\Lambda)-\varepsilon_{y}(\Lambda)}{2} .
\end{aligned}
$$

This proves Step 4.
Step 5. Assume (11) and $\#(B \cap \mathbb{R})>2$, follow the arc of B, starting at x, and let x^{\prime} be the next intersection point with \mathbb{R}. Assume $x<x^{\prime}<y$, denote by B^{\prime} the arc in B from x^{\prime} to y, and let $A^{\prime}:=\left[x^{\prime}, y\right]$ (see Figure 2). If the (α, β)-trace Λ^{\prime} with boundary $\partial \Lambda^{\prime}=\left(x^{\prime}, y, A^{\prime}, B^{\prime}\right)$ satisfies (10) so does Λ.

Figure 2: Maslov index and catenation: $x<x^{\prime}<y$.
By Step 2 we may assume $\varepsilon_{x}(\Lambda)=1$. Since the Maslov index of the arc in B from x to x^{\prime} is -1 , we have

$$
\begin{equation*}
\mu(\Lambda)=\mu\left(\Lambda^{\prime}\right)+1 \tag{15}
\end{equation*}
$$

Since the orientations of A^{\prime} and B^{\prime} agree with those of A and B we have

$$
\begin{equation*}
\varepsilon_{x^{\prime}}\left(\Lambda^{\prime}\right)=\varepsilon_{x^{\prime}}(\Lambda)=-1, \quad \varepsilon_{y}\left(\Lambda^{\prime}\right)=\varepsilon_{y}(\Lambda) \tag{16}
\end{equation*}
$$

Now let $x<x_{1}<x_{2}<\cdots<x_{m}<x^{\prime}$ be the intersection points of \mathbb{R} and B in the interval $\left(x, x^{\prime}\right)$ and let $\varepsilon_{i} \in\{-1,+1\}$ be the intersection index of \mathbb{R} and B at x_{i}. Since the value of w slightly to the left of x^{\prime} agrees with the value of w slightly to the right of x we have

$$
\sum_{i=1}^{m} \varepsilon_{i}=0
$$

Since $k_{x^{\prime}}\left(\Lambda^{\prime}\right)$ is the sum of the intersection indices of \mathbb{R} and B^{\prime} at all points to the left of x^{\prime} we obtain

$$
\begin{equation*}
k_{x^{\prime}}\left(\Lambda^{\prime}\right)=k_{x}(\Lambda)+\sum_{i=1}^{m} \varepsilon_{i}=k_{x}(\Lambda), \quad k_{y}\left(\Lambda^{\prime}\right)=k_{y}(\Lambda) . \tag{17}
\end{equation*}
$$

It follows from equation (10) for Λ^{\prime} and equations (15), (16), and (17) that

$$
\begin{aligned}
\mu(\Lambda) & =\mu\left(\Lambda^{\prime}\right)+1 \\
& =2 k_{x^{\prime}}\left(\Lambda^{\prime}\right)+2 k_{y}\left(\Lambda^{\prime}\right)+\frac{\varepsilon_{x^{\prime}}\left(\Lambda^{\prime}\right)-\varepsilon_{y}\left(\Lambda^{\prime}\right)}{2}+1 \\
& =2 k_{x}(\Lambda)+2 k_{y}(\Lambda)+\frac{-1-\varepsilon_{y}(\Lambda)}{2}+1 \\
& =2 k_{x}(\Lambda)+2 k_{y}(\Lambda)+\frac{\varepsilon_{x}(\Lambda)-\varepsilon_{y}(\Lambda)}{2} .
\end{aligned}
$$

This proves Step 5.
Step 6. Assume (11) and $\#(B \cap \mathbb{R})>2$, follow the arc of B, starting at x, and let y^{\prime} be the next intersection point with \mathbb{R}. Assume $y^{\prime}>y$. Denote by B^{\prime} the arc in B from y to y^{\prime}, and let $A^{\prime}:=\left[y, y^{\prime}\right]$ (see Figure 3). If the (α, β)-trace Λ^{\prime} with boundary $\partial \Lambda^{\prime}=\left(y, y^{\prime}, A^{\prime}, B^{\prime}\right)$ satisfies (10) so does Λ.
By Step 2 we may assume $\varepsilon_{x}(\Lambda)=1$. Since the orientation of B^{\prime} from y to y^{\prime} is opposite to the orientation of B and the Maslov index of the arc in B from x to y^{\prime} is -1 , we have

$$
\begin{equation*}
\mu(\Lambda)=1-\mu\left(\Lambda^{\prime}\right) \tag{18}
\end{equation*}
$$

Using again the fact that the orientation of B^{\prime} is opposite to the orientation of B we have

$$
\begin{equation*}
\varepsilon_{y}\left(\Lambda^{\prime}\right)=-\varepsilon_{y}(\Lambda), \quad \varepsilon_{y^{\prime}}\left(\Lambda^{\prime}\right)=-\varepsilon_{y^{\prime}}(\Lambda)=1 . \tag{19}
\end{equation*}
$$

Figure 3: Maslov index and catenation: $x<y<y^{\prime}$.
Now let $x_{1}<x_{2}<\cdots<x_{m}$ be all intersection points of \mathbb{R} and B and let $\varepsilon_{i} \in\{-1,+1\}$ be the intersection index of \mathbb{R} and B at x_{i}. Choose

$$
j<k<\ell
$$

such that

$$
x_{j}=x, \quad x_{k}=y, \quad x_{\ell}=y^{\prime} .
$$

Then

$$
\varepsilon_{j}=\varepsilon_{x}(\Lambda)=1, \quad \varepsilon_{k}=\varepsilon_{y}(\Lambda), \quad \varepsilon_{\ell}=\varepsilon_{y^{\prime}}(\Lambda)=-1
$$

and

$$
k_{x}(\Lambda)=\sum_{i<j} \varepsilon_{i}, \quad k_{y}(\Lambda)=-\sum_{i>k} \varepsilon_{i} .
$$

For $i \neq j$ the intersection index of \mathbb{R} and B^{\prime} at x_{i} is $-\varepsilon_{i}$. Moreover, $k_{y}\left(\Lambda^{\prime}\right)$ is the sum of the intersection indices of \mathbb{R} and B^{\prime} at all points to the left of y and $k_{y^{\prime}}\left(\Lambda^{\prime}\right)$ is minus the sum of the intersection indices of \mathbb{R} and B^{\prime} at all points to the right of y^{\prime}. Hence

$$
k_{y}\left(\Lambda^{\prime}\right)=-\sum_{i<j} \varepsilon_{i}-\sum_{j<i<k} \varepsilon_{i}, \quad k_{y^{\prime}}\left(\Lambda^{\prime}\right)=\sum_{i>\ell} \varepsilon_{i} .
$$

We claim that

$$
\begin{equation*}
k_{y^{\prime}}\left(\Lambda^{\prime}\right)+k_{x}(\Lambda)=0, \quad k_{y}\left(\Lambda^{\prime}\right)+k_{y}(\Lambda)=\frac{1+\varepsilon_{y}(\Lambda)}{2} . \tag{20}
\end{equation*}
$$

To see this, note that the value of the winding number w slightly to the left of x agrees with the value of w slightly to the right of y^{\prime}, and hence

$$
0=\sum_{i<j} \varepsilon_{i}+\sum_{i>\ell} \varepsilon_{i}=k_{x}(\Lambda)+k_{y^{\prime}}\left(\Lambda^{\prime}\right) .
$$

This proves the first equation in (20). To prove the second equation in (20) we observe that

$$
\sum_{i=1}^{m} \varepsilon_{i}=\frac{\varepsilon_{x}(\Lambda)+\varepsilon_{y}(\Lambda)}{2}
$$

and hence

$$
\begin{aligned}
k_{y}\left(\Lambda^{\prime}\right)+k_{y}(\Lambda) & =-\sum_{i<j} \varepsilon_{i}-\sum_{j<i<k} \varepsilon_{i}-\sum_{i>k} \varepsilon_{i} \\
& =\varepsilon_{j}+\varepsilon_{k}-\sum_{i=1}^{m} \varepsilon_{i} \\
& =\varepsilon_{x}(\Lambda)+\varepsilon_{y}(\Lambda)-\sum_{i=1}^{m} \varepsilon_{i} \\
& =\frac{\varepsilon_{x}(\Lambda)+\varepsilon_{y}(\Lambda)}{2} \\
& =\frac{1+\varepsilon_{y}(\Lambda)}{2} .
\end{aligned}
$$

This proves the second equation in (20).
It follows from equation (10) for Λ^{\prime} and equations (18), (19), and (20) that

$$
\begin{aligned}
\mu(\Lambda) & =1-\mu\left(\Lambda^{\prime}\right) \\
& =1-2 k_{y}\left(\Lambda^{\prime}\right)-2 k_{y^{\prime}}\left(\Lambda^{\prime}\right)-\frac{\varepsilon_{y}\left(\Lambda^{\prime}\right)-\varepsilon_{y^{\prime}}\left(\Lambda^{\prime}\right)}{2} \\
& =1-2 k_{y}\left(\Lambda^{\prime}\right)-2 k_{y^{\prime}}\left(\Lambda^{\prime}\right)-\frac{-\varepsilon_{y}(\Lambda)-1}{2} \\
& =2 k_{y}(\Lambda)-\varepsilon_{y}(\Lambda)+2 k_{x}(\Lambda)+\frac{1+\varepsilon_{y}(\Lambda)}{2} \\
& =2 k_{x}(\Lambda)+2 k_{y}(\Lambda)+\frac{1-\varepsilon_{y}(\Lambda)}{2} .
\end{aligned}
$$

Here the first equality follows from (18), the second equality follows from (10) for Λ^{\prime}, the third equality follows from (19), and the fourth equality follows from (20). This proves Step 6.
Step 7. Equation (8) holds when $\Sigma=\mathbb{C}$ and Λ satisfies the arc condition.
It follows from Steps 3-6 by induction that equation (10) holds for every (α, β)-trace $\Lambda=(x, y, \mathrm{w})$ whose boundary $\partial \Lambda=(x, y, A, B)$ satisfies (11). Hence Step 7 follows from Step 1.

Next we drop the assumption that Λ satisfies the arc condition and extend the result to planar surfaces. This requires a further three steps.
Step 8. Equation (8) holds when $\Sigma=\mathbb{C}$ and $x=y$.
Under these assumptions $\nu_{\alpha}:=\left.\partial \mathrm{w}\right|_{\alpha \backslash \beta}$ and $\nu_{\beta}:=-\left.\partial \mathrm{w}\right|_{\beta \backslash \alpha}$ are constant. There are four cases.
Case 1. α is an embedded circle and β is not an embedded circle. In this case we have $\nu_{\beta} \equiv 0$ and $B=\{x\}$. Moroeover, α is the boundary of a unique disc Δ_{α} and we assume that α is oriented as the boundary of Δ_{α}. Then the path $\gamma_{\alpha}:[0,1] \rightarrow \Sigma$ in Definition 2.1 satisfies $\gamma_{\alpha}(0)=\gamma_{\alpha}(1)=x$ and is homotopic to $\nu_{\alpha} \alpha$. Hence

$$
m_{x}(\Lambda)=m_{y}(\Lambda)=2 \nu_{\alpha}=\mu(\Lambda)
$$

Here the last equation follows from the fact that Λ can be obtained as the catenation of ν_{α} copies of the disc Δ_{α}.
Case 2. α is not an embedded circle and β is an embedded circle. This follows from Case 1 by interchanging α and β.
Case 3. α and β are embedded circles. In this case there is a unique pair of embedded discs Δ_{α} and Δ_{β} with boundaries α and β, respectively. Orient α and β as the boundaries of these discs. Then, for every $z \in \Sigma \backslash \alpha \cup \beta$, we have

$$
\mathrm{w}(z)= \begin{cases}\nu_{\alpha}-\nu_{\beta}, & \text { for } z \in \Delta_{\alpha} \cap \Delta_{\beta}, \\ \nu_{\alpha}, & \text { for } z \in \Delta_{\alpha} \backslash \bar{\Delta}_{\beta}, \\ -\nu_{\beta}, & \text { for } z \in \Delta_{\beta} \backslash \bar{\Delta}_{\alpha}, \\ 0, & \text { for } z \in \Sigma \backslash \bar{\Delta}_{\alpha} \cup \bar{\Delta}_{\beta} .\end{cases}
$$

Hence

$$
m_{x}(\Lambda)=m_{y}(\Lambda)=2 \nu_{\alpha}-2 \nu_{\beta}=\mu(\Lambda)
$$

Here the last equation follows from the fact Λ can be obtained as the catenation of ν_{α} copies of the disc Δ_{α} (with the orientation inherited from Σ) and ν_{β} copies of $-\Delta_{\beta}$ (with the opposite orientation).
Case 4. Neither α nor β is an embedded circle. Under this assumption we have $\nu_{\alpha}=\nu_{\beta}=0$. Hence it follows from Theorem 2.4 that $\mathrm{w}=0$ and $\Lambda=\Lambda_{u}$ for the constant map $u \equiv x \in \mathcal{D}(x, x)$. Thus

$$
m_{x}(\Lambda)=m_{y}(\Lambda)=\mu(\Lambda)=0
$$

This proves Step 8.

Step 9. Equation (8) holds when $\Sigma=\mathbb{C}$.
By Step 8 , it suffices to assume $x \neq y$. It follows from Theorem 2.4 that every $u \in \mathcal{D}(x, y)$ is homotopic to a catentation $u=u_{0} \# v$, where $u_{0} \in \mathcal{D}(x, y)$ satisfies the arc condition and $v \in \mathcal{D}(y, y)$. Hence it follows from Steps 7 and 8 that

$$
\begin{aligned}
\mu\left(\Lambda_{u}\right) & =\mu\left(\Lambda_{u_{0}}\right)+\mu\left(\Lambda_{v}\right) \\
& =\frac{m_{x}\left(\Lambda_{u_{0}}\right)+m_{y}\left(\Lambda_{u_{0}}\right)}{2}+m_{y}\left(\Lambda_{v}\right) \\
& =\frac{m_{x}\left(\Lambda_{u}\right)+m_{y}\left(\Lambda_{u}\right)}{2} .
\end{aligned}
$$

Here the last equation follows from the fact that $\mathrm{w}_{u}=\mathrm{w}_{u_{0}}+\mathrm{w}_{v}$ and hence $m_{z}\left(\Lambda_{u}\right)=m_{z}\left(\Lambda_{u_{0}}\right)+m_{z}\left(\Lambda_{v}\right)$ for every $z \in \alpha \cap \beta$. This proves Step 9 .

Step 10. Equation (8) holds when Σ is planar.
Choose an element $u \in \mathcal{D}(x, y)$ such that $\Lambda_{u}=\Lambda$. Modifying α and β on the complement of $u(\mathbb{D})$, if necessary, we may assume without loss of generality that α and β are mebedded circles. Let $\iota: \Sigma \rightarrow \mathbb{C}$ be an orientation preserving embedding. Then $\iota_{*} \Lambda:=\Lambda_{\iota \circ u}$ is an $(\iota(\alpha), \iota(\beta))$-trace in \mathbb{C} and hence satisfies (8) by Step 9 . Since $m_{\iota(x)}\left(\iota_{*} \Lambda\right)=m_{x}(\Lambda), m_{\iota(y)}\left(\iota_{*} \Lambda\right)=m_{y}(\Lambda)$, and $\mu\left(\iota_{*} \Lambda\right)=\mu(\Lambda)$ it follows that Λ also satisfies (8). This proves Step 10 and Proposition 4.1

Remark 4.2. Let $\Lambda=(x, y, A, B)$ be an (α, β)-trace in \mathbb{C} as in Step 1 in the proof of Theorem 3.4. Thus $x<y$ are real numbers, A is the interval $[x, y]$, and B is an embedded arc with endpoints x, y which is oriented from x to y and is transverse to \mathbb{R}. Thus $Z:=B \cap \mathbb{R}$ is a finite set. Define a map

$$
f: Z \backslash\{y\} \rightarrow Z \backslash\{x\}
$$

as follows. Given $z \in Z \backslash\{y\}$ walk along B towards y and let $f(z)$ be the next intersection point with \mathbb{R}. This map is bijective. Now let I be any of the three open intervals $(-\infty, x),(x, y),(y, \infty)$. Any arc in B from z to $f(z)$ with both endpoints in the same interval I can be removed by an isotopy of B which does not pass through x, y. Call Λ a reduced (α, β)-trace if $z \in I$ implies $f(z) \notin I$ for each of the three intervals. Then every (α, β)-trace is isotopic to a reduced (α, β^{\prime})-trace and the isotopy does not effect the numbers $\mu, k_{x}, k_{y}, \varepsilon_{x}, \varepsilon_{y}$.

Figure 4: Reduced (α, β)-traces in \mathbb{C}.

Let Z^{+}(respectively Z^{-}) denote the set of all points $z \in Z=B \cap \mathbb{R}$ where the positive tangent vectors in $T_{z} B$ point up (respectively down). One can prove that every reduced (α, β)-trace satisfies one of the following conditions.

Case 1: If $z \in Z^{+} \backslash\{y\}$ then $f(z)>z . \quad$ Case 2: $Z^{-} \subset[x, y]$.
Case 3: If $z \in Z^{-} \backslash\{y\}$ then $f(z)>z$. Case 4: $Z^{+} \subset[x, y]$.
(Examples with $\varepsilon_{x}=1$ and $\varepsilon_{y}=-1$ are depicted in Figure 4.) One can then show directly that the reduced (α, β)-traces satisfy equation (10). This gives rise to an alternative proof of Proposition 4.1 via case distinction.

Proof of Theorem 3.4 in the Simply Connected Case. If Σ is diffeomorphic to the 2-plane the result has been established in Proposition 4.1. Hence assume

$$
\Sigma=S^{2}
$$

Let $u \in \mathcal{D}(x, y)$. If u is not surjective the assertion follows from the case of the complex plane (Proposition 4.1) via stereographic projection. Hence assume u is surjective and choose a regular value $z \in S^{2} \backslash(\alpha \cup \beta)$ of u. Denote

$$
u^{-1}(z)=\left\{z_{1}, \ldots, z_{k}\right\} .
$$

For $i=1, \ldots, k$ let $\varepsilon_{i}= \pm 1$ according to whether or not the differential $d u\left(z_{i}\right): \mathbb{C} \rightarrow T_{z} \Sigma$ is orientation preserving. Choose an open disc $\Delta \subset S^{2}$ centered at z such that

$$
\bar{\Delta} \cap(\alpha \cup \beta)=\emptyset
$$

and $u^{-1}(\Delta)$ is a union of open neighborhoods $U_{i} \subset \mathbb{D}$ of z_{i} with disjoint closures such that

$$
\left.u\right|_{U_{i}}: U_{i} \rightarrow \Delta
$$

is a diffeomorphism for each i which extends to a neighborhood of \bar{U}_{i}. Now choose a continuous map $u^{\prime}: \mathbb{D} \rightarrow S^{2}$ which agrees with u on $\mathbb{D} \backslash \bigcup_{i} U_{i}$ and restricts to a diffeomorphism from \bar{U}_{i} to $S^{2} \backslash \Delta$ for each i. Then z does not belong to the image of u^{\prime} and hence equation (8) holds for u^{\prime} (after smoothing along the boundaries ∂U_{i}). Moreover, the diffeomorphism

$$
\left.u^{\prime}\right|_{\bar{U}_{i}}: \bar{U}_{i} \rightarrow S^{2} \backslash \Delta
$$

is orientation preserving if and only if $\varepsilon_{i}=-1$. Hence

$$
\begin{gathered}
\mu\left(\Lambda_{u}\right)=\mu\left(\Lambda_{u^{\prime}}\right)+4 \sum_{i=1}^{k} \varepsilon_{i}, \\
m_{x}\left(\Lambda_{u}\right)=m_{x}\left(\Lambda_{u^{\prime}}\right)+4 \sum_{i=1}^{k} \varepsilon_{i}, \\
m_{y}\left(\Lambda_{u}\right)=m_{y}\left(\Lambda_{u^{\prime}}\right)+4 \sum_{i=1}^{k} \varepsilon_{i} .
\end{gathered}
$$

By Proposition 4.1 equation (8) holds for $\Lambda_{u^{\prime}}$ and hence it also holds for Λ_{u}. This proves Theorem 3.4 when Σ is simply connected.

5 The Non Simply Connected Case

The key step for extending Proposition 4.1 to non-simply connected twomanifolds is the next result about lifts to the universal cover.

Proposition 5.1. Suppose Σ is not diffeomorphic to the 2-sphere. Let $\Lambda=(x, y, \mathrm{w})$ be an (α, β)-trace and $\pi: \mathbb{C} \rightarrow \Sigma$ be a universal covering. Denote by $\Gamma \subset \operatorname{Diff}(\mathbb{C})$ the group of deck transformations. Choose an element $\tilde{x} \in \pi^{-1}(x)$ and let $\tilde{\alpha}$ and $\tilde{\beta}$ be the lifts of α and β through \tilde{x}. Let $\tilde{\Lambda}=(\tilde{x}, \tilde{y}, \tilde{\mathrm{w}})$ be the lift of Λ with left endpoint \tilde{x}. Then

$$
\begin{equation*}
m_{g \tilde{x}}(\tilde{\Lambda})+m_{g^{-1} \tilde{y}}(\tilde{\Lambda})=0 \tag{21}
\end{equation*}
$$

for every $g \in \Gamma \backslash\{i d\}$.

Lemma 5.2 (Annulus Reduction). Suppose Σ is not diffeomorphic to the 2 -sphere. Let $\Lambda, \pi, \Gamma, \tilde{\Lambda}$ be as in Proposition 5.1. If

$$
\begin{equation*}
m_{g \tilde{x}}(\tilde{\Lambda})-m_{g \tilde{y}}(\tilde{\Lambda})=m_{g^{-1} \tilde{y}}(\tilde{\Lambda})-m_{g^{-1} \tilde{x}}(\tilde{\Lambda}) \tag{22}
\end{equation*}
$$

for every $g \in \Gamma \backslash\{\mathrm{id}\}$ then equation (21) holds for every $g \in \Gamma \backslash\{\mathrm{id}\}$.
Proof. If (21) does not hold then there is a deck transformation $h \in \Gamma \backslash\{\mathrm{id}\}$ such that $m_{h \tilde{x}}(\tilde{\Lambda})+m_{h^{-1} \tilde{y}}(\tilde{\Lambda}) \neq 0$. Since there can only be finitely many such $h \in \Gamma \backslash\{\operatorname{id}\}$, there is an integer $k \geq 1$ such that $m_{h^{k} \tilde{x}}(\tilde{\Lambda})+m_{h^{-k} \tilde{y}}(\tilde{\Lambda}) \neq 0$ and $m_{h^{\ell} \tilde{x}}(\tilde{\Lambda})+m_{h^{-}-\tilde{y}}(\tilde{\Lambda})=0$ for every integer $\ell>k$. Define $g:=h^{k}$. Then

$$
\begin{equation*}
m_{g \tilde{x}}(\tilde{\Lambda})+m_{g^{-1} \tilde{y}}(\tilde{\Lambda}) \neq 0 \tag{23}
\end{equation*}
$$

and $m_{g^{k} \tilde{x}}(\tilde{\Lambda})+m_{g^{-k} \tilde{y}}(\tilde{\Lambda})=0$ for every integer $k \in \mathbb{Z} \backslash\{-1,0,1\}$. Define

$$
\Sigma_{0}:=\mathbb{C} / \Gamma_{0}, \quad \Gamma_{0}:=\left\{g^{k} \mid k \in \mathbb{Z}\right\}
$$

Then Σ_{0} is diffeomorphic to the annulus. Let $\pi_{0}: \mathbb{C} \rightarrow \Sigma_{0}$ be the obvious projection, define $\alpha_{0}:=\pi_{0}(\tilde{\alpha}), \beta_{0}:=\pi_{0}(\tilde{\beta})$, and let $\Lambda_{0}:=\left(x_{0}, y_{0}, \mathrm{w}_{0}\right)$ be the (α_{0}, β_{0})-trace in Σ_{0} with $x_{0}:=\pi_{0}(\tilde{x}), y_{0}:=\pi_{0}(\tilde{y})$, and

$$
\mathrm{w}_{0}\left(z_{0}\right):=\sum_{\tilde{z} \in \pi_{0}^{-1}\left(z_{0}\right)} \tilde{\mathrm{w}}(\tilde{z}), \quad z_{0} \in \Sigma_{0} \backslash\left(\alpha_{0} \cup \beta_{0}\right) .
$$

Then

$$
\begin{aligned}
& m_{x_{0}}\left(\Lambda_{0}\right)=m_{\tilde{x}}(\tilde{\Lambda})+\sum_{k \in \mathbb{Z} \backslash\{0\}} m_{g^{k} \tilde{x}}(\tilde{\Lambda}), \\
& m_{y_{0}}\left(\Lambda_{0}\right)=m_{\tilde{y}}(\tilde{\Lambda})+\sum_{k \in \mathbb{Z} \backslash\{0\}} m_{g^{-k} \tilde{y}}(\tilde{\Lambda}) .
\end{aligned}
$$

By Proposition 4.1 both $\tilde{\Lambda}$ and Λ_{0} satisfy equation (8) and they have the same Viterbo-Maslov index. Hence

$$
\begin{aligned}
0 & =\mu\left(\Lambda_{0}\right)-\mu(\tilde{\Lambda}) \\
& =\frac{m_{x_{0}}\left(\Lambda_{0}\right)+m_{y_{0}}\left(\Lambda_{0}\right)}{2}-\frac{m_{\tilde{x}}(\tilde{\Lambda})+m_{\tilde{y}}(\tilde{\Lambda})}{2} \\
& =\frac{1}{2} \sum_{k \neq 0}\left(m_{g^{k} \tilde{x}}(\tilde{\Lambda})+m_{g^{-k} \tilde{y}}(\tilde{\Lambda})\right) \\
& =m_{g \tilde{x}}(\tilde{\Lambda})+m_{g^{-1} \tilde{y}}(\tilde{\Lambda}) .
\end{aligned}
$$

Here the last equation follows from (22). This contradicts (23) and proves Lemma 5.2.

Lemma 5.3. Suppose Σ is not diffeomorphic to the 2 -sphere. Let Λ, π, Γ, $\tilde{\Lambda}$ be as in Proposition 5.1 and denote $\nu_{\tilde{\alpha}}:=\left.\partial \tilde{\mathrm{w}}\right|_{\tilde{\alpha} \backslash \tilde{\beta}}$ and $\nu_{\tilde{\beta}}:=-\left.\partial \tilde{\mathrm{w}}\right|_{\tilde{\beta} \backslash \tilde{\alpha}}$. Choose smooth paths

$$
\gamma_{\tilde{\alpha}}:[0,1] \rightarrow \tilde{\alpha}, \quad \gamma_{\tilde{\beta}}:[0,1] \rightarrow \tilde{\beta}
$$

from $\gamma_{\tilde{\alpha}}(0)=\gamma_{\tilde{\beta}}(0)=\tilde{x}$ to $\gamma_{\tilde{\alpha}}(1)=\gamma_{\tilde{\beta}}(1)=\tilde{y}$ such that $\gamma_{\tilde{\alpha}}$ is an immersion when $\nu_{\tilde{\alpha}} \not \equiv 0$ and constant when $\nu_{\tilde{\alpha}} \equiv 0$, the same holds for $\gamma_{\tilde{\beta}}$, and

$$
\begin{array}{lll}
\nu_{\tilde{\alpha}}(\tilde{z})=\operatorname{deg}\left(\gamma_{\tilde{\alpha}}, \tilde{z}\right) & \text { for } & \tilde{z} \in \tilde{\alpha} \backslash\{\tilde{x}, \tilde{y}\}, \\
\nu_{\tilde{\beta}}(\tilde{z})=\operatorname{deg}\left(\gamma_{\tilde{\beta}}, \tilde{z}\right) & \text { for } & \tilde{z} \in \tilde{\beta} \backslash\{\tilde{x}, \tilde{y}\} .
\end{array}
$$

Define

$$
\tilde{A}:=\gamma_{\tilde{\alpha}}([0,1]), \quad \tilde{B}:=\gamma_{\tilde{\beta}}([0,1])
$$

Then, for every $g \in \Gamma$, we have

$$
\begin{gather*}
g \tilde{x} \in \tilde{A} \quad \Longleftrightarrow \quad g^{-1} \tilde{y} \in \tilde{A}, \tag{24}\\
g \tilde{x} \notin \tilde{A} \quad \text { and } \quad g \tilde{y} \notin \tilde{A} \quad \Longleftrightarrow \quad \tilde{A} \cap g \tilde{A}=\emptyset \tag{25}\\
g \tilde{x} \in \tilde{A} \quad \text { and } \quad g \tilde{y} \in \tilde{A} \quad \Longleftrightarrow \quad g=\mathrm{id} \tag{26}
\end{gather*}
$$

The same holds with \tilde{A} replaced by \tilde{B}.
Proof. If α is a contractible embedded circle or not an embedded circle at all we have $\tilde{A} \cap g \tilde{A}=\emptyset$ whenever $g \neq \mathrm{id}$ and this implies (24), (25) and (26). Hence assume α is a noncontractible embedded circle. Then we may also assume, without loss of generality, that $\pi(\mathbb{R})=\alpha$, the map $\tilde{z} \mapsto \tilde{z}+1$ is a deck transformation, π maps the interval $[0,1)$ bijectively onto α, and $\tilde{x}, \tilde{y} \in \mathbb{R}=\tilde{\alpha}$ with $\tilde{x}<\tilde{y}$. Thus $\tilde{A}=[\tilde{x}, \tilde{y}]$ and, for every $k \in \mathbb{Z}$,

$$
\tilde{x}+k \in[\tilde{x}, \tilde{y}] \quad \Longleftrightarrow \quad 0 \leq k \leq \tilde{y}-\tilde{x} \quad \Longleftrightarrow \quad \tilde{y}-k \in[\tilde{x}, \tilde{y}] .
$$

Similarly, we have

$$
\tilde{x}+k, \tilde{y}+k \notin[\tilde{x}, \tilde{y}] \quad \Longleftrightarrow \quad[\tilde{x}+k, \tilde{y}+k] \cap[\tilde{x}, \tilde{y}]=\emptyset
$$

and

$$
\tilde{x}+k, \tilde{y}+k \in[\tilde{x}, \tilde{y}] \quad \Longleftrightarrow \quad[\tilde{x}+k, \tilde{y}+k] \subset[\tilde{x}, \tilde{y}] \quad \Longleftrightarrow \quad k=0
$$

This proves (24), (25), and (26) for the deck transformation $\tilde{z} \mapsto \tilde{z}+k$. If g is any other deck transformation, then we have

$$
\tilde{\alpha} \cap g \tilde{\alpha}=\emptyset
$$

and so (24), (25), and (26) are trivially satisfied. This proves Lemma 5.3.

Lemma 5.4 (Winding Number Comparison). Suppose Σ is not diffeomorphic to the 2-sphere. Let $\Lambda, \pi, \Gamma, \tilde{\Lambda}$ be as in Proposition 5.1, and let $\tilde{A}, \tilde{B} \subset \mathbb{C}$ be as in Lemma 5.3. Then the following holds.
(i) Equation (22) holds for every $g \in \Gamma$ that satisfies $g \tilde{x}, g \tilde{y} \notin \tilde{A} \cup \tilde{B}$.
(ii) If Λ satisfies the arc condition then (21) holds for every $g \in \Gamma \backslash\{\mathrm{id}\}$.

Proof. We prove (i). Let $g \in \Gamma$ such that $g \tilde{x}, g \tilde{y} \notin \tilde{A} \cup \tilde{B}$ and let $\gamma_{\tilde{\alpha}}, \gamma_{\tilde{\beta}}$ be as in Lemma 5.3. Then $\tilde{\mathrm{w}}(\tilde{z})$ is the winding number of the loop $\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}$ about the point $\tilde{z} \in \mathbb{C} \backslash(\tilde{A} \cup \tilde{B})$. Moreover, the paths

$$
g \gamma_{\tilde{\alpha}}:[0,1] \rightarrow \mathbb{C}, \quad g \gamma_{\tilde{\beta}}:[0,1] \rightarrow \mathbb{C}
$$

connect the points $g \tilde{x}, g \tilde{y} \in \mathbb{C} \backslash(\tilde{A} \cup \tilde{B})$. Hence

$$
\tilde{\mathrm{w}}(g \tilde{y})-\tilde{\mathrm{w}}(g \tilde{x})=\left(\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}\right) \cdot g \gamma_{\tilde{\alpha}}=\left(\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}\right) \cdot g \gamma_{\tilde{\beta}} .
$$

Similarly with g replaced by g^{-1}. Moreover, it follows from Lemma 5.3, that

$$
\tilde{A} \cap g \tilde{A}=\emptyset, \quad \tilde{B} \cap g^{-1} \tilde{B}=\emptyset
$$

Hence

$$
\begin{aligned}
\tilde{\mathrm{w}}(g \tilde{y})-\tilde{\mathrm{w}}(g \tilde{x}) & =\left(\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}\right) \cdot g \gamma_{\tilde{\alpha}} \\
& =g \gamma_{\tilde{\alpha}} \cdot \gamma_{\tilde{\beta}} \\
& =\gamma_{\tilde{\alpha}} \cdot g^{-1} \gamma_{\tilde{\beta}} \\
& =\left(\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}\right) \cdot g^{-1} \gamma_{\tilde{\beta}} \\
& =\tilde{\mathrm{w}}\left(g^{-1} \tilde{y}\right)-\tilde{\mathrm{w}}\left(g^{-1} \tilde{x}\right)
\end{aligned}
$$

Here we have used the fact that every $g \in \Gamma$ is an orientation preserving diffeomorphism of \mathbb{C}. Thus we have proved that

$$
\tilde{\mathrm{w}}(g \tilde{x})+\tilde{\mathrm{w}}\left(g^{-1} \tilde{y}\right)=\tilde{\mathrm{w}}(g \tilde{y})+\tilde{\mathrm{w}}\left(g^{-1} \tilde{x}\right)
$$

Since $g \tilde{x}, g \tilde{y} \notin \tilde{A} \cup \tilde{B}$, we have

$$
m_{g \tilde{x}}(\tilde{\Lambda})=4 \tilde{\mathrm{w}}(g \tilde{x}), \quad m_{g^{-1} \tilde{y}}(\tilde{\Lambda})=4 \tilde{\mathrm{w}}\left(g^{-1} \tilde{y}\right),
$$

and the same identities hold with g replaced by g^{-1}. This proves (i).
We prove (ii). If Λ satisfies the arc condition then $g \tilde{A} \cap \tilde{A}=\emptyset$ and $g \tilde{B} \cap \tilde{B}=\emptyset$ for every $g \in \Gamma \backslash\{\mathrm{id}\}$. In particular, for every $g \in \Gamma \backslash\{\mathrm{id}\}$, we have $g \tilde{x}, g \tilde{y} \notin \tilde{A} \cup \tilde{B}$ and hence (22) holds by (i). Hence it follows from Lemma 5.2 that (21) holds for every $g \in \Gamma \backslash\{\mathrm{id}\}$. This proves Lemma 5.4.

The next lemma deals with (α, β)-traces connecting a point $x \in \alpha \cap \beta$ to itself. An example on the annulus is depicted in Figure 5.

Lemma 5.5 (Isotopy Argument). Suppose Σ is not diffeomorphic to the 2 -sphere. Let $\Lambda, \pi, \Gamma, \tilde{\Lambda}$ be as in Proposition 5.1. Suppose that there is a deck transformation $g_{0} \in \underset{\tilde{\Lambda}}{\lceil } \backslash\{\mathrm{id}\}$ such that $\tilde{y}=g_{0} \tilde{x}$. Then Λ has Viterbo-Maslov index zero and $m_{g \tilde{x}}(\tilde{\Lambda})=0$ for every $g \in \Gamma \backslash\left\{\mathrm{id}, g_{0}\right\}$.

Figure 5: An (α, β)-trace on the annulus with $x=y$.

Proof. By assumption, we have $\tilde{\alpha}=g_{0} \tilde{\alpha}$ and $\tilde{\beta}=g_{0} \tilde{\beta}$. Hence α and β are noncontractible embedded circles and some iterate of α is homotopic to some iterate of β. Hence, by Lemma A.4, α must be homotopic to β (with some orientation). Hence we may assume, without loss of generality, that $\pi(\mathbb{R})=\alpha$, the map $\tilde{z} \mapsto \tilde{z}+1$ is a deck transformation, π maps the interval $[0,1)$ bijectively onto $\alpha, \mathbb{R}=\tilde{\alpha}, \tilde{x}=0 \in \tilde{\alpha} \cap \tilde{\beta}, \tilde{\beta}=\tilde{\beta}+1$, and that $\tilde{y}=\ell>0$ is an integer. Then g_{0} is the translation

$$
g_{0}(\tilde{z})=\tilde{z}+\ell .
$$

Let $\tilde{A}:=[0, \ell] \subset \tilde{\alpha}$ and let $\tilde{B} \subset \tilde{\beta}$ be the arc connecting 0 to ℓ. Then, for $\tilde{z} \in \mathbb{C} \backslash(\tilde{A} \cup \tilde{B})$, the integer $\tilde{\mathrm{w}}(\tilde{z})$ is the winding number of $\tilde{A}-\tilde{B}$ about \tilde{z}. Define the projection $\pi_{0}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
\pi_{0}(\tilde{z}):=e^{2 \pi \mathfrak{i} \tilde{z} / k}
$$

denote $\alpha_{0}:=\pi_{0}(\tilde{\alpha})=S^{1}$ and $\beta_{0}:=\pi(\tilde{\beta})$, and let $\Lambda_{0}=\left(1,1, \mathrm{w}_{0}\right)$ be the induced $\left(\alpha_{0}, \beta_{0}\right)$-trace in \mathbb{C} with $\mathrm{w}_{0}(z):=\sum_{\tilde{z} \in \pi^{-1}(z)} \tilde{\mathrm{w}}(\tilde{z})$. Then α_{0} and β_{0} are embedded circles and have the winding number ℓ about zero. Hence it follows from Step 8, Case 3 in the proof of Proposition 4.1 that Λ_{0} has Viterbo-Maslov index zero and satisfies $m_{x_{0}}\left(\Lambda_{0}\right)+m_{y_{0}}\left(\Lambda_{0}\right)=2 \mu\left(\Lambda_{0}\right)=0$. Hence $\tilde{\Lambda}$ also has Viterbo-Maslov index zero.

It remains to prove that $m_{g \tilde{x}}(\tilde{\Lambda})=0$ for every $g \in \Gamma \backslash\left\{i d, g_{0}\right\}$. To see this we use the fact that the embedded loops α and β are homotopic with fixed endpoint x. Hence, by a Theorem of Epstein, they are isotopic with fixed basepoint x (see [2, Theorem 4.1]). Thus there exists a smooth map $f: \mathbb{R} / \mathbb{Z} \times[0,1] \rightarrow \Sigma$ such that

$$
f(s, 0) \in \alpha, \quad f(s, 1) \in \beta, \quad f(0, t)=x
$$

for all $s \in \mathbb{R} / \mathbb{Z}$ and $t \in[0,1]$, and the map $\mathbb{R} / \mathbb{Z} \rightarrow \Sigma: s \mapsto f(s, t)$ is an embedding for every $s \in[0,1]$. Lift this homotopy to the universal cover to obtain a map $\tilde{f}: \mathbb{R} \times[0,1] \rightarrow \mathbb{C}$ such that $\pi \circ \tilde{f}=f$ and

$$
\tilde{f}(s, 0) \in[0,1], \quad \tilde{f}(s, 1) \in \tilde{B}_{1}, \quad \tilde{f}(0, t)=\tilde{x}, \quad \tilde{f}(s+1, t)=\tilde{f}(s, t)+1
$$

for all $s \in \mathbb{R}$ and $t \in[0,1]$. Here $\tilde{B}_{1} \subset \tilde{B}$ denotes the arc in \tilde{B} from 0 to 1 . Since the map $\mathbb{R} / \mathbb{Z} \rightarrow \Sigma: s \mapsto f(s, t)$ is injective for every t, we have

$$
g \tilde{x} \notin\{\tilde{x}, \tilde{x}+1, \ldots, \tilde{x}+\ell\} \quad \Longrightarrow \quad g \tilde{x} \notin \tilde{f}([0, \ell] \times[0,1])
$$

for every every $g \in \Gamma$. Now choose a smooth map $\tilde{u}: \mathbb{D} \rightarrow \mathbb{C}$ with $\Lambda_{\tilde{u}}=\tilde{\Lambda}$ (see Theorem 2.4). Define the homotopy $F_{\tilde{u}}:[0, \ell] \times[0,1] \rightarrow \mathbb{C}$ by $F_{\tilde{u}}(s, t):=\tilde{u}(-\cos (\pi s / \ell), t \sin (\pi s / \ell))$. Then, by Theorem $2.4, F_{\tilde{u}}$ is homotopic to $\left.\tilde{f}\right|_{[0, \ell] \times[0,1]}$ subject to the boundary conditions $\tilde{f}(s, 0) \in \tilde{\alpha}=\mathbb{R}$, $\tilde{f}(s, 1) \in \tilde{\beta}, \tilde{f}(0, t)=\tilde{x}, \tilde{f}(\ell, t)=\tilde{y}$. Hence, for every $\tilde{z} \in \mathbb{C} \backslash(\tilde{\alpha} \cup \tilde{\beta})$, we have

$$
\tilde{\mathrm{w}}(\tilde{z})=\operatorname{deg}(\tilde{u}, z)=\operatorname{deg}\left(F_{\tilde{u}}, \tilde{z}\right)=\operatorname{deg}(\tilde{f}, \tilde{z})
$$

In particular, choosing \tilde{z} near $g \tilde{x}$, we find $m_{g \tilde{x}}(\tilde{\Lambda})=4 \operatorname{deg}(\tilde{f}, g \tilde{x})=0$ for every $g \in \Gamma$ that is not one of the translations $\tilde{z} \mapsto \tilde{z}+k$ for $k=0,1, \ldots, \ell$. This proves the assertion in the case $\ell=1$.

If $\ell>1$ it remains to prove $m_{k}(\tilde{\Lambda})=0$ for $k=1, \ldots, \ell-1$. To see this, let $\tilde{A}_{1}:=[0,1], \tilde{B}_{1} \subset \tilde{B}$ be the arc from 0 to $1, \tilde{\mathrm{w}}_{1}(\tilde{z})$ be the winding number of $\tilde{A}_{1}-\tilde{B}_{1}$ about $\tilde{z} \in \mathbb{C} \backslash\left(\tilde{A}_{1} \cup \tilde{B}_{1}\right)$, and define $\tilde{\Lambda}_{1}:=\left(0,1, \tilde{\mathrm{w}}_{1}\right)$. Then, by what we have already proved, the $(\tilde{\alpha}, \tilde{\beta})$-trace $\tilde{\Lambda}_{1}$ satisfies $m_{g \tilde{x}}\left(\tilde{\Lambda}_{1}\right)=0$ for every $g \in \Gamma$ other than the translations by 0 or 1 . In particular, we have $m_{j}\left(\tilde{\Lambda}_{1}\right)=0$ for every $j \in \mathbb{Z} \backslash\{0,1\}$ and also $m_{0}\left(\tilde{\Lambda}_{1}\right)+m_{1}\left(\tilde{\Lambda}_{1}\right)=2 \mu\left(\tilde{\Lambda}_{1}\right)=0$. Since $\tilde{\mathrm{w}}(\tilde{z})=\sum_{j=0}^{\ell-1} \tilde{\mathrm{w}}_{1}(\tilde{z}-j)$ for $\tilde{z} \in \mathbb{C} \backslash(\tilde{A} \cup \tilde{B})$, we obtain

$$
m_{k}(\tilde{\Lambda})=\sum_{j=0}^{\ell-1} m_{k-j}\left(\tilde{\Lambda}_{1}\right)=0
$$

for every $k \in \mathbb{Z} \backslash\{0, \ell\}$. This proves Lemma 5.5.
The next example shows that Lemma 5.4 cannot be strengthened to assert the identity $m_{g \tilde{x}}(\tilde{\Lambda})=0$ for every $g \in \Gamma$ with $g \tilde{x}, g \tilde{y} \notin \tilde{A} \cup \tilde{B}$.

Example 5.6. Figure 6 depicts an (α, β)-trace $\Lambda=(x, y, w)$ on the annulus $\Sigma=\mathbb{C} / \mathbb{Z}$ that has Viterbo-Maslov index one and satisfies the arc condition. The lift satisfies $m_{\tilde{x}}(\tilde{\Lambda})=-3, m_{\tilde{x}+1}(\tilde{\Lambda})=4, m_{\tilde{y}}(\tilde{\Lambda})=5$, and $m_{\tilde{y}-1}(\tilde{\Lambda})=-4$. Thus $m_{x}(\Lambda)=m_{y}(\Lambda)=1$.

Figure 6: An (α, β)-trace on the annulus satisfying the arc condition.

Proof of Proposition 5.1. The proof has five steps.
Step 1. Let $\tilde{A}, \tilde{B} \subset \mathbb{C}$ be as in Lemma 5.3 and let $g \in \Gamma$ such that $g \tilde{x} \in \tilde{A} \backslash \tilde{B}, \quad g \tilde{y} \notin \tilde{A} \cup \tilde{B}$.
(An example is depicted in Figure 7.) Then (22) holds.

Figure 7: An (α, β)-trace on the torus not satisfying the arc condition.
The proof is a refinement of the winding number comparison argument in Lemma 5.4. Since $g \tilde{x} \notin \tilde{B}$ we have $g \neq$ id and, since $\tilde{x}, g \tilde{x} \in \tilde{A} \subset \tilde{\alpha}$, it follows that α is a noncontractible embedded circle. Hence we may choose the universal covering $\pi: \mathbb{C} \rightarrow \Sigma$ and the lifts $\tilde{\alpha}, \tilde{\beta}, \tilde{\Lambda}$ such that $\pi(\mathbb{R})=\alpha$, the map $\tilde{z} \mapsto \tilde{z}+1$ is a deck transformation, the projection π maps the interval $[0,1)$ bijectively onto α, and

$$
\tilde{\alpha}=\mathbb{R}, \quad \tilde{x}=0 \in \tilde{\alpha} \cap \tilde{\beta}, \quad \tilde{y}>0 .
$$

By assumption and Lemma 5.3 there is an integer k such that

$$
0<k<\tilde{y}, \quad g \tilde{x}=k, \quad g^{-1} \tilde{y}=\tilde{y}-k .
$$

Thus g is the deck transformation $\tilde{z} \mapsto \tilde{z}+k$.

Since $g \tilde{x} \notin \tilde{B}$ and $g \tilde{y} \notin \tilde{B}$ it follows from Lemma 5.3 that $g^{-1} \tilde{y} \notin \tilde{B}$ and $g^{-1} \tilde{x} \notin \tilde{B}$ and hence, again by Lemma 5.3, we have

$$
\tilde{B} \cap g \tilde{B}=\tilde{B} \cap g^{-1} \tilde{B}=\emptyset
$$

With $\gamma_{\tilde{\alpha}}$ and $\gamma_{\tilde{\beta}}$ chosen as in Lemma 5.3, this implies

$$
\begin{equation*}
\gamma_{\tilde{\beta}} \cdot\left(\gamma_{\tilde{\beta}}-k\right)=\left(\gamma_{\tilde{\beta}}+k\right) \cdot \gamma_{\tilde{\beta}}=0 . \tag{27}
\end{equation*}
$$

Since $k,-k, \tilde{y}+k, \tilde{y}-k \notin \tilde{B}$, there exists a constant $\varepsilon>0$ such that

$$
-\varepsilon \leq t \leq \varepsilon \quad \Longrightarrow \quad k+\mathbf{i} t,-k+\mathbf{i} t, \quad \tilde{y}-k+\mathbf{i} t, \tilde{y}+k+\mathbf{i} t \notin \tilde{B} .
$$

The paths $g \gamma_{\tilde{\alpha}} \pm \mathbf{i} \varepsilon$ and $g \gamma_{\tilde{\beta}} \pm \mathbf{i} \varepsilon$ both connect the point $g \tilde{x} \pm \mathbf{i} \varepsilon$ to $g \tilde{y} \pm \mathbf{i} \varepsilon$. Likewise, the paths $g^{-1} \gamma_{\tilde{\alpha}} \pm \mathbf{i} \varepsilon$ and $g^{-1} \gamma_{\tilde{\beta}} \pm \mathbf{i} \varepsilon$ both connect the point $g^{-1} \tilde{x} \pm \mathbf{i} \varepsilon$ to $g^{-1} \tilde{y} \pm \mathbf{i} \varepsilon$. Hence

$$
\begin{aligned}
\tilde{\mathrm{w}}(g \tilde{y} \pm \mathbf{i} \varepsilon)-\tilde{\mathrm{w}}(g \tilde{x} \pm \mathbf{i} \varepsilon) & =\left(\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}\right) \cdot\left(g \gamma_{\tilde{\alpha}} \pm \mathbf{i} \varepsilon\right) \\
& =\left(\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}\right) \cdot\left(\gamma_{\tilde{\alpha}}+k \pm \mathbf{i} \varepsilon\right) \\
& =\left(\gamma_{\tilde{\alpha}}+k \pm \mathbf{i} \varepsilon\right) \cdot \gamma_{\tilde{\beta}} \\
& =\gamma_{\tilde{\alpha}} \cdot\left(\gamma_{\tilde{\beta}}-k \mp \mathbf{i} \varepsilon\right) \\
& =\left(\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}\right) \cdot\left(\gamma_{\tilde{\beta}}-k \mp \mathbf{i} \varepsilon\right) \\
& =\left(\gamma_{\tilde{\alpha}}-\gamma_{\tilde{\beta}}\right) \cdot\left(g^{-1} \gamma_{\tilde{\beta}} \mp \mathbf{i} \varepsilon\right) \\
& =\tilde{\mathrm{w}}\left(g^{-1} \tilde{y} \mp \mathbf{i} \varepsilon\right)-\tilde{\mathrm{w}}\left(g^{-1} \tilde{x} \mp \mathbf{i} \varepsilon\right) .
\end{aligned}
$$

Here the last but one equation follows from (27). Thus we have proved

$$
\begin{align*}
\tilde{\mathrm{w}}(g \tilde{x}+\mathbf{i} \varepsilon)+\tilde{\mathrm{w}}\left(g^{-1} \tilde{y}-\mathbf{i} \varepsilon\right) & =\tilde{\mathrm{w}}\left(g^{-1} \tilde{x}-\mathbf{i} \varepsilon\right)+\tilde{\mathrm{w}}(g \tilde{y}+\mathbf{i} \varepsilon), \\
\tilde{\mathrm{w}}(g \tilde{x}-\mathbf{i} \varepsilon)+\tilde{\mathrm{w}}\left(g^{-1} \tilde{y}+\mathbf{i} \varepsilon\right) & =\tilde{\mathrm{w}}\left(g^{-1} \tilde{x}+\mathbf{i} \varepsilon\right)+\tilde{\mathrm{w}}(g \tilde{y}-\mathbf{i} \varepsilon) . \tag{28}
\end{align*}
$$

Since

$$
\begin{aligned}
m_{g \tilde{x}}(\tilde{\Lambda}) & =2 \tilde{\mathrm{w}}(g \tilde{x}+\mathbf{i} \varepsilon)+2 \tilde{\mathrm{w}}(g \tilde{x}-\mathbf{i} \varepsilon), \\
m_{g \tilde{y}}(\tilde{\Lambda}) & =2 \tilde{\mathrm{w}}(g \tilde{y}+\mathbf{i} \varepsilon)+2 \tilde{\mathrm{w}}(g \tilde{y}-\mathbf{i} \varepsilon), \\
m_{g^{-1} \tilde{x}}(\tilde{\Lambda}) & =2 \tilde{\mathrm{w}}\left(g^{-1} \tilde{x}+\mathbf{i} \varepsilon\right)+2 \tilde{\mathrm{w}}\left(g^{-1} \tilde{x}-\mathbf{i} \varepsilon\right), \\
m_{g^{-1} \tilde{y}}(\tilde{\Lambda}) & =2 \tilde{\mathrm{w}}\left(g^{-1} \tilde{y}+\mathbf{i} \varepsilon\right)+2 \tilde{\mathrm{w}}\left(g^{-1} \tilde{y}-\mathbf{i} \varepsilon\right),
\end{aligned}
$$

Step 1 follows by taking the sum of the two equations in (28).

Step 2. Let $\tilde{A}, \tilde{B} \subset \mathbb{C}$ be as in Lemma 5.3 and let $g \in \Gamma$. Suppose that either $g \tilde{x}, g \tilde{y} \notin \tilde{A}$ or $g \tilde{x}, g \tilde{y} \notin \tilde{B}$. Then (22) holds.
If $g \tilde{x}, g \tilde{y} \notin \tilde{A} \cup \tilde{B}$ the assertion follows from Lemma 5.4. If $g \tilde{x} \in \tilde{A} \backslash \tilde{B}$ and $g \tilde{y} \notin \tilde{A} \cup \tilde{B}$ the assertion follows from Step 1. If $g \tilde{x} \notin \tilde{A} \cup \tilde{B}$ and $g \tilde{y} \in \tilde{A} \backslash \tilde{B}$ the assertion follows from Step 1 by interchanging \tilde{x} and \tilde{y}. Namely, (22) holds for $\tilde{\Lambda}$ if and only if it holds for the $(\tilde{\alpha}, \tilde{\beta})$-trace $-\tilde{\Lambda}:=(\tilde{y}, \tilde{x},-\tilde{\mathrm{w}})$. This covers the case $g \tilde{x}, g \tilde{y} \notin \tilde{B}$. If $g \tilde{x}, g \tilde{y} \notin \tilde{A}$ the assertion follows by interchanging \tilde{A} and \tilde{B}. Namely, (22) holds for $\tilde{\Lambda}$ if and only if it holds for the $(\tilde{\beta}, \tilde{\alpha})$-trace $\tilde{\Lambda}^{*}:=(\tilde{x}, \tilde{y},-\tilde{\mathrm{w}})$. This proves Step 2.
Step 3. Let $\tilde{A}, \tilde{B} \subset \mathbb{C}$ be as in Lemma 5.3 and let $g \in \Gamma$ such that

$$
g \tilde{x} \in \tilde{A} \backslash \tilde{B}, \quad g \tilde{y} \in \tilde{B} \backslash \tilde{A}
$$

(An example is depicted in Figure 8.) Then (21) holds for g and g^{-1}.

Figure 8: $\operatorname{An}(\alpha, \beta)$-trace on the annulus with $g \tilde{x} \in \tilde{A}$ and $g \tilde{y} \in \tilde{B}$.
Since $g \tilde{x} \notin \tilde{B}$ (and $g \tilde{y} \notin \tilde{A}$) we have $g \neq$ id and, since $\tilde{x}, g \tilde{x} \in \tilde{A} \subset \tilde{\alpha}$ and $\tilde{y}, g \tilde{y} \in \tilde{B} \subset \tilde{\beta}$, it follows that $g \tilde{\alpha}=\tilde{\alpha}$ and $g \tilde{\beta}=\tilde{\beta}$. Hence α and β are noncontractible embedded circles and some iterate of α is homotopic to some iterate of β. So α is homotopic to β (with some orientation), by Lemma A.4. Hence we may choose the universal covering $\pi: \mathbb{C} \rightarrow \Sigma$ and the lifts $\tilde{\alpha}, \tilde{\beta}, \tilde{\Lambda}$
such that $\pi(\mathbb{R})=\alpha$, the map $\tilde{z} \mapsto \tilde{z}+1$ is a deck transformation, π maps the interval $[0,1)$ bijectively onto α, and $\tilde{\alpha}=\mathbb{R}, \tilde{x}=0 \in \tilde{\alpha} \cap \tilde{\beta}, \tilde{y}>0$. Thus $\tilde{A}=[0, \tilde{y}]$ is the arc in $\tilde{\alpha}$ from 0 to \tilde{y} and \tilde{B} is the arc in $\tilde{\beta}$ from 0 to \tilde{y}. Moreover, $\tilde{\beta}=\tilde{\beta}+1$ and the arc in $\tilde{\beta}$ from 0 to 1 is a fundamental domain for β. By assumption and Lemma 5.3 there is an integer k such that $k \in \tilde{A}$ and $-k \in \tilde{B}$. Hence \tilde{A} does not contain any negative integers and \tilde{B} does not contain any positive integers. Choose $k_{\tilde{A}}, k_{\tilde{B}} \in \mathbb{N}$ such that

$$
\tilde{A} \cap \mathbb{Z}=\left\{0,1,2, \cdots, k_{\tilde{A}}\right\}, \quad \tilde{B} \cap \mathbb{Z}=\left\{0,-1,-2, \cdots,-k_{\tilde{B}}\right\}
$$

For $0 \leq k \leq k_{\tilde{A}}$ let $\tilde{A}_{k} \subset \tilde{\alpha}$ and $\tilde{B}_{k} \subset \tilde{\beta}$ be the arcs from 0 to $\tilde{y}-k$ and consider the $(\tilde{\alpha}, \tilde{\beta})$-trace

$$
\tilde{\Lambda}_{k}:=\left(0, \tilde{y}-k, \tilde{\mathrm{w}}_{k}\right), \quad \partial \tilde{\Lambda}_{k}:=\left(0, \tilde{y}-k, \tilde{A}_{k}, \tilde{B}_{k}\right),
$$

where $\tilde{\mathrm{w}}_{k}(\tilde{z})$ is the winding number of $\tilde{A}_{k}-\tilde{B}_{k}$ about $\tilde{z} \in \mathbb{C} \backslash\left(\tilde{A}_{k} \cup \tilde{B}_{k}\right)$. Note that $\tilde{\Lambda}_{0}=\tilde{\Lambda}$ and

$$
\tilde{B}_{k} \cap \mathbb{Z}=\left\{0,-1,-2, \cdots,-k_{\tilde{B}}-k\right\}
$$

We prove that, for each k, the $(\tilde{\alpha}, \tilde{\beta})$-trace $\tilde{\Lambda}_{k}$ satisfies

$$
\begin{equation*}
m_{j}\left(\tilde{\Lambda}_{k}\right)+m_{\tilde{y}-k-j}\left(\tilde{\Lambda}_{k}\right)=0 \quad \forall j \in \mathbb{Z} \backslash\{0\} \tag{29}
\end{equation*}
$$

If \tilde{y} is an integer, then (29) follows from Lemma 5.5. Hence we may assume that \tilde{y} is not an integer.

We prove equation (29) by reverse induction on k. First let $k=k_{\tilde{A}}$. Then we have $j, \tilde{y}+j \notin \tilde{A}_{k}$ for every $j \in \mathbb{N}$. Hence it follows from Step 2 that

$$
\begin{equation*}
m_{j}\left(\tilde{\Lambda}_{k}\right)+m_{\tilde{y}-k-j}\left(\tilde{\Lambda}_{k}\right)=m_{-j}\left(\tilde{\Lambda}_{k}\right)+m_{\tilde{y}-k+j}(\tilde{\Lambda}) \quad \forall j \in \mathbb{N} . \tag{30}
\end{equation*}
$$

Thus we can apply Lemma 5.2 to the projection of $\tilde{\Lambda}_{k}$ to the quotient \mathbb{C} / \mathbb{Z}. Hence $\tilde{\Lambda}_{k}$ satisfies (29).

Now fix an integer $k \in\left\{0,1, \ldots, k_{\tilde{A}}-1\right\}$ and suppose, by induction, that $\tilde{\Lambda}_{k+1}$ satisfies (29). Denote by $\tilde{A}^{\prime} \subset \tilde{\alpha}$ and $\tilde{B}^{\prime} \subset \tilde{\beta}$ the arcs from $\tilde{y}-k-1$ to 1 , and by $\tilde{A}^{\prime \prime} \subset \tilde{\alpha}$ and $\tilde{B}^{\prime \prime} \subset \tilde{\beta}$ the arcs from 1 to $\tilde{y}-k$. Then $\tilde{\Lambda}_{k}$ is the catenation of the $(\tilde{\alpha}, \tilde{\beta})$-traces

$$
\begin{array}{cl}
\tilde{\Lambda}_{k+1}:=\left(0, \tilde{y}-k-1, \tilde{\mathrm{w}}_{k+1}\right), & \partial \tilde{\Lambda}_{k+1}=\left(0, \tilde{y}-k-1, \tilde{A}_{k+1}, \tilde{B}_{k+1}\right), \\
\tilde{\Lambda}^{\prime}:=\left(\tilde{y}-k-1,1, \tilde{\mathrm{w}}^{\prime}\right), & \partial \tilde{\Lambda}^{\prime}=\left(\tilde{y}-k-1,1, \tilde{A}^{\prime}, \tilde{B}^{\prime}\right), \\
\tilde{\Lambda}^{\prime \prime}:=\left(1, \tilde{y}-k, \tilde{\mathrm{w}}^{\prime \prime}\right), & \partial \tilde{\Lambda}^{\prime \prime}=\left(1, \tilde{y}-k, \tilde{A}^{\prime \prime}, \tilde{B}^{\prime \prime}\right) .
\end{array}
$$

Here $\tilde{\mathrm{w}}^{\prime}(\tilde{z})$ is the winding number of the loop $\tilde{A}^{\prime}-\tilde{B}^{\prime}$ about $\tilde{z} \in \mathbb{C} \backslash\left(\tilde{A}^{\prime} \cup \tilde{B}^{\prime}\right)$ and simiarly for $\tilde{\mathrm{w}}^{\prime \prime}$. Note that $\tilde{\Lambda}^{\prime \prime}$ is the shift of $\tilde{\Lambda}_{k+1}$ by 1 . The catenation of $\tilde{\Lambda}_{k+1}$ and $\tilde{\Lambda}^{\prime}$ is the $(\tilde{\alpha}, \tilde{\beta})$-trace from 0 to 1. Hence it has Viterbo-Maslov index zero, by Lemma 5.5. and satisfies

$$
\begin{equation*}
m_{j}\left(\tilde{\Lambda}_{k+1}\right)+m_{j}\left(\tilde{\Lambda}^{\prime}\right)=0 \quad \forall j \in \mathbb{Z} \backslash\{0,1\} \tag{31}
\end{equation*}
$$

Since the catenation of $\tilde{\Lambda}^{\prime}$ and $\tilde{\Lambda}^{\prime \prime}$ is the $(\tilde{\alpha}, \tilde{\beta})$-trace from $\tilde{y}-k-1$ to $\tilde{y}-k$, it also has Viterbo-Maslov index zero and satisfies

$$
\begin{equation*}
m_{\tilde{y}-k-j}\left(\tilde{\Lambda}^{\prime}\right)+m_{\tilde{y}-k-j}\left(\tilde{\Lambda}^{\prime \prime}\right)=0 \quad \forall j \in \mathbb{Z} \backslash\{0,1\} . \tag{32}
\end{equation*}
$$

Moreover, by the induction hypothesis, we have

$$
\begin{equation*}
m_{j}\left(\tilde{\Lambda}_{k+1}\right)+m_{\tilde{y}-k-1-j}\left(\tilde{\Lambda}_{k+1}\right)=0 \quad \forall j \in \mathbb{Z} \backslash\{0\} \tag{33}
\end{equation*}
$$

Combining the equations (31), (32), and (33) we find

$$
\begin{aligned}
m_{j}\left(\tilde{\Lambda}_{k}\right)+m_{\tilde{y}-k-j}\left(\tilde{\Lambda}_{k}\right)= & m_{j}\left(\tilde{\Lambda}_{k+1}\right)+m_{j}\left(\tilde{\Lambda}^{\prime}\right)+m_{j}\left(\tilde{\Lambda}^{\prime \prime}\right) \\
& +m_{\tilde{y}-k-j}\left(\tilde{\Lambda}_{k+1}\right)+m_{\tilde{y}-k-j}\left(\tilde{\Lambda}^{\prime}\right)+m_{\tilde{y}-k-j}\left(\tilde{\Lambda}^{\prime \prime}\right) \\
= & m_{j}\left(\tilde{\Lambda}_{k+1}\right)+m_{j}\left(\tilde{\Lambda}^{\prime}\right) \\
& +m_{\tilde{y}-k-j}\left(\tilde{\Lambda}^{\prime}\right)+m_{\tilde{y}-k-j}\left(\tilde{\Lambda}^{\prime \prime}\right) \\
& +m_{j-1}\left(\tilde{\Lambda}_{k+1}\right)+m_{\tilde{y}-k-j}\left(\tilde{\Lambda}_{k+1}\right) \\
= & 0
\end{aligned}
$$

for $j \in \mathbb{Z} \backslash\{0,1\}$. For $j=1$ we obtain

$$
\begin{aligned}
m_{1}\left(\tilde{\Lambda}_{k}\right)+m_{\tilde{y}-k-1}\left(\tilde{\Lambda}_{k}\right)= & m_{1}\left(\tilde{\Lambda}_{k+1}\right)+m_{1}\left(\tilde{\Lambda}^{\prime}\right)+m_{1}\left(\tilde{\Lambda}^{\prime \prime}\right) \\
& +m_{\tilde{y}-k-1}\left(\tilde{\Lambda}_{k+1}\right)+m_{\tilde{y}-k-1}\left(\tilde{\Lambda}^{\prime}\right)+m_{\tilde{y}-k-1}\left(\tilde{\Lambda}^{\prime \prime}\right) \\
= & m_{1}\left(\tilde{\Lambda}_{k+1}\right)+m_{\tilde{y}-k-2}\left(\tilde{\Lambda}_{k+1}\right) \\
& +m_{0}\left(\tilde{\Lambda}_{k+1}\right)+m_{\tilde{y}-k-1}\left(\tilde{\Lambda}_{k+1}\right) \\
& +m_{\tilde{y}-k-1}\left(\tilde{\Lambda}^{\prime}\right)+m_{1}\left(\tilde{\Lambda}^{\prime}\right) \\
= & 2 \mu\left(\tilde{\Lambda}_{k+1}\right)+2 \mu\left(\tilde{\Lambda}^{\prime}\right) \\
= & 0
\end{aligned}
$$

Here the last but one equation follows from equation (33) and Proposition 4.1, and the last equation follows from Lemma 5.5. Hence $\tilde{\Lambda}_{k}$ satisfies (29). This completes the induction argument for the proof of Step 3.

Step 4. Let $\tilde{A}, \tilde{B} \subset \mathbb{C}$ be as in Lemma 5.3 and let $g \in \Gamma$ such that

$$
g \tilde{x} \in \tilde{A} \cap \tilde{B}, \quad g \tilde{y} \notin \tilde{A} \cup \tilde{B} .
$$

Then (21) holds for g and g^{-1}.
Since $g \tilde{y} \notin \tilde{A} \cup \tilde{B}$ we have $g \neq$ id. Since $g \tilde{x} \in \tilde{A} \cap \tilde{B}$ we have $\tilde{\alpha}=g \tilde{\alpha}$ and $\tilde{\beta}=g \tilde{\beta}$. Hence α and β are noncontractible embedded circles, and they are homotopic (with some orientation) by Lemma A.4. Thus we may choose $\pi: \mathbb{C} \rightarrow \Sigma, \tilde{\alpha}, \tilde{\beta}, \tilde{\Lambda}$ as in Step 3. By assumption there is an integer $k \in \tilde{A} \cap \tilde{B}$. Hence \tilde{A} and \tilde{B} do not contain any negative integers. Choose $k_{\tilde{A}}, k_{\tilde{B}} \in \mathbb{N}$ such that

$$
\tilde{A} \cap \mathbb{Z}=\left\{0,1, \ldots, k_{\tilde{A}}\right\}, \quad \tilde{B} \cap \mathbb{Z}=\left\{0,1, \ldots, k_{\tilde{B}}\right\}
$$

Assume without loss of generality that $k_{\tilde{A}} \leq k_{\tilde{B}}$. For $0 \leq k \leq k_{\tilde{A}}$ denote by $\tilde{A}_{k} \subset \tilde{A}$ and $\tilde{B}_{k} \subset \tilde{B}$ the arcs from 0 to $\tilde{y}-k$ and consider the $(\tilde{\alpha}, \tilde{\beta})$-trace

$$
\tilde{\Lambda}_{k}:=\left(0, \tilde{y}-k, \tilde{\mathrm{w}}_{k}\right), \quad \partial \tilde{\Lambda}_{k}:=\left(0, \tilde{y}-k, \tilde{A}_{k}, \tilde{B}_{k}\right) .
$$

In this case

$$
\tilde{B}_{k} \cap \mathbb{Z}=\left\{0,1, \ldots, k_{\tilde{B}}-k\right\} .
$$

As in Step 3, it follows by reverse induction on k that $\tilde{\Lambda}_{k}$ satisfies (29) for every k. We assume again that \tilde{y} is not an integer. (Otherwise (29) follows from Lemma 5.5). If $k=k_{\tilde{A}}$ then $j, \tilde{y}-j \notin \tilde{A}_{k}$ for every $j \in \mathbb{N}$, hence it follows from Step 2 that $\tilde{\Lambda}_{k}$ satisfies (30), and hence it follows from Lemma 5.2 for the projection of $\tilde{\Lambda}_{k}$ to the annulus \mathbb{C} / \mathbb{Z} that $\tilde{\Lambda}_{k}$ also satisfies (29). The induction step is verbatim the same as in Step 3 and will be omitted. This proves Step 4.
Step 5. We prove the proposition.
If both points $g \tilde{x}, g \tilde{y}$ are contained in \tilde{A} (or in \tilde{B}) then $g=$ id by Lemma 5.3, and in this case equation (22) is a tautology. If both points $g \tilde{x}, g \tilde{y}$ are not contained in $\tilde{A} \cup \tilde{B}$, equation (22) has been established in Lemma 5.4. Moreover, we can interchange \tilde{x} and \tilde{y} or \tilde{A} and \tilde{B} as in the proof of Step 2. Thus Steps 1 and 4 cover the case where precisely one of the points $g \tilde{x}$, $g \tilde{y}$ is contained in $\tilde{A} \cup \tilde{B}$ while Step 3 covers the case where $g \neq \mathrm{id}$ and both points $g \tilde{x}, g \tilde{y}$ are contained in $\tilde{A} \cup \tilde{B}$. This shows that equation (22) holds for every $g \in \Gamma \backslash\{\mathrm{id}\}$. Hence, by Lemma 5.2, equation (21) holds for every $g \in \Gamma \backslash\{\mathrm{id}\}$. This proves Proposition 5.1.

Proof of Theorem 3.4 in the Non Simply Connected Case. Choose a universal covering $\pi: \mathbb{C} \rightarrow \Sigma$ and let $\Gamma, \tilde{\alpha}, \tilde{\beta}$, and $\tilde{\Lambda}=(\tilde{x}, \tilde{y}, \tilde{\mathrm{w}})$ be as in Proposition 5.1. Then

$$
m_{x}(\Lambda)+m_{y}(\Lambda)-m_{\tilde{x}}(\tilde{\Lambda})-m_{\tilde{y}}(\tilde{\Lambda})=\sum_{g \neq \mathrm{id}}\left(m_{g \tilde{x}}(\tilde{\Lambda})+m_{g^{-1} \tilde{y}}(\tilde{\Lambda})\right)=0
$$

Here the last equation follows from Proposition 5.1. Hence, by Proposition 4.1, we have

$$
\mu(\Lambda)=\mu(\tilde{\Lambda})=\frac{m_{\tilde{x}}(\tilde{\Lambda})+m_{\tilde{y}}(\tilde{\Lambda})}{2}=\frac{m_{x}(\Lambda)+m_{y}(\Lambda)}{2}
$$

This proves (8) in the case where Σ is not simply connected.

A The Space of Paths

We assume throughout that Σ is a connected oriented smooth 2-manifold without boundary and $\alpha, \beta \subset \Sigma$ are two embedded loops. Let

$$
\Omega_{\alpha, \beta}:=\left\{x \in C^{\infty}([0,1], \Sigma) \mid x(0) \in \alpha, x(1) \in \beta\right\}
$$

denote the space of paths connecting α to β.
Proposition A.1. Assume that α and β are not contractible and that α is not isotopic to β. Then each component of $\Omega_{\alpha, \beta}$ is simply connected and hence $H^{1}\left(\Omega_{\alpha, \beta} ; \mathbb{R}\right)=0$.

The proof was explained to us by David Epstein [3]. It is based on the following three lemmas. We identify $S^{1} \cong \mathbb{R} / \mathbb{Z}$.

Lemma A.2. Let $\gamma: S^{1} \rightarrow \Sigma$ be a noncontractible loop and denote by

$$
\pi: \tilde{\Sigma} \rightarrow \Sigma
$$

the covering generated by γ. Then $\tilde{\Sigma}$ is diffeomorphic to the cylinder.
Proof. By assumption, Σ is oriented and has a nontrivial fundamental group. By the uniformization theorem, choose a metric of constant curvature. Then the universal cover of Σ is isometric to either \mathbb{R}^{2} with the flat metric or to the upper half space \mathbb{H}^{2} with the hyperbolic metric. The 2-manifold $\tilde{\Sigma}$ is a
quotient of the universal cover of Σ by the subgroup of the group of covering transformations generated by a single element (a translation in the case of \mathbb{R}^{2} and a hyperbolic element of $\operatorname{PSL}(2, \mathbb{R})$ in the case of $\left.\mathbb{H}^{2}\right)$. Since γ is not contractible, this element is not the identity. Hence Σ is diffeomorphic to the cylinder.
Lemma A.3. Let $\gamma: S^{1} \rightarrow \Sigma$ be a noncontractible loop and, for $k \in \mathbb{Z}$, define $\gamma^{k}: S^{1} \rightarrow \Sigma$ by

$$
\gamma^{k}(s):=\gamma(k s)
$$

Then γ^{k} is contractible if and only if $k=0$.
Proof. Let $\pi: \tilde{\Sigma} \rightarrow \Sigma$ be as in Lemma A.2. Then, for $k \neq 0$, the loop $\gamma^{k}: S^{1} \rightarrow \Sigma$ lifts to a noncontractible loop in $\tilde{\Sigma}$.
Lemma A.4. Let $\gamma_{0}, \gamma_{1}: S^{1} \rightarrow \Sigma$ be noncontractible embedded loops and suppose that k_{0}, k_{1} are nonzero integers such that $\gamma_{0}^{k_{0}}$ is homotopic to $\gamma_{1}^{k_{1}}$. Then either γ_{1} is homotopic to γ_{0} and $k_{1}=k_{0}$ or γ_{1} is homotopic to $\gamma_{0}{ }^{-1}$ and $k_{1}=-k_{0}$.
Proof. Let $\pi: \tilde{\Sigma} \rightarrow \Sigma$ be the covering generated by γ_{0}. Then $\gamma_{0}{ }^{k_{0}}$ lifts to a closed curve in $\tilde{\Sigma}$ and is homotopic to $\gamma_{1}{ }^{k_{1}}$. Hence $\gamma_{1}{ }^{k_{1}}$ lifts to a closed immersed curve in $\tilde{\Sigma}$. Hence there exists a nonzero integer j_{1} such that $\gamma_{1}{ }^{j_{1}}$ lifts to an embedding $S^{1} \rightarrow \tilde{\Sigma}$. Any embedded curve in the cylinder is either contractible or is homotopic to a generator. If the lift of $\gamma_{1}{ }^{j_{1}}$ were contractible it would follow that $\gamma_{0}{ }^{k_{0}}$ is contractible, hence, by Lemma A.3, $k_{0}=0$ in contradiction to our assumption. Hence the lift of $\gamma_{1}{ }^{j_{1}}$ to $\tilde{\Sigma}$ is not contractible. With an appropriate sign of j_{1} it follows that the lift of $\gamma_{1}{ }^{j_{1}}$ is homotopic to the lift of γ_{0}. Interchanging the roles of γ_{0} and γ_{1}, we find that there exist nonzero integers j_{0}, j_{1} such that

$$
\gamma_{0} \sim \gamma_{1}^{j_{1}}, \quad \gamma_{1} \sim \gamma_{0}{ }^{j_{0}}
$$

in $\tilde{\Sigma}$. Hence γ_{0} is homotopic to $\gamma_{0}{ }^{j_{0} j_{1}}$ in the free loop space of $\tilde{\Sigma}$. Since the homotopy lifts to the cylinder $\tilde{\Sigma}$ and the fundamental group of $\tilde{\Sigma}$ is abelian, it follows that

$$
j_{0} j_{1}=1
$$

If $j_{0}=j_{1}=1$ then γ_{1} is homotopic to γ_{0}, hence $\gamma_{0}^{k_{1}}$ is homotopic to $\gamma_{0}{ }^{k_{0}}$, hence $\gamma_{0}{ }^{k_{0}-k_{1}}$ is contractible, and hence $k_{0}-k_{1}=0$, by Lemma A.3. If $j_{0}=j_{1}=-1$ then γ_{1} is homotopic to $\gamma_{0}{ }^{-1}$, hence $\gamma_{0}^{-k_{1}}$ is homotopic to $\gamma_{0}{ }^{k_{0}}$, hence $\gamma_{0}{ }^{k_{0}+k_{1}}$ is contractible, and hence $k_{0}+k_{1}=0$, by Lemma A.3. This proves Lemma A.4.

Proof of Proposition A.1. Orient α and β and and choose orientation preserving diffeomorphisms

$$
\gamma_{0}: S^{1} \rightarrow \alpha, \quad \gamma_{1}: S^{1} \rightarrow \beta
$$

A closed loop in $\Omega_{\alpha, \beta}$ gives rise to a map $u: S^{1} \times[0,1] \rightarrow \Sigma$ such that

$$
u\left(S^{1} \times\{0\}\right) \subset \alpha, \quad u\left(S^{1} \times\{1\}\right) \subset \beta
$$

Let k_{0} denote the degree of $u(\cdot, 0): S^{1} \rightarrow \alpha$ and k_{1} denote the degree of $u(\cdot, 1): S^{1} \rightarrow \beta$. Since the homotopy class of a map $S^{1} \rightarrow \alpha$ or a map $S^{1} \rightarrow \beta$ is determined by the degree we may assume, without loss of generality, that

$$
u(s, 0)=\gamma_{0}\left(k_{0} s\right), \quad u(s, 1)=\gamma_{1}\left(k_{1} s\right)
$$

If one of the integers k_{0}, k_{1} vanishes, so does the other, by Lemma A.3. If they are both nonzero then γ_{1} is homotopic to either γ_{0} or γ_{0}^{-1}, by Lemma A.4. Hence γ_{1} is isotopic to either γ_{0} or γ_{0}^{-1}, by [2, Theorem 4.1]. Hence α is isotopic to β, in contradiction to our assumption. This shows that

$$
k_{0}=k_{1}=0 .
$$

With this established it follows that the map $u: S^{1} \times[0,1] \rightarrow \Sigma$ factors through a map $v: S^{2} \rightarrow \Sigma$ that maps the south pole to α and the north pole to β. Since $\pi_{2}(\Sigma)=0$ it follows that v is homotopic, via maps with fixed north and south pole, to one of its meridians. This proves Proposition A.1.

References

[1] Vin De Silva, Products in the symplectic Floer homology of Lagrangian intersections, PhD thesis, Oxford, 1999.
[2] David Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.
[3] David Epstein, private communication, 6 April 2000.
[4] Andreas Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988), 775-813.
[5] Andreas Floer, Morse theory for Lagrangian intersections, J. Diff. Geom. 28 (1988), 513-547.
[6] John Milnor, Topology from the Differentiable Viewpoint. The University Press of Vorginia, 1969.
[7] Joel Robbin, Dietmar Salamon, Vin de Silva, Combinatorial Floer homology, in preparation.
[8] Joel Robbin, Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), 827-844.
[9] Claude Viterbo, Intersections de sous-variétés Lagrangiennes, fonctionelles d'action et indice des systèmes Hamiltoniens, Bull. Soc. Math. France 115 (1987), 361-390.

[^0]: *Partially supported by the Swiss National Science Foundation Grant 200021-127136

